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Wegner and Eberbach [Wegner, P. and Eberbach, E. (2004) New Models of

Computation. Computer Journal, 47, 4-9.] have argued that there are fundamental

limitations to Turing Machines as a foundation of computability and that these can

be overcome by so-called superTuring models such as interaction machines, the

mcalculus and the $-calculus. In this paper we contest the Wegner and Eberbach
claims.

1. INTRODUCTION

The concept of a Turing machine[1] founded Computer
Science as we know it today. Turing’s insightful
characterisation of Hilbert’s Entscheidungsproblem
formalised computation in the abstract, and enabled its
very practical realisation in the digital computers that
underpin contemporary society. In a Kuhnian sense[2],
the Turing machine (TM) has been the dominant
paradigm for Computer Science for 70 years: Ekdahl[3]
likens an attack on it to a “challenge to the second law
of thermodynamics”.

The roots of Turing’s work lie in debates about
the notion of computability in the pre-computer age.
Just before the Second World War, in an outstanding
period of serendipity, Turing, Church[4] and Kleene[5]
all developed independent notions of computability
(i.e.  TMs, the A-calculus and recursive function
theory) which were quickly demonstrated to be formally
equivalent. These seminal results form the basis for the
Church-Turing Thesis that all notions of computability
will be equivalent. Until now, the Church-Turing Thesis
has remained unshaken. In particular, it has long been
known that the Thesis holds for the von Neumann
architecture of everyday digital computers, enabling the
application of a profound body of theory to real-world
computing.

*A short version of this paper appeared as Michaelson, G.
and Cockshott, P. (2006) Constraints on Hypercomputation.
Beckmann, A., Berger, U., Lowe, B., and Tucker, J. V.
(eds.), Logical Approaches to Computational Barriers: Second
Conference on Computability in Europe, CiE 2006, Swansea,
UK, June/July, pp. 378-387, LNCS 3988, Springer.

The classic conception of computability envisages an
all embracing space of problems. Within this space it
is usual to distinguish those problems with solutions
which are effectively computable from those which are
not effectively computable. A central concern of these
pre-computer Mathematical Logicians was to formalise
precisely this concept of effective computation. For
Church, this is a matter of definition, explicitly
identifying effective calculability with recursive or
lambda-definable functions over the positive integers.
Church states that:

If this interpretation or some similar one is not
allowed it is difficult to see how the notion of an
algorithm can be given any exact meaning at all.(
4] p356)

Turing subsequently outlined a proof of the equivalence
of his notion of “computability” with Church’s
“effective calculability”.

All three formulations are based on systems of
rules for manipulating symbols with procedures for
their application. However, a fundamental distinction
of Turing’s approach is that he identifies a human-
independent mechanism to embody his procedure, by
explicit analogy with a human being;:

We may compare a man in the process of computing
a real number to a machine which is only capable of
a finite number of conditions... ([1] Section 1).

In a 1939 paper discussing the unity of these different
approaches, Turing is explicit about the mechanical
nature of effective calculation:
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A function is said to be “effectively calculable” if
its values can be found by some purely mechanical
process ... We may take this statement literally,
understanding by a purely mechanical process one
which may be carried out by a machine. It is
possible to give a mathematical description, in a
certain normal form, of the structures of these
machines. ([6] p166).

In a late paper he makes the same point with
reference to digital computers:

The idea behind digital computers may be explained
by saying that these machines are intended to carry
out any operations which could be done by a human
computer. ([7]Section 4).

In contrast, for Church and Kleene the presence of a
human mathematician that applies the rules seems to
be implicit. Nonetheless, it is clear that the ability to
give an explicit procedure for applying rules to symbols
and to physically realise these procedures, whether in a
machine or in a mathematician with pencil and paper,
was central to all three conceptions of effectiveness. The
crucial corollary is that a computation which is not
physically realisable is not effective. We will develop
these themes in more detail below.

2. HOW MIGHT THE TM PARADIGM BE
DISPLACED?

2.1. Expressive power, meaning and effective
computation

Much of our argument is concerned with properties
of formal systems for characterising computations. In
particular, we shall often refer to the expressive power
of a system. It is important to clarify the differences
between what can be expressed in a system, whether
or not such expressions are meaningful, and if they
are meaningful whether or not they may be calculated
effectively.

For example, Russell’s paradox formalises in predi-
cate calculus the set of all sets which are not members
of themselves. The formula is self-contradictory so one
might say that it is meaningless. However, the formula
translates into an apparent algorithm for an equivalent
file system directory paradox which seeks to construct
the directory of directories which do not have links to
themselves:

create empty directory of directories D
REPEAT
D’ :=D
FOR each directory d reachable from
the filing system root
IF d does not have a link to itself AND
d is not in D THEN
add d to D
ELSE

IF d is in D THEN
remove d from D
UNTIL D=D’ i.e. D hasn’t changed

This “algorithm” will, after the first pass, repeatedly
add D to itself and then remove it from itself. It does
not depend on an infinite memory or an infinite number
of processes. It is clearly implementable in an arbitrary
shell script and so appears to be meaningful in so far
as it does describe a computation, but the computation
never terminates and so is not effective.

Hayes and Jones[8] have argued that there is
a clear distinction between expressive power and
implementability. In specification notations like Z
and VDM (Vienna Definition Method), it is possible to
specify computations that are not effective, in particular
those involving the unbounded traversal of infinite
domains. Hence in general, they argue, specifications
are not necessarily executable.

We note here that such specification notations are
based essentially on set theoretic predicate calculus,
typically embodying recursive function theory and are
of equivalent expressive power to TMs or A-calculus.
Furthermore, infinitary specifications that characterise
semi-decidable decision procedures may be realisable
as TMs, which may not halt and so may or may not
consume infinite resources.

As we shall see, many of the claims made by Wegner
and Eberbach depend on the ability of particular
systems to express unbounded traversal of infinite
domains. However, the ability to express such
requirements does not mean that they are meaningful
or effectively calculable.

2.2. TM overview

We do not intend here to give thorough accounts of
computability theory or of TMs: for more detail see
Davis’s classic text [9]. Rather, we will now summarise
salient points to which we return below.

A TM may be thought of as a machine with a
hardwired set of instructions and a record of its current
state. It has a read/write head which can inspect
and modify a linear tape, inscribed with symbols,
and of indeterminate length in both directions. Each
instruction is a rewrite rule which specifies that for a
given state St,q and input symbol Sy.4, some new
state Stpew 1S to be entered, the old symbol is to be
changed to a new symbol Sy, and the tape is to be
moved one symbol in either a left or right direction Dir:

(Stolda Syold) - (Stnewa Synewa Dl’f’)

Conventionally, such instructions are encoded as
quintuplet of the form:

(Stolda Syold7 Stnewa Synewa Dl’f’)

A TM is started in an initial state over some designated
first symbol on the tape. It then repeatedly finds an
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instruction corresponding to the corresponding state
and symbol, changes the state and symbol, and moves
the tape in the designated direction. If a terminating
state is reached then the TM halts. If no matching
instruction can be found then the TM fails.

Note that the tape for a TM that halts is finite in
length, as terminating execution takes a finite number
of steps which can only access at most that number
of sequential tape positions. However, because the
termination of arbitrary TMs over arbitrary initial
tapes is undecidable, as discussed below, the required
length of tape for a given computation is, in general, not
knowable in advance. Hence a TM tape is unbounded,
rather than infinite as it is often termed.

2.3. Equivalence, reduction and the universal
™™

One of the engaging features of Turing’s elaboration of
TMs is the deployment of simple encodings, reductions
and constructions in establishing their properties,
especially to demonstrate the equivalence of apparently
more complex TM formulations with the original
conception. In particular, it is straightforward to
demonstrate that:

e a TM machine with multiple tapes can be reduced
to an equivalent TM with a single tape;

e a non-deterministic TM (i.e. a TM where several
quintuplets may apply for a given state and
input symbol) can be reduced to an equivalent
deterministic TM.

Turing showed that it is possible to formalise TMs
themselves as TMs; that is, TM notation may be used
as its own meta-language. Thus, a Universal Turing
Machine (UTM) is a TM which given a tape describing
a second TM and its initial tape, will perform the same
effective computation as that second TM on that tape.
Suppose we write T'M;(T;) to mean TM ¢ started on
tape j. Suppose + is tape concatenation!. Then:

UTM(TM; +T;) = TM(T})

Turing suggested that such self-encoding was a strong
indication that TMs captured a most general sense of
computation. Subsequently, this has become accepted
as one hallmark for any theory that is claimed to
characterise effective computation.

2.4. Decision procedures, undecidability and
canonical exemplars

A fundamental motivation for developing TMs was for
use in characterising problems as solvable or unsolvable.
If an instance of a problem can be expressed as a
TM and tape, then the TM is said to encode the
corresponding decision procedure. If that TM will
terminate with a solution after a finite number of

Iwhich introduces appropriate separation symbols

execution steps then the problem is said to be decidable.
If it is not possible to construct such a TM then the
problem is said to be undecidable. If a TM can be
constructed but it cannot be determined by computable
means whether or not it will terminate then the problem
is said to be semi-decidable.

In the Church/Kleene formulation, decidable prob-
lems are those characterised by general recursive func-
tions which always halt, where semi-decidable prob-
lems are those characterised by partial recursive func-
tions which may not halt. Note that partial recursive
functions have equivalent TMs but these TMs may not
embody effective computations: an effective computa-
tion is known to halt but the TM for a partial recursive
function may not.

Given that the execution of any TM may be
characterised through a UTM and an encoding of
that TM, it seems reasonable to speculate that it
might be possible to elaborate a decision procedure
to determine whether or not an arbitrary TM would
terminate when started over an arbitrary tape. In
an elegant self-referential construction, Turing showed
that positing a general TM to decide termination is
inherently contradictory. Hence, in proving that the
Halting Problem is undecidable, Turing established
a fundamental limitation to TMs, and to effective
computation.

The Halting Problem has become a canonical
exemplar of undecidability: if any other problem is
reducible to an instance of the Halting Problem then it
must be undecidable. Thus, it may be shown that there
is no decision procedure to determine if two arbitrary
TMs are equivalent in the sense of performing the same
effective computation.

The technique of reducing problems to a canonical
exemplar is also central to complexity theory, another
heir of Turing’s work. The complexity of an algorithm
may be characterised in terms of the time and space
behaviour of the TM class to which it belongs. In
particular, an algorithm is said to be P if it belongs
to the class of TMs which will compute a solution in
polynomial time. Alternatively, an algorithm is said
to be NP if it belongs to the class of TMs which will
compute a solution in polynomial time given an oracle.

Oracles are essentially entities which can somehow
correctly generate some fundamental property of a
problem. It is important to note that oracles are not
effectively calculable. In[6], Turing defines an oracle
as “an unspecified means of solving number-theoretic
problems” (p172). He goes on to say that: “We shall not
go any further into the nature of this oracle apart from
saying that it cannot be a machine.”. Turing defines an
o-machine as TM augmented with an oracle and briefly
outlines a proof that o-machines cannot solve their own
Halting Problem.

It is an open question whether the classes of P
and NP algorithms are equivalent. However, Cook[10]
established that it is possible to identify NP Complete
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(NPC) algorithms for which the construction of an
equivalent P algorithm would imply that all NP
algorithms have equivalent P algorithms. In particular,
he proved that determining the satisfiability of sets of
boolean equations (SAT) is a canonical NPC algorithm,
and that any algorithm which can be reduced to an
instance of SAT is also NP. From our perspective, if
P and NP were equivalent then some oracles could
be reduced to TMs i.e some problems which were
thought to involve non-effectively computable steps
would become amenable to effective computation.
Where previously an oracle was required to enable the
TM to complete the computation in polynomial time, it
would now be possible to replace it with a polynomial
time TM.

2.5. Displacing the Church-Turing Thesis

We are now in a position to discuss what might be
required to overthrow the Church-Turing Thesis, that
is to show conclusively that some new characterisation
of computability is more powerful than all those
already known, in particular TMs. We must be clear
from the outset that we regard challenges to Church-
Turing (C-T) as not only perfectly legitimate but
highly desirable. In general, substantive challenges to
established theories force their acolytes to re-examine
basic tenets that until then have been complacently
unquestioned, in turn reinvigorating those theories
where they are not overthrown. In particular, the
elaboration of new systems that transcend all known
models of computation would have truly revolutionary
implications for computing theory and practise, in
principle enabling us to approach fundamental problems
currently thought to be unassailable.

However, this places a high onus on these mounting
such challenges to provide convincing evidence for their
claims. Computer Science, if not an oxymoron, is
presumably a species of normal science [2] which slowly
accretes new self-validating knowledges in its own
terms, without worrying too much about apparently
minor discrepancies. Thus a successful challenge must
present new results that are so bothersome that even the
most pig-headed proponents of the old order, amongst
whom we count ourselves in this case, are forced of
necessity to reconsider their stance. So what might such
results look like?

In general, a demonstration that a new system is more
powerful than a C-T system involves showing that while
all terms of some C-T system can be reduced to terms
of the new system, there are terms of the new system
which cannot be reduced to terms of that C-T system
i.e the new system has greater expressive power than
that C-T system and hence of any C-T system 2. More

31t would be truly astonishing if a new system were
demonstrated whose terms could not be reduced to those of a C-T
system i.e. the new system and C-T systems had incomparable
expressive power.

concretely, we think that requirements for a new system
to conclusively transcend C-T are, in increasing order
of strength:

(i) demonstration that some problem known to be
semi-decidable in a C-T system is decidable in the
new system;

(ii) demonstration that some problem known to be
undecidable in a C-T system is semi-decidable in
the new system;

(iii) demonstration that some problem known to be
undecidable in a C-T system is decidable in the
new system;

(iv) characterisations of classes of problems corre-
sponding to (i)-(iii);

(v) canonical exemplars for classes of problems
corresponding to (i)-(iii).

Above all, we require that the new system actually
encompasses effective computation; that is, that it can
be physically realised in some concrete machine, be
it an analytic engine or a human with a slate and
chalk. While we are not unduly troubled by systems
that require unbounded resources such as an unlimited
TM tape, we reject systems whose material realisations
conflict with the laws of physics, or which require
actualised infinities as steps in the calculation process.

Note that in the following discussion of Wegner and
Eberbach’s claims, we do not systematically refer to
these requirements. However, we will return to them in
our summary in the final Conclusion section.

3. PHYSICAL REALISM AND
COMPUTATION

Turing marks what Bachelard and Althusser[11] termed
an Epistemological break in the history of the sciences.
At once the problematic of Hilbertian rationalism is
abandoned [12] and at the same time the Platonic view
of mathematics is displaced by a materialist view.

A key point about the Universal Computers proposed
by Turing is that they are material apparatuses which
operate by finite means. Turing assumes that the
computable numbers are those that are computable by
finite machines, and initially justifies this only by saying
that the memory of a human computer is necessarily
limited. By itself this is not entirely germane, since
the human mathematician has paper as an aide memoir
and the tape of the TM is explicitly introduced as an
analogy with the squared paper of the mathematician.

Computing is normally done by writing certain
symbols on paper. We may suppose this paper
is divided into squares like a child’s arithmetic
book. In elementary arithmetic the two-dimensional
character of the paper is sometimes used. But such
a use is always avoidable, and I think that it will be
agreed that the two-dimensional character of paper
is no essential of computation. I assume then that
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the computation is carried out on one-dimensional
paper, i.e. on a tape divided into squares.([1] section
9)

However Turing is careful to construct his machine
descriptions in such a way as to ensure that the machine
operates entirely by finite means and uses no techniques
that are physically implausible. His basic proposition
remained that : “computable numbers may be described
briefly as the real numbers whose expressions as a
decimal are calculable by finite means.”

Turing thus rules out any consideration that
computation by infinite means is a serious proposition.
In this he follows Aristotle ([13] Book III, chap 6)
in allowing potential but not actual infinities. If
infinite computation were to be allowed, then the
limitations introduced by the Turing machine would not
apply. However, a number of proposals for superTuring
computation rest on the appeal of the infinite.

Copeland[14] proposes the idea of accelerating Turing
machines whose operation rate increases exponentially
so that if the first operation were performed in a
microsecond, the next would be done in % us, the third
in ius, etc. The result would be that within a finite
interval it would be able to perform an infinite number
of steps. This obviously evades Turing’s stipulation
that computable numbers must be calculable by finite
means, but at the same time evades all possibility
of physical realisation. A computing machine must
transfer information between its component parts in
order to perform an operation. If the time for each
operation is repeatedly halved, then one soon reaches
the point at which signals travelling at the speed of
light have insufficient time to propagate from one part
to another within an operation step. Beyond this speed
the machine could not function. Hamkins[15] discusses
what could be computed on Turing machines if they
were allowed to operate for an infinite time, but Turing
ruled this out with obvious good reason.

A theme proposed by some advocates of Super-Turing
computation is the use of analogue computation over
real numbers. For a review see Copeland[16]. Copeland
sees these as being possible if one has available a
continuously variable physical quantity which he calls
‘charge’. Since he himself recognises that electric charge
is discrete, it is not clear how this notional charge
is ever to be physically realised. Indeed the idea
of being able to physically represent real numbers is
highly questionable in view of the quantum of action
h. This poses fundamental and finite limits on the
accuracy with which a physical system can approximate
real numbers. We will illustrate this with a concrete
example of a proposed super-Turing analogue computer
and show how the uncertainty principle will vitiate
its action. Our example is the machine proposed
by Bournez and Cosnard [17]. The basic concept
of this machine is to use two real valued variables
corresponding to the x, y coordinates of photons passing
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FIGURE 1. An analogue computer proposed by Bournez
and Cosnard. Reproduced from [17].

through plane P in Figure 1. Drawing on the work of
Moore and Koiran [18], they propose that successive
digits of the binary expansion of these real valued
coordinates could then be used to emulate the left and
right parts of a Turing machine tape. Bournez and
Cosnard argue that the machine could in addition be
used to simulate of a class two stack automata whose
computational power might exceed those of TMs.

Bournez and Cosnard show that if one had available
iterated real valued functional systems based on
piecewise affine transforms, such analogue automata
could be implemented. They then propose that a
system of mirrors as shown in Figure 1 would be able
to implement these piecewise functions: multiplication
by reals could be implemented by pairs of parabolic
mirrors, and translation by arrangements of planar
ones.

The problem with this design is that it assumes that
photons act like billiard balls but completely ignores
diffraction effects.

Any optical system has an irreducible diffraction
limited circle of confusion that is inversely proportional
to its aperture and proportional to its focal length and
the wavelength of the photons used. The angle to the
first off-center diffraction peak AO is given by

sin(ABO) = % (1)

where A is the aperture and A\ the wavelength. This
is a particular case of the uncertainty principle. By
constraining the position of the photon to be within the

THE COMPUTER JOURNAL VoL. 00 No. 0, 2005




v U Uihollu e 14 e Wo.e

aperture, we induce an uncertainty in its momentum
within the plane of the aperture.

To see what this implies, let us give some plausible
dimensions to the machine. Assume the aperture of
the mirrors in their system was 25mm and the path
length of a single pass through the system from the first
mirror shown in Figure 1 back to Plane P is 500mm.
Further assume that we use light with A = 0.5u. This
would give us a circle of confusion with a a radius
Af(ey)Mirror = 10p. If plane P had edges of 100mm,
then the optical path could resolve about 5000 distinct
points in each direction as possible values for f(x, y):
about 12 bits accuracy.

The dispersion Ay y)amirror accounts only for the
first pass through the apparatus. Let us look at the
uncertainty in z,y to start out with.

It is necessary to specify x, y to greater accuracy than
f(x,y) so that A, , < Af(ryy). Let us use a mask
with a circular hole to constrain the incoming photons
to be within a radius of less than 10u. Clearly this
constraint on the position of the photons amounts to an
initial aperture with a diameter of, let us say 10y, whose
diffraction cone would have a A© = 0.05 radians. After
passing through the full optical path, the uncertainty
in position due to the input aperture would then be
~ 25mm. Call this A, y)Mask(a,,,)- 1t is clear that in
this case Af(:Eﬁt/)Mask(Az,y) >> f(z,y)Mirror:

The more precisely we constrain x,y the more
uncertain will be the result f(x,y). Mirror Machines
of this class will achieve a limiting accuracy for a single
pass when Af(:Ly)Mirror + Af(:Eﬁt/)Mask(Az,y) < Ar,y-
From simple geometry this will come about when the
ratio Ay /L = A/ A, , so

Ay y~ VLA (2)

where L is the optical path length of the computation.
For the size of machine which we have assumed above,
this implies A, , = 500u. Its accuracy of representation
of the reals is thus less than 8 bits(= - logﬂﬁ%)),
hardly competitive with existing digital computers.

Remember too that for a Mirror Machine, the
evaluation of f(x,y) corresponds to a single step of
a Turing Machine program. As the number of steps n
grows so does the traversed optical path nL, and by
(2), the optimal initial aperture setting A, , will grow
as v/n. Each fourfold increase in the execution length of
the program, will reduce by 1 bit the accuracy to which
the machine can be set to compute.

To improve the angular accuracy of an optical
machine we have to increase its aperture. To add 1
bit to the accuracy of the machine would require us to
double all its linear dimensions, which would tend to
increase its mass by a factor of 8. The mass required to
perform a calculation to n bits of accuracy thus varies
as 23" for the mirror machine. For a von-Nuemann
machine implemented on silicon, the mass of the store
grows linearly with the bit accuracy of computation n

and the mass of the arithmetic unit grows as nlogn.
It thus follows that whilst the Mirror Machine might
be competitive with a digital computer for certain
low accuracy computations, for computations requiring
high accuracy and/or a large number of steps it will
be out-performed by the digital machine. This indeed,
was the fundamental historical reason that analogue
computers lost out to digital machines. Turing foresaw
in 1947 that this was likely to happen:

That the machine is digital however has a more
subtle significance. It means firstly that numbers
can be represented by strings of digits that can be
as long as one wishes. One can therefore work to
any desired degree of accuracy. This accuracy is
not obtained by more careful machining of parts,
control of temperature variations, and such means,
but by a slight increase in the amount of equipment
in the machine. To double the number of significant
figures, would involve increasing the amount of the
equipment by a factor definitely less than two, and
would also have some effect in increasing the time
taken over each job. This is in sharp contrast
with analogue machines, and continuous variable
machines such as the differential analyser, where
each additional decimal digit required necessitates
a complete redesign of the machine, and an increase
in the cost by as much as a factor of 10. [19]

In the case of the Mirror Machine, the limitation
on its accuracy is set by the wave/particle duality
of photons. Analogue computing systems based on
particles with real rest masses would be subject to
analogous limits, due in this case to de Broglie waves.

Thus :

(i) Any physically build-able analogue memory will
only approximate the reals.

(ii) Analogue storage of reals, will for high precision
work, always be outperformed in terms of device
economy by digital storage.

(iii) Physically build-able analogue computers can not
rely upon the availability of exact stored real
numbers to outperform Digital Computers.

Proposals to incorporate the full mathematical
abstraction of real numbers into computing devices
so as to allow them to outperform Turing machines
are physically implausible. Such proposed machines
are mathematical abstractions rather than practical
proposals.

For Turing, Computers were not mere mathematical
abstractions but concrete possibilities, which he
pursued in his designs for the Bombe at Bletchley
and ACE(Automatic Computing Engine) at the
National Physical Laboratory[19, 20]. Computing
Science has undergone explosive progress in the period
since Turing’s original paper which has synthesised
abstract computational theory with research into
possible physical implementations of digital computers.
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Enormous sustained research has developed successively
more effective generations of such machines. The
development of smaller and faster computers has
been a constant struggle towards the limits of
what is physically possible. One can not say in
advance how small or how fast we will eventually
be able to build computers, but we do know that
any effective computer we build will be bound
by the laws of physics. Landauer[21, 22] has
examined the fundamental thermodynamic limitations
of computation, and Deutsch[23] and Feynman[24,
25] opened up the new field of quantum computing
research. An important result obtained by Deutsch
was that although quantum machines could potentially
have higher parallelism than classical ones, they would
not extend effective computation beyond the recursive
functions.

Kieu [26] recently challenged Deutsch’s result, with
a proposal to solve Diophantine equations by means
of a quantum process. The basic idea is to prepare a
quantum system with a set of possible states mapped to
natural numbers and a Hamiltonian which encodes the
Diophantine equation. The system would be allowed
to adiabatically evolve to a ground state corresponding
to a solution to the equation. This proposal, however,
remains controversial. Critical responses include [27,
28, 29] and replies to these criticisms [30, 31]. Points
made by critics are:

(i) There is no guarantee that one can distinguish
between a system that has settled into a true
ground state or a ‘decoy’ false minimum.

(ii) One would need arbitrary high precision in energy
measurements.

(iii) The evolution time needed to reach the ground
state is unknown and in principle Turing uncom-
putable. One thus reproduces the halting problem
in a different form.

Claude and Pavlov [32, 33] have proposed a model of
hypercomputation similar in style to that of Kieu. Their
work focuses on the ‘Infinite Merchant’s Problem’,
which they argue is equivalent to the Halting Problem.
Whilst their work is interesting, it is not yet clear
whether they have an effective way of translating an
encoding of a TM into an instance of the Infinite
Merchant Problem that could be solved by their
proposals.

To conclude, appeals to infinity in new models
of computation seem to run up against fundamental
physical limits. In the discussion below we explore how
Wegner and Eberbach’s proposed super-Turing models
may also be subject to similar limitations.

4. WEGNER AND EBERBACH’S
SUPERTURING COMPUTERS

Wegner and Eberbach[34] assert that there are
fundamental limitations to the paradigmatic conception

of computation which are overcome by more recent
“superTuring” approaches. We will now summarise
their core arguments before exploring them in greater
detail.

Wegner and Eberbach draw heavily on the idea of
an algorithm as an essentially closed activity. That is,
while the TM realising an algorithm may manipulate an
unbounded memory, the initial memory configuration is
pre-given and may only be changed by the action of the
machine itself. Furthermore, an effective computation
may only consume a finite amount of the unbounded
memory and of time, the implication being that an
algorithm must terminate to be effective.

They say that the TM model is too weak to describe
the Internet, evolution or robotics. For the Internet,
web clients initiate interactions with servers without
any knowledge of the server history. The Internet
as a dynamic system of inputs and outputs, parallel
processes and communication nodes is outside the realm
of a static, sequential TM. Furthermore, TMs cannot
capture evolution because the solutions and algorithms
are changed in each generation and the solution search
is an infinite process. This does not depend on a finite or
infinite search space. Because evolutionary algorithms
are probabilistic the search may take an infinite number
of steps over a finite domain. Finally, robots interact
with non-computable environments which are more
complex than the robots themselves.

Wegner and Eberbach claim that there is a class
of superTuring computations (sTC) which are a
superset of TM computations. That is sTC includes
computations which are not realisable by a TM. A
superTuring computer is “any system or device which
can carry out superTuring computation”.

Most significantly, Wegner and Eberbach say that
it is not possible to describe all computations by
algorithms.  Thus they do not accept the classic
equation of algorithms and effective computations.

They go on to argue that there are three known
systems which are capable of sTC: interaction machines
(IM), the m-calculus and the $-calculus. They give
discursive presentations of these systems and explore
why they transcend the TM.

5. INTERACTION MACHINES

Wegner and Eberbach refer to Interaction Machines as
a class of computer that is more powerful than the
Turing Machine. The latter, they claim, is restricted
by requiring all its inputs to appear on the tape prior
to the start of computation. Interaction machines
on the contrary can perform input output operations
to the environment in which they are situated. The
difference between Turing Machines and Interaction
Machines, they claim, corresponds to the technology
shift from mainframes to workstations. Interaction
Machines, whose canonical model is the Persistent
Turing Machine(PTM) of Goldin [35], are not limited to

THE COMPUTER JOURNAL VoL. 00 No. 0, 2005




o U Uihollu e 14 e Wo.e

a pre-given finite input tape, but can handle potentially
infinite input streams.

This argument was originally advanced by Wegner
in a previous publication[36], some of whose main
arguments have been criticised by Ekdahl[3]. Rather
than rehearse Ekdahl’s critique we shall focus on
some additional weaknesses of Wegner and Eberbach’s
claims.

5.1. Turing’s own views

As is well known, Turing’s contribution to computer
science did not stop with the Turing Machine. Besides
his work on cryptography, he played a seminal role
in the establishment of Artificial Intelligence research.
His Turing Test for machine intelligence is probably as
well known as his original proposal for the Universal
Computer. He proposed in a very readable paper[7],
that a computer could be considered intelligent if it
could fool a human observer into thinking they were
interacting with another human being. It is clear that
his putative intelligent machine would be an Interaction
Machine in Wegner’s sense. Rather than being cut off
from the environment and working on a fixed tape,
it receives typed input and sends printed output to a
person.

Turing did not, however, find it necessary to
introduce a fundamental new class of computing
machine for this gedanken experiment. He is quite
specific that the machine to be used is a digital
computer and goes on to explain just what he means
by such a machine:

The idea behind digital computers may be
explained by saying that these machines are
intended to carry out any operations which could be
done by a human computer. The human computer
is supposed to be following fixed rules; he has no
authority to deviate from them in any detail. We
may suppose that these rules are supplied in a book,
which is altered whenever he is put on to a new
job. He has also an unlimited supply of paper on
which he does his calculations. He may also do his
multiplications and additions on a ’desk machine’,
but this is not important. ([7] page 436)

This is of course a paraphrase of his description of
the computing machine in his 1936 paper[1] where he
explicitly models his machine on a person doing manual
calculations. The states of the machine correspond
to the finite number of states of mind of the human
mathematician and the tape corresponds to the squared
paper he uses. It is clear that Turing is talking about
the same general category of machine in 1950[7] as
he had in 1936[1]. With the practical experience of
work on the Manchester Mark 1 and the ACE behind
him, he speaks in more general terms of the computer
as being composed of (i) store, (ii) executive unit,
and (iii) control, and says that the store locations are

addressable rather than being purely sequential. He
says he is concerned with discrete state machines, and
that a special property of such digital computers was
their universality:

This special property of digital computers,
that they can mimic any discrete state machine,
is described by saying that they are universal
machines. The existence of machines with this
property has the important consequence that,
considerations of speed apart, it is unnecessary
to design various new machines to do various
computing processes. They can all be done with
one digital computer, suitably programmed for each
case. It will be seen that as a consequence of this
all digital computers are in a sense equivalent.([7]
p442)

This is clearly a recapitulation of the argument in
section 6 of his 1936 paper[1] where he introduced the
idea of the Universal Computer. Turing argued that
such machines were capable of learning and that with a
suitable small generalised learning program and enough
teaching, then the computer would attain artificial
intelligence.

5.2. Equivalence of Interaction Machines and
Turing Machines

It seems that Turing considered that the class of
machines which he had introduced in 1936[1] had all
of the properties that Wegner and Goldin were later
to claim for their Interaction Machines and Persistent
Turing Machines. He may of course have been mistaken,
but we think that Turing’s confidence was well founded.
It can be demonstrated that Turing Machines are
powerful enough for the task.

Consider first a digital computer interacting in the
manner foreseen by Turing in his 1950 paper[7], with
teletype input/output. The teletypes of Turing’s day
had the capability of capturing keystrokes to paper
tape, or of accepting paper tape input instead of
keystrokes. Suppose then we have a computer initialised
with a simple learning program following which it
acquires more sophisticated behaviour as a result of
being ‘taught’. As the computer is taught we record
every keystroke onto paper tape.

Suppose we initialise a second identical computer
with the same program and, at the end of the first
computer’s period of interaction, we give to the second
machine as an input the tape on which we have recorded
the all the data fed to the first machine. With the input
channel of the second machine connected to the tape
reader it then evolves through the same set of states
and produce the same outputs as the original machine
did. The difference between interactive input from a
teletype and tape input as used by Turing in 1936 is
essentially trivial. By a simple recording mechanism
one can emulate the behaviour of an interactive machine
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on another tape-input computer. This has been a
widely used and practical test procedure.

In his 1950 paper|[7] Turing clearly assumes that
his computer has a persistent or long term memory.
Wegner and Goldin Persistent TMs allow a machine
to retain data on a tape so that it can be used
in subsequent computations. They claim that the
idea of a persistent store was absent in TMs.
However, persistence only became an issue because the
combination of volatile semi-conductor store and first
generation operating systems imposed on programmers
a sharp pragmatic distinction between persistent disk
store and volatile random access memory[37, 38]. This
distinction had not been present in a first generation
of magnetic core based von-Neumann machines, and
was not included in the basic computational models of
Turing and von-Neumann.

A small modification to the program of a conventional
TM will transform it into a PTM. Like Goldin we will
assume a 3 tape TM, M;, with one tape T; purely for
input, one tape Ty purely for output and one tape T3
used for working calculations. We assume that tapes
Ty,T5 are unidirectional, T3 is bidirectional. Such a
machine can be emulated on Turing’s original proposal
by a suitable interleaving scheme on its single tape.

M has a distinguished start state Sy and a halt state
Sp. On being set to work it either goes into some
non-terminating computation or eventually outputs a
distinguished termination symbol 7 to Ts, branches to
state S, and stops. We assume that all branches to
Sy are from a state that outputs 7. Once 7 has been
output, the sequence of characters on T up to to 7 are
the number computed by the machine.

We now construct a new machine M, from M; as
follows: replace all branches to Sy, with branches to Sg.
From here it will start reading in further characters from
T and may again evolve to a state where it outputs a
further 7 on T5.

Machine Ms now behaves as one of Goldin’s PTMs.
It has available to it the persisting results of previous
computation on T3 and these results will condition
subsequent computations. It is still a classic TM, but
a non-terminating one. It follows that PTMs, and thus
Interaction Machines of which they are the canonical
example, are a sub-class of TM programs and do not
represent a new model of computation.

5.3. Thermodynamic considerations

For Wegner and Eberbach, there is a fundamental
difference between starting a TM over a given
tape that is only changed by that TM, and where
additional input comes from the environment. This
alleged distinction may be further explored using an
algorithmic information theoretic argument.

Chaitin introduced algorithmic information theory
[39] according to which the entropy of a binary number
x is bounded by the number of bits of the shortest TM

program that will output z. From this standpoint there
is a pragmatic difference between an isolated TM and
one that can accept input from the environment.

A modern computer is initially built with a startup
ROM and a blank disk drive. The ROM typically
contains a BIOS, but can be replaced by any other
program that will fit on the chip. Let us suppose,
realistically, that the ROM chip contains 2'° bits.
Suppose that instead of a BIOS, we put in a ROM that
performs some predefined algorithm, possibly using
disk I/0, and in the process of computation outputs
a stream of characters from the serial port. Chaitin’s
result indicates that if the program performs no input
operations from the keyboard, mouse, CD etc, the
entropy of the information on disk plus the information
output on the serial line could not exceed 2'? 41, where
the additional 1 bit encodes whether the initial blank
state of the disk was a 1 or a 0. If the disk was much
bigger than the boot chip, it could, for example, never
really be randomised by the boot chip.

A practical BIOS chip will attempt to read input
from keyboards, communications lines, or CD, starting
a process that allows the disk to gain entropy from
external sources. We know from experience that disks
become cluttered and entropic over time. The external
world acts as an entropy source causing the disk entropy
to rise in conformance with thermodynamic laws.

Thus, we can formulate the interaction process within
Chaitin’s framework which is in turn grounded in TM
theory. This again implies that Interaction Machines
are not a new class of computer.

6. mCALCULUS

Wegner and Eberbach give the m-calculus as another
of their three superTuring computational models. The
m-calculus is not a model of computation in the same
sense as the TM: there is a difference in level. The
TM is a specification of a material apparatus that is
buildable. Calculi are rules for the manipulation of
strings of symbols and these rules will not do any
calculations unless there is some material apparatus to
interpret them. Leave a book on the A-calculus on a
shelf along with a sheet of paper containing a formula
in the A-calculus and nothing will happen. Bring along
a mathematician, give them the book and the formula
and, given enough paper and pencil, the ensemble can
compute. Alternatively, feed the suitably expressed A-
calculus formula into a computer with a Lisp interpreter
and it will evaluate.

One has to ask if there exists any possible physical
apparatus that can implement the w-calculus and,
if there does, is a conventional computer such an
apparatus. Since it is possible to write a conventional
computer program that will apply the formal term re-
write rules of the w-calculus to strings of characters
representing terms in the calculus then it would appear
that the m-calculus can have no greater computational
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power than the von Neumann computer on which the
program runs. The language Pict[40] is an example
of this. Since it is also possible to implement the -
calculus in the m-calculus[41] one can conclude that
the m-calculus is just one more of the growing family
of computational models that are Turing Machine
equivalent.

A possible source of confusion is the terminology
used to describe the m-calculus - channels, processes,
evolution - which imply that one is talking about
physically separate but communicating entities evolving
in space/time. The m-calculus is intended to be used as
a language to describe communicating physically mobile
computing machines such as cell phones and their
underlying communications networks. As a result there
is always a tension between what is strictly laid down
as the rules of a calculus and the rather less specific
physical system that is suggested by the language used
to talk about the calculus.

One has to be very careful before accepting that the
existence of the m-calculus as a formal system implies a
physically realisable distributed computing apparatus.

Consider two of the primitives: synchronisation
and mobile channels. We will argue that each of
these faces limits to their physical implementation
that prohibits the construction of a super-Turing
computational engine based on the the calculus.

6.1. Difficulties in implementing m-calculus
synchronisation

It is not clear that w-calculus synchronisation is, in its
general sense, physically realistic. First of all, it seems
to imply the instantaneous transmission of information,
that is faster than light communication, if the processes
are physically separated.

Furthermore, if the processors are in relative
motion, relativity theory shows that there can be no
unambiguous synchronisation shared by the different
moving processes. It thus follows that the processors
can not be physically mobile if they are to be
synchronised with at least 3 way synchronisation (see
[42] pp 25-26).

Suppose we have the following pi calculus terms

a = (av.Q) + (by-Rly)) (3)

B = (b2.9) + (ax.T[z]) (4)

In the above o and (3 are processes. The process
« tries to either output the value v on channel a or to
read from channel b into the variable y. The + operator
means non deterministic composition, so A + B means
that either A occurs or B occurs but not both. The
notation av means output v to a, whilst av would mean
input from a into v. If « succeeds in doing an output
on channel a it then evolves into the abstract process
@Q; if alternatively, it succeeds in doing an input from b

into y, then it evolves into the process R[y] which uses
the value y in some further computation.

We can place the two processes in parallel by using
the | operator for parallel process composition to form
a|f, which expands to:

(av.Q) + (by.R[y])|(b2.S) + (ax.T|x]) (5)

This should now evolve to

(QIT[v])or(S|R[2]) (6)

where either @ runs in parallel with T'[v] after the
communication on channel a or where S runs in parallel
with R[z] after the value z was transfered along channel
b from process (§ to process a. The key ideas here are:
processes, channels, synchronisation, parallel and non-
deterministic composition.

Suppose further that we attempt to implement
the synchronisation by a standard 3 wire handshake
wherein each channel is represented by:

rqgs request to send
ack acknowledge
d data

the protocol is :

Put:

(i) place data on d and assert rgs then wait for ack
(ii) on getting ack, negate rgs and remove data from
d
(iii) wait for ack to be negated

) wait for rgs, then latch data
(ii) assert ack

) wait for rgs to be negated

) negate ack

The two processes are shown in Figure 2, with lines
representing the wires used to implement the channel.
But instead of wires one could think of these as being
radio signals each at a different frequency. Let us
consider how the time evolution of the processes might
proceed. We will indicate times as tg, t1, ...

t, process « places data v on line d, and asserts rqs,

t1 process (3 places data z on line d; and asserts rqs,

to process [ gets the rqgs,

t3 process « gets the rqgsy

What happens now?

At time to process B has attempted to send on
channel b and has got a request to send from channel
a, so which of these should it act on?

If it responds to the rqs on a with an acknowledge
it will be committing itself to evolve to T[x] but
it also has an outstanding rqs on b. Suppose it
commits to T'[z] by sending ack,, then it can ignore
any further communications on channel b. This is
fine for process [ considered in isolation, but poses
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FIGURE 2. Two paradoxical processes.

problems for the other process. Since we are talking
about a general implementation strategy, one has to
assume that process « will follow the same rule. Thus
after getting the request to send on channel b, it too
will acknowledge, which means that it will commit
to continuation R[y]. The consequence is that we
have evolved to T[z]|R[y], but this is not a permitted
transition according to the m-calculus.

Suppose instead that 3 does not send an ack, but
instead gives priority to its outstanding request to send
on channel a. In this case we have to assume that
process a will likewise postpone transmission of acky,
since « is the mirror image of 3. It follows that neither
process will ever get an ack, so they will deadlock.

This was not just a reflection of an inadequacy of
the two stage handshake protocol. Since the two
processes are identical mirror images of one another,
any deterministic rule by which process 8 commits to
communication on one of the channels must cause a to
commit to the other channel and hence synchronisation
must fail. The argument from the processes a, 3 is a
variant of the Liar Paradox, but it is not a paradox
within the w-calculus itself. It only emerges as a
paradox once you introduce the constraints of relativity
theory prohibiting the instantaneous propagation of
information. Nor does abandoning determinism help.
If the commitment process is non-deterministic, then
on some occasions synchronisation will succeed, but
on other occasions the evolution of both processes will
follow the same rule, in which case synchronisation will
fail.

The arbitration problem is not insoluble. Suppose
there was a global arbitration machine. Each process
attempting a guarded non-deterministic fork could

inform the arbiter of the channel names and direction
of communication being tried. Then with knowledge
of all outstanding requests for reads and writes, it
would probably be possible for the arbiter to apply
the reduction rules of the calculus to resolve the
synchronisation. = However the use of the arbiter
machine as a tie breaker removes the parallelism that
we want from a distributed version of the calculus,
returning us to a sequential centralised evaluation of
a key part of the calculus. A worse loss of parallelism is
entailed by broadcast protocols such as Asynchronous
Byzantine Agreement[43].

In conclusion it is not possible to build a
reliable mechanism that will implement in a parallel
distributed fashion any arbitrary composition of -
calculus processes.

More tractable systems intellectually derived from
the m-calculus can be devised. The Arm calculus[44]
has no synchronisation, and its processes terminate
as soon as they output a message. This should
be implementable if restrictive. The Java library
for Grid computing Jn[45] does away with non-
deterministic guards on output but retains the ability
to transmit channels over channels. This provides
a practical tool for the parallelisation of algorithms
in a manner analogous to MPI(Message Passing
Interface)[46], PVM(Parallel Virtual Machine)[47, 48]
or IceT[49]. Parallelisation speeds up sequential code,
but it does not allow you to solve problems that are TM
uncomputable.

6.2. Difficulties in implementing channels

As with synchronisation, it is not clear how channels
may be implemented in terms of physical law. If one
has a physical network of processors which do not move
physically then one can connect them by wires or fibre
optic cables, but these

(i) only allow fixed point to point communication

(ii) are limited in terms of the number of physical
wires that can be fed into any given processing
unit. Indeed, the number of wires that can be
connected to a given chip has always been one
of the main limitations on computer chips and
remains a substantial technical challenge

Taking into account (i), it is clear that a system using
fixed point to point communication can only emulate
a system with dynamically created communications
channels by using multiplexing and forwarding of
messages. From the point of view of computational
models it implies that one would have to emulate the
m-calculus on the sort of parallel fixed link network that
can be described by CSP. Let us refer to a m-calculus
system emulated on a fixed link network as Il.p.

If we do not assume wires or optical fibres but
instead assume a broadcast network using radio waves
like GSM, then one can have physically mobile
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processes, but at the expense of removing simultaneous
overlapping communication. A system like GSM relies
on time multiplexing the radio packets so that in
fact only a small finite number of the processes can
send messages at any one instant - one process per
frequency slot. Of course, GSM relies on base stations
to forward packets along fixed point links, but a system
like Aloha used basically similar techniques without the
base stations.

It is evident that the 7-calculus can be used to reason
about the behaviour of, and protocols for, phones and
other computing devices using radio networks: such
problems were a motivation for its design. It would be
reasonable to accept that the behaviour of any physical,
wireless-linked, computer network can be described in
the m-calculus.

However it does not follow from this that there can
exist a physically constructable wireless network whose
evolution will directly emulate that of an arbitrary
term in the m-calculus. Because of the exponential
decay of signal strength with distance and the finite
bandwidth of the radio channel, there are limits to
the number of mobile agents that can simultaneously
engage in direct communication. One can allow indirect
communication by partitioning both the bandwidth and
the machines, setting aside one group of machines to
act as relays and dividing frequency slots between those
used by the relay machines and mobile machines. But
relying on indirect communication would amount to
emulating the m-calculus behaviour in Il style. Since
the number of directly communicating mobile processes
that can operate without relays is modest, and since
such a finite network of mobile processes could itself be
emulated Il.s, style on a finite fixed link network, the
computational power of physically realisable systems
programed in w-calculus will not exceed that of a
formalism like CSP which would render it equivalent
to other well known computational models including
Turing machines.

6.3. Wegner and Eberbach’s argument

Wegner and Eberbach’s argument for the super-Turing
capacity of the m-calculus rests on there being an
implied infinity of channels and an implied infinity
of processes. Taking into account the restrictions on
physical communications channels the implied infinity
could only be realised if one had an actual infinity
of fixed link computers. At this point we are in the
same situation as the Turing machine tape - a finite
but unbounded resource. For any actual calculation
a finite resource is used, but the size of this is not
specified in advance. = Wegner and Eberbach then
interpret ‘as many times as is needed’ in the definition of
replication in the calculus as meaning an actual infinity
of replication. From this they deduce that the calculus
could implement infinite arrays of cellular automata for

which they cite Garzon [50] to the effect that the calculi
are more powerful than TMs.
We undercut this argument at two points:

(i) We have shown that the synchronisation primitive
of the calculus is not physically realistic. The
modelling of cellular automata in the calculus rests
on this primitive.

(ii) The assumption of an infinite number of processes
implies an infinity of mobile channels, which are
also unimplementable.

We therefore conclude that whilst the m-calculus can be
practically implemented on a single computer, infinite
distributed implementations of the sort that Wegner
and Eberbach rely upon for their argument cannot be
implemented.

It is important to emphasise that, just as we are
untroubled by an unknown but bounded TM tape,
we have no concerns about the deployment of an
unknown but bounded number of processes in the 7-
calculus. However, Wegner and Eberbach are unclear
as to whether they mean this or a completed infinity of
processes, which we think physically impossible.

7. $-CALCULUS
7.1. Introduction

Eberbach’s $-calculus (“cost” calculus)[51, 52] is based
on a process algebra extended with cost operators.
The $-calculus draws heavily on the w-calculus and
on interaction machines: thus the critiques of these
above also apply to the $-calculus. However, Wegner
and Eberbach claim that: “The unique feature of the
$-calculus is that it provides a support for problem
solving by incrementally searching for solutions and
using cost to direct its search.”(p7). Furthermore:
“The $-calculus allows in a natural way to express
evolution.” (p7). Given the important role of evolution
as one of the domains that Wegner and Eberbach
claim transcends the Church-Turing paradigm, let us
first examine Eberbach’s argument that evolutionary
computing is not algorithmic before considering the $-
calculus itself in more detail.

7.2. Evolution and Effective Computation

In [53], Eberbach characterises an evolutionary algo-
rithm (EA) as involving the repeated selection from a
population under some selection operation for reproduc-
tion that introduces variations through mutation and
crossover. When some selection threshold is reached,
the final population is deemed to be optimal. We agree
with this characterisation but note that thus far it cor-
responds to Kleene’s unbounded minimisation i.e. gen-
eral recursion. Indeed, subsequently Eberbach states
that every EA can be encoded as a TM whose tape is
the initial population.
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Eberbach goes on to elaborate a hierarchy of EAs
and corresponding TMs. The Universal Evolutionary
Algorithm (UEA) consists of all possible pairs of EA
TMs and initial population tapes. An Evolutionary
Turing Machine (ETM) is a potentially infinite sequence
of pairs of EA TMs and population tapes, where each
pair was evolved in one generation from the previous
pair subject to a common fitness (selection) operator.

Eberbach claims that evolution is an infinite process
because the fitness operator is part of the TM and
evolves along with it. This seems unremarkable: it is
well understood that a Universal TM may execute a
TM that modifies its own encoding. Hence, the TM’s
termination condition may change and may never be
achieved.

Eberbach then makes the apparently stronger claim
that EAs are a superset of all algorithms but this is
either unremarkable or misleading. EAs are generalised
unbounded minimisation and so are expressible as
general recursion or TMs. Given that any effective
computation can be captured as a TM or through
general recursion, it seems plausible that any effective
computation can be evolved. However, it is not at
all clear how one would define a selection operator to
decide if a required effective computation had indeed
been achieved. As noted above, the equivalence of
TM is undecidable so even if one could specify the
required effective computation as another TM there
is no effective method for proving that an arbitrary
evolved TM is equivalent to the specification.

Furthermore, for EAs to be a superset of all
algorithms there must be something in the set of EAs
which is not itself an algorithm. However, Eberbach
says that all EAs can themselves be encoded as TMs so
all EAs must be algorithms. Thus, it seems more likely
that the set of algorithms is at least as big as the set of
all EAs.

Finally, Eberbach introduces the Universal Evolu-
tionary Turing Machine (UETM) which takes an ETM
as its initial tape. He states plausible theorems that the
UETM halting problem is unsolvable by the UTM, and
that the UTEM cannot solve its own halting problem.
Eberbach speculates that ETM can be understood as
a special case of the Persistent Turing Machine. Thus
the ETM must answer the critique of Persistent Turing
Machines made above.

Eberbach goes to to enunciate two more theorems.
First of all he claims that the UTM halting problem
is solvable by the ETM using the “infinity principle”
where “Fitness is defined to reach optimum for halting
instances.”. As noted previously, we do not think it
possible to construct an effective computation for such
a fitness function. He then claims that the UTM halting
problem is solvable by ETM using evolution through a
TM augmented with an oracle. This argument again
seems plausible though curious given that Eberbach and
Wegner say that the $-calculus does not gain its power
from an oracle (p7). However, as discussed above, if

an ETM is a TM with an oracle then ETMs are not
effectively computable and in general are not materially
realisable.

7.3. $-calculus and Expressiveness

In [51], Eberbach explores the expressiveness of the $-
calculus. First of all, he shows that the A-calculus
and the m-calculus may both be simulated in the
$-calculus. He claims that: “the A-calculus is a
subclass of the $-calculus, because of the one-to-
one correspondence between reductions in A-terms
and in their corresponding $-calculus terms.” (p5)
and that: “m-calculus could be claimed to be a
subclass of the $-calculus, because each operator of 7-
calculus is simulated by a corresponding operator(s)
from $-calculus.” (p5) We dispute the claimed subclass
relationship but note that this is not expressed in (1)
below and do not consider this further.

Next, citing Milner’s proof that A-calculus may be
simulated by m calculus[54], and drawing implicitly
on the C-T equivalence of A-calculus and TMs, he
enunciates a hierarchy:

(1) TM C =C C $C

We note the use of C rather than C in #C C $C.
Certainly, Eberbach does not substantiate a strong
hierarchy (C) at this stage by demonstrating a $-
calculus term that cannot be expressed as a m-calculus
term.

Next, Eberbach says that Sequential Interaction
Machines (SIMs) have less expressive power than
Multi-stream Interaction Machines (MIMs), and cites
Wegner’s claim[55] that m-calculus has only the same
expressive power as SIMs, giving the additional
hierarchy:

(2) 7C C SIM C MIM

Finally, he sketches how MIMs may be simulated by $-

calculus (MIM C $C), which combined with (1) and (2)
gives:

(3) TM C «C C SIM C MIM C $C

Note that (3) greatly strengthens the $-calculus’s
position in the hierarchy relative to C-T systems: (1)
says that 7C C $C but (3) now implies that 7C C $C
through transitivity of C and C. Thus, the $-calculus
term which is not expressible in 7-calculus may come
from an instance of MIM, but this is not displayed.

7.4. $-calculus and costs

As noted above, the $-calculus[52] is characterised
by the integration of process algebra with cost
functions derived from von Neumann/Morgenstern
utility theory. As well as sequential and parallel
composition, and inter-$-expression communication,
cost choice and mutating send constructs are also
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provided. Rather than having a unitary expression
form, the $-calculus distinguishes between composite
(interruptible) expressions, and simple (contract)
expressions which are considered to be executed in one
atomic indivisible step. While cost choices are made
in composite expressions and costs communicated in
simple expressions, they may be defined and evaluated
in both layers.

Composition and choice are over countably infinite
sets of $-expressions, which Eberbach claims as one
locus of the $-calculus’s increased expressive power.
However, A-calculus is also capable of expressing
dynamically changing, arbitrary width and depth
nesting of functions; the Y fixed-point finder being
a classic example. $-calculus is also supposed to
support true parallelism; the implications for effective
computation have been discussed above.

Costs are asserted as a central locus of the $-calculus’s
strength. While it does not prescribe a base set of
cost functions, crisp (i.e. algorithmic), probabilistic
and fuzzy functions have all been developed. Users
may also define their own cost functions. However, it
is not clear how costs actually extend the $-calculus’s
expressive power. Without costs, in particular mutating
send, the $-calculus is reminiscent of a higher-order
process algebra, which as Eberbach notes[51] is no more
powerful than a first order system. To add power to
the $-calculus, user defined costs must be crafted in
some formalism other than the $-calculus itself, or built
from base cost functions, where the other formalism
or the base functions are themselves more powerful
than anything expressible by a either a C-T system or
cost-less $-calculus. Either way, cost choice over any
one bounded set of cost values and mutation over a
bounded set of $-expressions are both C-T. Choice over
an infinite set of cost values seems deeply problematic,
where even an approximation ultimately involves the
expansion of all possible execution traces of the invoking
program.

Finally, the operational semantics for $-calculus
are defined “in a traditional way for process alge-
bras” (section 3) using inference rules and a labelled
transition system (LTS), where the LTS always looks
for a least cost action. However, inference rules and
LTS are no more powerful than C-T systems so either
the $-calculus is a C-T system or the semantics does
not capture the full expressive power of the $-calculus.
In the latter case, it is not clear how the meaning of $-
calculus programs may actually be formalised or imple-
mented.

8. CONCLUSION

8.1. Unbounded tapes and actualised infinities

It might be thought that we are guilty of special
pleading in allowing TMs an unbounded tape but
criticising accelerating TMs, m calculus and cellular
automata for requiring infinite resources to accomplish

tasks in a finite time. However, the explicit distinction
between infinite and unbounded is fundamental to our
understanding of effective computability.

The amount of tape required for an arbitrary TM
starting over an arbitrary tape, is, of course, necessarily
unknown and in that sense is unbounded at the outset
of the computation. Furthermore, in principle, some
computations would consume more tape than can be
met by the sustained output of the even most rapacious
pan-galactic memory manufacturer, chewing their way
through space to feed the gaping maw of a truly
universal computer. Nonetheless, if the computation
is effective then, by definition, the TM must terminate
having performed a finite number of state transitions,
visiting at most one tape position on each, and hence
consuming a potentially unrealisable but actually finite
amount of tape.

In contrast, several hypercomputation systems
appear to necessarily require an actualised infinity of
physical resource, to perform computations deemed
non-effective by the classic theory. Thus, where in
practise effective computations on TMs may eventually
run out of physical resource, such hypercomputations
schemes seem in principle unable to allocate the
requisite infinite resources from the outset.

Note that we have nowhere referred to a TM tape
as infinite. In particular, in his 1936 paper, Turing
says simply that “The machine is supplied with a
tape”, without specifying that the tape be infinite.
However, there has long been a popular perception
that TMs require explicitly infinite tapes. This may
have arisen from confusion with Post’s formulation of
computability[56], where a symbol-space is explicitly
defined as a “two-way infinite sequence of spaces
or boxes”.  Davis[57] says that Post’s work was
independent of Turing’s.

It is germane that Kleene, in his 1952 account[5§]
of Turing machines, refers to a TM being: “..
supplied with a linear tape, (potentially) infinite in
both directions...” (p357). However, eight years later
Davis[59] refers to: “..a linear tape, assumed to
be infinite in both directions...” (p3) without further
qualification. This might be an interesting avenue for
further historical research.

8.2. Summary

In Section 2.5, we enunciated the criteria that we
think must be met for the Church-Turing thesis to
be displaced. In general, we require a demonstration
that all terms in C-T systems should have equivalent
terms in the new system but there should be terms in
the new system which do not have equivalents in C-T
systems. In particular, the new system should be able
to solve decision problems that are semi-decidable or
undecidable in C-T systems. Finally, we require that
a new system be physically realisable. We think that,
under these criteria, Wegner and Eberbach’s claims that
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Interaction Machines, the m-calculus and the $-calculus
are super-Turing are not adequately substantiated.

First of all, Wegner and Eberbach do not present
a concrete instance of terms in any of these three
systems which do not have equivalents in C-T systems.
Secondly, they do not identify decision problems which
are decidable or semi decidable in any of these systems
but semi-decidable or undecidable respectively in C-T
systems. Finally, they do not explain how an arbitrary
term of any of these three systems may be embodied in
a physical realisation.

Wegner and Eberbach make bold claims in their
paper. But extraordinary claims require extraordinary
evidence. The work of Turing has served as a foundation
for computability theory for 70 years. To displace
it would have required them to bring forward very
strong evidence. We have discussed the criteria by
which such claims could be assessed, and we have
discussed the systems that they have exhibited as
potentially surpassing the Turing Machine model of
computation. We consider that in all three cases,
Interaction Machines, the 7 Calculus and the $
Calculus, we have shown their claims to be invalid.
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