
Processing Distance Join Queries with Constraints

Apostolos N. Papadopoulos Alexandros Nanopoulos Yannis Manolopoulos
Data Engineering Research Lab., Department of Informatics

Aristotle University, Thessaloniki 54124, Greece
email: {apostol,alex,manolopo}@delab.csd.auth.gr

Abstract

Distance-join queries are used in many modern applications, such as spatial databases, spatiotem-
poral databases, and data mining. One of the most common distance-join queries is the closest-pair
query. Given two datasets DA and DB the closest-pair query (CPQ) retrieves the pair (a,b), where
a ∈ DA and b ∈ DB, having the smallest distance between all pairs of objects. An extension to this
problem is to generate the k closest pairs of objects (k-CPQ). In several cases spatial constraints are
applied, and object pairs that are retrieved must also satisfy these constraints. Although the appli-
cation of spatial constraints seems natural towards a more focused search, only recently they have
been studied for the CPQ problem with the restriction that DA = DB. In this work, we focus on
constrained closest-pair queries (CCPQ), between two distinct datasets DA and DB, where objects
from DA must be enclosed by a spatial region R. Several algorithms are presented and evaluated
using real-life and synthetic datasets. Among them, a heap-based method enhanced with batch
capabilities outperforms the other approaches as it is demonstrated by an extensive performance
evaluation.

Keywords: spatial data, closest-pair queries, spatial constraints

1 Introduction

Research in spatial and spatiotemporal databases is very active in the last twenty years. The literature

is rich in efficient access methods, query processing techniques, cost models and query languages,

providing the necessary components to build high quality systems. The majority of research efforts

aiming at efficient query processing in spatial and spatiotemporal databases, concentrated in the

following significant query types:

• Range Query: is the most common topological query. A query area R is given and all objects

that intersect or are contained in R are requested.

• k Nearest-Neighbor Query: Given a query point P and a positive integer k, the query returns

the k objects that are closer to P , based on a distance metric (e.g., Euclidean distance).

1

• Spatial Join Query: It is used to determine pairs of spatial objects that satisfy a particular

property. Given two spatial datasets DA and DB and a predicate θ, the output of the spatial

join query is a set of pairs oa,ob such that oa ∈ DA, ob ∈ DB and θ(oa, ob) is true.

• k Closest-Pair Query (k-CPQ): It is a combination of spatial join and nearest neighbor queries.

Given two spatial datasets DA and DB, the output of a k closest-pairs query is composed of k

pairs oa,ob such that oa ∈ DA, ob ∈ DB. These k pair-wise distances are the smallest amongst

all possible object pairs.

Spatial joins and closest-pair queries require significant computation effort and many more I/O

operations than simpler queries like range and nearest neighbors. Moreover, queries involving more

than one datasets are very frequent in real applications, and therefore, special attention has been given

by the research community [12, 5, 6, 15, 18, 3].

In this study, we focus on the k-Semi-Closest-Pair Query (k-SCPQ), and more specifically, on

an interesting variation which is derived by applying spatial constraints in the objects of the first

dataset. We term this query k-Constrained-Semi-Closest-Pair Query (k-CSCPQ). In the k-SCPQ

query we require k object pairs (oa, ob) with oa ∈ DA and ob ∈ DB having the smallest distances

between datasets DA and DB such that each object oa appears at most once in the final result. In the

k-CSCPQ query, an additional spatial constraint is applied, requiring that each object oa ∈ DA that

appears in the final result must be enclosed by a spatial region R1. An example is given in Figure 1,

illustrating the results of the aforementioned CPQ variations for k = 2.

Distance-based queries, such as nearest-neighbor and closest-pair queries, play a very important

role in spatial and spatiotemporal databases. Apart from the fact that these queries compose an

important family of queries on their own, they can be used as fundamental building blocks for more

complex operations, such as data mining algorithms. Several data mining tasks require the combi-

nation of two datasets, to draw conclusions. A clustering algorithm based on closest pairs has been

proposed in [13]. In [2, 3] the authors study applications of the k-NN join operation to knowledge

discovery, which is a direct extension of the k-Semi-Closest-Pair query. More specifically, the authors

discuss the application of k-NN join to clustering, classification and sampling tasks in data mining

operations, and they illustrate how these tasks can be performed more efficiently. In [20] it is reported

that the k-NN join can also be used to improve the performance of LOF algorithm, which is used for
1For the rest of the study we assume that both datasets DA and DB contain multidimensional points. The methods

are also applicable for non-point objects.

2

��

��
��

��

��

��

��

�	

�

��

��

��

��

��
��

��
�������������������

������

��

��
��

��

��

��

��

�	

�

��

��

��

��

��
��

��
������������������������

��� ���

��

��
��

��

��

��

��

�	

�

��

��

��

��

��

������!�"��#

��

��
���#�����#�$������������������������

���� ���

Figure 1: Results of CPQ variations for k=2.

outlier detection in a single dataset [4], and also to improve the performance of the Chameleon clus-

tering algorithm [11]. The importance of dynamic closest-pair queries to hierarchical clustering has

been studied in [8]. In the same paper the authors discuss the application of CPQ to other domains

such as the Traveling Salesman Problem (TSP), non-hierarchical clustering, and greedy matching, to

name a few.

Taking into consideration the significance of distance-based queries in several disciplines, in this

work we focus on the Semi-Closest-Pair query with spatial constraints and study efficient algorithms for

its computation. The motivation behind the current study is the fact that in many realistic cases the

user focuses on a portion of the dataspace rather than in the whole dataspace. Although this sounds

natural, specifically for large dataspaces and large populations, there is limited research work towards

constrained spatial query processing. Moreover, spatial constraints may be applied implicitly by the

system as a result of user query. For example, consider the query: “Find the three closest parks from

all hotels located at the center of the city”. The hotels located at the city center are usually enclosed

by a polygonal region which defines the center of the city. Finally, many complex algorithms first

perform a partitioning of the dataspace into cells, and then operate in each cell separately. Therefore,

our methods can be used as of-the-self components for more complex operations, to speed up specific

algorithmic steps.

The rest of the article is organized as follows. Section 2 presents the appropriate background, the

related work and the main contributions of the paper. The query processing algorithms are presented

and studied in Section 3. Section 4 contains the performance evaluation results, whereas Section 5

concludes the work and motivates for further research in the area.

3

2 Problem Definition and Related Work

Let DA and DB be two datasets of multi-dimensional points, each indexed by means of a spatial access

method. We assume that the R∗-tree [1] is used to index each dataset, although other variations could

be applied equally well. Dataset DA is called the primary dataset, whereas dataset DB is called the

reference dataset. We are interested in determining the k objects from DA that are closer to objects

from the reference dataset DB, under the constraint that all points from DA that are part of the

answer must be enclosed by a spatial region Rq. If the number of objects from DA contained in R is

less than k, then all objects are reported, ranked by their NN distance to the reference dataset DB.

For simplicity and clarity we assume that Rq is a rectangular region, although arbitrary query regions

can be used as well.

The first method towards processing of constrained closest-pair queries has been proposed in [14],

where it is assumed that DA=DB. Moreover, the authors assume that in order for a pair (o1, o2) to

be part of the answer, both o1 and o2 must be enclosed by the query region R. In order to facilitate

efficient query processing, the R-tree is used to index the dataset. The proposed method augments

the R-tree nodes with auxiliary information concerning the closest pair of objects that resides in each

tree branch. This information is adjusted accordingly during insertions and deletions. Performance

evaluation results have shown that the proposed technique outperforms by factors existing techniques

based on closest pairs. This method can not be applied in our case, since we assume that datasets

DA and DB are distinct. This method can only be applied if for every pair of datasets we maintain a

different index structure, which is not considered a feasible approach.

In [17] the authors study the processing of closest-pair queries by applying cardinality constraints

on the result. For example, the query “determine objects from DA such that they are close to at least

5 objects from DB”, involves a distance join (closest-pair) and a cardinality constraint on the result.

However, we are interested in applying spatial constraints on the objects of DA.

Research closely related to ours include the work in [21] where the All-Semi-Closest-Pair query

is addressed, under the term All-Nearest-Neighbors. The authors propose a method to compute the

nearest neighbor of each point in dataset DA, with respect to dataset DB. They also provide a solution

in the case where there are no available indexing mechanisms for the two datasets. The fundamental

characteristics of these methods is the application of batching operations, aiming at reduced processing

costs. Although the proposed methods are focused on evaluating the nearest-neighbor for every object

4

in DA, they can be modified towards reporting the best k answers, under spatial constraints. The

details of the algorithms are given in the subsequent section.

Methods proposed for Closest-Pair queries [10, 6, 7] can be used in our case by applying the neces-

sary modifications in order to: 1) process Semi-Closest-Pair queries and 2) support spatial constraints.

Algorithms for Closest-Pair queries are either recursive or iterative and work by synchronized traver-

sals of the two index structures. Performance is improved by applying plane-sweeping techniques

and bidirectional node expansion [16]. The details of the Closest-Pair algorithm, which is used for

comparison purposes, are given in the subsequent section.

Table 1 summarizes the symbols and the corresponding definitions that are used for the rest of the

study.

Symbol Description
DA, DB the two datasets (primary and reference)
ai, bj an object of DA, an object of DB
TA, TB the two R-trees (primary and reference)
NA, NB a node of TA, a node of TB
NA[i], NB[j] the i-th entry of NA, the j-th entry of NB

R query region
|R| objects from DA contained in query region R

mindist(R1, R2) minimum distance between rectangles R1 and R2

dist(ai, bj) distance between objects ai and bj (e.g., Euclidean)
k number of answers required
dk the k-th best distance determined so far

Table 1: Basic notations used throughout the study.

3 Adapting Existing Algorithms

In this section we describe the way that existing algorithms can be used in order to answer k-CSCPQ

queries. Three algorithms are investigated, namely the naive algorithm MNN, the batching algo-

rithm for All-Nearest-Neighbor queries and the Semi-Closest-Pair algorithm which is adapted from

the Closest-Pair algorithm. The proposed approach is studied in a subsequent section.

5

3.1 The Naive Algorithm (MNN)

The simplest approach for k-CSCPQ query processing is to apply the Multiple Nearest-Neighbor

algorithm (MNN), which has been used in [21] as a straightforward solution to the All-NN problem.

This method traverses the TA recursively, by following branches with respect to the Hilbert values of

MBR centroids, and only if the corresponding MBR intersects the query region Rq. When a leaf node

is reached, a 1-NN query to TB is executed for every object oi contained in the leaf, to determine if oi

contributes to the best k answers. The k best answers are organized by means of a maxheap structure,

and therefore the k-th best distance is available at the top of the heap. If the distance of ai to its

nearest neighbor is less than the top of the heap, then ai (and the corresponding distance) is inserted

into the maxheap. This process is continued until no branches of TA are available for investigation.

It is evident that this method requires the execution of a large number of 1-NN queries, and

therefore the computation cost is high due to excessive distance computations. However, it is expected

that locality preservation will be high, since the pages required for each 1-NN will be close in space.

This behavior of the MNN algorithm has been investigated in [21] for the All-NN problem. Here, we

include MNN algorithm in our study for completeness and in order to test its behavior in k-CSCPQ

query processing.

In summary, the MNN algorithm can be used for k-CSCPQ query processing, provided that a

node is inspected only if its MBR intersects the query region R. Figure 2 presents the outline of the

MNN algorithm.

Algorithm MNN (NA, TB , k, R)
Input: NA is a node of TA (initially is the root)
TB is the reference tree,
k is the requested number of closest pairs,
R is the query region
Output: maxheap is the heap of the best k answers

1. if (NA is LEAF) then
2. discard entries of NA that are not contained in R;
3. foreach of the remaining entries NA[i] execute an 1-NN query on reference tree TB;
4. update maxheap if necessary;
5. elsif (NA is INTERNAL) then
6. check which entries NA[i] intersect R;
7. sort these entries wrt MBR centroid Hilbert value;
8. for each entry call MNN recursively;
9. endif

Figure 2: Outline of MNN algorithm.

6

3.2 The Batch Nearest-Neighbor Algorithm (BNN)

The BNN algorithm has been proposed in [21] as a solution for the All-NN problem, when the two

datasets under consideration are indexed. The algorithm recursively visits nodes of TA according

to the Hilbert values of the MBR centroids. Evidently, a node will be inspected only if its MBR

is intersected by the query region Rq. When a leaf node of TA is reached, the algorithm applies a

heuristic in order to decide if a batch query will be executed to TB or not.

Objects of DA are collected and organized into groups as follows: Let G be an empty set of collected

objects. When a leaf node of TA is reached, its objects are sorted by means of their Hilbert values.

Then, these objects are inserted one-by-one into G, until a condition is satisfied. The condition states

that the next object will be inserted into G if the area of the MBR of G is less than or equal to

avgLeafAreaB, the average area of the leaf nodes of TB that will be accessed during a NN search. In

order to determine avgLeafAreaB, a 1-NN query is executed for the first object that is inserted into

G. If the area of the MBR of G exceeds avgLeafAreaB, then a batch query is executed. Otherwise,

the object is inserted into G. If all objects in the current leaf have been inspected and the area

criterion still holds, then the grouping continues with the next visited leaf node of TA. This grouping

technique adapts the size of each group according to the sparseness of dataset DA. In some cases, the

objects of a leaf node will be split in several groups, whereas in other cases a group will be formed by

objects of several leaf nodes.

It has been shown in [21] that this method achieves significant performance improvements in

comparison to the MNN algorithm for the All-NN problem. Due to batching, the number of distance

computations is decreased significantly in comparison to the MNN algorithm.

In summary, the BNN algorithm can be used for k-CSCPQ query processing, provided that a node

of the primary R-tree TA is inspected only if its MBR intersects the query region R. The outline of

the BNN algorithm is illustrated in Figure 3.

3.3 The Semi Closest-Pair Algorithm (SCP)

Algorithms that process k-CPQ queries can be adapted in order to answer k-CSCPQ queries. In this

study, we consider a heap-based algorithm proposed in [7], enhanced with plane-sweeping optimizations

[16]. Moreover, the algorithm is enhanced with batching capabilities, towards reduced processing costs.

Algorithm SCP is based on a bidirectional expansion of internal nodes which has been proposed in

7

Algorithm BNN (NA, TB , k, R)
Input: NA is a node of TA (initially is the root)
TB is the reference tree,
k is the requested number of closest pairs,
R is the query region
Output: maxheap is the heap of the best k answers

1. if (NA is LEAF) then
2. discard entries of NA that are not contained in R;
3. foreach of the remaining entries NA[i], insert NA[i] into group G until the area criterion is violated;
4. if (area threshold is violated) then
5. execute a batch 1-NN query using group G on TB;
6. update maxheap if necessary;
7. else
8. continue;
9. endif
9. elsif (NA is INTERNAL) then
10. check which entries NA[i] intersect R;
11. sort these entries wrt MBR centroid Hilbert value;
12. for each entry call BNN recursively;
13. endif

Figure 3: Outline of BNN algorithm.

[16], in contrast to a unidirectional expansion [10]. A minheap data structure is used as a priority

queue to keep pairs of entries of TA and TB, which are promising to contain relevant object pairs

from the two datasets. The minheap structure stores pairs of internal nodes only, keeping the size of

the minheap at reduced levels. In addition, a maxheap data structure maintains the best k distances

determined so far.

Algorithm SCP continuously retrieves pairs of entries from the minheap, until the priority of the

minheap top is greater than the current dk. Let (EA, EB) be the next pair of entries retrieved by the

minheap. We distinguish the following cases:

• Both EA and EB correspond to internal nodes: in this case a bidirectional expansion is applied

in order to retrieve the sets of MBRs of the two nodes pointed by EA and EB respectively.

Then, plane-sweeping is applied in order to determine new entry pairs, which are either rejected

or inserted into minheap according to their distance.

• Both EA and EB correspond to leaf nodes: in this case a batch operation is executed, by means of

the plane-sweep technique, in order to determine object pairs (ai, bj) of the two datasets that may

contribute to the final answer. If dist(ai, bj) > dk then the pair is rejected. If dist(ai, bj) ≤ dk

and object ai does not exist in maxheap, then the pair (ai, bj) is inserted into maxheap. However,

8

if ai is already in maxheap, we check if the new distance is smaller than the already recorded

one. In this case, the distance of ai is replaced in maxheap.

• One of the two entries corresponds to an internal node, and the other entry corresponds to a leaf

node: in this case a unidirectional expansion is performed only for the entry which corresponds

to an internal node. New entry pairs are either rejected or inserted into minheap.

In summary, the SCP algorithm can be used for k-CSCPQ query processing, provided that:

• a node of TA is inspected only if its MBR intersects the query region R and

• during plane-sweeping operations each object from DA is considered only once

The outline of the SCP algorithm is illustrated in Figure 4.

Algorithm SCP (NA, NB , k, R)
Input: NA is a node of TA (initially is the root)
NB is a node of TB (initially is the root)
k is the requested number of closest pairs,
R is the query region
Output: maxheap is the heap of the best k answers
Local: minheap is the priority queue which stores pairs of entries of TA and TB

1. inspect the two roots NA and NB using plane-sweep;
2. store relevant entry pairs in minheap;
3. while ((minheap is not empty) and (priority of top ≤ dk))
4. get the top of minheap;
5. if (both entries correspond to leaf nodes) then
6. read contents of both leaf nodes;
7. execute plane-sweep;
8. update maxheap if necessary;
9. elsif (both entries correspond to internal nodes) then
10. read contents of both internal nodes; /* bidirectional expansion */
11. execute plane-sweep;
12. insert new entry pairs into minheap if necessary;
13. else
14. check the entry which corresponds to a leaf node against the other entries;
15. insert new entry pairs into minheap if necessary;
16. endif
17. endwhile

Figure 4: Outline of SCP algorithm.

4 The Proposed Approach (The Probe-and-Search Algorithm)

In this section, we present a new algorithm for answering k-CSCPQ queries, when the two datasets

under consideration are indexed by means of R∗-trees or similar access methods (e.g., X-trees). The

9

investigation of a new algorithm is motivated by the following characteristics of existing techniques:

• The MNN algorithm is expected to issue a significant number of 1-NN queries to TB for each

object retrieved by TA enclosed by the query region R. Moreover, all nodes of TA intersected by

R will be inspected, since no other pruning is possible.

• The BNN algorithm is tailored to answer All-NN queries. If the primary dataset DA is dense

in comparison to DB, then many leaf nodes of TA will participate in the batching operation,

resulting in high CPU and I/O costs. Moreover, all nodes of TA intersected by R will be

inspected, since no other pruning is possible.

• The SCP algorithm has a pruning criterion, and therefore it is not necessary to inspect all nodes

of TA intersected by R. However, bidirectional expansion and synchronized tree traversal can

lead to a large number of entries inserted into the heap structure, especially for datasets with a

high degree of overlap.

According to the aforementioned characteristics of existing methods we would like to design an

algorithm having the following properties:

• The algorithm should have reduced CPU cost, which is enabled by the use of batching operations,

• Buffer exploitation should be increased introducing as few buffer misses as possible,

• The working memory of the algorithm should be low, and

• Pruning of TA should be enforced in order to avoid inspecting all tree nodes intersected by R.

In the sequel we present in detail the proposed algorithm, which is termed Probe-and-Search

(PaS). It consists of three stages: a) searching the primary tree, b) pruning the primary tree and c)

performing batching operations in the reference tree.

4.1 Searching the Primary Tree

Given the number of requested answers k and the query region R, the algorithm begins its execution

by inspecting relevant nodes of the primary dataset, which is organized by TA. Instead of using a

recursive method to traverse the tree, a heap structure is used to accommodate relevant entries. The

heap priority is defined by the Hilbert value of the MBR centroid of every inspected node entry, as it

10

has been used in [21]. We call this structure HilbertMinHeap. When a new node of TA is visited, we

check which of its entries are intersected by the query region R. Then, the Hilbert value of each of

these entries is calculated, and the pair (entry, HilbertValue) is inserted into HilbertMinHeap.

The use of the Hilbert value guarantees that locality of references is preserved, and therefore,

nodes that are located close in the native space are likely to be accessed sequentially. The search is

continued until a node is reached which resides in the level right above the leaf level.

4.2 Pruning the Primary Tree

In order to prune the primary tree TA, the PaS algorithm should be able to determine whether a node

of TA cannot contribute to the result. Let NA be a node examined by PaS (i.e., it has been inserted

in HilbertMinHeap). For each NA’s entry, NA[i], PaS checks if there is an intersection of NA[i] with

R. If this is true, then a 1-NN query is issued to TB and the minimum distance mindist between

NA[i].mbr and an object in TB is determined. If the calculated mindist is larger than the current k-th

best distance, then it is easy to see that the further examination of NA[i] can be pruned, because NA[i]

will not contain any object whose distance from any object of TB will be less than the currently found

k-th distance. In this case, we avoid the fetching of the corresponding page and the examination of

NA[i]’s entries.

Since PaS uses the aforementioned pruning criterion, we would like to prioritize the examination

of the entries of TA according to their mindist distance from the entries of TB. This way, the most

promising entries of TA are going to be examined first. Thus, the current k-th best distance will be

accordingly small so as to prune many entries of TA and the final result will be formed more quickly.

PaS performs the required prioritization by placing the examined entries of TA into a second heap

structure. An entry in this heap comprises a pair (NA[i], mindist), where mindist is the result of the

1-NN query issued to TB by NA[i].mbr. The entries in this heap are maintained according to their

mindist values.

It is easy to contemplate that the closer to the root of TA a node is, the smaller its corresponding

mindist from TB will be. Therefore, the nodes of the upper levels of TA are more difficult to be

pruned. Moreover, we would spend considerable cost to issue 1-NN queries for such nodes, which

will not payoff. For this reason, PaS uses the prioritization scheme only for the leaves of TA. Since

the number of leaves in the R∗-tree is much larger than the number of internal nodes, the gain is

expected to be significant. Consequently, once an internal node NA[i], which is a father of a leaf, is

11

inspected (i.e., was previously an entry in the HilberMinHeap), then for all its children (leaves) NA[i]

that intersect query region R, a 1-NN query is issued against TB. As a result, pairs of the form (NA[i],

mindist) are inserted into the second priority heap, which is denoted as LeafMinHeap. Evidently, a

leaf node never enters the HilberMinHeap, thus no duplication incurs. The entries of LeafMinHeap are

examined (in a batch mode) in the sequel, to find those that will contribute to the final result. This

issue is considered in more detail in the following subsection.

Figure 5 illustrates a schematic description of the searching and pruning operations of the PaS

algorithm. The figure also illustrates the separate parts of the tree, which populate the different heap

structures that are maintained.

����������

���������	
������

�	
�����
�	�������

������
��	����

�	
�����
�	�������

�������	����

�	
�������������

��
�
�	�������
��	�

�������������������

��������	�����
���

��
�
��������������
�

������	�����
���

Figure 5: Bird’s eye view of the Probe-and-Search algorithm.

4.3 Enhancing the Algorithm with Batching Capabilities

Pruning the primary tree is one direction towards reducing the number of distance calculations. An-

other direction to achieve this, is to apply batching operations during query processing. The basic

idea is to perform multiple nearest-neighbor queries for a set of data objects, instead of calculating

the nearest neighbor for each object separately.

The BNN algorithm uses batching operations in an aggressive way, to avoid individual 1-NN queries

as much as possible. Recall that BNN focuses on All-NN queries instead of k-NN queries. Therefore,

the size of each chunk can be quite large resulting in increased CPU and I/O costs. This effect is

stronger when the primary dataset DA is dense in comparison to DB. In this case, a large number of

leaf nodes of TA participate in the formulation of each chunk before the area criterion is violated.

Instead of relying on when the area criterion will be violated, we enforce that batching is performed

for objects contained in a single leaf of TA. The relevant leaf entries that may change the answer set

12

are accommodated in the LeafMinHeap structure. These entries are inspected one-by-one by removing

the top of the heap. For each such entry NA[i], the following operations are applied:

• The leaf node L pointed by NA[i].ptr is read into main memory.

• The MBR of all objects in L enclosed by R is calculated.

• If the area of the MBR is less than or equal to the average leaf area of all leaf nodes of TB, a

batch query is issued to TB.

• Otherwise, objects are distributed to several chunks, and for each chunk a separate batch query

is issued.

Let us describe in more detail the chunk generation process. Upon visiting a leaf node L of the

primary tree TA, we check if area(L) ≤ avgLeafAreaB, where avgLeafAreaB is the average area of

leaf nodes in the reference tree TB. In this case, a single chunk is generated, composed of all data

objects in leaf L, and a batch query is executed for this chunk. Otherwise, data objects in L are

partitioned into two or more chunks. Objects in L are sorted with respect to their Hilbert values.

Then, we keep on including objects in the Hilbert order until the area criterion is violated. This signals

the completion of a chunk and the initiation of another. The process continues, until all objects in L

have been investigated. For each generated chunk a batch query is executed to TB.

��

��

��

��

��

��

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
� �

�

�
�

�
	�

��
�������

�������

�������

�������

�� ����� ����

�� �� ��

�����
��������
��
�����
������������ ��������

�� �� ��

�� �� ��

�� ����� ����

�� �� ��

�����
��������
��
�����
������������ ��������

�� �
 ��

�� �� ��

�� ����� ����

�� �� ��

�����
��������
��
�����
������������ ��������

�� �
 ��

�� �� ��

Figure 6: Batch query processing by means of the BatchHashTable structure.

Each batch query is executed recursively by traversing nodes of TB with respect to the mindist

distance between the MBR of the chunk and the MBR of each visited node entry. Each time a leaf

node is reached, the pairwise distances are calculated by using a plane-sweep technique, to avoid

13

checking all possible pairs of objects. A hash table is maintained, called BatchHashTable, which

stores the currently best distance for each object in the chunk. When another leaf node of TB is

reached, a test is performed, to determine if there is an object in the new leaf that change the best

answers determined so far. Figure 6 illustrates an example of a batch query and the contents of the

BatchHashTable structure after each leaf inspection. The best answers after each leaf process are

shown shaded in the hash table.

The number of BatchHashTable elements is bounded by the maximum number of entries that

can be accommodated in a leaf node, and therefore, its size is very small. After the completion of

the batch query execution, the contents of BatchHashTable are merged with the globally determined

k best answers, which are maintained in a heap structure, called AnswersMaxHeap. This structure

accommodates the best k answers during the whole process.

4.4 Putting it All Together

In summary, the PaS algorithm operates by means of a sequence of search, probe and batch operations.

Table 2 contains the auxiliary data structures that are required and the corresponding descriptions,

whereas Figure 7 contains the outline of the PaS algorithm.

Data Structure Description
AnswersMaxHeap A priority queue which accommodates the best k answers during

the whole execution.
HilbertMinHeap A priority queue which contains entries of TA prioritized

with respect to the Hilbert value of MBR centroids.
LeafMinHeap A priority queue where entries of TA are prioritized according to mindist

value between entries of TA and objects in TB.
BatchHashTable A hash table used for each batch query operation, which contains

the distances of each object in the data chunk.

Table 2: Auxiliary data structures utilized by PaS algorithm.

5 Performance Study

5.1 Preliminaries

The algorithms PaS, BNN, MNN and SCP have been implemented in C++, and the experiments

have been conducted on a Windows XP machine with Pentium IV at 2.8GHz. The real datasets

14

Algorithm PaS (NA, NB , k, R)
Input: NA is a node of TA (initially is the root)
NB is a node of TB (initially is the root)
k is the requested number of closest pairs,
R is the query region
Output: AnswersMaxHeap is the heap of the best k answers
Local: HilbertMinHeap, LeafMinHeap, BatchHashTable

1. inspect the root NA and insert entries in HilbertMinHeap if they intersect R;
2. while (HilbertMinHeap is not empty)
3. get the top element of HilbertMinHeap;
4. read node NA in memory;
5. if entry does NOT point to a parent of a leaf then
6. foreach entry NA[i] do
7. if NA[i].mbr intersects R then
8. calculate Hilbert value of NA[i].mbr centroid;
9. insert entry into HilbertMinHeap;
10. endif
11. endfor
12. else
13. foreach entry NA[i] do
14. probe TB and calculate mindist between NA[i].mbr and an object in TB ;
15. if mindist ¡= dk then insert entry into LeafMinHeap endif
16. endfor
17. while (LeafMinHeap is not empty)
18. get the top element of LeafMinHeap;
19. read leaf node NA in main memory;
20. separate objects in NA into chunks;
21. foreach chunk do
22. initialize BatchHashTable;
23. execute batch query to TB ;
24. update AnswersMaxHeap from BatchHashTable if necessary;
25. endfor
26. endwhile
27. endif
28. endwhile

Figure 7: Outline of PaS algorithm.

used for the experimentation are taken from TIGER [19] and are illustrated in Figure 8. The LA1

dataset contains 131,461 centroids of MBRs corresponding to roads in Los Angeles. Dataset LA2

contains 128,971 centroids of MBRs corresponding to rivers and railways in Los Angeles. Finally,

dataset CA contains 1,300,000 centroids of road MBRs of California. These datasets are available from

http://www.rtreeportal.org/spatial.html. In addition to the above datasets, we also use uniformly

distributed points. All datasets are normalized to a square, where each dimension takes real values

between 0 and 1023.

Notice that LA1 and LA2 are quite similar, having similar data distributions and populations.

On the other hand, dataset CA shows completely different data distribution and population. The

selection of these datasets have been performed, to test the performance of the algorithms in cases

15

���������	�
��	������	��	
	��	 ��������	
�����

Figure 8: Datasets used in the experimentation.

where the primary and reference dataset follow the same distribution. In the sequel, we investigate the

performance of the algorithms for three cases: 1) DA=LA1 and DB=CA, 2) DA=CA and DB=LA1,

and 3) DA=LA1 and DB=LA2. The aforementioned cases correspond to the three different possibilities

regarding the relative size between the primary and the reference dataset. In particular, in case (1) the

primary dataset is significantly smaller than the reference dataset, in case (2) the primary dataset is

significantly larger than the reference dataset, and in case (3) the primary and the reference datasets

are of about the same size. In most application domains, the reference objects are much less than the

objects in the primary dataset (e.g., authoritative sites are much smaller than domestic buildings).

Therefore, (2) is the case of interest for the majority of application domains. Case (3) can also be

possible in some applications. In contrast, one should hardly expect an application domain for case

(1). Nevertheless, for purposes of comparison, we also consider this case, to examine the relative

performance of the examined methods in all possible cases.

In each experiment, 100 square-like queries are executed following the distribution of the primary

dataset DA. CPU, I/O and total time correspond to average values per query. We note that if a

selected region of interest does not contain at least k objects from the primary dataset, then a new

region is generated to satisfy this constraint. The disk page size is set to 1024 bytes for all experiments

conducted. An LRU page replacement policy is assumed for the buffer operation. The capacity of

the buffer is measured as a percentage of the database size. In the sequel we present the results for

different parameter values, i.e., the number of answers, the area of the query region, the size of the

buffer, and the population of the datasets. Moreover, a discussion of the memory requirements of all

methods is performed in a separate section.

16

5.2 Performance vs Different Parameter Values

In this section we present representative experimental results which demonstrate the performance of

each method under different settings.

 0.5

 1

 2

 4

 8

 16

 32

 1 2 4 8 16 32 64 128 256 512 1024

C
P

U
 T

im
e

(s
ec

.)

Number of answers (k)

PaS
BNN
MNN
SCP

(a) CPU time

 1

 2

 4

 8

 16

 1 2 4 8 16 32 64 128 256 512 1024

I/O
 T

im
e

(s
ec

.)

Number of answers (k)

PaS
BNN
MNN
SCP

(b) I/O time

 2

 4

 8

 16

 32

 64

 1 2 4 8 16 32 64 128 256 512 1024

T
ot

al
 T

im
e

(s
ec

.)

Number of answers (k)

PaS
BNN
MNN
SCP

(c) Total time

Figure 9: CPU time, I/O time and total time vs k for DA=LA1 and DB=CA (logarithmic scales).

We start by first testing case (1), that is, when the primary dataset is significantly smaller than

the reference dataset. As mentioned, this case is only examined for purposes of comparison, since it

does not constitute a case of interest for the vast majority of applications. Figure 9 illustrates the

performance of the algorithms when DA=LA1 and DB=CA, by varying the number of answers k.

Evidently, DB contains many more objects than DA. The query region is set to 1% of the dataspace

area, the buffer capacity is 10% of the total number of pages of both trees. PaS and SCP have the

lowest CPU cost, whereas the CPU cost of MNN is significantly higher due to the excessive number

of 1-NN queries executed, as it is illustrated in Figure 9(a). The above situation is maintained until

k=500. Above that level we observe that the performance of BNN is better than that of MNN and

SCP. PaS manages to keep the CPU cost at low levels for all values of k. With respect to I/O

cost, which is depicted in Figure 9(b), the situation is quite different. Clearly, MNN has the lowest

I/O cost due to the locality of references and the fact that every 1-NN query posed to the reference

tree fetches less pages than the other algorithms. Therefore, although the number of page requests

is large, most of them are absorbed by the buffer. The I/O cost of PaS is maintained at low levels,

especially for k greater than 10. The I/O cost of SCP is quite significant, because it does not utilize the

buffer adequately. More specifically, it does not preserve well the locality of references. On the other

hand, PaS, BNN and MNN traverse the primary tree based on the Hilbert values of MBR centroids

and therefore, locality of references is better preserved. The total running time of the algorithms is

presented in Figure 9(c). As can been shown, PaS outperforms all other methods for smaller values

17

of k, whereas for larger values of k MNN performs marginally better than PaS. The performance of

BNN worsens with increasing k and SCP presents the larger execution times in all cases. Therefore,

even for the extreme case when the reference dataset is significantly larger than the primary, the

performance of PaS is reasonably good, whereas BNN and particularly SCP are not able to maintain

a good performance. Notice that although MNN presents the smallest execution times for larger values

of k, as it will be shown next, this happens only for case (1), since for the other cases (which are the

cases of interest in most applications) MNN is the worst choice.

 1

 2

 4

 8

 16

 32

 64

 1 2 4 8 16 32 64 128 256 512 1024

C
P

U
 T

im
e

(s
ec

.)

Number of answers (k)

PaS
BNN
MNN
SCP

(a) CPU time

 0.5

 1

 2

 4

 8

 16

 32

 1 2 4 8 16 32 64 128 256 512 1024

I/O
 T

im
e

(s
ec

.)

Number of answers (k)

PaS
BNN
MNN
SCP

(b) I/O time

 2

 4

 8

 16

 32

 64

 128

 1 2 4 8 16 32 64 128 256 512 1024

T
ot

al
 T

im
e

(s
ec

.)

Number of answers (k)

PaS
BNN
MNN
SCP

(c) Total time

Figure 10: CPU time, I/O time and total time vs k for DA=CA and DB=LA1 (logarithmic scales).

Figure 10 depicts the performance of the algorithms vs k when DA=CA and DB=LA1. Again, the

query region is set to 1% of the dataspace area and the buffer capacity is 10% of the total number

of pages of both trees. It is evident that algorithm PaS shows the best performance over the other

methods. MNN and BNN inspect all nodes in the primary tree that are intersected by the query

region. This results in a large number of 1-NN queries performed by MNN, and a large number of

batch queries performed by BNN. Moreover, since DA is quite dense, BNN groups several leaf nodes

to construct each chunk for batching. This results in increased CPU and I/O cost. On the other

hand, PaS is capable of pruning several nodes due to the probes performed on the reference tree. Page

requests are absorbed by the buffer, resulting in significantly less I/O time with respect to the other

methods.

Figure 11 illustrates the performance of the algorithms under study for DA=LA1 and DB=LA2.

These datasets follow similar distributions and they have similar populations. The query region is set

to 1% of the dataspace area and the buffer capacity is 10% of the total number of pages of both trees.

Again, PaS shows the best performance with respect to CPU time. Moreover, the I/O time of PaS is

the smallest, for up to 256 nearest neighbors. After this threshold its performance is similar to that

18

 0.25

 0.5

 1

 2

 4

 8

 16

 32

 1 4 16 64 256 1024 4096 16384

C
P

U
 T

im
e

(s
ec

.)

Number of answers (k)

PaS
BNN
MNN
SCP

(a) CPU time

 2

 4

 8

 16

 1 4 16 64 256 1024 4096 16384

I/O
 T

im
e

(s
ec

.)

Number of answers (k)

PaS
BNN
MNN
SCP

(b) I/O time

 2

 4

 8

 16

 32

 1 4 16 64 256 1024 4096 16384

T
ot

al
 T

im
e

(s
ec

.)

Number of answers (k)

PaS
BNN
MNN
SCP

(c) Total time

Figure 11: CPU time, I/O time and total time vs k for DA=LA1 and DB=LA2 (logarithmic scales).

of MNN. With respect to the overall performance of the methods, PaS shows the best performance.

For k=5000, the total time of the other methods converge to a large execution time, whereas that of

PaS is maintained at a significantly lower level.

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

 0.0625 0.125 0.25 0.5 1 2 4 8 16 32 64 128

T
ot

al
 T

im
e

(s
ec

.)

Query Region Size (% of dataspace)

PaS
BNN
MNN
SCP

(a) DA=LA1, DB=CA

 1

 4

 16

 64

 256

 1024

 4096

 0.0625 0.125 0.25 0.5 1 2 4 8 16 32 64 128

T
ot

al
 T

im
e

(s
ec

.)

Query Region Size (% of dataspace)

PaS
BNN
MNN
SCP

(b) DA=CA, DB=LA1

 0.5

 1

 2

 4

 8

 16

 32

 64

 128

 256

 0.0625 0.125 0.25 0.5 1 2 4 8 16 32 64 128

T
ot

al
 T

im
e

(s
ec

.)

Query Region Size (% of dataspace)

PaS
BNN
MNN
SCP

(c) DA=LA1, DB=LA2

Figure 12: Total time vs query region size (logarithmic scales).

Figure 12 depicts the total running time of all methods, for all three dataset combinations, vs the

area of the query region. The number of answers k is set to 100, whereas the buffer capacity is set to

10% of the total number of pages of both trees. When the reference dataset is larger than the primary

dataset (Figure 12(a)) PaS MNN and show similar performance. In particular, MNN is slightly better

for smaller query regions, since it manages to maintain locality of references. For larger query regions,

PaS is slightly better. In contrast, BNN and SCP show similar performance (only for very small query

regions BNN is better than SCP) and are clearly outperformed. It is interesting to notice that when

the query region reaches 100% of the dataspace area, all methods converge to the same point. In the

inverse case where the primary dataset is much larger than the reference dataset, PaS clearly shows

the best performance, whereas MNN shows the worst. SCP shows better performance than BNN

19

and MNN. Recall that PaS and SCP perform pruning in the primary R-tree, and therefore it is not

necessary to visit all leaf nodes intersected by the query region. On the other hand, MNN and BNN

do not have such a mechanism. Since the primary R-tree is quite large, the pruning ability of PaS

and SCP helps in reducing the total running time of these methods (Figure 12(b)). Finally, when the

populations of both datasets are similar (Figure 12(c)), PaS shows the best performance, although

the performance difference is smaller than that of the previous case.

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

 0 100 200 300 400 500 600 700 800 900 1000

T
ot

al
 T

im
e

(s
ec

.)

Number of answers (k)

PaS
BNN
MNN
SCP

(a) variable k

 0.5

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

 1024

 0.0625 0.125 0.25 0.5 1 2 4 8 16 32 64 128

T
ot

al
 T

im
e

(s
ec

.)

Query Region Size (% of dataspace)

PaS
BNN
MNN
SCP

(b) variable R

 4

 6

 8

 10

 12

 14

 16

 18

 100 200 300 400 500 600 700 800 900

T
ot

al
 T

im
e

(s
ec

.)

Population of primary dataset (thousands)

PaS
BNN
MNN
SCP

(c) variable population

Figure 13: Total time vs k, R and population for uniformly distributed datasets (logarithmic scales).

The performance of the methods vs k, R and dataset population is depicted in Figure 13 when

both primary and reference datasets follow a uniform distribution. To generate Figure 13(a) the

query region is set to 1% of the dataspace area whereas the buffer capacity is set to 10% of the

database size. PaS shows the best performance for all values of k. The performance of BNN is close

to that of PaS, whereas MNN shows very large total running time. It is interesting to note that for

small values of k, SCP outperforms BNN. However, by increasing the number of nearest neighbors,

SCP degenerates due to the significant overlap between the two datasets. Figure 13(b) depicts the

performance of the methods vs the query region area. The number of answers k is set to 100, and

the buffer capacity is again 10% of the database size. All methods are highly affected by R, and PaS

shows the best performance for the whole range. Again, MNN gives high running times whereas the

performance of BNN is similar to that of SCP. Finally, Figure 13(c) shows the performance for various

dataset populations. We assume that both datasets contain 1,000,000 uniformly distributed points.

The x axis depicts the population of the primary dataset in thousands of objects. Therefore, if the

population of the primary dataset is 200,000 objects, then the population of the reference dataset is

800,000 objects. The same applies for the other values as well. The query region size is set to 1% of

the dataspace area, the number of answers is 100 and the buffer capacity is set to 10% of the database

20

size. Algorithm PaS shows the best total running time, for all combinations.

 4

 8

 16

 1 2 4 8 16 32 64

T
ot

al
 T

im
e

(s
ec

.)

Buffer Capacity (% of database size)

PaS
BNN
MNN
SCP

(a) DA=LA1, DB=CA

 2

 4

 8

 16

 32

 64

 1 2 4 8 16 32 64

T
ot

al
 T

im
e

(s
ec

.)

Buffer Capacity (% of database size)

PaS
BNN
MNN
SCP

(b) DA=CA, DB=LA1

 1

 2

 4

 8

 1 2 4 8 16 32 64

T
ot

al
 T

im
e

(s
ec

.)

Buffer Capacity (% of database size)

PaS
BNN
MNN
SCP

(c) DA=LA1, DB=LA2

Figure 14: Total time vs buffer capacity (logarithmic scales).

Another important parameter that may affect the performance of the methods drastically is the

buffer capacity utilized. Figure 14 illustrates the total running time of the methods with respect to

buffer capacity, for the three dataset combinations. The number of answers k is set to 100, and the

query region area occupies 1% of the dataspace area. For DA=LA1 and DB=CA (Figure 14(a)), MNN

shows the best performance, with PaS being competitive for buffer capacities larger than 1% of the

database size. Evidently, for very large buffer capacities (>30%) the performance of the methods

converge, since the number of buffer misses is reduced significantly. Another observation is that all

methods are strongly dependent on the buffer capacity. Figure 14(b) illustrates the performance of

the methods for DA=CA and DB=LA1. In this case, PaS shows the smallest total running time, with

SCP following. Recall that PaS and SCP are the only methods with pruning capabilities during the

search of the primary tree. Since DA is large, these two methods benefit more from the application of

pruning. Finally, Figure 14(c) shows the total running time when DA=LA1 and DB=LA2. For buffer

capacities larger than 0.5% of the database size, PaS shows the best performance.

Recall that PaS has been designed towards solving the k-Constrained-Semi-Closest-Pair problem.

However, for completeness in the sequel we focus on two special cases. First, we examine the perfor-

mance of the methods when the region of interest R covers 100% of the dataspace of DA, and then

we investigate if PaS is a good candidate for solving the All-Nearest-Neighbor problem, where again

R covers 100% of the dataspace area of DA and k = |DA|. In both cases the buffer capacity is set to

10% of the total storage requirements of both trees.

Figure 15 depicts the performance of all methods when R covers 100% of the area of DA. It is

evident that PaS has the best performance in the majority of cases. More specifically, it is the best

21

 250

 300

 350

 400

 450

 500

 550

 600

 650

 0 100 200 300 400 500 600 700 800 900 1000

T
ot

al
 T

im
e

(s
ec

.)

Number of answers (k)

PaS
BNN
MNN
SCP

(a) DA=LA1, DB=CA

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 100 200 300 400 500 600 700 800 900 1000

T
ot

al
 T

im
e

(s
ec

.)

Number of answers (k)

PaS
BNN
MNN
SCP

(b) DA=CA, DB=LA1

 120

 140

 160

 180

 200

 220

 240

 260

 0 100 200 300 400 500 600 700 800 900 1000

T
ot

al
 T

im
e

(s
ec

.)

Number of answers (k)

PaS
BNN
MNN
SCP

(c) DA=LA1, DB=LA2

Figure 15: Total time vs k for R covering 100% of DA area.

choice when we have a large primary dataset and a small reference dataset, and when both datasets

have almost equal size (Figures 15(b) and (c) respectively). When the primary dataset is significantly

larger than the reference one, then for small values of k PaS performs the best. However, for larger

values of k its performance degenerates. This has been also noticed for cases where the region R does

not cover the whole dataspace of DA.

PaS BNN MNN
Case (1) DA=LA1, DB=CA 1801 1591 616
Case (2) DA=CA, DB=LA1 1663 2402 3799
Case (3) DA=LA1, DB=LA2 226 315 319

Table 3: Total time (sec.) of Pas, BNN and MNN for All-NN queries.

Table 3 shows the performance of PaS, BNN and MNN for processing All-Nearest-Neighbor queries.

Again, we conclude that for the two cases of interest PaS is the best choice. BNN is the best choice

when both datasets have almost equal size and it is second best for small primary and large reference

dataset. We have not included results for the SCP algorithm, because its CPU requirements are very

high for solving the All-Nearest-Neighbor query, in comparison to the other methods.

In the sequel, we study the working memory requirements of the methods, which play an important

role for the overall performance.

5.3 Results on Memory Requirements

By carefully studying the presented algorithms it is evident that PaS, BNN and SCP require that

some pages in the buffer must be pinned to avoid additional I/O operations during query processing.

Moreover, PaS and SCP require additional storage for the heap structures. In this section, we inves-

22

tigate the memory that each algorithm requires. The memory requirements of each method are as

follows:

Memory requirements of PaS: Recall that PaS requires some storage to store the entries of

the two heap structures (HilbertMinHeap and LeafMinHeap). It is interesting to investigate the

amount of memory required to store these structures. Moreover, every time a batch operation

is executed on the reference tree, the chunk composed of entries of the primary tree must be

maintained in the buffer, to avoid extra I/O operations.

Memory requirements of BNN: BNN performs a DFS traversal of the primary tree, and therefore

no heap structure is required to hold entries of the primary tree. However, the primary data

entries that compose a chunk must be maintained in the buffer during a batch operation. The

required memory has a direct impact on the performance of the algorithm.

Memory requirements of MNN: MNN does not require any additional data structure, and it

does not perform batching operations. Therefore, no additional memory is required.

Memory requirements of SCP: Finally, SCP is a heap-based algorithm, and therefore additional

memory is required to store heap elements. However, the size of the heap can be quite significant,

requiring special treatment.

In the sequel, we present experimental results on the memory requirements of the algorithms.

The required memory is given as the number of entries that must be hosted in the buffer during the

processing of a query. For each experiment, 100 queries are executed by using the three real dataset

combinations used in the previous section. Since MNN does not require any additional storage, it is

excluded from our study. Moreover, since the structures AnswersMaxHeap and BatchHashTable are

required by all algorithms, we do not take into account the required storage.

By inspecting Figures 16 and 17 it is evident that algorithm PaS requires considerably less memory

than BNN and SCP. Therefore, PaS could be executed in less memory space. Moreover, the significant

memory consumption of algorithms BNN and SCP could lead to large storage overhead. If this memory

is part of the buffer used, then the buffer utilization would deteriorate.

23

 0

 50

 100

 150

 200

 250

 300

 350

 400

 1 2 4 8 16 32 64 128 256 512 1024

E
nt

rie
s

R
at

io

Number of answers (k)

BNN over PaS
SCP over PaS

(a) DA=LA1, DB=CA

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 1 2 4 8 16 32 64 128 256 512 1024

E
nt

rie
s

R
at

io

Number of answers (k)

BNN over PaS
SCP over PaS

(b) DA=CA, DB=LA1

 0

 50

 100

 150

 200

 250

 1 2 4 8 16 32 64 128 256 512 1024

E
nt

rie
s

R
at

io

Number of answers (k)

BNN over PaS
SCP over PaS

(c) DA=LA1, DB=LA2

Figure 16: Working memory requirements (number of entries) vs k.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0.0625 0.125 0.25 0.5 1 2 4 8 16 32 64

E
nt

rie
s

R
at

io

Query Region Size (% of dataspace)

BNN over PaS
SCP over PaS

(a) DA=LA1, DB=CA

 0

 50

 100

 150

 200

 250

 300

 350

 0.0625 0.125 0.25 0.5 1 2 4 8 16 32 64

E
nt

rie
s

R
at

io

Query Region Size (% of dataspace)

BNN over PaS
SCP over PaS

(b) DA=CA, DB=LA1

 0

 10

 20

 30

 40

 50

 60

 70

 0.0625 0.125 0.25 0.5 1 2 4 8 16 32 64

E
nt

rie
s

R
at

io

Query Region Size (% of dataspace)

BNN over PaS
SCP over PaS

(c) DA=LA1, DB=LA2

Figure 17: Working memory requirements (number of entries) vs R.

5.4 Discussion

Herein, we give a synopsis of the previously described experimental results on execution times. Also,

we combine the conclusions drawn from the results on main-memory requirements and remark on

their impact on execution times. Finally, we give some theoretical aspects regarding the performance

of PaS and justify its good behavior.

Table 4 illustrates the characterization of the performance of all examined algorithms with respect

to the three cases (1: small primary and large reference dataset, 2: large primary and small reference

dataset, 3: primary and reference dataset of similar size). Recall that the first case is examined only

for purposes of comparison, since only the second (in particular) and third cases are of interest in

most applications.

Evidently, the proposed algorithm (PaS) presents the best performance in cases of interest (second

and third), whereas for the first case it still manages to maintain relatively good performance. In

contrast, MNN is the worst choice in all cases except the first one. BNN is also a bad choice, since in

24

PaS SCP BNN MNN
Case (1) Good Bad Bad Best
Case (2) Best Bad Bad Bad
Case (3) Best Good Bad Bad

Table 4: Characterizing the performance of all algorithms wrt to the three examined cases.

all three cases it has the second worst execution time amongst all methods. SCP is second best in the

second case, but in all other cases its performance is bad. Overall, PaS performs favorably against

the other algorithms and has the appealing characteristic of presenting stably good performance in all

cases.

Let us investigate in more detail, why PaS manages to maintain a good performance in comparison

to the other approaches. Recall that, PaS differs from MNN and BNN in the fact that a pruning of the

primary tree is performed, by issuing 1-NN queries to the reference tree when a node in the leaf-parent

level of the primary tree is reached. This operation discards parts of the primary dataset that can not

contribute to the final answer. Let nA = |DA| and nB = |DB| denote the number of objects in DA
and DB respectively. Moreover, let fA and fB denote the average node utilization (number of objects

per node) for the primary (TA) and reference (TB) tree respectively. The total number of leaf nodes

in the primary tree is given by:

NLA = dnA

fA
e (1)

Recall that, PaS performs a 1-NN query to TB for every leaf node MBR intersected by the query

region R. Let Rx and Ry be the extensions of R in the x and y axis respectively. Then, following [9]

the number of leaf node MBRs intersected by R is given by the next equation, where lex and ley is

the average leaf MBR extension in the x and y axis respectively:

NLA(R) =
nA

fA
· (lex + Rx) · (ley + Ry) (2)

By assuming a uniform distribution for DA, we expect square-like MBRs, and all leaf MBRs are

expected to contain the same number of data objects. Therefore, lex = ley =
√

fA
nA

and each leaf node

of TA is expected to contain fA objects. By substituting in the previous equation we get:

NLA(R) =
nA

fA
·
(

fA

nA
+

√
fA

nA
· (Rx + Ry) + Rx ·Ry

)
(3)

25

Equation (3) gives the number of 1-NN queries that will be executed to TB to check if a leaf node

of TA is promising or not. A leaf node MBR of TA is considered promising if after the execution of

the 1-NN search the distance between this MBR and an object in DB is less than or equal to the

current best k-th distance determined so far. If a leaf node MBR survives the 1-NN probe, then the

corresponding leaf contents are candidates for the final result. The final decision will be performed

after the execution of the batching operations.

Recall that each leaf node of the primary tree TA contains on the average fA data objects. There-

fore, the minimum number of batch queries for each leaf is 1 and the maximum is fA
2 . The worst case

appears when we can pack only two objects at a time before the average leaf area criterion is violated.

Again, assuming a uniform distribution for the objects in the reference dataset DB, the average MBR

area for the leaf nodes of TB is avgB = fB
nB

. Therefore, the number of executed batch NN queries

for every promising leaf node of TA is given by davgA
avgB

e. This suggests that every time a leaf node is

not considered promising (which is determined by a probe to TB) we save d avgA
avgB

e batch operations.

This is important, since the cost for a batch operation is more computationally intensive than that

of a probe operation, because the former requires the examination of data objects by means of plane

sweeping. In conclusion, the more leaf node MBRs are discarded from the set of NLA(R) MBRs, the

more batching operations are saved in the subsequence step.

To illustrate the pruning effect, Figure 18 depicts the number of objects from DA that are discarded

due to the series of 1-NN queries issued to TB for the leaf-parent level of TA, when R covers 1% and

10% of DA. The parameter k has been set to 1, 20, 100 and 500, whereas the size of the buffer has

been set to 10% of the total size of both trees. It is evident, that a significant number of objects are

pruned, leading to a reduced number of batching operations. Note however, that when the reference

dataset is much larger than the primary dataset, each 1-NN query does not come at free. In this case,

the number of saved batch queries may not compensate the cost of the 1-NN queries for the leaf MBRs

(as it has been demonstrated in the experimental results).

Regarding the impact of main-memory requirements on the performance, we showed that for the

first and third cases, SCP requires significantly more memory than the others, whereas for the second

case, the requirements of BNN are significantly larger than those of the others. In all cases, PaS needs

the smallest amount of main-memory, to process the examined query. What can be inferred from the

aforementioned conclusion is that we had an optimistic perspective when examined the performance of

SCP and BNN, since their significant requirements for main-memory where not handled by a scheme

26

R covers k total pruned

1 1924 850
1% 20 1957 788

100 2048 668
500 2557 582
1 16938 10352

10% 20 16938 10194
100 16938 10003
500 17535 9623

(a) DA=LA1, DB=CA

R covers k total pruned

1 26578 23676
1% 20 26578 23239

100 26578 22577
500 26578 20728
1 207130 192773

10% 20 207130 191964
100 207130 190764
500 225069 201671

(b) DA=CA, DB=LA1

R covers k total pruned

1 1924 235
1% 20 1957 201

100 2048 172
500 2557 119
1 16938 2310

10% 20 16938 2201
100 16938 2035
500 17535 1859

(c) DA=LA1, DB=LA2

Figure 18: Number of objects in R that are pruned by using simple 1-NN queries.

that stores their corresponding data structures partially on disk (when main-memory does not suffices).

In more strict implementations, however, such an assumption may not be followed, thus the execution

times of SCP and BNN will be further increased by the I/O cost of accessing the parts of the data

structures that are held on disk. This clearly shows that PaS is expected to outperform the other

methods at a higher degree.

6 Concluding Remarks and Further Research

Distance based queries are considered very important in several domains, such as spatial databases,

spatiotemporal databases, data mining tasks, to name a few. An important family of distance-based

queries involve the association of two or more datasets. In this paper, we focused on the k-Semi-

Closest-Pair query with spatial constraints applied to the objects of the first dataset (primary dataset).

We studied several existing algorithms that can solve the problem with necessary modifications. In

addition, we proposed a new technique which has the following benefits: a) requires less memory for

query processing in comparison to existing techniques, b) requires less CPU processing time and c)

requires less total running time.

There are several directions for further research in the area that may lead to interesting results.

We note the following:

• the application of the proposed method for k-NN join processing,

• the adaptation of the method for high-dimensional spaces (perhaps with the aid of more efficient

access methods),

• the study of processing techniques when constraints are also applied to the reference dataset,

• the study of PaS variations when there are no available access methods for one or both datasets.

27

References

[1] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger: “The R∗-tree: an Efficient and Robust

Access Method for Points and Rectangles”, Proc. ACM SIGMOD, pp. 322-331, Atlantic City, NJ,

May 1990.

[2] C. Bohm and F. Krebs: “Supporting KDD Applications by the K-Nearest Neighbor Join”,

Proceedings of the 14th International Conference on Database and Expert System Applications

(DEXA 2003), pp.504-516, Prague, Czech Republic, 2003.

[3] C. Bohm and F. Krebs: “The k-Nearest Neighbor Join: Turbo Charging the KDD Process”,

Knowledge and Information Systems (KAIS), 2004.

[4] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander: “LOF: Identifying Density-Based Lo-

cal Outliers”, Proceedings of the ACM International Conference on the Management of Data

(SIGMOD 2000), pp.93-104, Dallas, TX, 2000.

[5] T. Brinkhoff, H. P. Kriegel, and B. Seeger: “Efficient Processing of Spatial Joins Using R-trees”,

Proceedings of the ACM International Conference on Management of Data (SIGMOD 1993),

pp.237-246, Washington, D.C., May 1993.

[6] A. Corral, Y. Manolopoulos, Y. Theodoridis and M. Vassilakopoulos: “Closest Pair Queries in

Spatial Databases”, Proceedings of the ACM International Conference on the Management of

Data (SIGMOD 2000), Dallas, TX, 2000.

[7] A. Corral, Y. Manolopoulos, Y. Theodoridis and M. Vassilakopoulos: “Algorithms for Processing

K-Closest-Pair Queries in Spatial Databases”, Data and Knowledge Engineering (DKE), Vol.49,

No.1, pp.67-104, 2004.

[8] D. Eppstein: “Fast Hierarchical Clustering and Other Applications of Dynamic Closest Pairs”,

Journal of Experimental Algorithmics, Vol.5, No.1, pp.1-23, 2000.

[9] C. Faloutsos and I. Kamel: “Beyond Uniformity and Independence: Analysis of R-trees Using the

Concept of Fractal Dimension”, Proceedings of 13th ACM Symposium on Principles of Database

Systems (PODS 1994), 1994.

[10] G.R. Hjaltason and H. Samet: “Incremental Distance Join Algorithms for Spatial Databases”,

Proceedings of ACM SIGMOD Conference, pp.237-248, 1998.

28

[11] G. Karypis, E.-H. Han, and V. Kumar: “Chameleon: Hierarchical Clustering Using Dynamic

Modeling”, Computer, Vol.32, No.8, pp.68-75, 1999.

[12] P. Mishra and M. H. Eich: “Join Processing in Relational Databases”, ACM Computing Surveys,

Vol.24, No.1, 1992.

[13] A. Nanopoulos, Y. Theodoridis and Y. Manolopoulos: “C2P: Clustering Based on Closest Pairs”,

Proceedings of the 27th International Conference on Very Large Databases (VLDB 2001), Roma,

Italy, 2001.

[14] J. Shan, D. Zhang and B. Salzberg: “On Spatial-Range Closest-Pair Query”, Proceedings of

the 8th International Symposium on Spatial and Temporal Databases (SSTD 2003), pp.252-269,

Santorini, Greece, 2003.

[15] K. Shim, R. Srikant and R. Agrawal: “High-Dimensional Similarity Joins”, IEEE Transactions

on Knowledge and Data Engineering (TKDE), Vol.14, No.1, pp.156-171, 2002.

[16] H. Shin, B. Moon and S. Lee: “Adaptive Multi-Stage Distance Join Processing”, Proceedings of

the ACM SIGMOD Conference, pp.343-354, 2000.

[17] Y. Shou, N. Mamoulis, H. Cao, D. Papadias, and D. W. Cheung: “Evaluation of Iceberg Distance

Joins”, Proceedings of the 8th International Symposium on Spatial and Temporal Databases (SSTD

2003), pp.270-278, Santorini, Greece, 2003.

[18] Y. Tao and D. Papadias: “Time-Parameterized Queries in Spatio-Temporal Databases” Proceed-

ings of the ACM International Conference on the Management of Data (SIGMOD 2002), pp.

334-345, 2002.

[19] TIGER/Line Files, 1994 Technical Documentation / prepared by the Bureau of the Census,

Washington, DC, 1994.

[20] C. Xia, H. Lu, B. C. Ooi and J. Hu: “GORDER: An Efficient Method for KNN Processing”,

Proceedings of the 30th International Conference on Very Large Data Bases (VLDB 2004), pp.756-

767, Toronto, Canada, 2004.

[21] J. Zhang, N. Mamoulis, D. Papadias and Y. Tao: “All-Nearest-Neighbors Queries in Spa-

tial Databases”, Proceedings of the 16th International Conference on Scientific and Statistical

Databases (SSDBM 2004), pp.297-306, Santorini, Greece, 2004.

29

