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Abstract

The opening book is an important component of a chess engine, and thus computer
chess programmers have been developing automated methods to improve the quality of
their books. For chess, which has a very rich opening theory, large databases of high-
quality games can be used as the basis of an opening book, from which statistics relating
to move choices from given positions can be collected. In order to find out whether the
opening books used by modern chess engines in machine versus machine competitions
are “comparable” to those used by chess players in human versus human competitions,
we carried out analysis on 26 test positions using statistics from two opening books one
compiled from humans’ games and the other from machines’ games. Our analysis using
several nonparametric measures, shows that, overall, there is a strong association between
humans’ and machines’ choices of opening moves when using a book to guide their choices.

1 Introduction

Computer chess has been an active area of research since Shannon’s [Fhab(] seminal paper,
where he suggested the basic minimax search strategies and heuristics, which have been refined
and improved over the years. The many advances since then in improving the search engine
algorithms, the static evaluation of chess positions, the representation and learning of chess
knowledge, the use of large opening and endgame databases, and the exploitation of computer
hardware including parallel processing and special-purpose hardware, have resulted in the
development of powerful computer-chess programs, some of which are of top-Grandmaster-
level strength [New(02].

The ultimate test for a chess-playing program is to play a match against the World Cham-
pion or one of the leading Grandmasters. In May 1997 an historic match was played between
between IBM’s Deep Blue chess computer and Garry Kasparov, then World Champion, re-
sulting in a spectacular win for the machine, 3.5 — 2.5. (See ww.chess.ibm.con| for the
archived web site of this historic match.) Despite the computer winning the match there has
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been an ongoing debate since then on whether the highest ranking computer-chess programs
are at the world-championship level, through most seem to agree that it is inevitable that
eventually chess machines will dominate. Using special-purpose hardware and parallelization
Deep Blue [New0Z] was capable of analysing up to 200 million positions per second, while the
only other chess program to-date, known to run at a comparable speed, is Hydra [DLO054].
The Hydra team, consider their program to be successor of Deep Blue and their goal is to
create the strongest chess-playing computer, which can convincingly defeat the human world
chess champion. A recent six game match played in June 2005 between Hydra and leading
British Grandmaster Michael Adams resulted in a convincing win for the machine, 5.5 — 0.5.
(See http://tournament . hydrachess. con for the web site archiving the match.)

There have been other recent man-machine chess matches against top performing mul-
tiprocessor chess engines capable of analysing several million positions per second, with the
results against world champions still being inconclusive [|P J|. It remains to be seen whether
the era of chess man-machine contests is nearing its end, nonetheless, with machines having
ever growing computing resources the future looks bleak for any human contestants in such
matches.

Here we concentrate on the late opening/early middle-game phase of the game, and, in
particular the research question we address is whether the opening books used by modern
chess engines in machine versus machine competitions are “comparable” to those used by
chess players in human versus human competitions.

For humans, opening preparation is known to be very important, as can be seen, for
example, by the large proportion of chess books concentrating on the opening phase of the
game. Modern chess players also use software packages, such as those developed by ChessBase
(www.chessbase. con) or Chess Assistant (www.chessassistant.com), to assist them in their
opening preparation for matches. These packages typically make use of large databases of
opening positions, referred to as opening books, whose positions can be searched and are linked
to recent databases of games (some of which may be annotated by experts). This combined
with the use of state-of-the-art chess engines for position analysis, provides players with
extremely powerful tools for opening study and preparation. It is often recommended that
chess students combine the study of openings with typical middle game motifs and endgame
structures which may arise from the openings in question, and computer chess software can

be very useful for this purpose [JAE0J].

Opening theory has become so developed that it is common between expert chess players
to play the first 15 moves or so from memory; see, for example the Encyclopedia of Chess
Openings marketed by Chess Informant (ww.sahovski.co.yu). As an antidote to the study
of opening theory the former world chess champion, Bobby Fischer, suggested a chess variant
known as Fischer Random chess or Chess960 (fww.chessvariants.org/diffsetup.dir/|

fischer.htmll), where the initial position of the chess pieces is randomised. Due to the 960

different starting positions in Chess960, knowledge of current chess opening theory is not very
useful, and thus the strongest player will win without having to memorise lengthy opening
variations. Chess960 is becoming a popular variant of chess but, at least in the near future,
it is unlikely to replace classical chess which still fascinates millions world wide.

As the top chess engines now compete at Grandmaster level, the opening book has become
an important feature contributing to their success. These days it quite normal for an opening
book specialist to be an integral part of the development team of a chess engine. As an
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example of computer chess opening preparation, back in 1995 Fritz 3 defeated a prototype
of Deep Blue in the World Computer Chess Championship when Deep Blue made a crucial
mistake as it went out of its opening book and had to assess the position using its search
and evaluation engine. For its matches against Garry Kasparov in 1997, the Deep Blue
team included Grandmaster Joel Benjamin, who was responsible for developing Deep Blue’s
knowledge and fine tuning its opening book [New03]. Since then it has become common
practice to include a Grandmaster level chess player in the chess engine’s team especially for
high profile man-machine matches.

Due to the importance of the opening book as a component of a chess engine, computer
chess programmers have been developing automated methods for improving the quality of
their books. For a game such as chess, having a rich and well developed opening theory,
a good starting point for building an opening book is to have available a large database
of high-quality games with a sizeable proportion of recent game records. Game statistics
including a summary of the game results when the move was played, the popularity of the
move in the database, how strong are the players of the move, and how recently the move was
played, can be weighted to produce an evaluation of the “goodness” of a move that can inform
the chess engine’s evaluation function. Deep Blue utilised these statistics to automatically
extend its relatively small hand-crafted opening book, which consisted of about 4000 positions
[CHHOZ)], and, similarly Hydra extends its relatively small opening book, typically containing
about 10 moves per variation (fww.hydrachess.com/hydrachess/faq.php). While Deep
Blue combines the “goodness” factors in a non-linear fashion in order to influence the choice
of move in the absence of information from its opening book [[Cam99], Hydra combines the
“goodness” factors in a linear fashion to influence the choice of playable moves [DLO5H]. An
opening book and its extension constructed by the above method will not be perfect, simply
due to the fact that opening theory is still dynamic, and the statistics often reflect what is
fashionable rather than what is objectively best. Hydra takes this factor into account by
adjusting the thinking time of a move when the engine chooses a book move in preference to
a move selected by the engine.

In games such as Awari, where large databases of games do not exist, the above techniques
cannot be applied, so the opening book needs to be constructed by using the game engine
to perform deep searches and generate the evaluation of the positions to be stored in the
book [Lin0(]. A best-first search method was proposed by Buro [Bur9q], where at each level
the move with the highest score is expanded first. In this way bad moves are ignored and no
human intervention is necessary. However, this method ignores moves that are not much worst
than the best move, thus allowing an opponent to “drop out” of the book after a few moves
and forcing the chess engine to assess positions using its search and evaluation algorithms.
To avoid this situation Lincke proposed to expand moves in such a way that priority
is given to moves at lower search levels, whose score is within a tolerance level from the best
move.

It is also useful to incorporate some form of learning to tune the opening book in order to
avoid playing the same mistake repeatedly. A method developed by Hyatt [Hya99] looks at the
next ten move evaluations in games it played after the opening book was left, and extrapolates
an approximation of the true value to store in the book as a learnt value for the position.
The learning is conditioned upon the depth of searches that produced the learnt value, the
strength of the opposition in the game played, and whether the engine or its opponent made
a mistake.
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We now give an overview of the experiment we have carried out. For the purpose of data
analysis we used the Nunn?2 test suite devised by Grandmaster Dr. John Nunn to test chess
engines’ strength on a variety of late opening/early middle-game positions; the Nunn2 test is
distributed by ChessBase together with its chess engine, Fritz. The Nunn2 test was chosen,
since its 25 positions arise from a variety of openings with different characteristics, and for
all these positions there are several reasonable candidate moves. We augmented the Nunn2
test with the initial position, as we were interested to find out which first moves do humans
and machines prefer.

To compare the choices of humans to those of engines, we made use of two high-quality
opening books: Powerbook 2005, marketed by ChessBase, derived from a large collection of
human versus human games, and Comp2005 derived from a large collection of machine versus
machine games compiled by Walter Eigenmann (pww.beepworld.de/members38/eigenmany).
For each position we collected the statistics related to the move choices for the position from
both opening books, including the rank of each move choice, the number of games in the
database in which the move choice was played, and the percentage score achieved for this
choice.

The analysis we carried out from the data compared both the distribution of the move
choices and the ranks of the choices implied by this distribution. The ranks of the moves
made by humans and engines were compared using a nonparametric association measure we
have used in previous studies, where we compared move choices of different chess engines
[LB0Y] and the ranking of search results by web search engines [B 0. The measure
is a weighted version of Spearman’s footrule [FKSO0J], which we call the M-measure. The
distributions of move choices were compared using the Jensen-Shannon divergence (JSD)
nonparametric measure m, m, which allows us to measure the similarity between
two distributions. In addition, for each position we computed the degree of overlap between
move choices of humans and engines and the expected percentage score for the position, i.e.
out of the total number of games played from the position what was the percentage of wins
and draws.

The results show a surprisingly close association between humans’ and machines’ opening
books. The M-measure is over 0.75 while the JSD is just above 0.70, on average, on a scale
between 0 and 1. It is also shown that, apart from two outliers, the M-measure and JSD are
highly correlated with a correlation coefficient just above 0.65. Moreover, the degree of overlap
between move choices is also just above 0.60 on average, so despite the strong association
between humans’ and machines’ choice of opening moves there are also differences, although
these disparate moves do not tend to be the highly ranked moves. Finally, for the positions
we investigated, the expected scores from white’s point of view were similar, on average over
55%, for both humans and machines, which indicates a significant advantage to white.

The rest of the paper is organised as follows. In Section | we describe the measures we
used to compare the rankings induced by the two opening books. In Section J we give the
detail of the data collection phase. In Section [| we present the data analysis carried out
and interpret the results. In Section ] we discuss possible extensions and applications of the
comparison techniques we have used, and finally, in Section ] we give our concluding remarks.
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2 The Measures

We used several nonparametric measures [[GC0J] to test the correspondence between the two
opening books. To illustrate the measures consider the initial chess position and assume
that only the top-10 move choices were recorded in Powerbook 2005 (pb) and in Comp2005
(comp). (In the experiment 20 moves were actually recorded in each opening book for the
initial position.) The data collected is shown in Table fl, where the second and fourth column
indicate the rank of the move in pb and comp, respectively, while the third and fifth columns
indicate the popularity (i.e. the number of games in the database in which the move was
played) in pb and comp, respectively; a zero entry in a column implies that no games were
recorded for that move in the corresponding opening book.

‘ Move ‘ R-pb ‘ P-pb ‘ R~comp ‘ P-comp ‘

e4 1 448923 1 122882
d4 2 361246 2 105119
Nf3 3 103542 3 20820
cd 4 78408 4 20023
g3 5 10142 ) 3359
b3 6 3252 7 1121
f4 7 2754 8 945
Ne3 8 1382 6 1445
b4 9 718 0 0
d3 10 390 10 333
e3 0 0 9 493

Table 1: Data for top-10.

The simplest measure we used is the degree of overlap between the two two ranked lists
(Overlap). It can seen from Table [|] that the overlap is 9 out of 11, i.e. the degree of overlap
is 0.818.

The second measure we used is a weighted variation of Spearman’s footrule [FKS0J], which
we call the M-measure [BMLOM]. From Table [ we see that pb and comp agree on the ranking
of the top-5 move choices but disagree thereafter. To compute the M-measure we assign each
move with a rank greater than zero its reciprocal rank, and to all moves that did not have a
rank, i.e the entry for their rank is zero, we assign a rank of one plus the maximum rank in
the column that had the zero and then take its reciprocal, as shown in Table .

To compute the M-measure, we now sum the absolute difference of the the reciprocal ranks
for each pair of corresponding moves as recorded in Table [, normalise the result by dividing
by the maximum value of the measure, and finally subtract the result from one to arrive at
a similarity measure rather the a dissimilarity measure. More formally, the M-measure, is

given by
s )
B maxM

where n is the number of moves being compared, rank; (i) is the rank in pb for the ith move,
ranks(i) is the corresponding rank in comp for the move, and maxM is the maximum value
of the measure to normalise it. The reader can verify that for our illustrative example, maxM
= 4.0398 and M = 0.9694.

1 1
rank1(i)  rankz(i)

)



‘ Move ‘ R-pb ‘ R-comp ‘
e4 1 1

d4 1/2 1/2
Nif3 1/3 1/3
c4 1/4 1/4
g3 1/5 1/5
b3 1/6 1/7
4 1/7 1/8
Nc3 1/8 1/6
bd | 1/9 | 1/11
d3 1/10 1/10
e3 1/11 1/9

Table 2: Reciprocal ranks for the M-measure.

The third measure we used is the Jensen-Shannon Divergence (JSD) [GBCT03, ES0],
which enables us to measure the similarity between two distributions. The first step in the
computation of the JSD is to normalise the number of games played for each move by the total
number of games played. For pb (column 3 of Table [[) the normalisation factor is 1,010,757,
and for comp (column 5 of Table [ll) the normalisation factor is 276,540. The normalised
values, which can be viewed as probabilities, are shown in Table . We denote the pb and
comp probabilities by p; and ¢;, respectively; the reader can verify the p;s and the ¢;s both
add up to one.

‘ Move ‘ P-pb (p;) ‘ P-comp (¢;) ‘

ed 0.4441 0.4444
d4 0.3574 0.3801
Nf3 0.1024 0.0753
c4 0.0776 0.0724
g3 0.0100 0.0121
b3 0.0032 0.0041
f4 0.0027 0.0034
Ne3 0.0014 0.0052
b4 0.0007 0.0000
d3 0.0004 0.0012
e3 0.0000 0.0018

Table 3: Normalisation of number of games played for the JSD.

The formal definition of the JSD, which is a symmetric version of the Kullback-Leibler
divergence based on Shannon’s entropy, is given by

1 & 2p; 1 &2 2q;
1- J B Zpi log, LU B Z%‘ log, g
i=1 i=1

Pi +qi pi+ ¢’

where ni is the number of moves recorded in pb, ns is the number of moves recorded in comp,
and the factor of 1/2 in the square root is in order to normalise the JSD. The reader can
verify that for our illustrative example, JSD = 0.935.



3 Data Collection

The positions analysed were the ones from the Nunn2 test collection, augmented with the
initial board configuration as position 26. The move choices made by humans were gathered
from Powerbook 2005, which is an opening book marketed by ChessBase, derived from a large
collection of high-class human versus human tournament games. On the other hand, the moves
choice made by chess engines were gathered from Comp2005, which is an opening book we
built, derived from a large collection of high-quality games played between about 2000 chess
engines between 2000 and September 2005, with a time limit of at least 30 minutes per engine
per game. The collection was compiled by Walter Eigenmann and the latest version can be
downloaded from his web site, fww.beepworld.de/members38/eigenmany. (See Table [] for
the detailed numerics for pb and comp.)

For each opening book and each move choice in a position we analysed, we recorded the
rank, the number of games in the database in which the move was played, and the overall
result achieved when the move was played in terms of the percentage score of wins and draws
when the move was played (a win counts for one point and a draw for half a point).

‘ Opening book ‘ # Games ‘ # Positions ‘
Powerbook (pb) 1,011,611 | 20,070,734
Comp2005 (comp) 277,288 8,239,675

Table 4: Numerics for the opening books

4 Data Analysis

For each position we computed the M-measure, the JSD and the overlap; the results including
maxM, are shown in Table]. We note that when computing the JSD we have chosen to discard
moves for which less than 10 games were played, as these were deemed to be statistically
insignificant.

The results show a surprisingly close association between humans’ and machines’ opening
books. The M-measure is over 0.75 while the JSD is just above 0.70, on average, on a scale
between 0 and 1. Moreover, the degree of overlap between move choices is just above 0.60, on
average, so despite the strong association between humans’ and machines’ choice of opening
moves there are also differences, although the disparate moves do not tend to be the highly
ranked moves.

The M-measure and the JSD measure are highly correlated as can be seen from their
scatter plot shown in Figure [|. Their correlation coefficient was computed as 0.5397, together
with a 95% bootstrap confidence interval [DHO7| of [0.2625,0.7644]. Two obvious outliers
that stand out in the scatter plot have arrows pointing to them. The outlier on the left, that
has a low M-measure but high JSD, is for position 1 (Symmetrical English opening, Hedgehog
variation). In this case, despite the ranking of move choices being different (low M-measure)
their distribution is similar (high JSD). The outlier on the right is for position 24 (King’s
Indian Defence, Sémisch variation), for which there is only one move in each book with more
than 9 games played, and thus the JSD is one. Moreover for this position there were three
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move choices in pb and only one in comp, so the M-measure is also very high by default. We
measured the correlation coefficient after removing the outliers and it increased to 0.6549,
together with a 95% bootstrap confidence interval of [0.3655,0.8228].

We observe that Position 15 (Queen’s Gambit Declined, Bf4 variation), which is the point
at the bottom left of the scatter plot, is also anomalous in that there is a low association
between pb and comp. The overlap percentage for this position is less that 0.5, which is
relatively low. In particular, there are 7 move choices in pb and 12 move choices in comp,
6 of which overlap. It is interesting to note that this variation is much more popular with
computers than humans, as there were 1022 games recorded for this positions in comp while
only 144 games were present in pb. Moreover, as can be seen in Table [ below, humans
perform significantly better in this position than machines, with an expected percentage
score of 57.443% as opposed to 50.573%.

Table [g shows the expected percentage score for each position from the Powerbook and
Comp2005 data sets from white’s point of view, and the number of games recorded in the
corresponding databases in which the position occurred. Near each position number in the
first column we indicate whether it was white to move (w) or black (b); it can be seen that
only in 7 out of the 26 positions was it black’s turn to move. We note that, as with the JSD,
in our computation of the expected score we have chosen to discard moves for which less than
10 games were played, as these were deemed to be statistically insignificant.

For the positions we investigated, the expected scores from white’s point of view, were
similar, on average over 55%, for both humans and machines, which indicates a substantial
advantage to white in most of the positions from the Nunn test. Despite this advantage for
white, it is worth noting that the variance of the expected score is rather high; see the last
row in Table .

It seems that the distribution of move choices is consistent with an exponential distri-
bution, since there are, generally, only very few popular move choices and the decrease in
popularity is thereafter exponential, although for most positions the number of choices is too
small to reach a definite conclusion. For position 26, for which we have 20 move choices
in each book, we fitted an exponential distribution to the sample distribution induced by
the popularity of the move choices in each book, resulting in fits with 72 (the square of the
correlation coefficient) values of 0.9535 and 0.9299, respectively, for pb and comp.

5 Discussion

Possible extensions and applications of the comparison techniques we have presented are:

(1) Applying the technique to more comprehensive test sets such as the Don Dailey test
IGBMOY], which consists of 200 positions all of which are 5 moves for each player
from the initial position. A more principled approach could also be taken by collecting
positions from the Encyclopedia of Chess Openings classification system.

(2) Comparing opening books of two individuals, be they human or machine. To carry out
such a comparison we need to have game databases of sufficient size, from which we can
construct the respective opening books.
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Figure 1: Scatter plot.

(3) Comparing how an opening book changes over time. For example, we could compare
Powerbook 2005 to the newer Powerbook 2006.

(4) Extend the technique to middle game and endgame positions with the aid of test sets
such as the WM test of Gurevich and Schumacher of positions from world champion
games; the WM test can be downloaded from pww.computerschach.dd. This is more
applicable to comparing the move choices of two available chess engines, which can
display the ranking of the top-n move choices being considered, since, in general, there
may be several reasonable moves from such positions and in game records we have access
only to the move that was chosen.

(5) Applying the similarity M-measure to tuning the weights of evaluation function features
such as material balance, mobility, development, pawn structure, and king safety []
to those of a specific chess engine. The principle underlying such a technique is to
compare, via the M-measure, the top-n move choices of the evaluation function we are
training to the top-n move choices of the chess engine we are learning from, and to apply
a gradient descent (or hill climbing) method to adjust the weights in the direction of
the function we are learning from (cf. [GBMO0J, LKO0d]).

6 Concluding Remarks

We have compared the opening books of humans and computers using nonparametric mea-
sures. It seems that there is a strong association between the two books, as the M-measure
is over 0.75 and the JSD just above 0.70, on average. The degree of overlap of move choices
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‘ Pos ‘ M-measure ‘ MaxM ‘ JSD ‘ Overlap ‘

1 0.376 3.085 | 0.729 | 0.714
2 0.728 3.747 1 0.549 | 0.700
3 0.634 3.597 1 0.633 | 0.778
4 0.745 3.091 | 0.508 | 0.500
5 0.939 3.747 1 0.653 | 0.545
6 0.534 3.940 | 0.486 | 0.462
7 0.915 3.019 | 0.766 | 0.571
8 0.907 3.808 | 0.707 | 0.800
9 0.672 3.293 | 0.765 | 0.444
10 0.693 3.112 | 0.871 | 0.556
11 0.544 3.358 | 0.606 | 0.556
12 0.896 3.747 1 0.637 | 0.545
13 0.827 2.700 | 0.880 | 0.500
14 0.809 3.658 | 0.692 | 0.583
15 0.376 3.658 | 0.479 | 0.462
16 0.811 3.635 | 0.765 | 0.700
17 0.885 3.597 | 0.825 | 0.778
18 0.955 1.850 | 0.716 | 0.500
19 0.600 3.635 | 0.508 | 0.700
20 0.965 3.436 | 0.748 | 0.556
21 0.978 3.019 | 0.863 | 0.833
22 0.793 3.849 |1 0.685 | 0.583
23 0.892 4518 | 0.748 | 0.688
24 0.846 1.083 | 1.000 | 0.333
25 0.679 3.648 | 0.503 | 0.333
26 0.960 5.291 | 0.938 | 1.000
Avg 0.768 3.428 1 0.702 | 0.605
Std 0.175 0.776 | 0.144 | 0.157

Table 5: Summary of results

is just above 0.60, on average, so despite the correspondence there are also significant differ-
ences. Moreover, for the positions we investigated, the expected scores from white’s point of
view were, on average over 55%, for both humans and machines, which indicates a significant
advantage to white for the positions we considered.

More experiments need to be carried out on different test sets covering either a wider
range of opening variations or, alternatively, specialising within a small number of popular
opening variations. As mentioned in Section ] the method we have presented can be used to
compare two individuals’ opening choices, be they human or machine. Apart from a better
understanding of the difference between human and machine players such a comparison may
help detect anomalies in an opening book that could be exploited during a match. Finally,
the M-measure, or a refinement of it, does not rely on statistics being readily available, so
could be used as a similarity measure in learning the evaluation function of an opponent.
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‘ Pos ‘ Ew%(pb) ‘ # pb ‘ Ew%(comp) ‘ # comp

1b 51.701 298 60.217 138
2w 04.473 474 60.418 98
3w 52.425 414 48.529 70
4w 53.649 285 62.944 674
5w D7.968 1034 58.161 1810
6 w 47.928 817 52.000 111
7w 44.000 492 47.028 2810
8b 07.616 1428 59.027 297
9w 56.468 355 64.587 1002
10 w | 56.361 2110 96.763 1606
11w | 61.011 457 68.250 72
12'b D7.578 296 09.258 681
13w | 50.082 743 43.656 015
14w | 62514 849 60.501 439
15w | 57.443 140 50.573 1011
16 w | 51.387 287 56.134 409
17 b 54.645 307 53.581 501
18 b 59.000 76 60.277 303
19w | 55.243 202 50.396 1272
20 b 54.180 189 53.910 297
21b 55.262 420 53.740 2333
22w | 50.613 390 51.357 143
23w | 55.029 796 50.892 267
24 w | 60.000 63 54.000 67
25w | 62.005 401 60.285 397
26 w | 55.036 1011597 54.749 277288
Avg 55.139 - 55.817 —
Std 4.301 — 5.743 —

Table 6: Expected percentage score
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