An Inline Detection and Prevention Framework
for Distributed Denial of Service Attacks

Zhonggiang Chen Zhongrong Chen Alex Delis
Department of Computer ProMetrics Consulting Inc. Deprt. of Informatics
& Information Science 480 American Ave. & Telecommunications
Polytechnic University King of Prussia, PA 19406 University of Athens
Brooklyn, NY 11201 zhongrongchen@prometrics.com 15771, Athens, Greece
zchen@milos.poly.edu ad@di.uoa.gr
July 18, 2006
Abstract

By penetrating into a large number of machines and steglitdtalling malicious pieces of code,
a distributed denial of servicdDDo9 attack constructs a hierarchical network and uses it tadau
coordinated assaultdDDoS attacks often exhaust the network bandwidth, processipgaity and in-
formation resources of victims, thus, leading to unavdilgtof computing systems services. Various
defense mechanisms for the detection, mitigation andfevemtion ofDDoS attacks have been sug-
gested including resource redundancy, traceback of attagls, and identification of programs with
suspicious behavior. ContempordipoSattacks employ sophisticated techniques including foionat
of hierarchical networks, one-way communication chanrexisrypted messages, dynamic ports alloca-
tion, and source address spoofing to hide the attackerditidsnsuch techniques make both detection
and tracing oDDoSactivities a challenge and render traditioBdboSdefense mechanisms ineffective.

In this paper, we propose tli2DoS Containera comprehensive framework that uses network-based
detection methods to overcome the above complex and eugpies of attacks; the framework operates
in “inline” mode to inspect and manipulate ongoing trafficéal-time. By keeping track of connections
established by both potentiBIDoSattacks and legitimate applications, the suggeStBadS Container
carries out stateful inspection on data streams and ctessd®ents among sessions. The framework per-
forms stream re-assembly and dissects the resulting aafipag against protocols followed by various
known DDoSattacks facilitating their identification. The traffic path analysis and data correlation of
the framework further enhance its detection accuracpBoStraffic camouflaged with encryption. Ac-
tions available on identifie®DoStraffic range from simple alerting to message blocking amagptive
session termination. Experimentation with the prototypeuw DDoS Containeshows its effectiveness
in classifyingDDoStraffic.

Indexing Terms:Distributed Denial of ServiceDo9 attacks,DDoS handlers and agents, flooding
attacks DDoSdetection, mitigation, and prevention mechanisms

*Work done while the author was wiffortinet Inc., in Sunnyvale, CA.
TPartially supported by Pythagoras grant No.7410 and a W@hikthens—Research Foundation grant.

1 Introduction

Distributed Denial of ServicelDo9) attacks exploit host vulnerabilities to initially breakd a large num-
ber of systems [26, 40]. A subset of these systems termeddagovictims, function as daemons or agents
and dispatch useless traffic to specific network nodes knavpmianary victims. The work of agents is coor-
dinated by a core of compromised sites which become the masthandlers of an assault and are under the
direct control of attackers. In this manner, hierarchi¢ick networks are formed arfdDoSattacks can be
launched [26, 23, 19]. Vulnerabilities exploited BypoSare mainly due to the ambiguities in network pro-
tocols and flaws in their implementations [55]. For instarthe Targaflooding attack used by maryDoS
tools crashes primary victims with malformed packets egdll sequences of messages [55, 40]. Moreover,
logic errors in programs such ashoandchargenservices, system mis-configurations including support of
direct broadcasts, and an enormous number of authentieatiaware applications frequently facilitate the
formation of DDoSattack networks [9, 32, 43].

In a typical DDoSattack, high volume of artificial traffic is generated in artte exhaust network band-
width, waste CPU processing, and/or inundate criticalrimfation resources, rendering the victim system in-
accessible to its legitimate users [10, 40]. By following #nd-to-end design paradigm, the current Internet
architecture places minimum functionality in intermediatvitches, routers and gateways to achieve high-
throughput and gives little emphasis to security and adednility of such backbone elements [10, 40, 25].
The Internet’s inherent distributed control makes the wedeof a single site irrelevant when it comes to
DDoSattacks [26, 55]. The synergy of multiple autonomous systehe asymmetric placement of comput-
ing resources and the lack of any intelligence in intermedi@des make it impractical to impose Internet-
wide security policies that control cross-domain attadkd R5]. It is in this context thabDoS networks
can bombard victims with attacks that use IP addresses frafiogated Internet address blocks making
their origin nearly impossible to locate [48, 18].

The availability ofDDoSscripts and their ever improving user-interfaces litgratlake an attack a click
away [10, 40]. It is noteworthy that variodDoSattack stages, including discovery of weak Internet links,
penetration of vulnerable sites, installation of mali@@modes, and ignition of coordinated attacks, can be
highly automated and performed in a “batch” fashion. It thhegsomes a straightforward task to estab-
lish a largeDDoS attack network with minimal effort [40, 31]. Furthermorégtincreasing population of
“always-on-but-unattended” Internet systems substiintiantributes to the success of large-scale coordi-
nated attacks that have appeared in dramatically incrgaiates since 1999 [45, 31, 55]. Well publicized
attacks targeted popular e-commerce sites includtiigo, Ebay, andE*trade in 2000 [65]; Microsoft's
name service was entirely crippled for days in 2001 [16];levii 2002, thirteen top-level Internet domain
name servers were flooded simultaneously and seven of theeramtirely shut down [45]. In order to better
understand the severity and intensity[@DoS attacks, backscatter analysis was used [42]; it is spexllat
that 12,805DDoSattacks occurred in a period of three weeks in 2001 with muaa 6,000 distinct victims
belonging to 2,000 different domains. Among them, 90% thébe one hour or less, 90% were TCP-based,
and approximately 40% were launched with intensity largpant500 packets per second (pps), with the
maximum rate at around 500,000 pps.

A number of mechanisms have been proposed to prevent, taitigad curb the immensely destructive
effects ofDDoSattacks [22, 4]. Preventive measures attempt to elimiretenécessary conditions for the
formation of DDoSnetworks with the help of vulnerability assessment toodsiqalic network penetration

tests, and validation mechanisms against malicious pieteede [58, 31]. By deploying distinct server
pools, load-sharing, traffic policing via shaping, and dgianetwork reconfiguration [3, 54], computing
systems try to mitigat®DoSattack effects. Reactive mechanisms initially detect lard@ng for unique
byte patterns termed telltales [5] and subsequently bloglcious activities [22, 5]. Identifying the origins
of attacks is also critical to attack accountability and enbar of strategies includingCMP Traceback, IP
Tracebaclkand CenterTrackave been proposed to this effect [48, 53, 18, 14]. Howekeriterarchical na-
ture of DDoSnetworks which separates control flow from attacking trafficonnection with identity spoof-
ing makes network path tracing extremely difficult effeetivshielding the assault instigators [23, 46, 35].
Consequently, traceback systems often lead only to zonmsésad of intruders, inevitably limiting their
usefulness [6, 57, 48]. Intrusion detection/preventiosteans (IDSs/IPSs) also do not fare wellBBoS
attacks camouflage their traffic [10] using one-way channetsonly between attackers and masters but
also between handlers and daemons; such unidirectionad ftake it a challenge for IDSs/IPSs to identify
culprits [40]. The use of strong cryptographic algorithmsluding the advanced encryption standa&&§)
and Blowfishto obfuscate traffic irDDoStools renders many IDSs/IPSs ineffective [49, 40]. In addit
the use of dynamically assigned TCP/UDP ports, covert atlarand multiple transport services (e.g., TCP,
UDP, and ICMP) also affects the detection accuracy of moSsiPSs as they typically employ fixed-port
detection mechanisms [47, 5].

In order to counter the above-mentioned evasive and conipldniques, we propose tigDoS Con-
tainer a network-based detection/prevention framework thattfans in “inline” mode, inspects every
passing packet, and therefore blocks @nyoStraffic in real-time. In order to track suspicious activity,
our framework monitors sessions established anmdbgS attackers, handlers, and zombies as well as le-
gitimate applications, records and maintains state inébion for the lifetime of each session, and finally
archives such information once sessions terminate to loelguct post-mortem intra-session data fusion and
inter-session correlation. OWDoS Containestores encountered packets in every data stream, reassem-
bles them in correct order, and interprets the resultingexgdions against protocols followed BDoS
tools such asStacheldraht, TFN2kand Trinoo. This type of message sequencing morphs segmented data
streams into sequences of comprehenBimSmessages, facilitating the analysis and classificatiorenf p
tinent traffic. To further enhance its reliability and detea accuracy, our framework performs application
layer or “deep” inspection by scanning both protocol headerd payloads; thBDoS Containeanalyzes
the syntactic structures and patterns of traffic flows to tiflerDDoS activities that may use encryption.

As soon as a session has been identifie@BsStraffic, our framework can alert the user, block the flow
and/or even pro-actively terminate the connection. In ragiteng the effectiveness of our approach, we
carry an experimental evaluation with dDoS Containeprototype. Our results show that our framework
accurately identifie®DoScontrol traffic among attackers, masters, and agents, daadtddlooding attacks
quickly, therefore delivering its functionality in a rotiuend efficient way.

The remainder of this paper is organized as follows: Se&idiscusses key features manifestedijoS
attacks. Section 3 presents the functionalities and coemerof our framework while Section 4 outlines
the operation oDDoSanalyzers. Results of our experimental evaluation areudgsd in Section 5 while
related work and concluding remarks are found in Sectionsd6 arespectively.

2 Key Features of ContemporaryDDoSAttacks

In this section, we outline basic mechanisms used to depl@p@Snetwork and discuss its communication
channels, message encryption methods, multiple evasatmitpies and diverse attack types. We inter-
changeably use the terms intruder, attackepbBwoS-client to refer to either the owner of BDoS attack
network or the program used to control the network; the tdramsller or master designate the nodes at the
first level of theDDoSattack network that are under direct control of an attacsienjlarly, the terms agent,
daemon, zombie, or bc&sire used to describe entities at the second level dbtheSnetwork. Moreover,
secondary victimsefer to handlers and zombies gmdimary victimsportray the direct targets of an attack.

2.1 Phases and Organizational Aspects @dDoSAttacks

A DDoSentails discovery and penetration of vulnerable systemplantation ofDDoScodes, and attack
launching [40]. In the course of vulnerable site discovegmputers that harbor well-known defects in
network services, vulnerabilities in applications, or foémfigurations in security policies are detected and
recorded [10, 40]. Tools such asnap, nessuand sscarare typically used to speed up the discovery pro-
cedure and control the volume of scanning traffic in ordevtidadetection by firewalls and IDSs/IPSs [9].
System reconnaissance may occur by probing specific, randiodesignated sub-networks as well as by
carrying out topological, permutation, or signpost scagni40]. To go undetected, a cautious intruder
may initially penetrate a few vulnerable sites which aredus® launching pads for recruiting of secondary
victims; this process may be recursively repeated.

During the implantation phase, the attacker installs nl& codes on compromised systems. This is
accomplished by transporting codes either from a centoaage location or from other compromised ma-
chines in the previous phase [28]. The attacker may also verboeak-in traces, set up passwords to
safeguard compromised systems from further attacks, tallinsaps to help detect whether administrators
of the victim systems are aware of the penetrations. SDDeStools may rename their executables so that
they are perceived as regular processes; for instance iStdwheldraht DDoSetwork, the handlers and
agents are namddswapdandnfsiodand appear as legitimate processes often escaping theismlator’s
attention. While at the attack stage, a culprit specifiedythe, duration, intensity as well as targets for the
attack; such instructions and their parameters are detiverthe handlers of the establishieBoSnetwork,
further relayed to all zombies, and subsequently execufezbimbies. Each handler or zombie may only
have limited information regarding its siblings ildDoSnetwork. In this respect, even if some nodes of a
DDoSnetwork are detected and eventually recovered by admatiss, other nodes may still continue their
malicious work unabated.

In an effectiveDDoS network, each compromised host undertakes a specific role wtten forming
the popular multiple-level hierarchical network of Figure At the root, attackers, typically through client
programs, directly control all handlers to perform varitasks, such as launching attacks, stopping on-going
activities and/or collect statistics about the netwadtklDoS-clients may feature specialized interfaces such
astubbyin Stachelhardtuse standard network utilities suchtaietand SSH and/or consist of customized
code. A number of handlers iBDoS networks are able to control multiple agents and monitoci§ipe

1a compromised system that can penetrate and manage otheinesby installing daemons on the latter
2a compromised computer that is implanted with a daemon aibedr by DDoS masters and waits for commands to launch
DDoSattacks

TCP/UDP ports for instructions from clients as well as res@s from zombies. Agents execute commands
on behalf of handlers and generate attack traffic strearhathaltimately dispatched to the primary victims.
As Figure 1 indicates, different handlers can share the sanget of agents as is the case with handlers 2
and 3; similarly, an agent may accept instructions from iplelthandlers as is the case with agentnd

j. Signaling channels are established between clients amdidra as well as between handlers and agents

....... =
L T ClintN
Handler 1 Hander M

\ \ Tﬂ

[]

Handler2 Handler3| e

‘ Agent 1 Agent2

Agem 3

Agenlf Agen Agentk ‘ Agentp

Intemet Relay Chat Netiwork (IRC Net)

\VML,/

Agenti

‘ Agentk

Agent 1 Agemz Agent3 ‘ Agent j ‘ Agentp

Figure 1: HierarchicaDDoS attack network

with Handler/Agent paradigm Figure 2: AnIRC-instigatedDDoSnetwork

while attack paths are formed between agents and primatiyngcin this regard, the two types of channels
can follow different communication formats and utilizefdrent transport services, making tracing handlers
or clients from primary victims or agents a challenge.

To improve their anonymityDDoS systems employ additional overlay networks such as IntdRetay
Chat (IRC) or Peer-to-Peer (P2P) channels between haraiersagents making it harder to be detected
by firewalls and IDSs/IPSs [10]. Figure 2 presents an attatwark constructed with the help of an IRC
network where agents establish outbound connections fegitanate service port 6667, making it difficult
to distinguish communications induced BYpoSnetwork from legitimate traffic. To further enhance their
robustness, attackers frequently deploy channel-hoppsigg any given IRC channel for only short periods
of time. Multiple IRC channels can be used to control EHeoSnetwork, the discovery of some agents may
lead no further than the identification of one or more IRC seand their channel names used infigoS
network. However, th&®DoSnetwork as an entity still remains intact. PDoSnetwork can be also formed
using a Peer-to-Peer overlay constructed among comprdrhisits as Figure 3 depicts. As soon as a peer
joins in, it announces its presence and becomes aware affiblogy of the entire network via its attacking
machine. Information regarding active peers and ongoitigitees are continually exchanged among peers
and updated throughout the entire network. In this contie,peer-to-peer UDPDoStool (PUD) can
connect compromised nodes over UDP on user-specified pdidsnh a P2PDDoSnetwork [51].

Furthermore DDoSnetworks can be constructed based on specific applicatimisas Web services and
DNSsystems. To this effect, thBistributed DNS Flooder (DDNSFdol generates a large number@NS
gueries to overwhel®NSservers [51], while théVebdevilcan be used to launddDoSattacks by opening
and keeping alive multiple HTTP connections to a web seriraulsaneously, ultimately causing server
saturation [51].

Client 1 Client N

Agent 1 ‘ Agent2 Agent3 Agenti Agent | Agentk ‘ Agentp

Node 1 ‘ Node2 | - Node T

\ [\

i Amplification Network
Victim e
: Figure 4: Amplification often used iDDoS
Figure 3: DDoSnetwork on P2P network t'? K P
attacks

2.2 One-Way Communication Channels

In early DDoS attack networks such aBFN, all messages exchanged between handlers and daemons are
camouflaged akCMP Echoreply messages in order to escape detection. Each haoefiaetmon command

or reply is assigned a unigue identifier which is includedimprotocol fieldcmp.id of ICMP messages. By
exchanging such commands, various tasks relatéadoS attacks can be performed. Table 1 describes a
sample communication session between a handler and a dae@@f N network. In the first message, the
handler (with IP 192.168.5.143) instructs the daemon (WAtth92.168.5.142) to launch an attack against a
victim (with IP 192.168.5.37) with thBlood method. The attack method fioodis indicated by the value of
890 (in decimal) in the protocol fieldmp.id of the ICMP header; while the victim's IP (i.e., 192.168.5.37)
is sent to the daemon ESMP data In its reply, as message 2 shows, the daemon indicatethadinmand
from the handler has been executed successfully as showe ifata section of thlCMP message. With
message 3, the handler delivers the instrucsitmp current floodvith command identifier 567 (in decimal)
to the daemon, and the latter eventually answers with messag confirm that the current flooding attack
is terminated.

Evidently, communications are bidirectional exposing mirdormation to the more sophisticated secu-
rity protection systems and making their detection striigivard as their telltales patterns can be mapped
out to signatures. In addition, the source addressé€MP messages iTFN are not spoofed rendering
the discovery of handlers easy once daemons are identifteid. wlorth pointing out that messages ex-
changed between handlers and daemonBAN as shown in Table 1 violate the conventional schema of
ICMP Echo replymessages, which requires that distimchp.seas should be used for different messages
and fieldsicmp.id andicmp.seqshould be echoed back by recipients. Last but not least, @msand
their respective parameters Ti-N appear in clear text, making them easily identifiable by sgcdevices.

TFNZK, the successor of FN, establishes one-way channels between handlers and deaesdiable 2
depicts. Messages are transported from a handler with IRessld92.168.5.143 to a daemon with IP
192.168.5.142. In message 1, the handler instructs theata&maunch dJDP flood attack against the
victim located at 192.168.5.37; in message 2, comnsaog the current floods delivered to the same dae-

[dir | len | payload | description
protocol: ICMP; handler (denote as H):192.168.5.143; dae(denote as D): 192.168.5.142
1| H—D | 41 | IP header (20 bytes}45 00 00 29 00 00 40 00 ip_tos: O; ipid: O; ip_ttl: 64;
40 01 AE 66 CO A8 05 8F CO A8 05 §E src: 192.168.5.143; dst: 192.168.5.142;
ICMP header (8 bytes)00 00 C7 54 03 7A 00 Q0 | icmp_type: O (Echo reply); icmgode: O;
ICMP data (13 bytes)[31 39 32 2E 31 36 38 2E icmp_check: 0xC754; icmpd: 0x037A (dec. 890);

352E 333700 icmp_seq: O; icmpdata: “192.168.5.37";
2 | D—H | 53 | IP Header (20 bytes)45 00 00 35 00 00 40 00 ip_tos: O; ipid: O; ip_ttl: 64;
40 01 AE 5A CO A8 05 8E C0O A8 05 8F src: 192.168.5.142;

ICMP header (8 bytes)00 00 CE CA 00 7B 00 00| icmp_type: O (echo reply); icmyzode: 0;
ICMP data (25 bytes)|55 44 50 20 66 6C 6F 6F 64 icmp_check: 0x98B1; icmpd: 0x007B (dec. 123);
3A 20 31 39 32 2E 31 36 38 2E 35 2E 33 37 0A 0P icmp_seq: 0; icmpdata: “UDP flood: 192.168.5.37’

3 | H—D | 30 | IP header (20 bytes}45 00 00 1E 00 00 40 00 ip_tos: O; ipid: O; ip_ttl: 64;
40 01 AE 71 CO A8 05 8F CO A8 05 8§E src: 192.168.5.143; dst: 192.168.5.142;
ICMP header (8 bytes)00 00 CF C8 02 37 00 00 | icmp_type: O (echo reply); icmyzode: 0;
ICMP data (2 bytes)}2E 00 icmp_id: 0x0237 (dec. 567); icmpeq: 0;
4 | D—H | 50 | IP Header (20 bytes)45 00 00 32 00 00 40 00 ip_tos: O; ipid: O; ip_ttl: 64;
40 01 AE 5D CO A8 05 8E CO A8 05 8F src: 192.168.5.142; dst: 192.168.5.143

ICMP header (8 bytes)00 00 FF 09 00 7B 00 Q0 | icmp_type: O; icmpcode: O; icmpcheck: OxFF09;
ICMP data (22 bytes)[55 44 50 20 66 6C 6F 6F icmp_id: 0x007B (dec. 123); icmyseq: 0;
64 20 74 65 72 6D 69 6E 61 74 65 64 0A|00 icmp_data: “UDP flood terminated”.

Table 1: Handler/daemohFN messages wittCMP

[dir] len | payload | description
protocol: ICMP; handler (denote as H):192.168.5.143; dae(denote as D): 192.168.5.142
1-20 H—D | 70 | IP header (20 bytes}45 00 00 46 F7 8E 00 00 ip_tos: O; ipid: O; ip-ttl: 64;
F5 01 DB 59 46 97 E6 00 CO A8 05 8E src: 70.151.230.0; dst: 192.168.5.142;
ICMP header (8 bytes)00 00 A5 96 00 00 4F R7 icmp_type: 0 (Echo reply); icmgode: 0;
ICMP data (42 bytes)[6D 56 37 49 63 43 42 76 4A icmp_check: 0xA596; icmpd: 0x0000;
6D 74 4757 726D 68 31 72 2F 49 4F 41 41 41 41 icmp_seq: Ox4FF7; cmd: “tfn -P ICMP
4141414141414141414141414141414)141| -h192.168.5.142 -c 4 -1 192.168.5.37"; 21 trailing As.
21-40 | H—D | 55 | IP header (20 bytes)45 00 00 37 6D B1 00 00 ip_tos: O; ipid: O; ip-ttl: 64; src: 35.45.251.0;
FB 01 6D B0 23 2D FB 00 CO A8 05 §E dst: 192.168.5.142; icmtype: 0; icmpcode: O;
ICMP header (8 bytes)00 00 62 19 37 6E 00 Q0 icmp_check: 0x6219; icmpd: 0x376E;
ICMP data (27 bytes)[77 77 4C 47 6A 2F 43 7A 2F 36 icmp.seq: 0x0000; cmd: “tfn -P ICMP
62 6F 2F 79 6D 4D 34 6B 59 64 7551 41 41 41 41 41 -h 192.168.5.142 -c 0”; 5 trailing As.
41-60 | H—D | 59 | IP header (20 bytes}45 00 00 3B 3D D8 00 00 ip_tos: O; ipid: O; ip-ttl: 64;
F101 C7BB 84 F7 79 00 CO A8 05 8E src: 132.247.121.0; dst: 192.168.5.142,;
ICMP header (8 bytes)00 00 EB 60 00 00 00 QO icmp_type: 0; icmpcode: 0; icmpcheck: OXEB60;
ICMP data (31 bytes)[4E 30 53 36 6E 4D 57 66 icmp_id: 0x0000; icmpseq: 0x0000;
7939 6D 71 71 4F 61 54 34 65 36 54 cmd: “tfn -P ICMP -h 192.168.5.142
4377414141414141414141 -¢ 3-i1024”; 9 trailing As.

Table 2: Handler/daemohFN2K Messages withCMP

mon. Clearly, inTFN2K, commands are no longer transferred in protocol figido.id of the ICMP header
instead, they are embedded in the data sectid€bfP messages with fieldsmp.id andicmp.seqtaking
random values (or zero). The source IP$@¥P messages are also randomized (i.e., spoofed), effectively
hiding the identity of the handler; for instance, in messagé Table 2, the source IP is 70.151.230.0 and
then becomes 35.45.251.0 in message 2. The lack of any ddeedivack makes it impossible for a han-
dler to ensure proper command dispatch and execution. Taneehthe chances of their success, handlers
transport each of their commands multiple times, 20 by defas Table 2 shows.

The one-way communication option can be also establishédtixg help of TCP/UDP transport. Table 3
shows partial UDP uni-directional traffic emanating frorilaN2K handler. In this scenario, instruction for
aUDP attackagainst the victim located at 192.168.5.37 is deliverethftoe handler with IP 192.168.5.143
to the daemon at IP 192.168.5.142. For brevity, we preserid P header and payload for the first message
while UDP headers only for other messages of Table 3 as alsages have the same UDP payload to
message 1. Although Table 3 essentially delivers the samenemd as the first message shown in Table 2,

UDP messages ifFN2K have spoofed source IP addresses, source ports, and testiparts, implying
that the daemon should work in raw mode in order to monitdnattming UDP traffic. Similar observations
can be drawn from TCP-based communication channels. Itadiyfimorth noting that checksums of the

[dir | len | spoofed src IP][UDP header | description
protocol: UDP; handler (denote as H):192.168.5.143; daefdenote as D): 192.168.5.142

1 H—D | 70 | 157.253.87.0 | UDP header{86 9F ED 7C 00 35 81 71| udp.sp: 34463; udplp: 60796; udpcheck: 0x8171,;

UDP data:|6D 56 37 49 63 43 42 76 cmd: “tfn -P UDP -h 192.168.5.142 -c 4

4A 6D 744757 726D 68 31 72 2F 49 | -i192.168.5.37";

4F4141414141414141414141 total 21 'A.

41414141414141414141
2 H—D | 70 | 157.253.87.0 | |[3A5CEC 3200 35 CE FE udp.sp: 14940; udmlp: 60466; udpcheck: OXCEFE;
3 H—D | 70 | 157.253.87.0 | |FO6F A8 9A 00 355C 83 udp.sp: 61551; udmlp: 43162; udpcheck: 0x5C83;
4 H—D | 70 | 157.253.87.0 | |[3B7E 7573003544 9C udp.sp: 15230; udmlp: 30067; udpcheck: 0x449C;
5 H—D | 70 | 157.253.87.0 | |13FB1C 710035C5 21 udp.sp: 5115; udpdp: 7281; udpcheck: 0xC521;
6 H—D | 70 | 157.253.87.0 | |43 D6 ED C7 00 35 C3 EF udp.sp: 17366; udmlp: 60871; udpcheck: OXC3EF;
7 H—D | 70 | 157.253.87.0 7E C1 C803 0035 AE U8 udpsp: 32449; udplp: 51203; udpcheck: OXAECS;
8 H—D | 70 | 157.253.87.0 | |A6 11 14 F2 00 35 3A 8A udp.sp: 42513; udmp: 5362; udpcheck: 0x3A8A,;
9 H—D | 70 | 157.253.87.0 D3 A9 D4 52 00 35 4D 9L udp.sp: 54185; udplp: 54354; udpcheck: 0x4D91;
10 | H—D | 70 | 157.253.87.0 | |846D 7B A10035F5 7E udp.sp: 33901; udmp: 31649; udpcheck: OXF57E;

Table 3: UDP messages from handler to daemohRN2K

UDP packets created byFN2K (i.e. field udp.checR are incorrectly calculated as the required pseudo-
header is not included in the checksum computation. Theyl@gseudo-header consists of fietdgirce 1P

(4 bytes),destination IP(4 bytes),reserved(1 byte and should be zerg)rotocol (1 byte) andotal length

(2 bytes). The same design flaw also exists in TCP-bds&d?K messages and can be used as a metric to
identify such traffic.

2.3 Encryption of Communication Messages

Another enhancement th@FN2K maintains over its predecessor is the use of cryptograpkihads in-
cluding the advanced encryption standard (AES), the iat@nal data encryption algorithm (IDEA), and
variants of CAST algorithms [49]. The obfuscation followled TFN2K initially involves a message en-
cryption stage with the 16-byte block-oriented CAST-25¢0athm (along with the needed padding at the
end of the message), followed by an encoding stage usingea@gascheme so that the output content is in
the printable range [A-Z, a-z, 0-9, +/]. The procedure used BN2K to encrypt and encode messages is
presented in Algorithm 1. It can be observed that the sizé®Encrypted messagéengenerated by the
encryption stage is different from the size of the inplén to the encoder. Given thatenrepresents the
length of the original text, clearlglern>elenasclen=plent+16; elencan be eitheplenor plent(16-plerfo16)
depending on whether or not the conditigneff616=0) is satisfied. During the encoding stage, the input
is padded with{clen-elen)zeros whose content is ultimately turned into “A’s throubgh 64-base encoding
scheme; this yields an artifact at the end of the encodectcight that we could exploit to identiff FN2K
traffic. For example, in message 1 of Table 2 there are 21ngeacharacters “A’ while in messages 2 and 3
there are 5 and 9 “A’s at the end of tHeMP payload. The differencélen-elen)essentially determines the
number of the trailing “A’s and takes values in the [1, 16]ganThe base-64 encoding essentially transfers
every three bytes into sequences of four bytes and at the fetiiscstage the difference is in the range
[1,21]. We can overall compute the number of trailing “A’ssbd on the size of an encoded and encrypted
TFN2K message It is in general futile to attempt to recover original traffvithout the encryption keys

3We discuss how we take advantage of this in our Algorithm 8

Algorithm 1 Encryption Procedure in thEFN2K DDoStool

1: Input: vector plain, plen) whereplain is the plain text to be encrypted, aptbn is its length
2: elen < plen, which is the real length of cipher text

3: if (plenis not a multiplier of 16}then

4: rem =plen mod 16;elen = plen + rem; plain is padded with-em zeros;

5: end if
6
7
8

: plain is divided into 16-byte blocks:ipher is used to store encrypted versionpdfiin and initially set to be empty
. for (each 16-byte bloclB in plain) do
encryptB with CAST-256 algorithm; resulting cipher text is appendedipher;
9: end for
10: variablecien is the size otipher andclen = plen + 16;
11: if (clen is larger tharelen) then
12: rem =clen - plen; cipher is padded withrem zeros;
13: end if
14: cipher is divided into 3-byte blocks; the last block may contain 0Qrl2 bytesput_encode is set to empty and its lengtiien
is set to zero;
15: for (each 3-byte blockB in cipher) do
16: encodeB with base-64 algorithm; resulting block, 4-byte long, ipapded twut_encode; blen = blen + 4;
17: end for
18: if (the last block contains 1 byté&)en
19: the single byte in the block is encoded into two bytes qmbaded twut_encode; blen = blen + 2;
20: else if(the last block contains 2 byt&)en
21: the two bytes in the block is encoded into three bytes apérded t@ut_encode; blen = blen + 3;
22: end if
23: Output: put_encode, blen)

used [1, 29, 49], and thus, it is rather pragmatic to idertti&ffic based on its message sizes, handshake
procedures and unique traffic patterns instead of its syntax

In a similar fashion Stacheldrahinessages are encrypted using the Blowfish secret-key biphkrcal-
gorithm that iterates a simple encryption function 16 timéth the help of a Feistel network [49]. Using
64 bits block size and 448 bits keys, the algorithm featuresxgpansion phase where a given key is con-
verted into several subkey arrays totaling 4,168 bytes atataaencryption phase where a 16-round Feistel
network is carried out [49]. Provided that the only possiliby to break Blowfish is a keyspace exhaustive
search [49], the only realistic option that remains forficatlentification is to extract specific characteristics
and/or patterns of messages and their exchange procedBtadheldrahtattacker-handler connections are
password protected with attacker commands, handler resppand passwords being Blowfish-encrypted.
The encryption keys are specified when thBoS codes are compiled and may be changed wbhéwS
codes are installed by attackers in compromised machinisgrocess makes any clear text unavailable and
thus renders the search for telltales impossible. Algorighoutlines theStacheldraheéncryption procedure
for communications between its attackers and handlersevggls a few artifacts that may help us identify
pertinent traffic. FirstStacheldrahtises a fixed length of 1024 bytes for its messages and comgigue
short messages may be padded with zeros before transmidsianost instances, the encrypted part of
the message is typically less than 100 bytes, leaving a weny $tring of zeros at the end. Second, the
handler-employe@cho-backmechanism for processing the attacker password may alsalbtctStachel-
drahttraffic through correlation and/or sequence matching afrimftion flows in both directions. Finally,
handler-banner features presented to the attacker carplmted as well; among the four banner lines, two
have identical content. Although the two identical strifigs...**** |0A|” are encrypted, encoded, and
transferred with different keys at different times, theg abfuscated with the same key within the same
connection, clearly offering an opportunity for detection

Algorithm 2 Stacheldrahandler Encryption Procedure

Input: a TCP connection from the attacker
get password from the attacker; the password is encrypitscBlowfish, encoded with base-64 scheme, and padded t 102
bytes with zeros; decrypt the received password;

. if (entered password is incorretien

echo back the incorrect and decrypted password to thekatteclose the connection and exit;
end if

: echo back the encrypted and base-64 encoded passworlatidbker (padded with zeros to 1024 bytes); present thekatt

with the following banner:
* OA["
“welcome to stacheldrab0A|”

|0A[”

“type .help if you are lami@A OA|”;

each line of such greeting is encrypted with Blowfish and dedowith base-64 individually, padded to be 1024 bytes with
zeros, and flushed to the connection;

: for (each command entered by the attackier)

execute the requested command; the result of the commsamtiypted with blowfish and encoded with base-64, padded
with zeros to 1024 bytes, and send back to the attacker;
close the connection and exit if the command is “.quit”;

. end for

Table 4 shows a segment of traffic betweeStacheldrahtlient and its handler using TCP transport
mechanism. Once the attacker-to-handler connection a&blkstted —not shown for brevity— the attacker
dispatches its Blowfish-encrypted and base-64 scheme edqmbsword padded with zeros at the end as
message 1 depicts. Due to their base-64 encoding, TCP negsaglgads are in the range [./, 0-9, a-z, A-Z]
followed by trailing zeros. Padding is a must for most messagStacheldrahiollows a fixed-size format.

In this respect, the length of the encrypted/encoded pasgswaonessage 1 is 24 bytes requiring 1,000 bytes
of zeros for padding. The handler in message 2 echoes badathe encrypted/encoded password to the
attacker once authentication process completes. Obyjahs! Blowfish-encrypted password and its echo-

back instance are identical. In messages 3, 4 and beyondhatider transfers to the attacker its 4-line

[dir | IP:TCP:data | TCP payload | description
protocol: TCP; client (denote as C):192.168.5.143:58hakdler (denote as H): 192.168.5.142:65512
1| C—H | 20:32:1024 |[5A 54 7472 4B 30 30 63 30 31 61 30 31 66 attacker enters password encrypted with
58 30 69 31 62 73 65 46 66 30 00 0Q ... blowfish; length: 24; padded with (1024 - 24)0|;
2 | H—C | 20:32:1024 | |5A 547472 4B 303063 303161303166 handler echoes back the password;
58 30 69 31 62 73 65 46 66 30 00 00 ..| 00 encrypted with blowfish; padded with (1024 - 24) zeros;
3 | H—C | 20:32:1024 | |44 64 4F 51 48 31 32 4B 59 50 4D 30 handler presents banner to attacker;
44 64 4F 51 48 31 32 4B 59 50 4D 30 first, string (encrypted with blowfish):
44 64 4F 51 48 31 32 4B 59 50 4D 30 |OA|”;
3771657A46 2E 74 4A 446D 49 2F 00 0Q ...| encrypted len: 48 bytes; padding (1024 - 48) zeros;
4 | H—C | 20:32:1448 |6F 73 4F 4552 31 4A 51 41 77 6E 2F then, string (encrypted with blowfish):
4D 3563 74 71 2E 69 69 50 43 37 30 “welcome to stacheldral0A|";
71417837 732E4578624A 4C 2E encrypted len: 48 bytes; padding
6B 65 2E 4E 6A 31 4A 6B 4D 46 56 2F 00 00| .., (1024 - 48) bytes zeros; string (encrypted with blowfish):
|44 64 4F 51 48 31 32 4B 59 50 4D 30 [OA|”
44 64 4F 51 48 31 32 4B 59 50 4D 30 encrypted len: 48 bytes; pad (1024 - 48) zeros;
44 64 4F 51 48 31 32 4B 59 50 4D 30 cipher text is the same as that in previous
377165 7A 46 2E 74 4A 44 6D 49 2F 00 ...|00] message; padded data continue to next msg;
5| H—C | 1500 |00 00 ..|
|73 72 656C 79 2E 34 2F 49 78 73 30 blowfish encrypted string:
3839727265 2F 4A 54 39 69 4B 2F “type .help if you are lam@A 0A|";
76 33 30 2E 73 30 75 56 4B 46 54 2E
58 46 66 53 58 2F 66 4D 47 50 44 3100 00 ...

Table 4: Messages between client and handler with TCHacheldraht

greeting message in encrypted/encoded form which getsaglesp to the attacker by the client program

after decryption/decoding. Clearly, the TCP transporvisermay violate application message boundaries
by packing multipleStacheldrahthessages into a single TCP packet, even though such messadesded

to the TCP/IP stack separately. For instance, the messagéaelcome to .”.and part of the following
line “*** . ” are merged into a single TCP packet as message 4 shows; rtteniag of the *** .~
appears in the subsequent TCP packet (not shown). Hencagdiguinconsistencies between TCP packets
and application messages lead to the fact that TCP streasemaly is required to identify boundaries of
application messages and then possibly search for patterns

2.4 Evasive Techniques oDDoSAttacks

Decoy packets and/or use of dynamic ports are frequentlyamg byDDoSattackers to avoid detection by
firewalls and IDSs/IPSs. In this regaff-N2Kis capable of transmitting an arbitrary number of decoy pack
ets for every “real” packet obscuring the actiboSattack elements, such as launching points and attack
targets. Table 5 presents a segment of traffic generated ByTFB/2ZK where for every real packet a decoy
is created. Here, a handler dispatches the commstadsUDP flood attackandstop current flood attack
through messages 1 and 3 while messages 2 and 4 are theikesgdecbys. Nearly all TCP header fields of

| len | payload | description
protocol: TCP; handler (denote as H):192.168.5.143; daeftlenote as D): 192.168.5.142; direction:—D
1 | 82 | IP header (20 bytes)45 00 00 52 65 F3 00 00 ip-tos: 0; ipid: O; ip_ttl: 64;
CC 06 86 55 3F 26 FD 00 CO A8 05 8E src: 63.38.253.0; dst: 192.168.5.142;
TCP header (20 bytes)33 1D 35 F1 00 00 00 00 tcp_sp: 0x331D; tcpdp: 0x35F1; tcpseq: O;
00 0C B6 F8 00 12 7D 75 FC D5 00 p0 tcp_ack: Ox000CB6F8; tepff: 0; tep_flags: ACKSYN;
TCP data (42 bytes)4B 4B 39 6B 68 6D 68 71 79 66 33 42 tcp_win: 0x7D75; tcpcheck: OXFCD5;
4A 6476 2B5A52476B 74774141414141 ...
2 | 82 | IP header (20 bytes}45 00 00 52 52 8D 00 00 D3 06 B4 51 ip-tos: 0; ipid: O; ip_ttl: 64; src: 63.38.253.0;
3F 26 FD 00 0D A0 97 00 dst: 13.160.151.0; tcpp: 0XF5A6; tcpdp: O0x276E;

TCP header (20 bytes)F5 A6 27 6E 00 0B B3 DO 00 00 00 00 tcp_seq: 0x000BB3DO; tepff: 0; tcp_win: 0x377A,;
00 12 37 7A 91 F3 00 QOTCP data (42 bytes): (same as # 1) tcp_ack: O; tcpcheck: 0x91F3; teglags: ACKSYN;
3 | 67 | IP header (20 bytes}45 00 00 43 6C 5C 00 00 E1 06 84 60 ip_tos: 0; ipid: O; ip_ttl: 64; src: 10.194.24.0;

0A C2 18 00 CO A8 05 8E dst: 192.168.5.142; tcpp: 0xFF29; tcpdp: 0x78EF;
TCP header (20 bytes)FF 29 78 EF 00 E7 F9 51 00 07 06 29 tcp_seq: 0XxO0E7F951; tcpff: 0;

0010 C152 87 1B 00 QPTCP data (27 bytes)45 38 74 39 61 42| tcp.ack: 0x00070629; tcfflags: ACK;

76 716C 54 6D 4C 78 38 78 6F 71 52 48 6A 66 51 41 41 41 41|41cp_win: 0xC152; tcpcheck: 0x871B;

4 | 67 | IP header (20 bytes)45 00 00 43 A6 62 00 00 DO 06 DF 54 ip_tos: 0; ipid: O; ip_ttl: 64; src: 10.194.24.0;

0A C2 1800 45 3B FD 0p dst: 69.59.253.0; tegp: 0xX7A8E; tcpdp: 0x002E;
TCP header (20 bytes)7A 8E 00 2E 00 00 00 00 00 00 00 00 tcp_seq: 0; tcpack: 0; tcpoff: 0; tcp_flags: ACK;

00 10 00 00 46 34 00 QO CP data (27 bytes): (same as # 3) tcp_win: 0; tcp.check: 0x4634;

Table 5: TFN2K handler/daemon TCP messages

handler-originated messages are spoofed with random ornvadues; as expected, the source IP addresses
in IP headers are also fake. While the destination IP adelsest“real” messages are set to be the true
daemon IP values, respective addresses are spoofed in packgts. More specifically, the destination of
the commandtart UDP flood attackn message 1 displays the true 192.168.5.142 daemon IRs tis the
case with message 2 where the destination IP address hasdnelmly assigned the value 13.160.151.0.
It is worth noting that the fieldcp_off of the TCP header in all messages is zero; in regular ciramoss,

this field indicates the starting point of TCP data and shbel@t least five reflecting the minimum size of
a legitimate TCP header without any TCP option (i.e., 20 fybe 5 32-bits). This abnormality may create
problems to some network devices if they fail to handle susdxpected messages, or may escape from the
detection by security systems if the latter do not perforoigmol anomaly analysis. The values of the field
tcp_checkin TCP headers are also incorrectly calculated since imTlaN2K-generated TCP messages the

10

required pseudo-header is not included in the checksuralasitin. It is finally noteworthy that the content
of decoy packets is identical to the real packets; this careadily identified, should a protection system
features deep-inspection or full-content scanning.

The use of dynamic ports for both handlers and agents is @anottmmon technique to evade detection.
For instance, by defaultyistreamhandlers listen to TCP port 6723 for attacker/client comasaand they
monitor UDP port 9325 for daemon-originating informati@hanging these ports is rather straightforward.
Similar observations can be drawn for agentddstreamand handlers/agents in othBDoSattack tools.
Although IP addresses are generally randomized, (i.eofsdp they can take any values specified by
attackers in order to elude detection by ingress/egressiridf mechanisnfs

In the course of an attack, agents dispatch streams of atkegtrimary victims in either constant or
variable rate. After the onset of an attack, agents fredye@nerate packets as fast as their resources
permit. However, abrupt increases in traffic volume canlgaaise suspicion. By adjusting attack rates of
individual agents so that only small traffic volumes are gatesl, detection by security mechanisms may
be avoided. Even under such light volumes, the resultirfidrmay be intensive enough to bring a victim
down if the number of agents is very large. In additibfoSattacks vary values in protocol header fields to
evade fixed traffic patterns whose signatures can be detegtseturity devices. The use of different agents
in different attacks reduces the probability for identifica as well. DDoS attack tools also use the self-
updating characteristic in order to change their commuioicgpatterns and enhance their functionality;
to this effect, theStacheldrahtommand.distro can be used by an attacker to instruct and coordinate all
handlers and agents to install new versions of their coduil&@ly in TFN2K, the same objective is attained
through the use of commandmote command executigine., command code 10 of Table 14) that allows
the execution of arbitrary shell commands onl2lboSentities.

2.5 Diverse Types oDDoSAttacks

The UDP flooding attacks exploit the fact that for every inaugrUDP packet, the recipient sends back an
ICMP destination unreachable message if the destinatianigoolosed; otherwise, wasteful processing of
junk-packets occurs. IMCP SYNilood attacks, steady bogus connection requests fill up T@Remtion
tables of victim systems; should victims attempt to s&@iP-RS¥packets to connection initiators that have
provided spoofed addresses, further network congestigerisrated. The timeout mechanism associated
with a pending connection proves ineffective if an attadamtinues to generate IP-spoofed packets faster
than the rate with which the victim’s pending connectionpiex ThelCMP echo request/replattacks
dispatch requests to specified targets with fake sourcedressks, forcing the victims to generate an equal
number of replies. VariouJargaattacks create packets with malformed or abnormal valuekffatent
protocol fields, transmit them to specified targets, and is itianner cause the victims to crash, freeze,
or manifest unexpected behavior. In amplifier or reflecttackis such as those instigated Syurfand
Fraggle traffic with the primary victim IP as its source is createdl aransferred to networks supporting
direct broadcast; each host of the networks then generaplies to the primary victim congesting the
network [40]. Figure 4 shows &murfattack on a hierarchicdDDoS network; every host creates replies
to messages originated in tBDoSnetwork but disguised as coming from the primary victim. Mévery
packet of the attack being repeated by every host, the aymgieffect may become grave. Clearly, such

“For example inTFN2K, this can be done for packets between handlers and agehis dfption-S is specified when these
components are activated.

11

IP-direct-broadcast packets should be blocked at LAN hsrde

Table 6 present§FN2K-daemon generated traffic using a mixed attack strategyendearkets are created
based on ICMP, TCP, and UDP protocols with ratio 1:1:1. A nemdf unique artifacts emerge: firstly, the
IP header fieldp_flags of every attack packet is set to zero regardless of the toahgpotocol used; this
implies that thedon't fragmentbit is not set byTFN2K. Secondly, theime-to-live (ipttl) field of ICMP
packets has zero value; this causes the packet to be droppamdylyouter along the attack path if agents
are not co-located in the subnet of victims. Thirdly, all F§&herated attack packets feature zero values
in their tcp_off fields rendering them malformed. Finally, checksums for MIPP packets are incorrect as

] pro | len | payload | description
daemon (denote as D):192.168.5.142; victim (denote as92:168.5.37
1| ICMP | 92 | IP header (20 bytes}45 00 00 5C 28 09 00 00 ip_flags: O; ipttl: O;
00 01 FD DO CE FA 00 00 CO A8 05 25 ip_src: 206.250.0.0; iglst: 192.168.5.37,
ICMP header (8 bytes)08 00 F7 FF 00 00 00 Q0 | icmp_type: 8 (Echo request); icapode: O;
ICMP data (64 bytes)00 00 ... 00 icmp_check: OxF7FF; icmpd: O; icmp.seq: O;
2 | TCP 40 | IP Header (20 bytes)45 00 00 28 AB 69 00 00 ip_flags: 0; ipttl: 232;
E8 06 F8 21 1A 77 4F 00 CO A8 05 p5 ip_src: 26.119.79.0; iglst: 192.168.5.37;
TCP header (20 bytes)69 D8 3D 55 00 0A DB 7F| tcp_sp: 0x69D8; tcpdp: 0x3D55; tcpseq: 0x000ADB7F;
12 3B 00 00 00 22 15 9D 26 85 1F[13 tcp_ack: 0x123B0000; tepff: O; tep_flags: 0x22;
3 | UDP 29 | IP header (20 bytes)45 00 00 1D 60 18 00 00 ip_flags: O; ipttl: 206;
CE 11 F1 42 D1 A7 04 00 CO A8 05 25 ip_src: 209.167.4.0; imlst: 192.168.5.37;
UDP header (8 bytes)FF FE 00 02 00 09 FF 5 | udpsp: OXFFFE; udmp: 2; udplen: 9;
UDP data (1 bytes)[00| udp.check: OxFFF5; udplata:|00].

Table 6: Mixed attack created b§FN2K DDoSattack tool

pseudo-headers are not included in their computation.

By examining both packet header and payload and taking odouant the targeted protocols and applica-
tions at a site, we may be able to derive specific charadtsrisf an attack. Table 7 showd-N2K-agent-
generated traffic usingargaattack type. All packets have zero-value in th@ine-to-live (i.e., ipttl) field,
some have invalid values in thearotocolfield (e.g., 0x94 is an invalid protocol identifier in messé&yeand
others may show random values in fpeflagsfield (i.e., 0x2 in message 4). In addition, a number of pack-
ets may have non-zero values in theagmentoffsetfield as message 5 shows. The above discrepancies
render the packets malformed and readily identifiable tjingurotocol analysis. AFFN2K attack packets
do not conform with ICMP, TCP and UDP specifications, valmesome protocol fields are abnormal and all
TCP/UDP packets have incorrect checksums. Last but ndt asimber of techniques used in traditional
denial-of-service attacks can be use®ioSattacks as well including tHand, teardropandping-of-death
methods. In théand attack, the victim is bombarded by packets having identioatce and destination IPs.
The teardrop attack exploits known weaknesses in the IP defragmentatidhe TCP/IP implementation;
by creating a series of IP fragments with overlapping offdetrdropcauses a victim to crash if it is unable
to properly handle this overlapping problem. Tpiag-of-deathcrafts fragmented ICMP messages larger
than the allowed maximum IP frame size of 65,536 bytes, ogusime systems to either freeze or crash.

3 A Framework for Containing DDoSAttacks

To address the aforementioned deficiencies of availabléersgs we proposed an extensible frame-
work termedDDoS Containerwhich functions in “in-line” manner and employs networased detec-
tion/prevention methods to reliably identify and manipel®DoS traffic in real-time. Our framework

12

] po [len | payload | description
daemon (denote as D):192.168.5.142; victim (denote as92:168.5.37

1(1IP 449 | IP header (20 bytes)45 00 01 C1 OF 23 00 00 ip_flags: 0xO; ipttl: O; proto: OxFF;
00 FF D2 4B 53 02 BE 00 C0O A8 05 25 ip_src: 83.2.190.0; iglst: 192.168.5.37;
IP data (429 bytes)D1 0D 6F 33 65 OE 4D cE 9C 14|...

2 | IGMP | 430 | IP header (20 bytes)45 00 01 AE 72 67 00 00 ip_flags: 0; ipttl: O; proto: 0x02 (IGMP)
00 02 B4 80 E6 98 E6 00 CO A8 05 p5 ip_src: 230.152.230.0; iplst: 192.168.5.37;
IGMP payload (410 bytes)EF 4F 5D F7 76 40 E4 31 |..

3 | IDP 228 | IP header (20 bytes)45 00 00 E4 7F 33 00 A3 ip_flags: 0; offset: 1304; igtl: O; proto: 0x16;
00 16 BD 65 C5 FA F1 00 CO A8 05 25 ip_src: 197.250.241.0; iplst: 192.168.5.37;
IDP payload (208 bytes)A8 13 D4 E2 C4 46 D5 F5 ..

4 | ICMP | 286 | IP header (20 bytes)45 00 01 1E 9C OE 20 00 ip_flags: 0x2; ipttl: 0; proto: 0x1 (ICMP);
00 01 98 09 7C FA 23 00 CO A8 05 p5 ip-src: 124.250.35.0; iplst: 192.168.5.37;
ICMP header (8 bytes)8A 76 4F D1 E2 FE 7B 09 icmp_type: 138; icmpcode: 118; icmpcheck: 0x4FD1;
ICMP data (258 bytes)23 0D 8D 0C 46 3D 03 82 94 24/|..| random content;

5| TCP 158 | IP header (20 bytes}45 00 00 9 D9 C5 00 01 ip_flags: 0; ipfrag: 8; ipcttl: O;
00 06 15 27 97 9F 6E 00 CO A8 0525 ip_src: 151.159.110.0; iplst: 192.168.5.37;
IP payload (138 bytes)D7 16 95 6F BA 83 38 57 |.. random content;

6| IP 194 | IP header (20 bytes}45 00 00 C2 2B E7 00 00 ip_flags: 0; ipfrag: O; ip.ttl: O; proto: 0x94;
0094 1C 5B 2F 99 7C 00 CO A8 05 5 ip_src: 47.153.124.0; iplst: 192.168.5.37;
IP payload (174 bytes)7F 46 C6 09 8E 73 A335 .. random content;

Table 7: Targaattack created by FN2K DDoSattack tool

monitors the progress of all connections initiated by eit@mal applications oDDoStools, conducts
data correlation among different sessions or messages sathe traffic, and performs stateful and layer-7
inspection. For any identifie@DoSsession, multiple action options can be specified to maatpud, such

as packet dropping, session termination, or connectiocklsig. In this section, we outline the proposed
extensible framework and discuss its components.

3.1 The Architecture of the ProposedDDoS Container

The main transport mechanisms used to communicate amamgs;lhandlers, and agents iD®oSnet-
work are TCP, UDP and ICMP. In the context of dDDoS Containesuch traffic has to be uniformly
represented so that we can effectively process packetsraméssage streams established in varbD®S
sessions. We represent TCP, UDP, and ICMP connectionslassol

e TCP sessions are delimited by their distinct connection diadonnection phases. The connection
involves a three-way handshake procedure in which a cligtidtes a connection with TCP-SYN
packet, the recipient or server responds with a TCP-SYN-Af2kket that finally incurs a TCP-
ACK packet from the initiating client. The disconnectioropedure typically involves a four-message
exchange with each side dispatching a TCP-FIN packet andsgonding acknowledgments for re-
ceipts of the other end’s TCP-FIN message[15]. Therefofé&;R connection can be uniquely identi-
fied by the tuple:<client-IP,client-port,server-IP,server-port, TCR

e UDP sessions can be similarly identified with this five-elamigiple <client-IP,client-port,server-
IP,server-port, UDB-. However, there is no specific connection or disconnectiaterure for a
UDP session, we use a timer to control the lifetime of a UDBisas

¢ ICMP sessions also comply with the above format, should wkace the elements afient-portand
server-portwith the concatenation of fieldsmp typeandicmp.codeand fieldicmp.id respectively.
The tuple now has the format:client-IP,icmptype+icmpcode,server-1P, icmjd,ICMP>.

TCP/UDP sessions establish bi-directional data streammselea clients and servers while ICMP sessions
create only uni-directional streams from the originatdie(t) to recipient (server). Each such data stream

13

can be identified with a four element tuple: I P;, PORT;, I P;, PORTy;>, wherel P, and PORT; are

the IP address and port number for the source of the streand Bndnd PORTy are their destination
counterparts. Messages exchanged anmiobBgS clients, handlers, and agents are generated according to
their own syntax rules and specific semantics; the threerlyinlg transport services may destroy applica-
tion message boundaries and thus demarcation discrepdratiseerDDoSmessage borders and transport
packet inevitably occur. In addition, TCP may deliver daale or out-of-order packets, which are reassem-
bled to obtain the original data stream at the destinationgeneral, we expect that multiple concurrent
sessions exist among the element®afoSattacks at any specific time and coexist with sessions ofaegu
applications.

The “in-line” operation mode for oubDDoS Containerenders it an indispensable component of the
network infrastructure that effectively intercepts anspiacts packets. Our framework dissects every packet
according to the TCP/IP suite to locate anomalous or evasific based on manipulation of protocol
fields. OurDDoS Containekeeps state records for all established connections amdtbrmation remains
accessible beyond the lifetime of a session for correlainalyses that lead tBDoStraffic detection. The
ability to track the state of all active sessions facilisagateful inspection, intra-session data fusion, and
inter-session correlation f@DoStraffic. By correlating data streams within a single sassiee determine
the success of an attacker’s operation. With the help ofimédion from different sessions, we can associate
an attacker’s control and data channels.

To remap a sequence of packets to posdiliiinS messages, outontainere-assembles (or sequences)
all stored packets in their correct orders and interpregsréisulting aggregations based on syntax, charac-
teristics, and semantics @DoS systems. The message sequencing helps restore messageaiiems
imposed by the application layer; without RDoSsessions may go undetected if their messages span over
multiple packets or multiple messages are packed in a spagiiket. The large number of existifigDoS
systems and their variety of underlying protocols essiytieads the design of oubDoS Containein
using multiple techniques to classify data streams thandecfine-tuned signatures, traffic correlation, pro-
tocol dissection, anomaly analysis, and stateful inspesti To this effect and as Figure 5 shows, BlroS
Containenntegrates a number of needed modules including TCPftRocol Decoder, Behavior Police,
Session Correlator, Message Sequencer, Traffic DistihguisndTraffic Arbitrator.

from Message Sequencer

Container for Distributed Denial of Service Attacks

Session Correlator (SC)

Behavior Police (BP)

Protocol Decoder (PD)

Message Sequencer (MS)

Traffic Distinguisher (TD)

Traffic Arbitrator (TA)

Incoming Packet

Outgoing Packet

Traffic Dissectors

Trinoo Analyzer

Mstream Analyzer

Kaiten Analyzer

Knight Analyzer

‘ Stacheldracht Analyzer|

Traffic Manager DNS Analyzer ‘

TFN2K Analyzer

TFN Analyzer

P2P DDOS Analyzer

to Traffic Arbitrator

Figure 5:DDoS ContaineArchitecture
Figure 6:Traffic Distinguisher (TDJComponents

14

When a packeP arrives at ouDDoS ContaingrtheProtocol Decoder (PDinitially dissects it according
to the TCP/IP-suite, and violations of the standard spetifins are identified leading to the immediate
dropping of P. To detect traffic generated by TCP/UDP/ICMP flooding atsackeBehavior Police (BP)
attempts to correlat® with different existing traffic flows and evaluates the bebawf the aggregated
data streams. For instance, if the total number of packathkjding P, to the same target machine exceeds
a specified threshold (e.g., 100 pp#),is flagged as part of an ongoing flooding attack. Once prodesse
by BP, packetP is then forwarded to modulBession Correlator (SGyhich determines the sessidhfor
packetP; if no such session exists, a new one is created. Base$l amd correlation results with other
sessions, th®DoS Containemay be able to determine whethBrbelongs to @dDoSsession. NextP is
handed to modul®essage Sequencer (M&8bng with its session informatiofi; here, P is re-assembled
with other packets of the same stream to form a sequence késaor asuperpacket. This super-packet is
surrendered tdraffic Distinguisher (TD}hat essentially certifies that the application type of #&smon is
either regular or generated by &DoStool. Finally, theTraffic Arbitrator (TA)module stores?, updates
information of S according toP and may create alerts # is part of aDDoSsession. It is worth pointing
out that ourDDoS Containeoffers a fast processing option for certain origins of tcaffhich we certainly
know are either trusted or untrusted. Trusted origins ageifipd in awhite-listand their traffic is forwarded
without any inspection as Figure 5 shows. Untrusted poirgkep ablack-listand traffic originated from
such nodes is blocked. If oupDoS Containeicannot keep up with the ongoing network traffic, it can
be configured to use either a “fail-open” or “fail-close” gt the former forwards packets without any
inspection while the latter simply drops all packets.

3.2 Protocol Decoder (PD)

It is often the case thaDDoStools use raw sockets to fan out packets as quickly as pes$ippassing
normal traffic procedures including retransmission, fisif@e-machine inspections, and congestion control.
This essentially means that attackers should fill everyopaitfield for their crafted packets including IP,
TCP, UDP and ICMP headers. To speed matterdDippStools usually insert constant values for the same
protocol fields for all packets generating artifacts inficaflows. For instance, TCP-flood attack packets
generated byStacheldrahtlways assume the same sequence number (i.e., 0x2837488%itadon’t
fragmentandmore fragmentn field ip_flagsof their IP headers are not set in clear violation of the TEP/I
specifications. The control traffic amom@PoS attack entities shows similar characteristics. For exampl
messages sent from clients to handlers over TCPAN2K always have value of zero in thegp_off field
creating a zero-size TCP header, an evident sign of malibaeket. In addition, the incorrect checksums
for all TFN2K TCP/UDP packets reveal inconsistencies with the TCP/Idstals.

Algorithm 3 shows the main functions of tiRD module whose objective is to decode every incoming
packetP according to TCP/IP specifications and detect existing afies Initially, PD decodes the IP
header ofP, inspects its checksum, and drasf its checksum is in error. The®D decodes”’s transport
protocol header based on its figdtbtocol (i.e., ICMP, TCP, or UDP). Packét may be dropped according
to the configuration by the system administrator if it coméa@ny protocol anomaly. Final§gD invokes
all relevantDDoStool analyzers that identiffpDoSsession exclusively based on irregularities presented in
protocol fields ofP. To speed up this examinatio@DoSanalyzers register witRD their handlers used to
perform protocol anomaly verification. I? is detected as part @DoStraffic streams, th€D bypasses all
other components and hanBgo Traffic Arbitrator for alerting, blocking and/or disconnection action.

15

Algorithm 3 Skeleton for thel CP/IP Protocol Decoder (PD)

. P« newly arrival packet

. IP-checksum-org— original IP checksum oP; IP-checksum-new- computed checksum @ based on IP header &f;

: drop P and exit ifIP-checksum-nevg not the same d®-checksum-new

decode other IP protocol fields &% includingtime-to-live prot, ip_flags ip-id, ip_off, and option;

if (protis TCP)then
tcp-checksum-org- original TCP checksum aP; tcp-checksum-new- computed checksum @ based on its TCP header
and pseudo-header; drdpand exit iftcp-checksum-neis not the same asp-checksum-new

7. analyze other TCP protocol fields Bf includingtcp_sp tcp_dp, tcp_seq andtcp.ack

8: else if(protis UDP)then

9: check its checksum just like TCP; analyze other UDP putfields of P, includingudp.sp, udp.dp, udp.len.

0: else if(protis ICMP) then

1: check its checksum just like TCP; analyze other ICMPqmutfields of P, includingicmptype icmp.code icmp.id, and

icmpseq

12: end if

13: for (each registered analyzdrfor a DDoSin the frameworkYo

14: invoke the protocol anomaly handler éfwith P; if the return code for invocation o is negative drog and exit;

15: end for

16: P is handed over tBehavior Police (BP)

3.3 Behavior Police (BP)

The objective of this module is to identify illegitimate mties, especially various flooding attacks, using
heuristics such as thresholding, statistics as well as anel profiling. To accomplish its overseeing work,
BP maintains #REQUENCYTABLE that records occurrences and timestamps of traffic grougigrasted
with the help of flow templates; these templates specify tbopol fields to be checked, including protocol
types, source and destination IPs, as well as source aridatist ports. In addition, flow templates can de-
fine relationships among different protocol fields or pashetthe same traffic group. For instance by using
thetcp_segfield, we can specify that all packets in the traffic group $tidiave the same or monotonically
increasing sequence. Similarly, the soutte.sp and destinatioricp.dp TCP ports can be used to group
packets that satisfy the conditidep_sp+tcp.dp=constant.

By defining a flow template as “all packets with the same dastn IP”, we can identify single-target
flood attacks. For the traffic of Table BP creates # REQUENCY. TABLE entry for traffic group “destina-
tion IP=192.168.5.37" also indicating 3 observed packat#fe flow in question. A similar traffic group can
be designated with template “destination 1P=192.1685f&7the traffic of Table 7 and the corresponding
FREQUENCY.TABLE entry maintains 6 observed packets. If both the above steacur simultaneously,
only one traffic group with template “destination IP addresk92.168.5.37" is formed with 9 encountered
packets. In order to reduce the memory consumption byRREQUENCY.TABLE, we use the sliding
window mechanism for each traffic group; here, only thosa dathin the current time window —typically
one second- are stored.

Using the FREQUENCYTABLE, BP computes various metrics and compares them against
administrator-set thresholds to detect traffic anomali®@se such metric is the flow intensity and is de-
fined as the number of observed packets per second (ppshwatepecific traffic group. ShouldP be
monitoring theTrinoo UDP-flood attack of Table 8 using the template “destinatier192.168.5.37" and
a threshold of 1,000 pps, it can compute the flow intensity dnording the timestamp of every arriving
packet; an intensity value of 26,820 UDP pps would certapdint to an ongoing attack. SimilarlgP
may monitor traffic originating from specific IP addressestpor services. By defining the flow template

16

| timestamp| sport | dport | size [payload | description
protocol: UDP; daemon (D): 192.168.5.141; victim (V): 19&8.5.37;
1 38.280830| 32770 | 41577 | 4 0000000 begin the UDP flood byrinoo
2 38.280834| 32770 | 40361 | 4 0000000 same src port but different dst port
3 38.280839| 32770 | 52178 | 4 0000000
4 38.280980| 32770 | 41786 | 4 0000000 attack rate is not constant
5 38.281024| 32770 | 6756 | 4 00 00 00 O packet size always the same
6 38.281068| 32770 | 11412 | 4 00 0000 O payload is set to be zero
7 38.281111| 32770 | 50010 | 4 0000000
8 38.281155| 32770 | 10055 | 4 0000000 dst port is random
9 38.281199| 32770 | 10262 | 4 0000000
10 | 38.281243| 32770 | 61703 | 4 0000000
11 | 38.281288| 32770 | 4461 | 4 0000000
12 | 38.281298| 32770 | 14226 | 4 0000000
13 | 38.281302| 32770 | 35838 | 4 0000000
14 | 38.281352| 32770 | 6760 4 0000000 attack intensity: 14/(38.281352 - 38.280830) = 26820 (pps)

Table 8: UDP flooding created birinoo

“traffic from the same IP and the same UDP-port”, a traffic gréar “192.168.5.141:32770” can be created
for the traffic of Table 8 and the corresponding intensitg I@n be computed.

3.4 Session Correlator (SC)

The purpose of this module is to maintdilDoS Containesession-wide information; each connection is
represented with theessiorstructure depicted in Table 9. As mentioned in Section 3sksaion is uniquely
identified by the first five fields of Table 9 or tupleSIP, SPORT, DIP, DPORT, PROTO TYPE indicates the
session application type such @gnoo, Mstream,or TFN2K; TYPE is set tobypassif the application
type has not been determined after inspecting a certain @minoddraffic or the session belong to a regular
application. CONFIRMindicates whetheF YPEis determined using correlation of both streams of a single
session, through association with other active or defuessiens, or simply set using different messages in
uni-directional traffic. Correlation of different messagethin the same data stream is valuable in situations
where asymmetric routing occurs and the two traffic streane ¢onnection take different network paths
with only one of the paths being visible to oMDoS Container START and LAST represent a session’s
creation and most recent access time. The messages aijifiatn the initiator of the session and the
corresponding ones from the recipient are store€@iMENT and SERVERrespectively and the utility of
these two lists is discussed in Section 3.5.

To offer efficient operations on sessions and facilitateraintand inter-session correlations,
we employ a two-staged approach in organizing pertinenta.dat We first use a hash func-
tion H (1P, PORT,,IP; PORT,;PROTQ® to “scatter” sessions in space. Next, a splay ffeenchored off
each entry of the hash table helps organize all sessionprigsgnt the same hash value. Each node refp-
resents a session as describedbysior(of Table 9) and the tuple IP,, PORT,, IP;, PORT,;, PROTO>
acts as the key for accessifig The advantage of splay trees is that more frequently aedassms move
closer to the root amortizing future look-up costs [52]. Tha# session-findp) performs hash table lookup
and followed by retrieval of the corresponding splay treg imfiormation about the session in whi¢hbe-
longs to. Information about recently terminated or deflgedsions are helpful to determine the application

Sour H () is based om=((I PsxorPORT:)xorI P4xorPORT,)xorPROTQ and is defined in a similar to Linux Kernel manner
[36] asH()=(hxor(h >>16)xor(h >>8))modh_sizel) where “>>" is the right-shift operation, anll_sizeis the size of the hash
table.

17

field name | size | description

bytes
SIP 4 IP address of the host at one end of the connection
DIP 4 IP address of the host at the other end of the connection
SPORT 4 port number (TCP or UDP) of the host with IP addr&4B, or (icmp.type | icmp_code) for ICMP.
DPORT 4 port number of the host with IP addreB4#P; or (icmp.id) for ICMP.
PROTO 1 protocol utilized by the session (TCP, UDP, or ICMP)
TYPE 4 identify traffic type, such a3rinoo, Mstream, Stacheldrahtan be “bypass”
CONFIRM | 4 TYPEis drawn from uni-or bi-directional streams, intra- or ingession correlations
START 4 creation time of the session
LAST 4 last active time of the session in either direction (i.@ngmission of packet)
SERVER 4 pointer to servestreandata structure
CLIENT 4 pointer to clientstreandata structure

Table 9: Key fields used in th&essiorstructure

type of currently active sessions. Defunct sessions arataiaéed in a similar manner as active ones, but
in separate hash table and splay trees. To reduce resoursengption, we only maintain the TCP/UDP
ports and ICMP type/code for defunbtDoSsessions. Once a hew session is activated, the information o
defunct sessions are consulted in hope that via data-atiorelwe can determine the application type of the
session in question. We base this correlation on the pretmgeservices at specific IP addresses and ports
may not frequently change; for example, they remain boungdoiods of less than 5 minutes.

SC helps monitor unsolicited traffic including ICMP-echo riegl without corresponding requests,
TCP SYNACK packets without correspondin@YN packets in place, and DNS replies without
matching requests; all these may revdaDoS attacks in formation. For example, when Mes-
sage 1 of Table 1 is inspectedSC determines that it is an ICMP-echo reply and the tuple
< 192.168.5.142, 192.168.5.143, 0x0800, 0x037A, ICMHAs formed. Here, string 0x0800 in the concate-
nation of theicmp.typeandicmp.codefields (0x08 and 0x00), while 0x037A is tihemp.id of the message.
The tuple assists in accessing the session structure aresponding ICMP-echo request elements, if ex-
ists. As an ICMP-echo request is never created and trarshittTable 1, the result of look-up is negative;
subsequentlysCidentifies Message 1 as unsolicited and may drop it accotdiag administrator-set con-
figuration. Lastly, flows into the un-populated IP-space anexpected TCP/UDP ports as well as inactive
services are detected by tB€ module as well.

3.5 Message Sequencer (MS)

The Message Sequencer (Mf&gilitates packet re-assembly, traffic normalizationd anables stream state
tracking. We use the structusgreanwhose key elements are shown in Table 10 to organize packets o
a traffic stream within a session. For TCP streams, the fidtetracks the originator's connection state
which can beSYN-SENTSYN-RCVDESTABLISHEDor CLOSE fields next-seq last-ack and window-size
maintain the next expected sequence number, acknowledge@sce number by the stream recipient, and
the amount of transmitted data without acknowledgment. ddtafield is a pointer to aimterval tree[17]
used to organize all encountered packets in a single stigaohinterval treenode represents a packetn

the stream; the search key for the tree is in the range [SBSIN,] where SSN and ESN are the start- and
end-sequence numbers of the packen the node. SSNtakes its value directly from thiep_seqfield in

the TCP-header aP, while ESN, is computed asi§_total-(ip_hlent+tcp_off) < 2), whereip_total is the total
length of packef?, ip_hlenis the size of the IP-header &f, andtcp_off is the size of the TCP-header Bt

We use the second part of te&eamstructure of Table 10 to handle UDP/ICMP streams. The pantin

18

interval treeis anchored atlataand fieldsdata-sizeand total-sizeindicate the bytes stored in the tree and
total number of bytes transferred in the stream. Based sninformation,MS attempts to determine the
type of a session; if more than a configurable amount of trdfffically set to 5 KBytes—for a data stream
of a session has been inconclusively inspected, the seggieris declaredypass no further analysis is
carried out on the session’s subsequent data. On the othdy &g soon as a session’s type is determined,
all its stored packets are flushed out and any forthcominggia@re not stored to achieve lower memory
consumption and network latency. For each tree-stored WM packetP, its SSN, and ESN values

are assigned as follows: S$is the current value of variabtetal-size which is initialized to zero for every
newly established session; EgiN the sum ofotal-sizeand the size of the UDP-payloadih Upon storing

a packetP, thetotal-sizeis updated appropriately.

field name | size | description
bytes
TCP stream
state 4 state of the stream such @& OSED, LISTEN, SYSENT, SYNRCVD, ESTABLISHED
next-seq | 4 next sequence number expected, computed based on infomneétsender
last-ack 4 most recently acknowledged sequence number based on &formof receiver
win-size 4 size of window advertised by receiver
data 4 pointer to ainterval treestoring all packets of the stream, flush out periodically fteraacknowledgment
UDP or ICMP stream
total-size | 4 total size of data transferred in the stream so far
data 4 pointer to aninterval treestoring packets of the stream, periodically flushed out
data-size | 4 number of bytes stored in thiterval tree

Table 10: Key fields of thaetreandata structure

We define relationships between two intervals based on #$teit- and end-sequence numbers. For any
two intervals [SSH, ESN,] and [SSN,, ESN/], the former is less than the latter if EGN6 smaller than
SSN,; similarly, the former is larger than the latter if the SSI¥ higher than ES)N The two intervals
duplicate each other if their SSNs and ESNs are exactly threesthey overlap if they share a common
sequence range and each has its own distinguished seqaagesas well; or are contained if one’s interval
is a true subset of the other. Given that we deal with a paBkahd an interval tre€, we use the above
relationships in our interval-tree operations as follows:

e interval-insert{, P). inserts a node for packét into /.

e interval-deletef, P). removes the node for packetfrom I.

e interval-retrievel, P). finds the set of nodes ihthat may duplicate, overlap, or contain packet

e packet-build{, Tstqrt, Teng): Creates a super-packétfrom I; the sequence number interval ©fis
[Tstart1 Tend]-

e interval-traversal(). performs an in-order walk of treEand lists all packets according to their non-
decreasing SSN orders; this helps in writing the streampatmanent storage.

e session-findP): locates the sessia$i of a packetP.

e stream-find§, P): finds the stream that a packBtof a sessiorb belongs to.

Algorithm 4 shows the stream re-assembly processMttatarries out. For an arriving packét, MS
retrieves information on its sessighand data streamh with the help of callssession-find(and stream-
find(). Through theinterval-retrieve], P) call, MS checks the relationship betwedhand any received
packet in the same streahwhile ensuring that there is no protocol anomaly irf the outcome ofnterval-
retrieve(, P)is empty, thenP is a new packet as evidently no packet retransmission goothmsrwise, the
common parts of” and those packet(s) produced iayerval-retrieveshould have the same content; this is
the case wherd is a result of a TCP retransmission. Should the content cdsgrareveal differences,

19

Algorithm 4 Message SequencAfgorithm
. P « incoming packet;
S «— session-findp)
. if (TYPEandCONFIRMof S are setthen
P is part of DDoSsession; hand it over foraffic Arbitrator (TA);exit;
end if
. I « stream-find@, P); Q < interval-retrievel, P);
if (Q is empty)then
P is a brand new packet and functigrterval-insert{, P) is invoked to addP into I;
else
10: check whether or not the common partdoénd any packet i have the same contents; if not, generate alertseaitg
11: end if
12: t,« initial sequence number df .« SSNg+M AX_SIZFE (default M AX _STZ E=5KB); O «— packet-build{, ts, t.);
13: O is handed over td@raffic Distinguisher (TD)

NN E

P is part of evasive traffic produced by tools sucHragroute; the packet should be dropped (by default)
and its corresponding connection be either terminated mipukated and normalized with “favor-old” or
“favor-new” policy which is configurable. If no suspiciousigence is found forP? and its traffic streant,

P is inserted intal with the help ofinterval-insert{, P). MS usespacket-build()to re-assemble received
packets from streanh into super-packe® passed along witl® to the Traffic Distinguisher (TDmodule.
One of the key tasks df1Sis to establish boundaries f@DoS messages. For example, tBéacheldraht
TCP-generated attacker-handler traffic of Table 4 violdimsndaries oDDoSmessages as packets 3, 4,
and 5 points outMSaggregates these packets together and helps restabixh&message boundaries.

3.6 Traffic Distinguisher (TD)

As individual DDoSattack systems follow their own protocols, we desigfpoSspecific analyzers to carry
out application-oriented inspection and improve detectiocuracy. Figure 6 depicts the element3rafific
Distinguisher (TD)with the Traffic Managerplaying the role of a scheduler which in turn invokes the
analyzers for variou®DoStools if the application type of the session for the incomiragketP has not
yet been determined. For each incoming padRefTD obtained information on the sessi¢hof P, its
traffic stream/, and the re-assembled super-packelf both TYPEandCONFIRMfields of S are set,P is
forwarded directly intoTraffic Arbitrator for additional processing; otherwisé&raffic Manageris invoked
and Algorithm 5 identifies the application type 8fas well asP. To improve performance, we restrict an
upper limit to the total amount of transport data (TCP, UDRGMP) examined in each traffic stream of a
session before a decision on the application type of thémsessmade. Our experience shows that 5 KBytes
of inspected traffic data in each direction of a session ig satisfactory. Should the application type of a
session be un-determined yet after inspecting such améuwrafiic, the session is pronouncégpassand

no further processing occurs in its subsequent data trasgms.

The individual analyzers account for all elementary openatused by individuaDDoSattacks as far as
transport services, messages exchanged among clientbetsamnd agents as well as use of cryptographic
algorithms, decoys and dynamic ports are concerne®tdoheldrahior instance, TCP-based channels are
used between clients and handlers, ICMP-based covert elsaare used for exchanges between handlers
and agents, while TCP/UDP/ICMP packets make up the acttadkatraffic; moreoverStacheldrahtises
Blowfish to encrypt its messages. In the next section, weudsin depth the analyzers f&tacheldraht
TEN2K and DNS amplification attacks.

20

Algorithm 5 Traffic ManagerAlgorithm
. P « arriving packet;S, I « session and traffic stream th&tbelongs toO « super-packet re-assembled with helpl pf
. if (TYPEandCONFIRMof S are setthen
P is part of an identifiedDoSsession and is handed overTuaffic Arbitrator (TA) exit;
end if
. tr « initial sequence number df ¢tp < start sequence number Bf
if (t1-tp) > MAX_SIZFE (defaultM AX _SIZE=5KB) thensS is marked adypassexit;
. for (eachDDoSanalyzeDA implemented in the frameworkjo
invokeDA with P, S, I, andO;
break from the loop ICONFIRMof S has been set bpA,;
end for
. P is handed over tdraffic Arbitrator (TA)along with itsS and’

abswn R

© NP

[EnY
o

3.7 Traffic Arbitrator (TA)

The task of thd@Traffic Arbitrator (TA)is to examine the application type of sessiothat the arriving packet

P belong to, and take the prescribed actionsfoandS. Should fieldsTYPEand CONFIRMof S not be

set, TA simply forwardsP to the next hop en route to its destination; otherwise Tid@roceeds according

to policies set. Such policies include alert generatioggiog of P as well as its data stream and session,
blocking of subsequent messages from the same sessiorgrotading-ovelS by havingTA act as @DoS
element such as a handler or agent. TAaalso updates session information foof Table 9 based o®

so that subsequent re-assembly operations are facilitatdchccuracy is enhanced. The module can log
session, application type, creation time, all packets éngbssion, and session transmission statistics of a
DDoSsession for future forensic analyses. Algorithm 6 outlitresfunctionality of thelTA which guides

our DDoS Containedeal with traffic. TA can also take over an identifig@DoSsession by playing the role

Algorithm 6 Outline for the operation ofraffic Arbitrator (TA)
1: Input: P « incoming packetS, I < P’s session and data stream
2: update information of andI based onP
3: if (CONFIRMof S is not setthen
4: application type of5 has not been determineB,is forwarded, and current procedure stops
5
6

:end if
. if needed, generate an event log for the identifi#doS session along with information ofi and I'; and invokeinterval-
traversal{) to dump all packets af into permanent storage
7: if (action forTYPEof S is “proactive”) then
8. Pisdropped, pertinent command is sent to EH@oShandlers or agents
9: else if(action forTYPEof S is “take-over”)then
10: Pisdropped and fake reply is sent to the initiatorSof
11: else if(action forTYPEof S is “terminating”) then
12: Pisdropped and TCP RESET or ICMP “destination unreachatdekets are sent accordingly
13: else if(action forTYPEof S is “blocking”) then
14: Pisdropped and all subsequent messages fsdmdropped
15: else if(action forTYPEOf S is “dropping”) then
16: P is dropped; however, subsequent messages ffonay be forwarded it they do not contain malicious activities
17: else if(action forTYPEof S is “forwarding”) then
18: Pis forwarded
19: end if

of a DDoShandler in reference to the attacking cliéntTo this effect, theTA dispatches either ahCP
RESETpacket or anCMP destination unreachablmessage to the handler; subsequently,Tivenay craft

®To avoid legal issues, such a feature is disabled in prodersians. In addition, onlyDDoSsessions without encryption are
taken over

21

fake replies to attacker-initiated commands, collectiafpable forensic information regarding the attack.
TheTAcan be more proactive as it can disable attacks by purgir@f2diSrelated components from victim
systems. This is assisted IBDoStools themselves as they feature commands instructingléranand
agents to terminate activity and/or entirely remove thdwesefrom compromised systems. For example,
the Stacheldrahtepertoire includes commamddie which terminates agents and commandremwhich
removes handlers.

4 Protocol Analyzers for DDoSTools

In this section, we provide detailed discussion for the ek of two very common contemporaBpDoS
networks namelyStacheldrahtind TFN2K as well as thdONS amplification attacks We have also devel-
oped analyzers for all components in Figure 6 and present th¢l3].

4.1 Stacheldraht

The DDoS network StacheldrahtGerman for barbed-wire, consists of agents, handlers kemtsimple-
mented with filegd.c, mserv.candclient.crespectively. A client’s interface perfornsinetlike operations
and uses a password protected channel for attacker—hadfenunications; messages in such sessions are
Blowfish-encrypted. By default, handlers listen to TCP &&@%12 for client instructions; each such handler
may serve a configurable number of clients (default 200) antral a certain set of agents (default 6000).
Agents monitor all incoming ICMP-echo reply messages amgfor commands from handlers, at the same
time, agents also listen to TCP port 65513 —also configurainleorder to exchangkeep-alivemessages
with handlers. The attacker-provided password is initi@lIES-encrypted using a two character salt string
whose default value BA The resulting 13-byte ASCII string is then Blowfish-endsgbusing a pass-phrase
hard-coded in thelient.cand set tcauthenticationby default; the encrypted password is padded to 1024
bytes before dispatched to handler. The handler recipgedhie above operation to verify the password
as Algorithm 2 shows. Table 4 shows an client/handler segsiotected with passwordmnobody The
string zAGOe46FrqqViks the result of théamnobodyDES-encryption using salt stringy; Blowfish then
uses pass-phraseithenticationand pads the outcome with zeros for the trailing bytes of thesage. All
messages of Table 4 are similarly Blowfish-encrypted. Oncattacker provides the correct password, the
handler displays the numbers of both active and inactivatagdong with respective greeting messages and
may accept commands on behalf of the client.

Stacheldrahhandlers manage an attack network through a rich repedsif@ble 11 depicts. Commands
are dot-prefixed and accept arguments. In particular, camdswansremand .msaddhelp adjust the size
of the attack network;micmp .msyn and.mudplaunch ICMP, TCP, and UDP flood-attacks, respectively;
while .setisize .setusize.sprange and.mtimerspecify the size of attack packets, range of source ports for
spoofing, and attack duration. Automatic agent updatestaimed through commandlistro user server
issued by an attacker/client and delivered to all agentdhaialers; the command instructs all agents to
obtain and run a new version Stacheldrahtode from a host specified with tiserverparameter by using
a copy facility such ascp and an account indicated with tiuserparameter. For instance, upon receiving
command.distro user servera Linux—based agent executes in order shell commamdsf agent rcp
user@server:linux.bin agenandnohup ./agentith agentbeing the name of th&tacheldrahéxecutable

22

cmd from client | parameters cmd to agent description

.distro user server DISTROIT (6662) Instruct agent to install and run a new version of system

.quit Exit from the program.

.madd ip1[:ip2[:ipN]] Add IP addresses to list of attack victims.

.mdie DIEREQ (6663) Sends die request to all agents.

.mping ICMP echo request Pings all agents (bcasts) to see if they are alive.

.msadd IP address ADDMSERVER (5555) | Adds a new master server (handler) to the list of availahteess.
.msrem IP address REMMSERVER (5501)| Removes a master server (handler) from list of availableessr
.mstop ipl:ip2:ipN or all | STOPIT (3) Stop attacking specific IP addresses, or all.

.mtimer seconds TIMESET (9011) Set timer for attack duration.

.micmp ip1[:ip2[:ipN]] ICMP (1155) Begin ICMP flood attack against specified hosts.

.msyn ipl:ip2:ipN SENDSYN (9) Begin SYN flood attack against specified hosts.

.mudp ipl:ip2:ipN SENDUDP (6) Begin UDP flood attack against specified hosts.

.setisize size SETISIZE (9010) Sets size of ICMP packets for flooding. (max:1024, defad&4).
.setusize size SETUSIZE (8009) Sets size of UDP packets for flooding (max:1024, defaul4}.02
.Sprange lowport highport | SETPRANGE (8008) Sets port range for SYN flooding (defaults to [0, 140]).

Table 11: Clients to handleiStacheldrahtommands

daemon;rm purges the old version of the agerdp obtains a new copy of the agent from hestverand
finally nohupinvokes the new code. Albtacheldrahinessages are well-formed as Table 4 shows; however,
due to the fact that client/handler messages are Blowfishypted, their pertinent traffic-data appear to be
random sequences. Thus, we resort to the communicationibehatween clients and handlers in order to
identify their traffic.

Algorithm 7 outlines our analyzer for interactions betweasients and handlers and exploits two key
Stacheldrahtraffic characteristics. First, each message is Blowfishygted, encoded with a base-64

Algorithm 7 Analyzer for Stacheldrahtraffic between clients and handlers

1: Input: packetP, its sessiors5, streaml, and the assembled mess#@e
2: if (field CONFIRMof S has been sethen

3. Pis handed over tdraffic Arbitrator module and exit;

4: end if

5: if (P is a TCP packet)hen

6: check payload size @b, if O is less than 1024 bytes, then exit from the procedure duecit shdata;

7. verify thatO consists of two parts: one containing characters in [./, &8, A-Z] only; the other containing sequence of zeros ¢migty be
empty). Otherwise, clean corresponding bits in “TYPE” &@NFIRMas it cannot beStacheldrahsession;

8. if (P is from client to handlerjhen

9: set bit inTYPEcorresponding t&tacheldrahtstore the non-zero part 67;

10: else

11: set bit inCONFIRMcorresponding t&tacheldrahif the non-zero part 00 is the same as that stored in the session

12: endif

13: elseif (P is a ICMP packet}hen
14: check itsicmp.id and payload of” with the help of Table 12; set field8Y PEandCONFIRMof S accordingly
15: end if

scheme, and padded with zero to 1024 bytes before trandntiiés recipient; this yields a message con-
sisting of a series of characters in the [./, 0-9, a-z, A-Apg&followed only byNULL characters. Provided
that passwords, commands and handler-replies are shpitglly less than 100 Bytes) and Blowfish does
not change their size, the padding part of a message is eliréomg offering a reliable traffic pattern. Sec-
ond, the handler always echoes back the password in endrigta back, forcing the first message in both
directions to have the same payload. Our analyzer takestyof this effective two-message correlation
to identify Stacheldrahtlient/handler traffic. Clearly, the same correlation tdéghe can be used on differ-
ent messages within the same stream in anticipation of eedaaccuracy in traffic identification. In this
regard, greeting messages from handlers to clients mayabtevdandidates for data correlation. Our exper-
imental evaluation demonstrates that the correlationefitst message in each direction is for all practical

23

purposes very effective. With attacker/handler connestiestablished through the TCP/IP staSkachel-
drahtmessage boundaries are not always respected as Table g gatinAlgorithm 7 uses the TCP-stream
reassembly of th&lessage Sequencer (M@pdule to reconstruct messages out of TCP packets.

All client-originated commands “staged” at handlers atendtely forwarded to agents via ICMP mes-
sages; theemp.id field of these messages contains the command identifiers athikelevant parameters are
placed in the ICMP payload. Colunmmd to agenbf Table 11 presents some command identifiers and their
default values irStacheldrahtAll ICMP-delivered commands and parameters between kaesidhd agents
are neither encrypted nor recipient-authenticated. Famgte, the client-issued commamuidp ipl:ip2is
delivered via a handler to an agent with an ICMP-echo replpselicmp.id field is set to SENDUDP (6
by default) and the payload contains the integer representfor ipl andip2. In addition, handlers and
agents exchange additional messages for maintenancestasks in Table 12. Once an agent becomes

cmd | dir | size | type | icmpid [payload | description | check?
Agent is denoted as A; Handler is denoted as H
spoofing probe A—>H | 112 8 0 agent’s IP test spoofing level, src IP address is 3.3.3.3es
spoofing probe replyy H— >A | 1044 | O 1016 spoofworks | reply to spoofing probe yes
agent ping A—>H | 1044 | O 666 skillz test availability of handler yes
agent pong H—>A | 1044 | O 667 ficken reply to ping yes
handler ping H—>A | 1044 | O 668 gesundheit! | test availability of agent yes
handler pong A—>H | 1044 | O 669 sickerjOA| response to handler ping yes
kill agent H—>A | 1044 | O 666 skillz kill agent, src IP address set to 3.3.3.3 yes
kill reply A—>H | 1044 | O 1000 spoofworks | reply to kill agent yes
stop attack H—>A | 1044 | O 9015 niggahbitch | stop any ongoing attack yes

Table 12:Stacheldrahihandler/agent messages transported via ICMP

operational, it tries to locate handlers by examining a Bislivencrypted file named.ms The agent may
also try to connect to handlers hard-coded in its sourcetieae the same goal. To determine handler avail-
ability, an agent sends ICMP-echo reply messages to candidath fieldicmp.id set to 666 and payload
containing stringskillz. An active handler replies with an ICMP-echo reply whasap.id is 667 and the
payload contains the strirficken Similarly, a handler uses the mességadler pingto test the availability

of an agent; this may triggerlandler pongeply from an active agent.

To find out whether network devices such as routers forwackigia with spoofed IP addresses, an agent
crafts and dispatches to a handler a “spoofing probe”. Ther lsttypically an ICMP-echo message which
has the forged source IP address 3.3.3.3 and the payloaelscisrreal source IP address; apparently, such
a spoofed-message should not be forwarded by routers wigs®dltering. In the case that they are, the
handler forms an ICMP-echo reply whasenp.id field is set tosSPOOFREPLY(1016 by default as shown
in Table 12); the message payload contains the sfjmgfworksand its destination address is set to the one
contained in the payload of the probing ICMP. Upon receip,dagent becomes aware that network devices
allow spoofed-messages and commences using fake sounassefl for its subsequent messages. Other-
wise, the agent falsifies only the last octet of the IP adéesshrough Algorithm 7, our analyzer pursues
relevant protocol fields and payloads shown in Table 12 twedis|CMP-base®tacheldrahsessions.

The Stacheldrahhetwork can also mount multiple type attacks such as ICMRSYDP and Smurf
floods. Table 13 shows unique characteristics of TCP, UDPI@NIP attack packets that can be exploited to
effectively identify Stacheldrahattack traffic. Regardless of the protocol used, the figldesandip_flags
for all packets, are set to zero. In TCP packets, the sequamober is always the same which constitutes a

"with passphrasendomsucks

24

field characteristics check?

ip_tos always set to zero Protocol Decoder

ip_flags set to zero, meaning bits “don’t fragment” and “more fragthene unset| Protocol Decoder
attack packets based on TCP

ip-ttl always set to 30, a relatively small value Protocol Decoder

srcport in [1001, 2024], a relatively small range Protocol Decoder

tep_flags only SYN is set Protocol Decoder

tcp_seq always 0x28374839 (in host order), an obvious anomaly Protocol Decoder

tcp.urg random number (rarely zero), an error since bit “URG” not set Protocol Decoder

tcp_win always 65535 Protocol Decoder
attack packets based on UDP

ip_ttl set to OxFF Protocol Decoder

udp.sport in [1, 10000], decrement by one for each subsequent packet Behavior Police

dstport in [0, 9999], increment by one for each subsequent packet Behavior Police

udp.checksum | random number or zero, not calculate at all Protocol Decoder
attack packets based on ICMP

ip-id fixed number (process ID of the agent) Behavior Police

ip-ttl set to OxFF Protocol Decoder

icmp_checksum| fixed number and incorrect Behavior Police

Table 13: Unique characteristics of TCP, UDP and ICMP atfatkets inStacheldraht

clear violation of the protocol; moreover, additional gutarities appear including not empiygent pointer
field, unsetURG-bit in tcp_flagsand fieldip_ttl having a relative small value. In UDP packets, the source
port number is initially set to 9999 and decremented by omestery subsequent packet; similarly, the
initial destination port is set to one and incremented by. olhés worth pointing out that the checksum
of such packets is not computed and may be either zero or amandmber. As packets go through the
Protocol Decoder (PD)the above simple structural packet irregularities aratifled, the application types
can be determined, and configurable actions such as blockimbe taken. In addition, tigehavior Police
(BP)is able to identify flooding attacks generated®acheldrahvia the relationships between source and
destination ports of UDP-packets. Therefore, a large amolattack traffic can be identified quickly and
avoid the processing igession Correlator (SCTraffic Distinguisher (TD)andMessage Sequencer (MS)
which is expensive in terms of CPU cycles and memory consiompt

4.2 Tribe Flood Network 2000 (TFN2K)

Handlers and agents routinely make upribe Flood Network 2000 (TFNZ2Kij which individual handlers
control groups of agents. The k@fFNZ2K feature is that communications are unidirectional fromchers to
agents. Messages are transported via TCP, UDP and ICMBptediwith strong cryptographic algorithms
such as CAST and encoded with a base-64 scheme. The enoriptids defined at compile-time and is
used as the password to acc&$3V2K. To reduce the probability of detectiolFNZ2K interleaves its mes-
sage flow with decoy packets as Table 5 shows and by defauldlldreoriginating messages have spoofed
source IP addresses. When ICMP is employed as the covert gonitation channel between a handler and
an agent, an ICMP-echo reply is used to avoid returned medsam agent’s TCP/IP stack. On the other
hand, if TCP/UDP transport services are used, most of thiogobfields in the generated packets have
randomized contents. In particular, thép.lengthis always set to larger than its actual size by three bytes,
the TCPtcp_off field is invariably set to zero; both of these abnormalitiess lkely to create malfunctions

in network devices along the communication path. Finallg, Y DP/TCP checksums are solely computed
on packet headers and payloads without considering thereelqli2-byte pseudo-headers rendering them
corrupt.

25

Should an intruder successfully pass the password-authgah and obtain access tof&N2K network,
she may use the commands of Table 14 to communicate withdrarathd launch various attacks including
SYN-floods, Smurf and Targa Each command is assigned a unique numeric identifier andaoespt
parameters as shown in columasdand parametersof Table 14. For instance, the attacker can launch
SYN-floods,Smurf and Targaattacks with commands 5, 7 and 9 respectively. Based on thenemd issued
by the attacker, th& FN2K handler constructs a TCP, UDP, or ICMP message, and subxgqgdelivers the
message to agents after encryption and encoding. Beforgption and encoding, the message is text-based
and follows the format conventiorsymbolicid+data, wheresymbolicid is a single character representing
a specific command is a separator andata outlines the specific command parameters. For instance, as

cmd (numeric id and parameters description msg format before encrypt/encode
0 (void) stop ongoing floods +d+
1 -i spoof-level set IP spoof level, 0 (32 bits), | +c+level
1(24), 2 (16), or 3 (8)
2 -i packet-size Change Packet size +b+packet-size
3 -i remote-port Bind root shell to a port +a+remote-port
4 -j victim1l@victim2@... UDP flood +e+victiml@victim2@...
5 -ivictiml@victim2@... [-p dest-port] | TCP/SYN flood +g+dest-port; +f+victiml@victim2@...
6 -i victim1l@victim2@... ICMP/PING flood +h+victiml@victim2@...
7 -i victim@broadcastl@broadcast2@..|ICMP/SMURF flood +i+victim@broadcastl@broadcast2@....
8 -i victiml@victim2@... MIX flood (UDP, TCP, ICMP) | +k+victiml@victim2@...
9 -i victim1l@victim2@... Targa3 flood +j+victim1@victim2@...
10 -i command execute remote shell command+l+command

Table 14: TFNZ2K client-to-handler-to-daemon commands

shown in the first message of Table 2, after granted accebe toaindler at IP address 192.168.5.143, the
intruder issues command “tfn -P ICMP -h 192.168.5.142 -c #92.168.5.37” in order to launch a UDP
flooding attack, where argument “-P ICMP” specifies ICMP astthnsport service for the communication
between the handler and the daemon, argument “-h 192.1@2'5indicates the location of the daemon,
while option “-c 4" is the command identifier for UDP floodingack, and option “-i 192.168.5.37" is the
parameter to the command specifying the primary victim.hSarc attacker-issued command is transferred
as message “+e+192.168.5.37", and delivered to the daenit®R4d168.5.142 as the payload of an ICMP
echo reply message after encryption and encoding. The sam@and issued by the attacker but delivered
to agents with UDP and TCP transport services are describ&ahiles 3 and 5. Such well-formed messages
will be easily identified if they are transmitted in plain teklowever, as Tables 2 and 3 show, encryption and
encoding are used to obfuscate messages before deliveeyefdlre, ourTFN2K analyzer predominantly
resorts to behavior analysis and protocol anomaly inspecti

Atits core, our analyzer mainly exploits the artifact ofliray As® at the end of every message as discussed
in Algorithm 1. It is also worth noting that the length of thmiting sequence can be readily computed
as demonstrated in Algorithm 8, which outlines the functibrour TFN2K analyzer. First, the analyzer
inspects the content and size of the incoming padkeb ensure it is encoded with thEFN2K base-64
scheme. Then, it computes the number of trailkgbased on the lengthlen of P’s payload following
the inverse procedure of that in Algorithm 1. The lengtén of the CAST-encrypted-and-padded cipher
text can be determined with the help of lenglen which is the payload size d? and also the length of
the encoded cipher. In order to figure out the number of padgénos to the cipher text before encoding,

8whose ASCII code is 0x41

26

Algorithm 8 TFN2K Traffic Analyzer
1: Input: packetP, its sessiort and streanT
2: if (TYPEof S is already setjhen
3: application type of? as well as ofS has been identified? is directly handed ovefraffic Arbitratorand exit;
4: end if
5: check transport payload f to ensure that all characters are in [A-Z, a-z, 0-9, +/];
6
7
8
9

. encode < payload ofP; blen < length ofencode; ¢ < (blendiv 4); r — (blenmod 4);
: S cannot beTFN2K if r is not 0, 2, or 3;
2 clen «— (3¢q)if (r =0); clen — (3¢ +r - 1) otherwiseplen «— (clen-16); P cannot beTFN2Kiif ((clen < 16) or (plen <4));
. q < (plen div 16);r < (plen mod 16);elen < plen if (r = 0), orelen < (16(g+1)) otherwise;
10: ¢ « (elen div 3); r < (elen mod 3);start < (4q) if (r = 0), orstart < (4 q + r + 1) otherwise; Clearlystart is the start
point (indexing from 0) for the trailing A sequenceHfis created byTFN2K.
11: check content in [Gstart) of encode for pattern “AAAA”, if found, exit asP cannot beTFN2K;
12: check content insfart, blen) of encode for any non-A character, if foundy cannot beTFN2K and exit;
13: setTYPEof S to TFN2K if it is not set yet; otherwise, S&@ONFIRMEDof S to TFN2K;

we first compute the size of the original plain t@kénas €len16), which in turn helps determine the size
elenof the cipher text without padding. The number of paddingpgdo the cipher text can be calculated
as ¢lenelen, the latter is used to determine the length of fasequence. With the help elen we can
find out the starting point for the trailing A sequence, whilen can be used to determine the end point
of the trailing A sequence as shown in Algorithm 8. Finalhg TFN2K analyzer examines the content of
the should-be-trailing area (i.esthrt, blen] in Algorithm 8) to ensure that it exclusively consists As.

In order to reduce false positives, tR&ENZK analyzer also inspects the content in §8yrt) of P, which
should be the CAST-encrypted cipher text encoded in the-Badsxheme. It is reasonable to expect that
CAST encryption algorithm does not produce recognizabteepss in its cipher text such as a sequence of
zeros [29, 49]. Therefore, oufFN2K analyzer assumes that the CAST-encrypiétN2K cipher texts do
not contain a sequence of three consecutive zeros encogeadtasnAAAAIN the base-64 scheme. To put it
simply, AAAAcannot appear in the encoded cipher texT BN2K message.

Since raw-sockets are used to transmit packets betweenehamahd agents, IP, ICMP, TCP and UDP
headers havéFN2K-assigned values. In this mann&FN2K-generated packets feature a number of unique
characteristics as Table 15 depicts. What all packets shgegdless of their transport protocol is that their
ip_tosfield is set to zeroip_ttl has values in the range [200, 255], apdd takes values in the range [1024,
65535]. Also half the times, fieldsmp.segandicmp.id have zero values and the rest assume random values.
Similar observations are drawn for fielttp_seq tcp_ack andtcp_win in TCP packets. Moreover, the TCP-
header field ofcp_off is set to zero, wrong values appear in thip lengthof UDP-header and checksums
for all TCP/UDP packets are incorrectly computed. @&N2K analyzer exploits such packet abnormalities
while a packet is being examined in tReotocol Decoder (PD)nodule. Similar protocol anomalies can
be observed in pur@ FN2K flooding attack traffic as well. For instance, checksums fGPTand UDP
packets are incorrectly calculated; figidtosis always zero; the TCP protocol headgp_off is set to zero.

In addition, for UDP flooding attacks, the source port numitecreases by one and the destination port
number increases by one for each subsequent packet, whitestim always remains constant to 65536;
this pattern is exploited by thBehavior Policemodule of ourDDoS Containeto discernTFN2K UDP
flooding attacks.

27

field characteristics checked by modulg
ip_tos always set to zero Protocol Decoder
ip_flags set to zero, meaning bits “don’t fragment” Protocol Decoder

and “more fragment” are unset
ip-ttl random in [200, 255] Protocol Decoder
ip-id random in [1024, 65535] Protocol Decoder

Packets based on TCP

tcp_flags SYNJACK, SYN, or ACK
tcp_seq, tcpack, tcpwin | half of time 0, others random Protocol Decoder
tcp_off always set to zero Protocol Decoder

tcp_checksum incorrectly left out pseudo-header Protocol Decoder
Packets based on UDP

3 bytes larger than true value

incorrect as pseudo-header not included

Packets based on ICMP

Protocol Decoder
Protocol Decoder

udp.length
dstchecksum

Protocol Decoder
Protocol Decoder

icmp_type, icmpcode
icmp_id, icmp.seq

zero
half of time zero, others random

Table 15: Unique Handler-to-agent TCP/UDP/ICMP-packetabteristics

4.3 DNS Ampilification Attacks

The Domain Name Servic®(S system provides translation services between domain siame I[P ad-
dresses using a hierarchical overlay network over theratdd3, 61, 60]. For flexibility, manipNSservers
act as open-resolvers and automatically forward DNS gsi¢oi@ther authoritative name-servers on behalf
of requesters [61]. Open-resolvers have been recently tasednductDNS amplification attacksSuch
attacks proceed into two phases: initially, they harvestrgel number of Internet open-resolvers and sub-
sequently, they generate and deliver over-sized UINSqueries. Here, the size of queries is typically
larger than 1024 bytedDNSattacks often use the IP-address of a victim as the souraesglth allDNS
requests which generate the same number of responsesreiélteethe victim. In this way, amplification
attacks force all resolver-responses to reach and ovemvhedingle victim [60]. The problem is further
exacerbated with the poor life-cycle managemenbbdIS resource recordsRR$ in many name servers,
which include expired host addresses and outdated entriesairt of authority $OA.

In developing an analyzer fdANS amplification attacksve assume that oupDoS Containepperates
along with a firewall unit that can be easily configured to deded block packets with spoofed IP-addresses.
EachDNSmessage —query)) or reply (R)— contains a header, which has a fixed size of 12 bytes. There
are 6 fields in the DNS header, and includes figtdasaction 1Q flags, numbers of questions, numbers of
answerRRs numbers of authoritRRs and numbers of addition&®Rs each of which is 2 bytes long. The
field transaction IDis used to match BNSquery and its corresponding reply [61]. TQER (query/reply)
bit of theflagsfield in theDNSheader of a message makes it straightforward to determiatheha message
is either a query or a response.

Our analyzer exploits the fact that &NSamplification attack launched from an external network and
targeting machines in an internal network can be easilytifileth as its repliesgs) have no corresponding
originator in the internal network. By also taking into agnb that a firewall may block all incoming
packets with incorrect destination IPs and outgoing packath spoofed source IPs, an enterprise can be
fully protected against amplification attacks.

Algorithm 9 outlines our analyzer as it deals with interacti between open-resolvers and victims. In the
context of our framework, the analyzer is provided with aidaied bit in the field§ YPEand CONFIRM
The algorithm differentiates encountediSsessions into the following categories:

28

Algorithm 9 DNS ampilification attacknalyzer for traffic between open-resolvers and victims

1: Input: packetP and its sessiol$

2: if (field CONFIRMof S is set)then

3. Pis handed over tdraffic Arbitrator module and exit;
4: end if

5: if (P is not aUDP DNS packet}hen

6

7

8

P is handed over tdraffic Arbitrator and exit;

> endif

. if (P is aDNSquery)then
9: store the headersansaction IDand set bit inTYPEcorresponding t®NSamplification
10: else
11: if (bitin TYPEcorresponding to DNS amplification not s#tgn
12: setCONFIRMof S and exit; (caséll)
13: endif
14: if (transaction IDof P != storedtransaction 1D then
15: drop P and exit; (casé/)
16: else

17: P is a normaDNSreply andS is a legitimateDNSsession; (cash.
18: endif
19: end if

I: normal sessions whered2dNSquery is first encountered by the analyzer and then a replgap with
transaction IDidentical to an already encountered query.

II: abnormalDNSsessions where queries and replies are detected by theanblyt they have differ-
enttransaction IDs. In this rare case, tHBNSreplies can be considered as outdated messages and
responses to previolBNSqueries.

IlI: amplification attack sessions that contBINSreplies only.

Evidently in casd, the traffic is simply passed over to theaffic Arbitrator. In casell, the analyzer may
simply discard the incoming packét as the mismatche®NSreply likely originates from old and non-
existing session at this time. In ca#lé, the analyzer identifies aDNS amplification attack, marks the
corresponding session as such, and the traffic from thig pairs handled by th&raffic Arbitrator.

If both attackers and victims reside in networks protecteduy DDoS Containerthe abovdNSanalyzer
is expected to fail as sudDNSmessages are treated as belonging to session cateddowever internal-
network originated and bound incidents are handled byBrhavior Police (BPmodule. Within this
module, we define ®NS flood template¢hat helps identify UDP-flooding due to internal amplificati
attacks. For instance, the templdfrot=UDP)&&(dst_ip=same)&&(src p=DNS) along with threshold
assigned to a value such as 1000 pps can ideBtifys attacks with intensity above 1000 pps. Here, the
conditiondstip=samegroups all traffic from the same destination IP address wdtitgo=DNS indicates
the same source port (i.e., 53). Overall, our analyzer ircedrwith a firewall and the abov@P template
can effectively detedDNSamplification attacks.

5 Implementation and Experimental Evaluation

We implemented the propos&DoS Containem C and integrated it as a moduleRartiGate-800, a multi-
functional device that operates in inline fashion and mtesifirewall, anti-virus, and IDS/IPS functionali-
ties [30] and whose rated speed is 400 Mbps. We deployeddaS Containeim test-bed environments
that follow the network layout of Figure 7 and installed bira of DDoSclients, handlers, and agents in
a number of test machines so that varidBoS networks are formed. Here, the networks are essentially
partitioned in internal and external segments that allotouetter control the traffic observed byrtiGate-

29

800. For instance, communications betwedAV2K handle; andagert; pass through thBDoS Container
system, making possible for the latter to manipulate theemgraffic. All 20 test machines operate either
Windows200®r Linux and are connected feortiGate-800 via 100 Mbps switches. In order to verify the
behavior of our system, we useEgherealtraffic sniffer [20] on a dedicated machin&aifferin Figure 7—

to capture data exchanged among test machines and@a& Container

TFN2K handler 1 TN | Stacheldraht Attacker
handler ¢

Switch-1 internal
FortiGate-800

e

DDOS Container

external

Switch 1 Switch 2

]

DDOS Container

Switch-2 Sniffer

Test Machine Test Machine Test Machine Test Machine

(foreground traffic 1) (foreground traffic n) (background traffic 1) (background traffic n)|

TFN2K agenty TRN2K handler o)

_____ Aackery Vi Mecine Figure 8: Trace-drivetdDoS Containetest envi-
ronment

Figure 7: Deployment of oubDoS Container

Figure 8 depicts the specific trace-driven testbed that wd o all reported results. By offline creating
streams with varying mixes ddDoStraffic (as foreground) and normal traffic (as background) storing
them in separate trace files, we are able to inject them t®ibeS Containeusing different testers. By
controlling the traffic injection, we are able to establisie tbehavior of oulDDoS Container In what
follows, we briefly present the main results of our experitakavaluation.

5.1 Baseline Behavior for theDDoS Container

To establish the baseline behavior of @PoS Containeand ascertain its capabilities in identifying com-
munications amon@DoSelements, we use the environment of Figure 7. Due to therbldal network
layout, it is possible that thBDoS Containemay not observe alDDoSactivities depending on its location.
In this baseline phase, we mainly focus on oS Containeidentification capabilities and so we config-
ure the system to create alerts for suspicious sessionsiwarding all packets to their destination. This
“alert-only” configuration makes it feasible for the sniffi® capture the generated traffic and form traces
that can be run in the environment of Figure 8. We conduct raxygats with both default and customized
DDoScodes.

In the course of default deployment, we use the Internetedla DDoSsources and compile them in their
default settings including TCP/UDP-ports, passwords,aratyption keys. Although we repeat the process
for each toolkit, we only outline the testing wilfFN2K for brevity. We use machinegtackery, TFN2K-
handlery, TFN2K-agent, andvictim; to construct ddDoSnetwork; here, the attacker ugetnetto access
the handler and th®DoS Containepbserves only the attacker-handler communications. FohngGate—
IPS module has a built-itelnetanalyzer that we exploit to identify allFN2K attacker-issued commands of
Table 14. On the other hand, we use machinescker,, TFN2K-handler;, TEFN2K-agent, andvictim,

30

to make handler-to-agent communications visible tofti#gnS Container With the help of command line
option “-P”, the attacker instructs the handler to use diffic transport services including TCP, UDP and
ICMP. Segments of such handler-to-agent traffic captureitidogniffer are shown in Tables 2, 3, and 5. Our
DDoS Containauccessfully identifies suchFN2K handler/agent communications. Should we deploy the
configuration consisting ofttacker;, TFN2K-handlers, TFN2K—agent, andvictim;, we expose to the
DDoS Containeall messages exchanged amd»goS-elements involved. Apparently, the environment of
Figure 7 allows for the easy deployment of a single attackatrolling multiple handlers, the co-existence
of multiple attackers, or even a handler manipulating agafizombies. In all the above settings, @PoS
Containerdetects all pertinenTFN2K sessions. By repeating the same experiments foStaeheldraht,
Mstream, Trinocand Kaitenwe reach the same outcome. During the second stage of odineaseperi-
ments, we customizBDoScodes by re-designating ports, passwords, encryptiond®ysalt-strings used.
By repeating the aforementioned set of experiments, we shatwvourDDoS Containecorrectly identifies
all DDoS sessions as it bases its operation on deep inspection aaditeehnalysis instead of static port
information and specific encrypted patterns.

Next, we turn our attention t®DoS Containeperformance, in particular, we investigate the maximum
number of concurrent sessions sustained by our impleni@mtafrovided thatDDoS user work in an
interactive manner and the time gap between two-consecatimmmands is often long, overheads for the
operation ofDDoS Containedo not appear to be a critical issue. We anticipate howeardbr DDoS
Containemill be ultimately deployed at the perimeter of networksthis regard, it may encounter a tens
of thousands of concurrent sessions and the performancebenagversely affected if heavy overhead is
present. To determine the capabilities of our system, wehestraffic of Table 4 as a template and generate
test-cases executed in the environment of Figure 8. THectcasists of two parts: the first features packets
generated by the normal three-way handshake procedurdowhsn the Table 4 and packet 1, while the
second part contains packets 2-5 and the remaining in tisoses We configureDDoS Containeto
forward all packets but generate two alerts for evBtgcheldrahsession. The first alert is generated when
an session is tentatively marked &&cheldrahby using the attacker-to-handler stream (i.e., packet g T
second alert is created when a session is confirmed usingatiten-to-attacker stream and packet 2 has
been processed. Should ho more memory be available for ttoegsing of an arriving session, tboS
Containerdoes not track it and allows the corresponding packets ® tasugh (i.e., fail open).

Each test carried out consistsroDDoS(or foreground) ane» normal (or background) sessions. Bath
andm take values in [100,000, 700,000] as we anticipate that sholtes are representative for the opera-
tion of a device at the edge of the network; this selectionsis dependent on the total amount of memory
available inFortiGate-800 —default 4 GBytes— and the requirements for session rapedsm. InStachel-
drahtfor example, each connection requires at least 41 Byteg@iogoto Table 9. Based on Algorithm 7,
certain amount of data in the first attacker-to-handler ages$as to be stored in order to perform the cor-
relation with the corresponding handler-to-attacker ragssthis includes the encrypted session password
which is often less than 50 Bytes. Finally, by taking into@aut overheads for the organization and/or
maintenance of hash tables, session splay and intervalnessled for TCP reassembly, each session neces-
sitates at least 512 Bytes of overhead. According to Algorit, we may need to store upto 5 KBytes data
exchanged in the session before we are able to determina i@gam is of background/nd»DoS nature.
Taking into account the above, the requirements for main ongnm the case ofStacheldrahis approx-

%not shown in Table 4

31

imately M=0.5*n+5.5*m KBytes; should both concurrent foreground and backgrowssiens be around
650,000 respectively, the memory requirements before ar¢ lssing sessions is approximately 4 GBytes.
We should point out that the above estimation for memory wondionM presents an upper bound as other
DDoStools do not need to store much data as is the caseStitbheldraht

We usenf10 machines marked dsreground testerg Figure 8 to launch foreground traffic; each replays
the first half of the Table 4 for/n times, then pauses for a second and resumes by replayingdbeds
part of the trace for the same number of times. At the same timdoackground testersdefault 10— feed
noise or normal application (FTP) traffic; this trace is sjplio two parts and each one is injected into the
DDoS Containem/m;, times with an intermission of one second. The testers madéyP addresses and
port numbers of both source and destination for each newemtiom to avoid conflicts among different
replayed sessions. In each test, we monitor the behavibDalS Containerrecord the number of sessions
identified asStacheldrahand alerts generated, and compute the ratio of correcthkedaBtacheldraht
sessions. Table 16 shows the outcome of our testing; eactpewifies the number of foreground sessions,
while each column indicates the numberof background streams. As the total number of both foregtoun
and background streams increased, DS Containeproduces correct behavior except for the case of
(n,m)=(700,000, 700,000). The latter suggests that our piiedi¢or the required memory/ in this set of

m=100,000 | m=300,000 | m=500,000| m=600,000| m=700,000
n=100,000 100.00 100.00 100.00 100.00 100.00
n=300,000 100.00 100.00 100.00 100.00 100.00
n=500,000 100.00 100.00 100.00 100.00 100.00
n=600,000 100.00 100.00 100.00 100.00 100.00
n=700,000 100.00 100.00 100.00 100.00 99.99

Table 16:DDoS Containetest results oStacheldrahivorkloads

experiments was over-estimated.

By repeating the above testing procedure for all attackstowmk establish similar results. For each test
case, we adjust the replay rates of all sessions duringdfiectinjection, so that we can generate traffic with
various characteristics, including constant bit rate (§BRIf-similar, and normal-distributed traffic. How-
ever, the aggregated traffic is controlled so that the rgpeed of theFortiGate is not exceeded, therefore
rendering that any packet drop is introduced due to excgedemory consumption of theDoS Container
Our experiments show that the memory consumption oB®S Containeunder various traffic patterns
with different characteristics is similar, indicating tithe memory consumption is closely related to the
number of concurrent sessions.

5.2 Identifying DDoSAttacks Using Snort-Inline

Conventional security mechanisms such as IDSs/IPSs camifid®®DoS attacks only with the help of
specially-crafted signatures but remain “unaware” of th&ue characteristics dDDoS attacks. Snort-
Inline, an open source IDS/IPS, is implemented atoplittpgrzap packet-capturing library and is mainly
deployed in small networks. It can be configured to def@PbS traffic provided that special signatures
such as those of Table 17 are crafted.

By examining for the agent-generated patteshéell bound to poitin the ICMP-echo-reply payload,

Yset ton ;=10

32

no. | rule explanation

1 icmp $SHOMENET any— > $EXTERNAL_NET any (msg:"TFN server responsef; inspect ICMP message with type
icmp.id: 123; icmpseq: 0; itype: 0; content:“shell bound to port”; sid:238;) “echo reply”, ipid = 123, and telltale

2 icmp $SEXTERNALNET any— > $HOME_NET any (msg:"tin2k icmp possible ICMP type “echo reply”, ipid = 0,
communication”; icmpid: O; itype: O; content:"AAAAAAAAAA’; sid:222;) and pattern “AAAAAAAAAA” in payload

3 udp $SEXTERNALNET any— > $HOME_NET 31335 (msg: “Trin00 Daemon inspect UDP packet with dgiort 31335
to Master message”; content:“144”"; sid:231;) and pattern “144” in payload

4 tcp SEXTERNALNET any— > $HOMENET 27665 (msg: “Trin00 Attacker inspect TCP packet with dgtort 27665,
to Master default startup password”; flow: establishedsdover; telltale “betaalmostdone” in payload
content: “betaalmostdone”; sid:234;)

5 udp $SEXTERNALNET any— > $HOME_NET 6838 (msg: “mstream agent inspect UDP packet with dgtort 6838
to handler”; content:“newserver”; sid:243;) and pattern “newserver” in payload

6 tcp SHOMENET 12754— > $SEXTERNAL_NET any (msg:"DDOS mstream inspect TCP packet with snerot 12754,
handler to client”; flow: toclient, established; contents”; sid:248;) “>"in payload, and from server side

7 icmp $SEXTERNALNET any— > $HOME_NET any (msg:"DDOS Stacheldraht | inspect ICMP packet with type “echo reply’},
client spoofworks”; icmpid: 1000; itype: O; ; content: “spoofworks”; sid:227;) ip_id = 1000, and “spoofworks” in payload

8 icmp $SHOMENET any— > $EXTERNAL_NET any (msg:"DDOS Stacheldraht | inspect ICMP packet with type “echo reply’,
server response”; icmjal: 667; itype: 0; ; content: “ficken”; sid:226;) ip-id = 667, and “ficken” in payload

Table 17: Rules/signatures used3nort-Inlineto detectDDoStraffic

Rule 1 attempts to identifff FN traffic; at the same time, fieldsmp.id andicmp_ seqof the packets should
comply with the TFN requirement of having values 123 and 0, respectively. Hewdyy applying Rule 1
to the traffic of Table 1, no alarm is generated as the soughdrpacannot be found. Rule 2 detects the
control traffic betweerWFN2K handlers and agents by both searching for a sequence ofikngtr'A’s

in the ICMP-echo-reply message and ensuring thatdimp id value is zero. Due to encryption/encoding
used, the length of FN2K-generated “A’s varies between [1..21] and in this resgeuate 2 fails to identify
some pertinent traffic such as those in Table 2. MoreoveleTal CP/UDP-traffic escapes ti&nort-Inline
detection entirely as far as Rule 2 is concerned. To dftgabo traffic, Rules 3 and 4 monitor UDP pack-
ets at port 31335 for string44” and inspect the TCP stream at port 27665 for telltdletdalmostdorie
respectively. Similarly, Rules 5 and 6 identifystreamtraffic by looking for the patternrfewservetin
UDP-payloads arriving at port 6838 ang-™in TCP-payloads originating from port 12754. As Rules 3-6
inspect specific ports, they are certainly vulnerable toagyic port assignment. Finally, Rules 7 and 8
attempt to capturé&tacheldrahtraffic by inspecting ICMP-echo-reply messages. Rule 7ddok“spoof-
works” and fieldicmp.id with value 1000; while Rule 8 searches ficken” and fieldicmp.id with value
667. When inspecting the traffic of Table 12nort-Inlineidentifies only a small fraction oStacheldraht
packets; any control-related traffic escapes detectionetls w

5.3 DDoS ContaineAccuracy in Classifying Traffic

To compare thé®DoS Containeaccuracy in classifyingpDoStraffic versus other options such as the open-
sourceSnort-InlineIDS/IPS, we conduct a wide range of tests with both implemagors and establish
their false positive/negative rates. While forming an IGk#sedTFN2K attack network withattacke,
TFN2K-handle,, TFN2K-agent; andvictim, of Figure 7, we use botbDoS Containeend Snort-Inline

to detect malicious traffic; the latter predominantly exgloule 2 of Table 17. We determine false negative
rates for both systems by having the attacker issue the cohftia -P ICMP -c cmdid -i parameter”
with flags-c and-i indicating specific command identifier and correspondingumeter(s). Table 18 shows
a number of such commands with colurplain textindicating the handler-generated instructions on clear
text before CAST encryption and base-64 encodpignindicates the message size for the plain text and
trail shows the length of the trailing sequenceAst We can see thanort-Inlinesucceeds in detecting

33

cmd plain textmessage plen | trail Snort DDoS Container
1 -c0 +d+0 4 5 | negative alert
2 -c2-i64 +b+64 5 6 | negative alert
3 -c3-i128 +a+128 6 8 | negative alert
4 -c 3-i1024 +a+1024 7 9 | negative alert
5 -c 4-i192.168.5.37 +e+192.168.5.37 15 20 alert alert
6 -c5-1192.168.5.37 -p 10 +g+10: +f+192.168.5.37 22 8 | negative alert
7 -c6-i192.168.5.141 +h+192.168.5.141 16 21 alert alert
8 -c7-1192.168.5.37@192.168.5.141 +i+192.168.5.37@192.168.5.141 29 17 alert alert
9 -c 8-i10.0.0.1@10.0.0.1 +k+1.0.0.1@10.0.0.1 47 4 | negative alert
10 | -¢c9-i1.0.0.1@1.0.0.2 +j+1.0.0.1@1.0.0.2 18 3 | negative alert
11 | -c 10 -i "Is —almost-all -c” +l+ls —almost-all -c 50 7 | negative alert
12 | -c 10 -i"Is —directory -a -k” +l+Is —directory -a -k 52 9 | negative alert

Table 18: False negatives generated while testiffy2K sessions

sessions that have more than ten trailkggwhich essentially implies that tt&nort-Inlinemight create 9/21
false negatives if the length of the trailing sequence isonmily distributed. AlthoughDDoS Container
correctly detects all twelve sessions of Table $8ort-Inlinefails to generate alerts in nine instances.

We subsequently examine the generation of false positiyebath tools and through six tests out-
lined in Table 19. Initially, we create a trace by generatiraific using the commangding -p 41414141
192.168.5.141vhere thep flag forces the packing of ICMP echo request payload witrepati41414141”
or alphanumeric string “AAAA". In response, node 192.1684. creates an ICMP echo reply whose sam-
ple is shown as the first case in Table 19. With the help of [Ei@uestbed, we inject thang-trace without
any modification taDDoS ContaindSnort-Inlineand both generate no alert. DDoS Containerthis is
due to the fact that the payload of ICMP echo replies are neg46d encoded and Bnort-Inlinebecause
the fieldicmp.id of the reply is non-zero and fails to satisfy rule 2. In theosettest of Table 19, command

| cmd IP payload description Snort | DDoS Container
1 | ICMP echo reply ICMP header]00 00 D2 F8 56 16 00 Q0 | icmp_type: 0; icmpcode: O; no no
ICMP payload:|78 B3 27 42 16 DD 02 00| icmp.id: 0x5616; icmpseq: O;
414141414141414141414147 ... | data: 8 binary bytes + “AA..";
2 | replace “icmpid” ICMP header;00 00 21 OF 00 00 00 Q0 | icmp_type: 0x0; icmpcode: O; | positive no
with 0 ICMP payload:|78 B3 27 42 16 DD 02 00| icmp.id: 0; icmp.seq: 0;
414141414141414141414]... data: "AAAAAAAAAA ...,
3 | replace first 8 bytes ICMP header;]00 00 00 00 00 00 00 00 | type: O; code: O; icmpd: O; positive no
with A ICMP payload:|41 41 41 41 41 41 41 41 | icmp_seq: 0; data:
414141414141414141414147 ... | "AAAAAAAAAA ..,
4 | replace first 8 bytes ICMP header;]00 00 29 OF 00 00 00 Q0 | type: O; code: O; icmpd: O; positive no
with base-64 code ICMP payload:|42 53 47 41 56 6A 62 59 | icmp_seq: 0; data:
414141414141414141414147 ... | “BSGAV|bYAAA..”,
5 | replace first 15 bytes | ICMP header]00 00 29 OF 00 00 00 0 | type: O; code: O; icmpd: O; positive no
with base-64 code ICMP payload:|67 47 79 34 31 49 2B 69 | icmp_seq: 0; data:
69 5A 74 36 4E 735241 4141 41 4] ... | “gGy4lI+iZt6NsRAAA..;
6 | replace entire payload ICMP header]00 00 29 OF 00 00 00 Q0 | type: O; code: O; icmpd: O; positive no
with base-64 code but ICMP payload:|54 47 7A 4D 38 6D 58 53| icmp_seq: O; data:
putten Asrandomly | 46 4B 4F 38 4A 7A 44 70 56 52 49 66|...| “TGZM8mMXSFKO08Jz ...";

Table 19: Test cases for the evaluation of false positives

icmpfield icmpid O is applied to all ICMP messages before replayed by the tefstaing theicmp.id

filed of the ICMP header to become zero. HeS8mort-Inlinemistakenly identifies the ICMP echo reply
as TFNZK traffic by matching rule 2, whildDoS Containeraises no alert as the message is not base-64
encoded.

In test 3, we change the first eight bytes of the ICMP payloati isequence of A while in case 4, we
change the first eight bytes of the ICMP payload to randomaciters in the range [A-Z, a-z, 0-9, +/], the

34

legitimate base-64 code iIFFN2K. Again, Snort-Inlineflags both cases a3-N2Ktraffic because sequences
of more than ten As appear in the payload. In case 5, we refiladest 15 bytes with base-64 code while in
case 6 we replace the entire payload with base-64 code. WJthbDoS Containeconsiders the above two
cases normal trafficSnort-Inlinegenerates false positives. Obviously, in the test casesewierm, Snort-
Inline has a false positive rate of 5/6. While carrying out testh e entire range abDoS attack tools
investigated in this paper, we establish tbd20S Containecreates neither false positives nor negatives in
contrast toSnort-Inline

5.4 Sensitivity to DiverseDDoSFlooding Attacks

In order to inundate a network with heavy traffl@DoStools often create floods by using low-level inter-
faces such as raw sockets; these interfaces bypass protstattions and require tools to craft protocol
headers for the created IP,TCP,UDP and ICMP packets. Th@pated high packet rate and expected vo-
luminous traffic necessitate that tools use simplified tephes in creating flooding attack packets. Figure 9
shows the assignment of source and destination ports fé&etsin aStacheldraht)DP-flood attack. Both
source and destination ports of packets take values in rindé,000] and for the first attack packet, its
corresponding source and destination ports are set to 9#98.dn subsequent packets, the source and des-
tination ports are respectively decremented and increzdemy one yielding their sum invariant to 10,000,
an obvious signaturel FN2K UDP-flood packets demonstrate similar behavior as Figudeprts. Source

Ports of UDP flooding in Stacheldraht Ports of UDP flooding in TEN2K
70000

10000

60000

8000 50000

40000
6000

ors
pors

30000

4000

20000

2000
10000

o 5000 1000015000200002500030000 o 65536 131072 196608
index of packets index of packets

Figure 9: Source and destination ports in &igure 10: Source and destination ports in a
Stacheldraht)DP-flood attack TFN2K UDP-flood attack

and destination ports are initialized to 65,534 and 2 rdsmy for the first packet and their values keep
changing in single unit steps while their numeric sum remaionstant to 65,536. Table 20 shows a seg-
ment of Mstreamgenerated TCP-flood packets with unique characterigtiespackets have fixed size of 54
bytes from which 14 are for the Ethernet header, 20 for thestiglr, and 20 for TCP header. Moreover, the
ip_tosandip_flagsfields remain constant to values 8 and 0 respectivelyiand is stepwise incremented as
discussed in [13]. In the TCP-headtp_flag andtcp_win are set tcACK, and 16,384 whilécp_sportand

35

tcp_segare incremented by one when represented in host order éheteeetwork order.

| srclIP | srcport | dstport [ip.id | tep-flags | tcp-seq | tcp.ack | description
directions of all packets: daemon (D): 192.168.5.34%ictim (V): 192.168.5.37;

1 122.141.239.55 | OxOAE7 (2791) | 24035 | OxAD41 | ACK 0xBD6B0OB00 | O pkt1: random ipid, srcport,
dstport, and tcpseq

2 214.0.67.96 O0x0BE7 (3047) | 42903 OxAE41 | ACK 0xBE6B0OB00 | 0 incremented igid in host-order;
i.e., pkt1:0xAD41— pkt2:0xAE41

3 176.51.61.100 O0xOCE7 (3303) | 64241 OxAF41 | ACK 0xBF6BOB00 | O incremented stport in host-order;
i.€., pkt2:0xOBE7— pkt3:0x0CE7

4 21.203.199.59 O0xODE7 (3559) | 19041 0xB041 | ACK 0xC06B0OB00 | 0 incremented tcpseq in host-order;
i.e., pkt3:0xBF6BOB0O0O
— pkt4:0xC06B0OB0O0

5 157.170.14.59 OxOEE7 (3815) | 29847 0xB141 | ACK 0xC16B0B00 | 0 random source IPs for all packets

6 153.134.240.102) OxOFE7 (4071) | 9172 0xB241 | ACK 0xC26B0B00 | 0 random dst ports for all pkts

7 164.181.244.13 | Ox10E7 (4327) | 44259 0xB341 | ACK 0xC36B0B00 | 0 ACK in tcp_flag is set for all pkts

8 152.219.249.44 | Ox11E7 (4583) | 42114 | 0xB441 | ACK 0xC46B0B00 | O however, tcpack is O for all pkts

9 231.222.111.123 0x12E7 (4839) | 40428 | 0xB541 | ACK 0xC56B0B00 | O other peculiarities: fixed iflags
(zero);

10 | 4.191.45.57 0x13E7 (5095) | 23360 | 0xB641 | ACK 0xC66B0OB00 | O fixed packet size
(40 bytes, excluding the header);

11 | 98.92.3.96 0x14E7 (5351) | 7174 0xB741 | ACK 0xC76B0OB00 | O fixed tcpwin (16384 bytes);

12 | 173.81.218.80 0x15E7 (5607) | 59842 | 0xB841 | ACK 0xC86B0OB00 | O fixed ip_flags (zero);

13 | 159.98.164.20 0x16E7 (5863) | 52641 | 0xB941 | ACK 0xC96B0OB00 | O fixed ip_tos (8) and ipttl (255)

Table 20:Mstreamgenerated TCP-flood

Here, we ascertain the effectiveness of @PoS Containerby replaying various types of traffic with
known foreground characteristics. For brevity, we use th#fi¢ of Figures 9 and 10 as well as that of
Table 20 to feed the testbed of Figure 8. We inject attack dwxi¢h normal traffic into ouDDoS Container
and vary the replay speed so that the attack intensity istmtju We form diverse types of workloads by
mixing different foreground traffic and background traffiee former consists a$tacheldrahtJDP-flood,
TFN2K UDP-flood, orMstreamTCP-flood attacks while the latter is FTP traffic. Varioudficaemplates
can be defined to help assess the effectiveness @bDaiS Containein detecting flooding attacks; a number
of such templates are shown in Table 21. A threshold expmlessgackets-per-second (pps) and shown as
thrd complements the definition of each template and indicatesntiensity of the traffic above which the
DDoS Containeshould generate an alert.

Templates 1-6 designate traffic patterns 8tacheldrahtJDP floods. As the conditionistip=same
indicates, template 1 clusters all packets with same dggim IP; this template mimics the way the
vast majority of IDSs/IPSs operate using pure destindtiased patterns to detect floods. The desigha-
tion (dstip=same)&&(dstport inc) of template 2 identifies a stream in which the destinationré®sain the
same but the destination ports are numerically increasamgplate 3 outlines a similar pattern but inspects
for decreasing source ports. Templates 4 and 5 identifficrafhose packets comply with the condition
src_port+dst port=10,000and show the same destination address, while template 6sexaly uses the des-
ignationsrc_port+dst port=10,000 As templates 1-5 use the destination address to clustiée,tthey mostly
reflect the way traditional flood detection methods work. dntcast, template 6 is destination-address-free
and we expect it to be more robust in dealing with floods. Tetegl 7—12 are formed to detddistream
TCP-flood attack packets. We include template 7 to establisbmparison on detection accuracy between
our DDoS Containeand pure destination-based detection methods. On the lutinel, template 12 groups
all packets together that have acknowledgment number ofaret their TCP-window size is 16384.

By mixing flooding attack traffic generated [StacheldrahtTFN2K, or Mstreamand some attack-free

36

| template [thrd [C1 [C2 [C3 JC4 [C5 [C6 [C7 [CB [C9]C10
traffic created byStacheldrahor TFN2K UDP flooding attacks
1 (dstip = same) 100 | neg | alert | alert | alert | neg | alert | alert | alert | no | pos
2 (dstip = same) && (dstp inc) 100 | neg | alert | neg | neg | neg | neg | neg | neg | no | no
3 (dstip = same) && (srcp dec) 100 | neg | alert | neg | neg | neg | neg | neg | neg | no | no
4 (dstip = same) && (srcp + dstp = 10,000) | 100 | neg | alert | neg | neg | neg | alert | neg | neg | no | no
(change 10,000 to 65,536 f@IFN2K)
5 (dstip = same) && (srcp + dstp = 10,000) | 2 alert | alert | alert | alert | alert | alert | alert | alert | no | no
6 (srcp + dstp = 10,000) 2 alert | alert | alert | alert | alert | alert | alert | alert | no | no
traffic created byMstreamTCP flooding attacks
7 (dstip = same) 100 | neg | alert | alert | alert | neg | alert | alert | alert | no | pos
8 (dstip = same) && (ip.id inc) 100 | neg | alert | neg | neg | neg | neg | neg | neg | no | no
9 (dstip = same) && (tcpack = 0) 100 | neg | alert | neg | neg | neg | alert | neg | neg | no | no
10 | (dstip = same) && (tcpack = 0) 2 alert | alert | alert | alert | alert | alert | alert | alert | no | no
11 | (dstip = same) && (tcpwin = 16384) 2 alert | alert | alert | alert | alert | alert | alert | alert | no | no
12 | (tcp.ack = 0) && (tcp-win = 16384) 2 alert | alert | alert | alert | alert | alert | alert | alert | no | no

Table 21: Sensitivity results fd@tacheldraht)/DP, TFN2K UDP, andMstreamTCP flood attack workloads

FTP traffic, each with different intensities, we generateumber of scenarios indicated as cagdsto
C10in Table 21. In all cases, both foreground attack and backgtdraffic have as their destination the
primary victim’s IP address. In cas€il andC2, we inject pure attack traffic with rates of 2 and 100 pps
respectively. InC3, foreground traffic of 2 pps is mixed with 98 pps attack-fnesdfic; in C4, the foreground
and background traffic streams have intensity rates of 9&pgd<2 pps respectively. Casés andC6 are
similar to C1 and C2 with the only difference that while replaying the packets tbplay-order of some
consecutive foreground packets is swapped; in this s@irigndC8 are similar toC3 andC4 with different
order for some of the packets. Cas&®andC10inject only background traffic with intensity rates of 2 pps
and 100 pps. In Table 21, “no” and “alert” indicate that @PoS Containecorrectly classifies the injected
traffic as either legitimate or malicious while “pos” and gieshow false positives and negatives.

Table 21 outlines the overall behavior of dDDoS Containeunder the aforementioned diverse traffic
settings. The key observation is that whhrd is set to 2 pps requirement, ti#DoS Containerander tem-
plates 5, 6, 10, 11, and 12 produces the correct resultsitfsat alerts after observing two malicious packets
or correctly identifies background traffic shown with “no”efllination-based templates 1 and 7 create false
positives in pure background traffic @10 as they only inspect destination IP addresses of the in@pmin
packets and the injected background traffic shares the sastmation address, therefore producing false
positive. On the other hand, templates 2, 3, and 8 miss thdifigattacks inC6 simply because the swap-
ping replay orders of attack packets destroy the monotoi@iment or decrement relationships existing in
source ports, destination ports, or IP identifiers (iprid), causing the observed attack intensities of these
templates to be lower than the real attacks. The settingre$tiold value is critical as templates 9 and 10
show; wherthrd is set to 2 pps, th®DoS Containeis successful in accurately detecting all attack traffic
streams while it fails in part to accomplish this when theegimold is set at 100 pps. The higher threshold
simply misses attacks with lower intensities. In this regatris desired to set the threshold to the lowest
possible values. However, decreasing thresholds inchstately may generate false positives. For exam-
ple, if we change the threshold in template 1 from 100 to 2 theslDDoS Containecreates a false positive
for C9.

Having lower values for théhrd without creating false positives also implies that theteeiter utilization
of computing resources. For instance templates 5 and 6 havgame detection accuracy for all tests, while
template 6 entails less constraints and thus, requiresriessory. Since templates 6 and 12 demonstrate not

37

only superb robustness in detecting flooding attacks batlalg memory consumption, they are used in the
FortiGate-800 device when deployed in production.

5.5 Discussion on théd®dDoS ContainePerformance

A thorough testing ofFortiGate-800 equipped with outDDoS Containehas been recently conducted by
NSSan independent IPS testing organization [27]. At its raeeed of 400Mbps, theortiGate-800 detects
and blocks all attacks under various test-load conditi@asic latency figures were well within acceptable
limits for all traffic loads and with all packet sizes; theyged from 249s for traffic of 100Mbps consist-
ing of 256 byte packets to 288 with 400Mbps with 1000 byte packets. With 40MbpsSafNflood-traffic
generated by th& FN2K DDoStool, FortiGate shows latency of 18& with 256 byte packets and 216
with 1000 byte packets [27]. The HTTP response time, defisdati@time interval between request trans-
mission and reply arrival, for Web page access increasedstightly during SYNflood tests from 214s
under normal load to 21& with the SYN flood. Even under eight hours of extended astacknprising

of millions of exploits mixed with genuine traffi€ortiGate-800 continued to block 100% of attack traffic
while allowing all legitimate traffic pass through. Moreoveur DDoS Containemas able to correctly
identify all “false negative” and “false positive” test emsand demonstrated excellent resistance to known
evasion techniques including IP fragmentation and TCP seggtion. Tests biCSA-Laboratorieslso of-
fered similar observations while testifgrtiGate equipped with oubDoS Containemodule [33]. Overall,
our own experiments and those of independent testers rtaehigh detection/prevention accuracy of our
DDoS Containerthe latter also impacts in a minimal manner both networkriey and system throughput.

6 Related Work

DDoS attacks have been long recognized as a major threat to temént[24, 44, 22, 18, 19], and [42]
helped establish that most sites suffer numerous d2idpSattacks while occasionally experiencing inten-
sive traffic flooding of up to 500,000 ppBDoStools includingTrinoo, TFNand Shafthave been dissected
and analyzed to help create counter-measures [R5 amplification attackexploit the “open-resolvers”

in the DNSsystem and bombard with over-sized UDRS queries targeted sites [60]. In general, defense
mechanisms can be classified as preventive, reactive, kmdrit Preventive mechanisms attempt to elimi-
nate the conditions necessary for the formatioDBloSattacks in their various stages, such as vulnerability
identification, site penetration, code implantation, attdck launching [21, 58]. Reactive mechanisms con-
tinually monitor the behavior of programs and/or networkwattes, trying to identify possible attacks and
then generate alerts (e.g., in IDSs) or eliminate them, (®.¢PSs) [26, 22]. In order for legitimate traffic to
be handled even in light of an ongoifigPoSattack, tolerance mechanisms featuring resource redapdan
bandwidth-rate limitation, and dynamic system re-configjon have been proposed [3, 54].

Although it is critical that the origin of an attack be iddd for accountability d and forensic analysis
purposes [40, 56, 64], such an identification is not alwagsifde due to address spoofing [21]. Tracing
systems includindCMP TracebackIP Tracebackand CenterTrackare designed to address this issue but
their success remains limited as they often lead to zomioiegsses instead of the real instigator®éfoS
attacks [6, 57, 48, 53, 18]. Similarly, th®leepy Watermark Tracing (SWBpproach uses watermarks
to uniquely identify connections [62]SWT could be used with routers so that the latter inject pertinen

38

information (i.e., watermarks) to involved network—apptions. By correlating incoming/outgoing packets,
SWTcould help accurately determine a path-flow; evidentlyg ftheme is only feasible should applications
be watermark-aware, all routers are trustworthy, and tiseme link-to-link encryption.

By monitoring traffic, utilities includingCisco 10S QoS, NetFlow, Cflowd, FlowScan, NetDeteetod
RRDtoolhelp both detect and visualize abnormal behavior but mopmitantly provide early-warning to
potential DDoS attacks [58, 19, 40]. Routers with functionality of ingriesgess filtering ensure that the
sources/destinations of data streams comply with adopikcigs [21]. More specifically, ingress filtering
examines every incoming packet to a network for the validityts IP source-address; similarly, egress
filtering checks all outbound packets to ensure their legite addresses [40]. Thmicast reverse path
forwarding (URPH mechanism in some routers ascertains the validity of agiatthe latter arrives through
one of the “best” paths available [58, 40]; although usef@®PFcan only mitigate the intensity of @RDoS
attack. The establishment of demilitarized zonB/¢) [14], the use of proxies to manage TCP-based
connections [50], as well as the deployment of firewalls vpitht or service based traffic filtering [58]
may lessen the effectiveness DDoSattacks; unfortunately, such measures are ineffectivarwattacks
launched internally and their “all-or-nothing” policy magnder both legal and useful facilities suchpasg
andtracerouteunavailable i CMP-messages are not allowed to enter/leave such a guardedrket

Resource-intensive TCP SYN-flooding and packet fragmiemntaittacks are often dealt with “client puz-
zle” protocols; for each client request, servers pose “{@s2zhat are time-dependent and feature informa-
tion unique to servers under heavy traffic [12, 63, 40]. A senllocates resources for a connection only if
the initiator correctly solves the puzzle; forcing the elier to commit significant resources to sustain the
intensity of an attack [34, 39, 19, 2]. Should filtering be oagible, network topology reconfiguration in-
cluding “back-holing” of victims may reduc@DoSdamages [66]. Rate-limiting mechanisms set thresholds
for bandwidth consumption for various types of traffic, esalty those identified as malicious [37, 41]. By
removing traffic ambiguities, protocol normalization orudabing techniques also help mitigate the effec-
tiveness of attacks [38]. Auditing tools help discoipoSagents and/or handlers by identifying changes in
file systems and critical system configurations [59] or limgatinique patterns in programs, especially bina-
ries [11]. With the help of such auditing strategies, hasdda tools such akipwire may detect malicious
DDoScodes, while network-based auditing tools sucb@ss scarcan detect the existence of handler-agent
communications by searching for specific patterns in orggagtwork traffic [40]. Unfortunately, both host
and network-based tools become ineffective wiBHPOS attacks utilize techniques such as dynamic port
allocation, message encryption, and information comppess

Reactive mechanisms DDoS attacks mostly entail pattern matching and behavior anpraahlysis.
Patterns of known attacks are often stored in a signatusbdste used to identiffpDoS activities [47].
When traffic at a site deviates from what is deemed as “nornials flagged and counter-measures are
taken [66, 37, 41]. In this regard, there is a wide range dbtadnich successfully address mostly individual
aspects oDDoS attacks. For example, theaptiOthrough the use of rules can detect ICMP-floods and
subsequently limits the bandwidth consumption of sucHitraypes; it fails however to identify either
spoofed or multi-source attacks. Similarly, thep Layer AppSwitch 3506an counter attacks such lasd,
smurf, fraggle and UDP-bombs but is unable to handle ICMP and SYN-floods comingaffiom source
addresses [27].

By applying temporal quantization and Granger causality te the MIB databases from multiple do-
mains, precursors tbDoSattacks can be extracted, which may indicate imminent kgtg€ 8]. Unfortu-

39

nately, in order to conduct causality analysis, MIB datalaa both attacker and primary victim machines
should be accessible [7] which may be of limited value in pratic settings. In addition, information
on MIB variables from different domains should be exchanigedkal-time [7, 8]; this may not be feasi-
ble especially when an inteng#DoSattack is under way. Furthermore, the MIB variables usellitiag
TCPInSegs, UDPOutDatagrapend ICMPInMsgs are of coarse granularity making it difficult to distin-
guish among differenDDoSattacks. Finally, this causality analysis is based on ahabtraffic behavior
such as flooding; therefore, it is applicable to communicetibetween zombies and primary victims only
and is ineffective for messages exchanged between attaakerhandlers as well as handlers and agents.
Our work in this paper builds on the abovementioned effantb@ur main objective is to provide not only a
pragmatic and comprehensive but also an extensible frarkevepable of effectively detecting/preventing
malicious traffic among attackers, handlers, zombies, ainthpy victims in a wide range of contemporary
DDoSattacks.

7 Conclusions and Future Work

By penetrating into a large number of machines through ggcilaws and vulnerabilities and stealthily
installing malicious pieces of code, a distributed denfadervice ODo9 attack constructs a hierarchical
network and launches coordinated assaults. By exhaustengetwork bandwidth, processing capabilities
and other resources of victim§DoSrender services unavailable to legitimate users. DBoS toolkits
use multiple mechanisms, it is in general very challengmgdentify and/or prevent such attacks. Al-
though trace methods and ingress/egress filtering techsigte used to locate agents and/or zombies in
intermediate network nodes, they are complex to implemedtdifficult to deploy as they frequently call
for global cooperation. Elements of hierarchiéiDoS attack networks use dynamic TCP/UDP ports and
source address spoofing to hide attackers and thwart thein¢y. Moreover, one-way communication chan-
nels, encrypted messages, and the use of evasive techméndes conventional IDSs/IPSs ineffective as
the latter typically resort to specific pattern matching &xeld-port traffic identification.

In this paper, we propose a comprehensive frameworkDBeS Containerwhose main objective is
to overcome the deficiencies of existing approaches. MBeS Containeuses network-based detection
methods and operates in inline fashion to inspect and mkmgpassing traffic in real-time. By tracking
connections established by bdiboSattacks and normal applications, our framework maintaiie snfor-
mation for each session, conducts stateful inspectioncamélates data among sessiof0S Container
performs stream re-assembly and dissects the resultinggaggns against protocols followed by known
DDoS systems facilitating the identification of such maliciougivaties. The use of deep inspection and
behavior analysis enhané&DoS Containes detection accuracy when it comes to encrypfddoStraffic.
Our framework can take a number of steps in handling detebiedS traffic including alerting, packet
blocking and proactive session termination. Experiménaivith the prototype of oubDDoS Container
demonstrates its effectiveness in a large number of settind establishes its efficiency.

We intend to follow up this work by pursuing three objectivés maintain the currency of oubDoS
Containerframework by incorporating analyzers for emerging and fi#WoS strains, (ii) provide mech-
anisms to exchange information among varidiBoS Containes deployed in different locations so that
event correlation in targeted network regions can be caedudere, the goal is to detePXDoS attacks
with victims spanning multiple domains or launched withyéght intensity rates, and (iii) explore the

40

integration of ourDDoS Containexvith other security systems including firewalls, anti-gyunost-based
IDSs/IPSs, and anti-malware programs to more effectiveiplzat aggregate malicious activities resulting
from the mixture ofDDoSand popular worms.

Acknowledgments: We are very grateful to the reviewers for their meticulousoeents that helped us
improve the presentation of our work. We are also thankfiteter Wei ofFortinet, Inc. for discussions on
the framework presented in this manuscript and Qinghon@#ry Duan, Ping Wu, Fushen Chen, Joe Zhu
and Hong Huang for helping with parts of our implementatiad testing effort.

References

[1] C. M. Adams and S. E. Tavaris. Designing S-Boxes for Ciptieesistant To Differential Cryptanalysis. Proceedings of
the 3rd Symposium on State and Progress of Research in @rgptoy, pages 181-190, Rome, Italy, Feb. 1993.

[2] T. Aura, P. Nikander, and J. Leiwo. DOS-Resistant Autfeation with Client PuzzlesSpringer-Verlag, Lecture Notes in
Computer Scienc@133, 2001.

[3] G. Banga, P. Druschel, and J. Mogul. Resource Containedew Facility for Resource Management in Server Systems.
In Proceedings of the 1999 USENIX/ACM Symposium on Operayisigi® Design and Implementatjgages 45-58, New
Orleans, LA, February 1999.

[4] M. Blaze, J. loannidis, and A.D. Keromytis. Toward Unskainding the Limits of DDoS Defenses. Rroceedings of the
Tenth International Workshop on Security Protoc@ambridge, United Kingdom, April 2002.

[5] D.Brumley. Remote Intrusion Detection (RID)ttp://www.stanford.edy2000.

[6] H.Burch and B. Cheswick. Tracing Anonymous Packets teifApproximate Source. IRroceedings of the 2000 USENIX
LISA Conferencepages 319-327, New Orleans, LA, December 2000.

[7] J.B.D. Cabrera, L. Lewis, X. Qin, W. Lee, and R. K. Mehrao&ctive Intrusion Detection and Distributed Denial of \Bes
Attacks - A Case Study in Security Managemeldurnal of Network and Systems Managem&@(2):225-254, June 2002.

[8] J.B.D. Cabrera, L. Lewis, X. Qin, W. Lee, R. Prasanth, BvRhandran, and R. Mehra. Proactive Detection of Disteitiu
Denial of Service Attacks Using MIB Traffic Variables - A Féalty Study. InIn Proceedings of The Seventh IFIP/IEEE
International Symposium on Integrated Network Managerti®h2001), pages 609-622, Seattle, WA, May 2001.

[9] CERT Coordination Center. Smurf Attackttp://www.cert.org/ advisories/CA-1998-01.hirh998.

[10] CERT Coordination Center. Trends in Denial of Servideask Technologyhttp://www.cert.org/ archive/pdf/DoS trends.pdf
October 2001.

[11] National Infrastructure Protection Center. Advis@{-014: New Scanning Activity (with W32-Leave.worm) Exjiog
SubSeven Victimshttp://www.nipc.gov/ warnings/advisories/ 2001/01-0itdh June 2001.

[12] Y. W. Chen. Study on the Prevention of SYN Flooding bynggiraffic Policing. InProceedings of the Network Operations
and Management Symposium, 2000 (NOMS 2Q8)es 593—-604, Honolulu, HI, 2000. IEEE/IFIP.

[13] Z. Chen, Z. Chen, and A. Delis. Analyzers fBDoS Attack Tools. Technical report, Athens, Greece, Decemi@52
Department of Informatics and Telecommunications, UrfMAthiens, http://www.di.uoa.grtad/analyzers.pdf.

[14] W.R. Cheswick, S.M. Bellovin, and A.D. Rubirirewalls and Internet SecurityAddison-Wesley, Professional Computing
Series, Boston, MA, second edition, 2003.

[15] D. E. Comer.Internetworking with TCP/IP: Principles, Protocols, andchitecture Prentice-Hall, Englewood Cliffs, NJ,
1991.

[16] ComputerWorld. Microsoft Admits Defense Against Atka Was Inadequatehttp://www.computerworld.com /software-
topics/os/story /0,10801,57054,00.htddn. 2001.

[17] T.H. Cormen, C. E. Leiserson, and R. L. Rivdsttroduction to AlgorithmsThe MIT Press, 1997.

[18] D. Dean, M. Franklin, and A. Stubblefield. An Algebraipproach to IP Traceback. Rroceedings of the 2001 Network
and Distributed System Security SymposiSien Diego, CA, February 2001.

[19] C. Douligeris and A. Mitrokotsa. DDoS Attacks and DeferMechanisms: Classification and State-of-the-&bmputer
Networks: The International Journal of Computer and Teteotunications Networking4(5):643—-666, April 2004.

[20] Ethereal. Ethereal: Powerful Multi-Platform Analgshttp://www.ethereal.comMay 2005.

[21] P. Ferguson and D. Senie. Network Ingress FilteringeBiing Denial of Service Attacks Which Employ IP Source el
Spoofing.Internet Engineering Task Forc#ay 2000.

[22] M. Fullmer and S. Romig. The OSU Flowtools Package arst&Netflow Logs. IProceedings of the 2000 USENIX LISA
ConferenceNew Orleans, LA, December 2000.

[23] X.Geng and A. B. Whinston. Defeating Distributed DémiBService AttacksIT Professional2(4):36—41, July 2000.

[24] V.D. Gligor. A Note on the Denial of Service Problem.Rnoceedings of the 1983 IEEE Symposium on Security and@riva
Oakland, CA, December 1983.

[25] V.D. Gligor. Guaranteeing Access in Spite of DistribditService-Flooding Attacks. Froceedings of the Security Protocols
Workshop Sidney Sussex College, Cambridge, UK, April 2003. Sprifdgelag.

41

[26]

[27]
(28]

[29]

[30]
[31]

[32]

[33]
[34]

[35]

[36]
[37]

[38]
[39]
[40]
[41]
[42]
[43]

[44]
[45]
[46]

[47]
[48]
[49]
[50]

[51]
[52]
[53]

[54]
[55]

[56]
[57]

[58]
[59]
[60]

[61]

J. Green, D. Marchette, S. Northcutt, and B. Ralph. gsial Techniques for Detecting Coordinated Attacks and & oln
Proceedings of USENIX Workshop on Intrusion Detection aethvdrk Monitoring Santa Clara, California, April 1999.

NSS Group. Intrusion Prevention System (IPS) Group. Tretsp://www.nss.co.uk/ips/edition2/fortinet/, 2005.

K. Hafner and J. Markoff Cyberpunk: Outlaws and Hackers on the Computer Frontgimon and Scuster, New York, NY,
1991.

H. M. Heys and S. E. Tavares. On the Security of the CASTrigstion Algorithm. InProceedings of the Canadian
Conference on Electrical and Computer Engineeyipgges 332—-335, Halifax, Nova Scotia, Canada, Sep. 1994.

Fortinet Inc. Intrusion Prevention Systeiveb SiteMay 2005.

Computer Security Institute and Federal Bureau of $tigation. 2000 CSI/FBI Computer Crime and Security Survey
Computer Security Institute publicatipMarch 2000.

F. Kargl, J. Maier, and M. Weber. Protecting Web Serfmm Distributed Denial of Service Attacks. Rroceedings of 10th
International World Wide Web Conferendéong-Kong, China, May 2001.

ICSA Lab. Intrusion Prevention System (IPS) Test. #ttpvw.icsalabs.com/, 2005.

J. Leiwo, P. Nikander, and T. Aura. Towards Network Berif Service Resistant Protocols. Rroceedings of the 15th
International Information Security Conferendéew York, NY, August 2000.

J. Li, J. Mirkovic, M. Wang, P. Reiher, and L. Zhang. SAV&ource Address Validity Enforcement Protocol Aroceedings
of the IEEE INFOCOM International Conferenddew York, NY, June 2002.

R. Love. Linux Kernel DevelopmenDeveloper’s Library Sams Publishing/Novel, second edit2005.

R. Mahajan, S. Bellovin, S. Floyd, V. Paxson, and S. &kenControlling High Bandwidth Aggregates in the NetwodCM
Computer Communications Revie32(3), July 2002.

G. R. Malan, D. Watson, F. Jahanian, and P. Howell. Tpartsand Application Protocol Scrubbing. Rroceedings of the
INFOCOM International Conference (3)ages 1381-1390, Tel-Aviv, Israel, March 2000.

C. Meadows. A Formal Framework and Evaluation MethadNetwork Denial of Service. IiProceedings of the 12th IEEE
Computer Security Foundations Workshdfordano, Italy, June 1999.

J. Mirkovic, S. Dietrich, D. Dittrich, and P. Reihemternet Denial of Service: Attack and Defense MechanisRrentice
Hall, ISBN: 0-13-147573-i, 2005.

J. Mirkovic, G. Prier, and P. Reiher. Attacking DDoSla tSource. IfProceedings of the 10th IEEE International Conference
on Network ProtocolsParis, France, November 2002.

D. Moore, G. Voelker, and S. Savage. Inferring InterDenial-of-Service Activity. InProceedings of the 2001 USENIX
Security SymposiuwWashington, D.C., Aug. 2001.

R. Naraine. Massive DDoS Attack Hit DNS Root Serverhttp://www.esecurityplanet.com/ trends/ article/ 07350
1486981,00.htmiOctober 2002.

R. Needham. Denial of Service: An Examp@ommunications of the ACN7(11):42—-47, November 1994.
Fox News. Powerful Attack Cripples Internditttp://www.foxnews.com/story /0,2933,66438,00.hémtil 2003.

K. Park and H. Lee. On the Effectiveness of Route-Basstké Filtering for Distributed DoS Attack Prevention inviRw-
Law Internets. IlProceedings of ACM SIGCOMM Conferen&an Diego, CA, August 2001.

M. Roesch. Snort — Lightweight Intrusion Detection fdetworks. INUSENIX 13-th Systems Administration Conference —
LISA'99, Seattle, WA, 1999.

S. Savage, D. Wetherall, A. Karlin, and T. Anderson.diical Network Support for IP Traceback. Rroceedings of the 2000
ACM SIG-COMM Conferen¢@ages 295-306, Stockholm, Sweden, August 2000.

B. Schneier.Applied Cryptography: Protocols, Algorithms, and Souraad€ in C (2nd Edition) John Wiley & Sons, Inc.,
New York, 1996.

C. Schuba, I. Krsul, M. Kuhn, G. Spafford, A. Sundaramd &. Zamboni. Analysis of a Denial of Service Attack on TCP.
In Proceedings of the 1997 IEEE Symposium on Security and &rilvéay 1997.

Packet Storm Security. Wet Sitbttp://packetstormsecurity.cqQra005.
D. D. Sleator and R. E. Tarjan. Self-Adjusting BinaryaBeh TreesJournal of the ACM32(3):652—686, 1985.

D. Song and A. Perrig. Advanced and Authenticated Magkschemes for IP Traceback. Pmoceedings of the 2001 IEEE
INFOCOM ConferenceAnchorage, AK, April 2001.

O. Spatscheck and L. Peterson. Defending Against Dafi&ervice Attacks in Scout. IfProceedings of the 1999
USENIX/ACM Symposium on Operating System Design and Iraptation pages 59-72, February 1999.

S. M. Specht and R. B. Lee. Distributed Denial of Servitaxonomies of Attacks, Tools, and Countermeasurefntarna-
tional Workshop on Security in Parallel and Distributed ®yss pages 543-550, San Francisco , CA, September 2004.

L. Spitzner.Honeypots: Tracking Hacker®\ddison Wesley, ISBN: 0321108957, 2002.

R. Stone. CenterTrack: An IP Overlay Network for TraukiDoS Floods. IProceedings of the 2000 USENIX Security
Symposiumpages 199-212, Denver, CO, July 2000.

Cisco Systems. Unicast Reverse Path ForwardBigco I0S Documentatioiay 1999.
Tripwire. Tripwire for Servershttp://www.tripwire.com/products/servers/

R. Vaughn and G. Evron. DNS Amplification Attack$ttp://www.isotf.org/news/DNS-Amplification-Attagkd, March
2006.

P. Vixie. Extension Mechanisms for DNS (EDNS@)ternet Engineering Task Forcé&ugust 1999.

42

[62]

[63]

[64]

[65]
[66]

X. Wang, D. S. Reeves, S. F. Wu, and J. Yuill. Sleepy Wategk Tracing: An Active Network-Based Intrusion Response
Framework. InProceedings of the IFIP TC11 Sixteenth Annual Working Genfi2 on Information Security: Trusted Infor-
mation: The New Decade Challengmges 369-384, 2001.

B. Waters, A. Juels, J. A. Halderman, and E. W. Feltenw iiéient Puzzle Outsourcing Techniques fro DoS Resistahte.
Proceedings of the 11th ACM Conference on Computer and Coinations Security (CCS’'04pages 246—256, Washington,
DC, October 2004.

N. Weiler. Honeypots for Distributed Denial of Servide Proceedings of Eleventh IEEE International Workshop ontiing
Technologies: Infrastructure for Collaborative Enterpes, 2002pages 109-114, 2002.

Wired.com. Yahoo on Trail of Site Hackersttp://www.wired.com /news/business /0,1367,34224t010. May 2003.

J. Yan, S. Early, and R. Anderson. The XenoService — Aristed Defeat for Distributed Denial of Service. Pnoceedings
of the 3rd Information Survivability Workshop (ISW’'08)pston, USA, October 2000.

43

