
Three Kinds of Probabilistic Induction:

Universal Distributions and

Convergence Theorems

RAY J. SOLOMONOFF1,2,*

1Computer Learning Research Centre Royal Holloway, University of London, London, UK
2IDSIA, Galleria 2, CH-6928 Manno-Lugano, Switzerland

*Corresponding author: rjsolo@ieee.org http://world.std.com/~rjs/pubs.html

We will describe three kinds of probabilistic induction problems, and give general solutions for

each, with associated convergence theorems which show that they tend to give good probability esti-

mates. The first kind extrapolates a sequence of strings and/or numbers. The second extrapolates an

unordered set of strings and/or numbers. The third extrapolates an unordered set of ordered pairs

of elements that may be strings and/or numbers. Given the first element of a new pair, to get a prob-

ability distribution on possible second elements of the pair. Each of the three kinds of problems is

solved using an associated universal distribution. In each case a corresponding convergence

theorem is given, showing that as sample size grows, the expected error in probability estimate

decreases rapidly. The solutions given are very general and cover a great variety of induction pro-

blems. Time series prediction, grammar discovery (for both formal and natural languages), curve

fitting, the identification problem and the categorization problem, are a few of the kinds of problems

amenable to the methods described.
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1. INTRODUCTION

Problems in probabilistic induction are of three general kinds.

In the first, we are given a linearly ordered sequence of symbols

to extrapolate. There is a very general solution to this problem

using the universal probability distribution, and much has been

written on finding good approximations to it [1–8]. It has been

shown that for long sequences, the expected error in probability

estimates converge rapidly toward zero [9].

In the second kind of problem, we want to extrapolate an

unordered sequence of finite strings and/or numbers. A uni-

versal distribution has been defined that solves this problem

[10]. We will give a convergence theorem that shows it to

give small errors as the number of examples increases—just

as with sequential predictions.

In the third kind, operator induction, we have an unordered

sequence of ordered pairs of elements (Qi, Ai) (that may be

strings and/or numbers). Given a new Qi, to obtain the prob-

ability distribution over possible Ais. The Qs can be questions

in some formal or natural language, the As can be associated

answers. The Qs can be inputs to some unknown stochastic

device and the As can be outputs (The Identification

Problem). The Qs can be description of mushrooms, the As

can tell if they are edible or poisonous (The Categorization

Problem). The Qs can be numbers and the As can be exact

or noisy values of some unknown function of those numbers

(The Curve Fitting Problem).

We will give two solutions to this problem based on univer-

sal distributions, and give associated convergence theorems

that affirm their precision in prediction.

Section 1 deals with the sequential prediction and its univer-

sal distribution. This is followed by a convergence theorem for

the normalized distribution and some more recent generaliz-

ations of it.

Section 2 deals with the extrapolation of a set of unordered

strings and/or numbers, and gives an associated convergence

theorem.

Section 3 deals with operator induction, and gives the

associated convergence theorem.

2. SEQUENTIAL PREDICTION

The universal distribution for sequential prediction is a prob-

ability distribution on strings obtained by assuming the
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strings are the output of a universal machine with random

input. We will at first consider only universal Turing machines

with binary unidirectional input and output tapes and an

infinite bidirectional work tape. It is possible to get equivalent

distributions using more general kinds of universal devices

with less constrained input and output.

How can we use this definition to get an expression of the

probability of a particular finite string, x?

Let [Sk] be the set of all binary programs for our reference

machine, M, such that M(Sk) gives an output with x as

prefix. To prevent double counting we have an additional con-

straint on the set [Sk]: dropping the last bit of the string Sk, will

give a program with output that does not have x as prefix. With

this condition the probability of x becomes the sum of the

probabilities of all of its programs:

PMðxÞ ¼
X

k

2�jSk j; ð1Þ

where jSkj is the number of bits in Sk and 22jSkj, the probability

of an input that has Sk as prefix.

Because certain of the codes, Sk do not result in useful

output (i.e. the machine prints out part of x, but continues to

calculate without printing anything else), the resultant prob-

ability distribution is not a measure, but a semimeasure—i.e.

PMðx0Þ þ PMðx1Þ , PMðxÞ:

For our first prediction method, we will normalize PM to

create P 0M

P0Mðx0Þ ¼
PMðx0Þ

PMðx0Þ þ PMðx1Þ
P0MðxÞ;

P0Mðx1Þ ¼
PMðx1Þ

PMðx0Þ þ PMðx1Þ
P0MðxÞ; ð2Þ

P0Mð^Þ ¼ 1:

Though there are other possible methods of normalization,

it is not difficult to show that equations (2) give us

maximum P0M(x)/PM(x) for all x. Later we will show that

this condition minimizes the expected prediction error of P0M.

It is easy to use P0M for prediction:

Pðx1jxÞ ¼
P0Mðx1Þ

P0MðxÞ
and

Pðx0jxÞ ¼ P0Mðx0Þ

P0MðxÞ
: ð3Þ

Just how accurate are the predictions of P0M?

Suppose you have a device m, generating binary sequences

according to some finitely describable stochastic rules. It gives

a probability for each of the bits it generates. If you use the

universal distribution to get probabilities for each of the bits,

there will be a difference between the two probabilities.

If you square these probability differences and add them up,

the expected value of the sum is bounded by 21/2 ln P0M,m
.

P0M,m is the probability that the universal distribution assigns

to m, the generator of the data [9, p. 426].

More exactly:

m(xnþ1 ¼ 1jx1, x2, x3
. . . xn) is the conditional probability

distribution according to m that the (n þ 1)th bit of a binary

string is 1, given the previous n bits, x1, x2, x3
. . . xn.

P0M(xnþ1 ¼ 1jx1, x2, x3
. . .xn) is the corresponding prob-

ability for P0M
x ¼ x1, x2, x3

. . . xn is a string constructed using m as a

stochastic source.

Both m and P0M are able to assign probabilities to the occur-

rence of the symbol 1 at any point in the sequence x based on

the previous symbols in x.

The convergence theorem says that the total expected

squared error between m and P0M is given by

E
m

Xn

m¼1

ðP0Mðxmþ1 ¼ 1jx1; x2; x3 � � � xmÞ

� mðxmþ1 ¼ 1jx1; x2; x3 � � � xmÞÞ
2 , �

1

2
ln P0M;m: ð4Þ

The expected value is with respect to probability distri-

bution, m.

ln P0M,m is dependent on just what universal device gener-

ated the universal distribution. It is approximately K ln 2,

where K is the Kolmogorov complexity of the generator—

the length of the shortest program needed to describe it.

Since this total error is independent of the size of the data

string being predicted it is clear that the errors in the individual

bits must decrease more rapidly than 1/n, n being the length of

the data sequence.

This is a very powerful result. It is clear that the universal

distribution gives very good probability estimates.

The truth of (4) hinges on the fact that if m is a computable

probability measure then there exists a positive constant P0M,m

such that

P0MðxÞ=mðxÞ . P0M;m

and that while P0M,m will depend on m(.) and P0M(.), it will be

independent of x.

Equation (4) can be usefully generalized:

IF

P1 and P2 are any normalized measures on x.

x(n) is a string of length n.

P2ðxðnÞÞ

P1ðxðnÞÞ
. aðnÞ . 0;
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where a(n) is a function of P1(.), P2(.) and n, but not of x

THEN

E
P2

Xn

m¼1

ðP1ðxmþ1 ¼ 1jx1; x2; x3 � � � xmÞ

� P2ðxmþ1 ¼ 1jx1; x2; x3 � � � xmÞÞ
2 , �

1

2
ln aðnÞ: ð5Þ

The convergence theorem of (4) is true if P0M is a normalized

universal measure. Peter Gács [11] has shown it to be true for

the unnormalized semimeasure, PM, but the associated conver-

gence constant 21/2 ln PM, m is much larger than the corre-

sponding constant, 2 1/2 ln P0M,m for P0M.

The difference between them is

1

2
ln

P0M;m

PM;m

� �
;

where P0M,m/PM,m is the ratio of the values of the normalization

factors for n ¼1. We have selected a normalization technique

to make it as large as possible.

The result is that the probability errors for the normalized

measure, P0M(.) can converge much more rapidly than those

for the semimeasure, PM(.).

Gacs [11] also shows that the generalization corresponding

to equation 5 holds if P2(.) is an unnormalized semimeasure.

Marcus Hutter [12] shows that these results hold if we use

alphabets with any finite number of symbols.

In the foregoing convergence theorems the total squared

probability difference is used as loss function. The proofs of

the theorems also show the same convergence for the Kull-

back–Liebler loss function (which is greater than or equal to

the square loss function—resulting in stronger theorems).

Hutter [12] considers more general loss functions for the

universal distribution and obtains associated convergence

theorems.

3. INDUCTION ON UNORDERED SETS

3.1. The problem and a solution

We have an unordered set of n finite strings of symbols, D1,

D2, . . . ,Dn. Given a new string, Dnþ1, what is the probability

that it belongs to the set? Or given a string, a, how must it be

completed so it is most likely to be a member of the set? Or,

given a string a and a set of possible completions, [abj],

what is the relative probability of each of these completions?

A common example of unordered set prediction occurs in

natural and formal languages. We are given a set of examples

of strings that are acceptable sentences. Given a new string,

what is the probability that it is acceptable? A common sol-

ution technique is to devise a well-fitting stochastic grammar

for the known set of strings. The universal distribution gives

a criterion for goodness of fit of such grammars [3, pp.240–

251; 13].

The universal distribution PM, is a weighted sum of all

finitely describable semimeasures on finite strings:

PMð½Di�Þ ¼
X

j

aj

Yn

i¼1

PjðDiÞ; ð6Þ

where n is the number of strings in the set [Di] and

aj is the weight of the jth semimeasure on finite strings.

aj ¼ 22jajj, where aj is the shortest description of Pj(.) and

jajj is the number of bits in aj

The M subscript of PM indicates that the functions Pj are to

be described with reference to machine, M. Since M is univer-

sal, it can be used to describe any describable function.

Suppose that [Di] i ¼ 1, . . . ,n is a set of n strings generated

by some unknown stochastic device, m(.). What is the prob-

ability that our universal distribution assigns to a new string,

Dnþ1 ?

It is just

PðDnþ1Þ ¼ PM

½Di�
S

Dnþ1

� �
PM ½Di�ð Þ

: ð7Þ

The probability assigned to [Di] by its creator, m(.), is

mð½Di�Þ ¼
Yn

i¼1

mðDiÞ: ð8Þ

For a suitable set of strings, [Di], the probability assigned by

PM in (6) can be very close to those assigned by m(.), the gene-

rator of [Di], in (8). In section 3, we will discuss Operator

Induction and prove an associated convergence theorem.

Section 3.3 shows that this convergence theorem implies a

convergence theorem for (6), insuring small expected errors

between the probability estimates of PM(.) and those of m(.).

4. OPERATOR INDUCTION

In the Operator Induction problem, we are given an unordered

set of n strings and/or number pairs, [Qi, Ai]. Given a new

Qnþ1, what is the probability distribution over all possible

Anþ1? We will give two solutions.

4.1. First Solution

In the first, we consider the problem to be an extrapolation of

an unordered set of finite strings, Di, in which Di ¼ (Qi, Ai)

Equation 6 is used to obtain a probability distribution on all

unordered sets of Qi, Ai pairs and (7) gives us a probability
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distribution over (Qnþ1, Anþ1) — i.e. P(Qnþ1, Anþ1) for all

possible Anþ1.

Then

PðAnþ1Þ ¼
PðQnþ1;Anþ1ÞP

i PðQnþ1;AiÞ
: ð9Þ

4.2. Second Solution

For the second solution to the operator problem, we express

the probability of an arbitrary Anþ1 directly as a function of

the data set, [Qi, Ai]. For this data set, the probability distri-

bution of Anþ1 is

X
j¼1

a
j
0

Ynþ1

i¼1

OjðAijQiÞ: ð10Þ

Here Oj(.j.) is the jth possible conditional probability distri-

bution relating its two arguments. Oj (AijQi) is the probability

of Ai, given Qi, in view of the function Oj.

We would like to sum over all total recursive functions, but

since this set of functions is not effectively enumerable, we

will instead sum over all partial recursive functions, which

are effectively enumerable.

a0
j is the a priori probability of the function O j(.j.). It

is approximately 22l(O j), where l(O j) is the length in bits of

the shortest description of Oj.

We can rewrite (10) in the equivalent form

X
j¼1

a j
nO jðAnþ1jQnþ1Þ: ð11Þ

Here,

a j
n ¼ a

j
0

Yn

i¼1

O jðAijQiÞ:

In (11), the distribution of Anþ1 is a weighted sum of all of

the Oj distributions—the weight of each Oj being the product

of its a priori probability and the probability of the observed

data in view of Oj.

Section 3.3 shows that even with a relatively short sequence

of Q, A pairs, these distributions tend to be very accurate. If we

use the a0
j to express all of our a priori information about the

data, they are, perhaps, the most accurate possible.

Since we cannot compute this infinite sum using finite

resources, we approximate it using a finite number of large

terms—terms that in (11) have large an
j values. While it

would seem ideal to include the terms of maximum weight,

it has been shown to be impossible to know if a particular

term is of maximum weight. The best we can do is to find a

set of terms of largest total weight in whatever time we have

available.

We can completely characterize the problem of operator

induction to be finding, in whatever time is available, a set

of functions, Oj(.j.) such that
P

j an
j is as large as possible.

4.3. Convergence Proof

We will show that for an adequate sequence of (Qi, Ai) pairs,

the predictions obtained by the probability distribution of (10)

can be expected to be extremely good.

To do this, we hypothesize that the sequence of Ai answers

that have been observed, were created by a probabilistic algor-

ithm, m(AijQi) and that m can be described with k bits.

Any probability distribution that assigns probabilities to

every possible Ai, must also assign probabilities to each bit

of Ai:

Suppose that ar is a string of the first r bits of Ai. Then the

probability given by m that the (r þ 1)th bit of Ai is 1 is

P
j mðar1xjjQiÞP
j mðarxjjQiÞ

;

where xj ranges over all finite strings.

Similarly, P(.) the algorithm of (10), can be used to assign a

probability to every bit of every Ai. We will represent the

sequence of Ais by a string, Z, that is formed by concatenating

these Ais then separating them by the symbols, s; denoting

‘space’. Z, then, is a sequence of symbols from the ternary

alphabet 0, 1, s. Using an argument similar to the foregoing,

it is clear that both m and P are able to assign probabilities

to the space symbol, s as well as to 0, and 1, since each of

them must be able to specify when each Ai string terminates.

We have, then, two probability distributions on the ternary

strings, Z. In the first distribution, m is the creator of the

observed sequence, and in the second distribution, P,

through (10), tries to predict the symbols of Z.

For two such probability distributions on ternary strings, we

can apply Hutter’s [12] generalization to arbitrary alphabet, of

the generalized convergence theorem, (5). The expected value,

with respect to m (the ‘generator’), of the sum of the squares of

the differences in probabilities assigned by m and P to the

symbols of the string are less than – ln c, c being the largest

positive number such that P/m . c for all arguments of P

and m.

More exactly,

X
l

mðZlÞ
Xn

i¼1

Xhl
iþ1

j¼0

X
t¼0;1;s

Pl
i;jðtÞ � ml

i;jðtÞ
� �2

, k ln 2; ð12Þ

where l sums over all strings Zl that consist of n finite binary

strings separated by s symbols (spaces), Ai
l is the ith A of Zl,
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Pi, j
l (t) is the probability as given by P that the jth symbol of Ai

l

will be t, conditional on previous symbols of Ai
ls in the

sequence, Zl and the corresponding Qs, t takes the values 0,1

and s, mi,j
l (t) is defined similarly to Pi, j

l (t), but it is indepen-

dent of previous Ai
ls in the sequence and hi

l is the number of

bits in Ai
l. The (hi

l
þ 1)th symbol of Ai

l is always s.

The total number of symbols in Zl is
P

i¼1
n (hi

l
þ 1).

m(Zl) is the probability that m assigns to Zl in view of the

sequence of Qs, k is the length in bits of the shortest descrip-

tion of m.

This implies that the expected value with respect to m of the

squared ‘error’ between P and m, summed over the individual

symbols of all of the Ai, will be less than k ln 2

Since the total number of symbols in all of the answers can

be very large for even a small number of questions, the error

per symbol decreases rapidly as n, the number of Q, A pairs

increases.

Equation (12) gives a very simple measure of the accuracy

of equation (10). There are no ‘order of one’ constant factors

or additive terms. A necessary uncertainty is in the value of k.

We normally will not know its value, but if the generator of the

data has a long and complex description, we are not surprised

that we should need more data to make good predictions—

which is just what (12) specifies.

The value of the constant, k, depends critically on just what

universal reference machine is being used to assign a priori

probability to the Oj and to m. Any a priori information that

a researcher may have can be expressed as a modification of

the reference machine—by inserting low cost definitions of

concepts that are believed to be useful in the needed induc-

tion—resulting in a shorter codes for the Oj(.), for m, (a

smaller k), and less error.

We believe that if all of the needed a priori information is

put into the reference machine, then (10) is likely to be the

best probability estimate possible.

At first glance, this result may seem unreasonable. Suppose

we ask the system many questions about Algebra, until its

mean errors are quite small—then we suddenly begin asking

questions about Linguistics—certainly we would not expect

the small errors to continue! However, what happens when

we switch domains suddenly, is that k suddenly increases.

A m that can answer questions on both Algebra and Linguistics

has a much longer description than one familiar with Algebra

only. This sudden increase in k accommodates large expected

errors in a new domain in which only a few questions have

been asked.

4.4. Alternative Induction Techniques

If we set Qi ¼ ^ (i ¼ 1, . . . ,n) in (10), it becomes clear that

the Equation (6) for induction on unordered sets is a special

case of operator induction, and that the convergence

theorem (12) holds for (6) as well. This also assures conver-

gence of the operator induction technique of Section 2.1.

Is there any advantage in using (9) rather than (10) for oper-

ator induction?

Equation (9) exploits regularities in the set [Qi, Ai]. It

includes regularities in the set [Qi]—which we do not use—

so it would seem that we are doing more work than is necess-

ary. In (10), we only find regularities in functions relating Qi to

Ai. Such regularities may be easier to find than regularities in

the more complex object [Qi, Ai]. In general, however, the

finding of regularities for either of the techniques will

depend critically on just what problem is being solved.
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