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Time-Space Opportunistic Routing

in Wireless Ad Hoc Networks

Algorithms and Performance

François Baccelli1, Bartłomiej Błaszczyszyn2 and Paul Mühlethaler3

Abstract—In classical routing strategies for wireless ad-

hoc (mobile or mesh) networks packets are transmitted on

a pre-defined route that is usually obtained by a shortest

path routing protocol. In this paper we review some

recent ideas concerning a new routing technique which

is opportunistic in the sense that each packet at each hop

on its (specific) route from an origin to a destination takes

advantage of the actual pattern of nodes that captured

its recent (re)transmission in order to choose the next

relay. The paper focuses both on the distributed algorithms

allowing such a routing technique to work and on the

evaluation of the gain in performance it brings compared

to classical mechanisms. On the algorithmic side, we show

that it is possible to implement this opportunistic technique

in such a way that the current transmitter of a given

packet does not need to know its next relay a priori,

but the nodes that capture this transmission (if any)

perform a self selection procedure to chose the packet relay

node and acknowledge the transmitter. We also show that

this routing technique works well with various medium

access protocols (such as Aloha, CSMA, TDMA). Finally,

we show that the above relay self selection procedure

can be optimized in the sense that it is the node that

optimizes some given utility criterion (e.g. minimize the

remaining distance to the final destination) which is chosen

as the relay. The performance evaluation part is based on

stochastic geometry and combines simulation a analytical

models. The main result is that such opportunistic schemes

very significantly outperform classical routing schemes

when properly optimized and provided at least a small

number of nodes in the network know their geographical

positions exactly.

I. INTRODUCTION

Routing is the process of selecting paths in a network

along which to send network traffic. In packet switching
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networks routing directs packet forwarding — the transit

of logically addressed packets from their source toward

their ultimate destination through intermediate nodes.

Prior to this, in such networks the nodes usually ex-

change control packets containing the network topology

information that allow each node to find its next relay

towards any destination in the connected part of the

network. Once the paths (routes) are established in

the network, another part of the data communication

protocol, called Medium Access Control (MAC) layer,

is responsible for moving data packets on their paths by

organizing simultaneous transmissions in the network.

In wireless ad hoc networks routing is confronted

with relatively frequent changes in the network topology.

Indeed, in mobile ad hoc networks the nodes may go on

and off, as well as change their geographical locations.

Besides, the variability of radio channel conditions (so

called fading) makes the network topology vary even

in networks where the geographic pattern of nodes is

relatively static (such as in mesh networks).

Many studies have been carried out to cope with this

problem. Existing solutions are frequently subdivided

into two classes: reactive protocols and proactive pro-

tocols. Proactive protocols are mostly based on existing

routing protocols developed for wired networks. The

emphasis in these protocols is usually put on reducing

the control overhead as they have to be run more often to

follow the varying network topology. Reactive protocols,

on the other hand, use routes which are built on demand.

A source node wishing to obtain a route to a destination

node floods the network with a request packet. When the

diffusion of this packet reaches the destination, the route

can be established.

In this paper, which surveys and complements two

recent conference papers [1], [2] of the authors, we

consider another class of routing strategies where the

relay can be defined at each hop of each packet, depend-

ing on the local configuration of simultaneous transmit-

ters. In contrast to wired networks, this configuration

essentially determines the feasibility of transmissions
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on individual links in wireless networks. This strategy,

which we call opportunistic routing, and which merges

the functionality of routing and MAC layer, has already

been shown beneficial in the sense that it usually offers a

smaller delay to carry a packet from origin to destination

compared to classical routing schemes.

In this paper we describe also a very efficient way

to implement opportunistic routing utilizing a relay self

selection technique. In this procedure, the current emitter

of a given packet does not need to know its next relay

a priori, but the nodes that capture this transmission (if

any) perform a self selection to chose the unique packet

relay node and acknowledge the emitter. This technique

will be shown compatible with various MAC protocols

implemented in wireless networks as e.g. CSMA or

Aloha.

One of the goals of this papers is also to evaluate

the performance of opportunistic routing. For this, we

introduce a realistic model to carry out simulations which

allow for an extensive comparison of shortest path and

opportunistic routing. Our numerical results reveal some

interesting properties related to the jointly optimal tuning

of the Aloha MAC and opportunistic routing.

Last but not least, we propose a mathematical frame-

work based on the theory of stochastic geometry that

allows us to confirm and further study the properties

of the opportunistic routing revealed by simulations.

Stochastic geometry, which is now a rich branch of

applied probability intrinsically related to the theory of

point processes, allows one to study random phenomena

on the plane or in higher dimension. When applied

to communication networks, it provides a natural way

of defining and computing macroscopic properties of

such networks, by some averaging over all potential

geometrical patterns for the nodes, in the same way

as queuing theory provides averaged response times

or congestion over all potential arrival patterns within

a given parametric class. In the point-to-point routing

case, the main geometric objects are the (long) paths

from a given source node to a destination node, where

the relay nodes are picked form some realization of a

homogeneous Poisson point process of the plane.

The paper is organized as follows. Section II reviews

the existing routing mechanisms ranging from conven-

tional routing algorithms to more recent schemes such

geographic routing and opportunistic routing. Section III

describes the optimized self selection scheme. This self

selection which uses signaling bursts and short slots

of carrier sensing can be seen as an improved CSMA

scheme. Section IV describes the model for the perfor-

mance evaluation of opportunistic routing. This model

is used for simulations as well as for the mathemati-
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Fig. 1. Left: Shortest path (smallest number of hops) from O

to D, with neighborhoods defined by discs of fixed radius (maxi-

mum transmission range). Right: Local greedy geographical routing

maximizing the progression towards the destination (the abscissa in

the direction towards; green solid line) or minimizing the remaining

distance to destination (dashed red line) with the same transmission

ranges; these two geometric criteria may give different relays close

to the destination.

cal analysis. Section V presents the main observations

obtained by simulation. The simulations are carried out

both with Aloha and CSMA. Section VI provides a

mathematical framework for the analysis of opportunistic

routing. This framework allows one to better understand

a few observations obtained in Section V.

II. FROM SHORTEST-PATH TO OPPORTUNISTIC

ROUTING FOR WIRELESS NETWORKS — STATE OF THE

ART

Routing protocols are distributed algorithms that find

routes for all pairs of origin and destination nodes (O-D

pairs). Usually in a multi-hop network, once a route has

been found for an O-D pair, all the packets of this O-D

pair follow this route as long as the network topology

remains unchanged.

A. Conventional proactive routing

In proactive protocols such as OLSR [3] the computa-

tion of routes is based on the exchange of control packets

sent by the routing protocol. Using the topology infor-

mation carried in the control packets, each node can find

its next relay towards any destination in the (connected

part of the) network. The most prominent algorithm

that builds the shortest routes (with the smallest number

of hops) is Dijkstra’s algorithm [4]. Figure 1 (Left)

depicts the shortest path from O to D assuming that the

neighborhood of a node is identified via some maximum

transmission range parameter: neighbors of a node are

all the nodes at a distance smaller than this parameter.

An important problem in conventional proactive rout-

ing is that the convergence time of a Dijkstra-like al-

gorithm for finding routes, as well as the routing state

of each node (the next relay for any destination in the

network), increases considerably as soon as the network

has a large number of nodes.
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B. Reactive routing

One way to reduce the routing state of nodes is to

build routes on demand as in AODV [5]: a source node

wishing to obtain a route to a destination node floods the

network with a request packet. When the diffusion of this

request packet reaches the destination, the backtracking

of its tree allows the required route to be established.

However this solution does not essentially reduce the

complexity of the algorithm, which has to be run each

time a source is looking for a destination.

C. Local geographic routing

Coping with scalability problems has been the primary

goal of geographic routing [6]. A reduction in complex-

ity, however, comes at the cost of knowing the positions

of the nodes that are used to determine the routes to

the destinations. More precisely, in geographic routing,

instead of running an algorithm to find some globally

optimal routes (e.g. the shortest ones) over the whole

network, the successive hops of a path are constructed

incrementally making “local”, “greedy” choices of the

next relays according to the geographical locations of the

neighbouring nodes. For instance, Takagi and Kleinrock

in 1984 [7] proposed to choose the next relay in such

a way that it maximizes the (geometric) progression to-

wards the destination: the node with the largest abscissa

towards the destination is chosen. Alternatively, one can

minimize the remaining distance to destination, and the

neighboring node that is closest to the destination serves

as the next relay; see [8], [9]. Figure 1 (Right) depicts

the paths produced by the local greedy routing with these

two geometric criteria.

In all the routing schemes that we describe above, if a

route is established between an origin and a destination

(proactively or on demand, via a global or a greedy

search algorithm) then all the packets of this given O-D

pair flow are sent through the same relays. This task is

carried out at the MAC layer.

D. Opportunistic routing

Reactive and local geographic routing has paved the

way for a new type of routing technique in which the

routes are not constructed proactively in the network

and where the relays of a given O-D flow are not

fixed in advance. In this technique, called opportunistic

routing, the relays are chosen dynamically at each hop of

each packet, among the nodes which have received the

packet transmission. This choice can be also optimized

by taking the geographical locations of receivers into

account (see e.g. [10], [11], [12], [13], cf. Figure 2). It

has been shown that this strategy, which involves both

Fig. 2. Opportunistic routing. Clouds around each transmitter

depict nodes that capture (receive correctly) the packet. For the top-

left transmission we show the relay that maximizes progress to the

destination, which will hence be selected as the next relay for this

packet.

the routing and the MAC layer of the network is able to

reduce the mean time required to carry a packet from the

origin to the destination compared to the shortest path

routing technique; see [6], [1]). Note that this metric is

more fundamental than that of the number of hops in the

route (optimized by the shortest path route), which does

not include the time which is wasted in unsuccessful

attempts to make a particular hop.

E. Performance comparison

[6], [1] show that opportunistic routing can reduce the

mean delay required to carry a packet from the origin

to the destination compared to shortest path routing.

To address this question, as in [1], we use a Signal to

Interference Ratio criterion for successful packet recep-

tion. This model is justified by many used modulation

techniques and has an information theoretic basis. We

also assume that the locations of network nodes are the

points of some homogeneous Poisson point process. We

carry out simulations to compare opportunistic routing

with shortest path routing, both combined with Aloha or

CSMA.

F. Implementation of opportunistic routing

Opportunistic routing does however come with several

technical difficulties which are discussed below.

1) Relay self selection: The major difficulty is how

to let the transmitter of a given packet know about

its current receivers and chose an optimal one as its

relay. This problem can be solved using a relay self

selection technique. In this case, the transmitter of the

packet does not know its next relay a priori, but the

nodes that capture this transmission (if any) perform a

self selection technique to chose the unique packet relay

node and acknowledge the transmitter. To the best of the

authors’ knowledge, the idea of self selection of relays

in opportunistic routing was first presented in [11] and

[12]. The contribution presented in [13] also uses this
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idea. The relay self selection technique proposed in the

present article has already been described in [14] in the

section on implementation issues, but the primary focus

of [14] was the optimization of the slotted Aloha MAC

in the context of opportunistic routing. Our relay self

selection procedure is optimized in the sense that it is

the node that optimizes some given geometric utility

criterion (e.g. minimize the remaining distance to the

destination) which is chosen as the relay.

2) MAC and routing interplay: Another difficulty

involved in opportunistic routing consists in merging the

functions of two, traditionally separated, network layers.

In particular, we have to know whether this technique

can be used with various existing MAC solutions. The

techniques presented in [11] and [13] assume a IEEE

802.11 type MAC where the acknowledgment scheme is

modified to allow for the relay selection. On the other

hand, [12], [14] assume slotted Aloha. In the present

article we show how the relay self selection scheme can

be used with various MAC techniques: these schemes

may be controlled access schemes such as Time Division

Multiple Access (TDMA) or random access schemes

such as Aloha or CSMA.

3) Node positioning: As already stated, geographic

routing, which is used in our self selection procedure,

requires knowledge of the nodes geographic positions.

Nevertheless, we will show that it is sufficient that

a small number of nodes in the network know their

positions exactly, e.g. using GPS, and provide this

information to the remaining nodes, for the proposed

technique to work well and outperform conventional

routing techniques.

III. THE OPTIMIZED RELAY SELF SELECTION

SCHEME VIA SIGNALING BURSTS

In opportunistic routing with relay self selection the

transmitter of the packet does not know its next relay a

priori, but there is a self selection of this relay among

the nodes that capture this transmission. In wireless

communications a simple way of electing a winner and

letting it transmit is to use a backoff mechanism. Suppose

that the receivers of the tagged packet pick independently

random times before trying to forward it and that the re-

ceiver with the smallest delay initiates the transmission.

Other packet holders hearing this transmission resign and

discard the packet. Implementing this mechanism would

lead to a random choice of one of the nodes among the

current receivers (holders) of the packet as its relay. Of

course it is natural to prefer a self selection mechanism

that elects the relay in some locally optimal manner; e.g.

the one that maximizes the packet’s progression towards

the destination or minimizes the remaining distance to

the destination.

A. Preferential backoff

More generally, let us assume that each receiver can

objectively evaluate its rank on some universal scale. 3

The problem is thus the following: how can we select

the packet receiver with the highest rank through a

distributed algorithm. The requirement is that when this

algorithm runs on a node, it only knows the rank of this

node. One solution is to assign backoff times according

to the node’s rank: the higher the rank, the shorter the de-

lay. This would make the optimal receiver the first node

that starts forwarding the packet. However, a reasonable

self selection mechanism must prevent all the other nodes

that participate in the selection process from relaying it.

This requires that the retransmission of the packet by

the best relay be heard by the other potential relays —

a condition that cannot be completely guaranteed since

the potential relays may be far from each other. Also

the radio conditions (including interfering signals) may

change when the backoff time has elapsed. In addition

to this problem, it is unclear whether the linear selection

of a backoff technique would be sufficiently powerful to

discriminate between the potential relays. In particular,

if the network is dense, one may have to foresee a large

backoff window in order to accommodate a large number

of potential relays. Finally, the self selection mechanism

must acknowledge the previous transmitter of the packet.

B. The signaling bursts

In order to cope with the above requirements we

propose a more powerful technique to elect a winner,

using signaling bursts with logarithmic coding of the

rank [15]. This technique, which was first introduced for

the HiPERLAN type 1 standard [16], assumes that after

the original packet transmission and before its relaying,

in the so-called active signaling phase, each node that

has captured the packet transmits an acknowledgment

made up of a short signaling burst. This acknowledgment

has two goals: first it allows the best relay to be selected

and second it allows the sender to know that the packet

has been received and will be relayed by some node.

The burst is composed of a sequence of intervals of the

same length in which a given receiver can either transmit

3For example, to optimize the progression towards the destination,

the rank of a receiver can be taken equal to the abscissa of its location

in the coordinates system originated at the transmitter, with the x axis

pointing to the destination. In the other geographic criterion evoked in

Section II-C, which aims at minimizing the remaining distance to the

destination, the rank could be minus the distance to the destination

node.
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Fig. 3. Structure of the acknowledgment packet to select the ’best’

relay towards the destination.

or listen (see Figure 3). In order to describe the structure

of the burst, let us represent it by the binary sequence,

where 0 denotes a listening interval and 1 denotes a

transmission interval. Each node participating in the self

selection process computes this binary sequence (and

thus determines the form of its burst) as follows.

• The first nd bits encode the rank of the node in

base 2 (we recall that the self selection should

designate one node with the highest rank as the

relay).

• Optionally one may implement the next nr bits

selected at random to discriminate between nodes

having (almost) the same rank.

• Finally the last bit is always set to 1. This bit, as

we will see, provides the acknowledgment of the

successful self selection of the relay.

After having computed the form of their bursts, the

nodes start transmitting them simultaneously applying

the following rule: if a given node detects a signal from

another node during any of its listening intervals, it quits

the selection process; i.e. it stops transmitting during the

entire remaining part of the active signaling phase (cf.

Figure 4).

It can easily be checked that if all the nodes par-

ticipating in the self selection process remain in their

communication regions, then at the end of the first nd

bits of the burst, the only nodes (if any) which stay in the

competition will have equal rank, the highest among all

the participating nodes. This stems from the construction

of the signaling bursts: the detection of a transmission

during a listening interval implies that a better relay is

taking part in the competition.

An example of a relay selection operation is shown in

Figure 4, which corresponds to the relay selection around

O as shown in Figure 2. Three nodes have captured the

transmission sent by O: nodes A,B and C. Node A has

the highest rank and thus is selected as the best relay

using the active signaling scheme.

The next nr bits of the burst randomly select one

of the nodes with the highest rank, if there are more

than one. Finally, this unique winner (if any) of the self

selection process will transmit at the last interval of the

Fig. 4. Example of the ’best’ relay using the acknowledgment

scheme

burst. Thus, if the previous transmitter (the node that

sent the packet for which the relay is to be selected)

cannot detect a signal in this interval it infers that its

packet has not been received or that the selection process

between potential relays has failed. In this situation, it

has to retransmit the packet.

C. Some implementation issues

Let us now discuss the “real” circumstances, in which

the above “ideal” self selection process may fail. Proba-

bly the most important of these is interference from other

transmitters in the network which are not participating in

the self selection process. To cope with this problem, a

spreading technique can be used: a unique (CDMA-like)

binary code of much higher frequency can be provided

in the previous transmission of the packet, to be used by

all the receivers during the active signaling burst. All the

nodes participating in this self-selection will modulate

their bursts (binary multiply) before transmitting. This

will protect the communication in this active signaling

burst from other ongoing communications. Note that we

do not suggest using this code for the subsequent data

packet retransmission by the elected best relay; the given

MAC used will take care of it.

Another problem is how to determine nd in order for

the signaling burst to be able to correctly discriminate

between nodes. Let us assume, for example, that the rank

is some geometric distance; e.g. progression. Then nd =
13 will allow distances up to about 8 km to be coded

with the precision of 1m. Whether this is a sufficient

tuning depends on the maximal transmission range in the

given network.

D. Relay self selection and multiple access schemes

The relay self selection technique that we have de-

scribed above can operate with various access schemes:

both with controlled schemes (in which access is granted

by the protocol in such a way that there are no collisions)

and with random access schemes, since the protocol



6

incorporates an acknowledgment mechanism. We discuss

some possible choices below.

1) TDMA: In this protocol time slots are assigned

to network nodes in such a manner that there are no

collisions. It is, however, difficult to use such a scheme

in ad hoc networks since attributing time slots in these

dynamic networks is extremely complex.

2) CSMA/CA: These protocols have been widely used

in wireless networks. In these random access protocols,

the channel is sensed prior to any transmission to be

sure that it is not used. Above a given threshold, called

the carrier sense threshold, the channel is assumed to be

occupied whereas below this threshold, the channel is

assumed to be free. When a collision occurs, a simple

backoff technique is used to schedule the re-transmission

of the packet. These CSMA/CA protocols form the basis

of the IEEE 802.11 standard, which, however, adds an

additional MAC acknowledgment sent just after the end

of the received packet. The relay self selection technique

protocol proposed in this article can operate with the

CSMA/CA technique of the IEEE 802.11 standard with

this acknowledgment modified (replaced by) the active

signaling phase described in the previous section.

3) MACs with RTS/CTS: Our relay self selection

technique could also be adapted to other protocols such

as MACAW [17], MACA/PR [18], DBTMA [19] etc.,

which use a Request To Send/Clear To Send (RTS/CTS)

exchange before the actual transmission of the data. In

these protocols, the RTS packet should be sent to all

neighbors and the CTS packet should encompass the

active signaling phase. (Thus, in this case, the relay

self selection will take place before the reception of the

packet in question.)

4) Aloha: Our relay self selection can also work

with non-slotted Aloha. However, it would be more

beneficial in the case of a slotted Aloha protocol in

which, at each time slot, each node with packets to

be sent tosses a coin with a bias p (for heads) and

accesses the channel when getting heads. In fact, the use

of a slotted structure allows the throughput of the Aloha

protocol to be improved by a factor of 2 (see Chapter 4

of [20]). In addition, the slotted structure also improves

the efficiency of the relay self selection technique. The

combination of the slotted Aloha with the relay self

selection protocol has been analyzed in [12], [14], [1]

and many very interesting properties have been shown,

especially concerning network scaling.

IV. PERFORMANCE EVALUATION MODEL

We now describe our model for the performance

evaluation of the opportunistic routing. This model will

be used for simulations as well as for the mathematical

analysis.

A. Network architecture

We consider networks formed of nodes randomly

distributed on the plane. Specifically, nodes are assumed

to be sampled according to some homogeneous Poisson

point process with intensity λ. In our simulations, we

use a finite planar network on the square [0, 1000] m

×[0, 1000] m. The locations of the nodes do not change

with time slots, but mobility is taken into account in the

radio channel model (see model M3 in Section IV-C be-

low). In our simulations, the default option is λ = 10−3

nodes /m2.

B. O-D pairs and background traffic

In the simulations O-D pairs are selected on opposite

parts of the network, as shown in Figure 5, with a

distance of about 1130 m from each other. This rep-

resents a moderate distance (approx. 9 hops away for a

transmission range of 140 m.).

For a fixed O-D pair, and for a given set of network

nodes sampled according to a Poisson point process, a

basic simulation experiment allows one to get a sample

of the end-to-end transmission of one packet of the

tagged O-D pair flow, assuming some given physical

(radio), MAC and routing model that will be described

below (cf Sections IV-C–IV-F). In this end-to-end trans-

mission we track the route selected for this packet, the

transmission attempts at each relay node and the end-to-

end delay. For the sake of simplicity, in the simulations:

• the tagged packets of the O-D pair are treated as

higher priority packets at each node. We should

of course add a queueing delay to account for the

competition with cross traffic, but under natural

homogeneous traffic and stability assumptions, this

would amount to adding a delay with the same law

at each node, and should hence not change the main

conclusions of the comparison study.

• all nodes are assumed to always have packets to

transmit, and they always transmit whenever au-

thorized by the MAC; these transmissions allow us

to take the background traffic into account through

the interference they create at each time slot, and

in turn, determine which nodes capture the tagged

packet transmission.

We repeat a large number of such basic experiments to

evaluate means. We consider both packets sent from O

to D for the same and for different network samples.

Note that even if we track only the packets of the

tagged O-D pair, the cross-traffic is taken into account
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via the interference experienced by the tagged packets

due to other transmitters in each time slot. We still as-

sume that each node always has a packet to transmit and

that interference plays an important role in determining

a successful reception.

C. Radio channel models

The power used by all the transmitters is assumed to

be equal to some constant S = 1. We use the following

simplified power attenuation function l(r) = (Ar)−β for

some constants A > 0 and β > 2, which gives the

fraction of the emitted power that is received at distance

r from the transmitter. Even if this function has a pole

at the origin, it is reasonable and commonly used if the

density λ of points is not too large or, equivalently, the

points are not too close to each other. In the simulations,

we take a path-loss exponent of β = 3.

In certain models, in addition to the above attenua-

tion function, we assume that the received powers are

multiplicatively modified by some location and possibly

time dependent random path-loss factors. The following

3 scenarios will be considered.

(M1): Path loss factors are constant equal to 1. This

assumption might correspond to a very slow channel fad-

ing and/or coding which allows for empirical averaging

over fading effects during packet transmission (e.g. based

on symbol interleaving).

(M2): Path loss factors are position dependent; they

are sampled independently for each transmitter-receiver

pair and stay constant for all time slots of the simulation.

This corresponds to a slow fading or shadowing effect.

(M3): Path loss factors are position and time

dependent; they are sampled independently for each

time slot and each transmitter-receiver pair. This might

correspond to user mobility and will be the default option

in the simulations below.

For models M2 and M3, we assume a Rayleigh

fading, where path-loss factors are exponential random

variables with parameter 1 (see e.g. [21, p. 50 and 501]).

The model also includes a thermal noise independent

of everything else with power denoted by W . In the

simulations, the default option is W = 0.

D. Capture model

Let us suppose that some station transmits during

a given time slot. We assume that it can successfully

transmit to a given receiver of this time slot if the SINR

ratio at this receiver is not less than some fixed threshold

T . By the SINR we mean the ratio between the power

received from the given transmitter (attenuated and mod-

ified by the path-loss factor) and the sum of powers

received from all other transmitters of the given time slot,

including the power W of the thermal noise; see (6.1)

for the corresponding formula. In the simulations, the

default value is T = 10.

E. MAC models

We will only consider slotted MAC scenarios; i.e. the

time is divided into equal slots. In each slot, the first

part is dedicated to the transmission of the data sent

by the initial source or repeated by the intermediate

nodes, and the second part of the slot is dedicated to the

acknowledgment packet which is sent by potential relays

to elect the best relay and to acknowledge the reception

of the packet; cf. Figure 3. However, only the reception

of the data part in each time slot will be simulated and

the nodes having successfully received the data will be

identified (cf. Section IV-D). In this study we assume

that the self-selection procedure perfectly designates the

best (according to a given criterion) relay node among

them.

1) Aloha: The first simulations presented in this paper

assume a slotted Aloha. In this model, at each time slot

each node tosses a coin independently of everything else.

The nodes tossing heads are the transmitters of this time

slot; the other nodes are the receivers. This model will

also be the basis of the mathematical analysis based on

stochastic geometry. The main parameter of this model

is the probability of tossing heads, denoted by p, which

is referred to as the medium access probability. Nodes

which are not authorized to transmit at a given time slot

are considered as potential receivers at this time slot.

2) CSMA/CA: Next, we present simulations using

a CMSA/CA protocol. To simplify the simulation, we

simulate a slotted CSMA/CA system meaning that at

each time slot, transmitting nodes are selected among the

nodes with a pending packet according to the CSMA/CA

rule. More precisely, in each time slot the nodes with a

pending packet try to access the channel in a random

order and succeed only if they satisfy the CSMA/CA

rule; i.e. if the detected signal is below the carrier sense

threshold 4. This carrier sense threshold is thus the key

parameter of the CSMA/CA simulation. Nodes which

are not authorized to transmit at a given time slot are

considered as potential receivers at this time slot.

In this simple model we also neglect the collision win-

dow in which transmitters can start their transmissions

without sensing each other.

4In [22] it is shown that this model is a good approximation of a

real CSMA when the packets are of the same length and if we also

consider the overhead induced by the backoff algorithm.
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F. Routing

We now describe two routing strategies: conventional

shortest-path and opportunistic routing where the latter

aims at minimizing the remaining distance to the desti-

nation at each hop.

1) Shortest path routing: By this we understand

routing along the routes with the least number of hops

as found by Dijkstra’s algorithm [4]. For each given

network, this amounts to finding paths of minimal

weight between a given origin O and destination D (cf.

Section IV-B) in a graph with edges between all pairs of

nodes and where the weight of the edge between nodes

x and y is 1 if |x− y| ≤ R and ∞ otherwise, where R
is the maximum transmission range and is considered as

a parameter of this routing protocol. This shortest path

is used to route all packets of this O-D pair. A given

MAC scheme (Aloha or CSMA/CA) is then used to let

the tagged packets progress from O to D along this path.

2) Opportunistic radial routing: It should be recalled

that in opportunistic routing, the next hop on the route

to the destination is not known a priori and the routing

algorithm should be described together with the MAC.

Consider a tagged packet of the O-D pair flow located

at some current node A.

Until A is the destination D do:

1. Until A is selected by the MAC to

transmit, end-to-end delay++;

2. When A is selected by the MAC to

transmit do:

2.1. All the nodes which are selected

by the MAC to transmit are

transmitters, the remaining

nodes are receivers;

2.2. The set of transmitters together

with the fading variables at

that time slot determine the

interference everywhere at this

time slot;

2.3. The set of receivers S which

satisfy the SINR capture

condition at this time slot

receive the tagged packet

successfully;

2.4. Among the nodes of S ∪ {A}, the

nearest to the destination, say

B, is the next relay;

2.5. The other nodes of S discard the

tagged packet;

2.6. end-to-end delay++;

2.7. if A 6= B then number-of-hops++;

3. A := B.

A more formal description of this routing protocol, as

well as a proof of its convergence (the fact that it delivers

Time-space opportunistic radial path, M3
Time-space opportunistic radial path, M1
Shortest path
Nodes
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Fig. 5. Samples of routing paths with opportunistic radial routing

(with and without fading) and with a shortest path algorithm (for

Aloha MAC).

the packet to the destination in a finite number of time

slots) is presented in Section VI under the Aloha MAC

assumption. Figure 5 gives three examples of radial

paths obtained by simulation for different radio channel

models. The path that is the closest to the segment

joining the origin to the destination node is obtained

with a shortest path routing algorithm. The second path

moving farther away from this segment corresponds to

the time-space opportunistic radial routing strategy under

the M1 model. The third path, which allows one to search

for relays very far from the transmitter corresponds to

time-space opportunistic radial routing in the presence

of fading (here under the M3 assumptions).

G. Nodes positioning

1) Perfect positioning: Note that opportunistic routing

requires that the nodes know their geographical posi-

tions. In our simulations we will assume first that all

the nodes have perfect knowledge of their positions.

The nodes can acquire such knowledge using, e.g. GPS.

Under this assumption we will compare opportunistic

routing with optimized self selection of relays to con-

ventional routing based on the shortest path algorithm.

2) A simple localization algorithm: As the assump-

tion that each network node knows its exact position

may be considered too demanding in practice, we will

also study the performance of our relay self selection

algorithm with a weaker assumption, namely, that only

a fraction of the network nodes have perfect knowledge
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Fig. 6. Samples of routing paths with shortest path and oppor-

tunistic radial routing obtained under different assumptions for node

positioning assumptions (for slotted Aloha MAC).

of their positions (e.g. are equipped with GPS). The other

nodes will use these so-called ’auto-localized’ nodes

as anchors to estimate their own positions. A simple

localization algorithm can approximate the position of

a node as the barycenter of its auto-localized neighbors

(see [23]).

Three examples of paths obtained by simulation are

given in Figure 6. The path which is the closest to the

segment joining the origin to the destination node is

obtained with a shortest path routing algorithm combined

with the slotted Aloha as the access scheme. The second

path moving farther away from this segment corresponds

to the relay self selection mechanism using the slotted

Aloha. In this path, all the network nodes have perfect

knowledge of their positions. The third path, which is a

path on the right of the direct line between the source

node and the destination node, corresponds to the relay

self selection mechanism using the slotted Aloha but

with only 10% of the network nodes having perfect

knowledge of their position. The other nodes compute

their positions using the simple localization algorithm;

see [23]. In this case, at first glance one might assume

that the relay self selection would not perform as well

as shortest path routing. However, as we will see, this is

not the case. We have to bear in mind that the important

metric is the end-to-end delay between O and D and not

the number of hops.
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H. Performance metrics

For a given tagged packet of the O-D pair and a given

network of nodes we consider:

• the end-to-end delay, defined as the number of time

slots it takes for this packet to go from O to D,

• the number of hops made by this packet from O

to D,

• the average local delay (delay per hop) defined as

the ratio end-to-end-delay/number of hops.

I. Averaging and Confidence Intervals

In order to calculate the means of the above per-

formance characteristics, we average over 80 different

networks connecting a given O-D pair and for each

network we average over 5 packets for the O-D pair. The

results are always presented with confidence intervals

corresponding to a confidence level of 95%. Note that

some of these confidence intervals are small and can only

be seen when zooming in on the corresponding plots.

V. SIMULATION RESULTS

A. Aloha

1) Mean End-to-End Delay: For shortest path routing,

the maximum transmission range parameter R (recall
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from Section IV-F1 that this is a parameter of Dijkstra’s

algorithm) has first been optimized in order to make the

comparison fair. The end-to-end delays for various values

of R and of the transmission probability p are presented

in Figure 7. We see that the best delay is obtained with

p = 0.003 and with R = 140 m. This value, which is our

default value for shortest path routing in what follows,

is actually the smallest value of the transmission range

which connects the network with high probability in this

case.

In Figure 8, we compare the shortest path algorithm

and our time-space opportunistic routing. In this figure

we give the mean end-to-end delay as a function of

the transmission probability p under different fading

scenarios. Here is the main observation of the paper.

Observation 5.1: The algorithm based on time-space

diversity significantly outperforms the conventional

shortest path routing strategy: the average delay of a

packet is at least two and a half times smaller for this

strategy than for Dijkstra’s algorithm.

We also see that the discrepancy between the con-

ventional shortest path routing strategy and time-space

opportunistic routing becomes much larger for a large

p. Moreover, the performance of opportunistic routing

is much less sensitive to a suboptimal choice of the

parameter p.

Figure 9, which refines Figure 8 for opportunistic

routing strategies, shows that:

Observation 5.2: Letting time-space opportunistic

routing take advantage of the varying fading (e.g. due

to mobility) is beneficial in terms of mean end-to-end

delays.

The analysis of the simulation results shows that oppor-

tunistic routing in the presence of fading (M2 and M3)

performs roughly four times better in terms of end-to-

end delay than opportunistic routing in the absence of

fading (M1), see Figure 9. Opportunistic routing with

slow fading (M2) or with fast fading (M3) offers similar

performance. Only very long simulations (not presented

here) show that opportunistic routing in M3 leads to

slightly shorter delays than in M2.

Here is the second most important observation of this

paper. Figure 10, which plots the mean end-to-end delay

for the M3 time-space opportunistic routing, shows that:

Observation 5.3: There is an optimal value of p that

minimizes the mean end-to-end delay of the time-space

opportunistic routing algorithm, and that this optimal

value p∗ seems to be the same for all values of the node

density λ.

Similar observations (not presented here) hold for the

M1–M2 models described in Section IV-C.
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Fig. 9. Effect of fading on time-space opportunistic radial routing:

end-to-end delay versus transmission probability p.
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In Figure 11 we see that :

Observation 5.4: The mean end-to-end delay of the

time-space opportunistic routing algorithm is of the

order of
√
λ where λ is the node density.

The matching is excellent for opportunistic routing in

M3 (and in M2 although it is not shown in Figure 11),

for opportunistic routing in M1 there is rough matching.

The discrepancy seen for small λ may be caused by side

effects.

2) Mean Number of Hops, Mean Local Delays:

Figure 12 gives the average number of hops to reach the

destination for the two routing strategies with p varying

from 0.001 to 0.02.

Observation 5.5: In the case without fading M1, for

small values of p, the time-space opportunistic path

is shorter (has a smaller mean number of hops) than

the Dijkstra shortest path, whereas it is longer for

large values of p. In the presence of fading, time-space

opportunistic routing offers shorter paths than Dijkstra

type routing for p ≤ 0.014 and slightly larger paths than

Dijkstra type routing for p > 0.014.

We also observe that for time-space opportunistic rout-

ing, the mean number of hops to reach the destination

increases with p. This can be easily understood since

when p increases, the time-space diversity decreases and
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(with and without fading) and with a shortest path routing algorithm.

thus the number of hops to reach the destination tends

to increase.

Figure 13 studies the mean local delay for the same

three scenarios as above.

Observation 5.6: In time-space opportunistic routing,

for each p, the mean delay per hop is much smaller than

the delay per hop for Dijkstra’s algorithm.

This explains why the average delay is smaller for time-

space opportunistic routing than for Dijkstra’s algorithm

even if the number of hops may be larger.

% GPS 20% 10% 7% 5% 4% 3% 2% 1%

% Delay exc 7.7% 6.1% 5.8% 4.3% 4.8% 7.7% 13.8% 39%

Fig. 14. Percentage of packets with delay exceeded versus percent-

age of GPS nodes (for slotted Aloha)

3) Impact of imperfect node positioning: Figure 8

provides the mean end-to-end delay of the relay self

selection algorithm when only 10% of the network nodes

have GPS information. Figure 8 actually shows that the

performance of the optimized relay self selection is not

significantly affected by the lack of precision induced

by the simple localization algorithm when p is less than

0.004. For higher values, using the localization algorithm

leads to an increase in the end-to-end delay and to

significant packet loss due to an excessive delay (5 % of

packets with a delay exceeding 10.000). However, if we

use the localization algorithm and if we maintain a small

value of p, the end-to-end delay will be approximately

3000 whereas the mean delay is 2500 for the relay

self selection with p = 0.012. Even with 10% of GPS

nodes, the relay self selection mechanism significantly

outperforms the shortest path routing scheme in terms

of the end-to-end delay. Last but not least, we can

also observe in Figure 8 that the tuning of the Aloha

parameter p is much easier with relay self selection than

with the shortest path algorithm.

In Figure 14, when p = 0.01, we present the percent-

age of packets end-to-end delay of which exceeds 10.000
slots for various percentages of nodes having GPS infor-

mation. We see that when more than 3% of the nodes

have GPS information, less than 10% of the packets have

delays exceeding 10.000. The performance of the relay

self selection mechanism seems to be quite insensitive

to the percentage of nodes having GPS information and

thus to a lack of precision in knowledge of the node

positions.

4) Impact of the path-loss exponent: Figure 15 shows

the gain in terms of mean end-to-end delay of the relay

self selection algorithm over conventional shortest path

routing, as a function of the path-loss exponent. In order

to perform a fair comparison of both techniques, we

chose the p which optimizes the mean end-to-end delay.

We observe that this gain varies from 2.8 for β = 3 to

nearly 4 for β = 5. In this study we have not considered

the effect of fading. However it is easy to take such an

effect into account with simple models which are not

presented in this paper for reasons of space. In these

fading-aware models another important additional gain

(up to 4) can be obtained. Actually, the fading effect

adds spatial diversity which is used by the relay self

selection mechanism to improve its performance.
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B. CSMA/CA

We compare the traditional routing strategy based

on a shortest path Dijkstra algorithm and the routing

with self relay selection described in Section III. Both

routing schemes use the slotted CSMA protocol as the

access scheme. We consider the end-to-end delay of

these two schemes, and the results of these simulations

are presented in Figure 16. It can be seen that, here

again, the relay self selection mechanism significantly

outperforms the shortest path algorithm. In terms of end-

to-end access delay, the obtained gain is around 1.5.

As the Aloha case, we can observe that the tuning of

the carrier sense threshold is much easier with the relay

self selection than with the shortest path algorithm.

In Figure 17 we compare the end-to-end delay of

the relay self selection mechanism used with Aloha

and CSMA/CA for various values of the node density.

Both protocols are optimized w.r.t. the transmission

probability p for Aloha and w.r.t. the carrier sense
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Fig. 17. Comparison of the mean end-to-end delay versus node

density of the self selection mechanism used with a CSMA/CA

protocol.

threshold for CSMA. We note that CSMA/CA offers

much smaller end-to-end delays, the gain is around a

factor 0.5, nearly 0.45 for a node density of 0.002. The

gain in performance of CSMA over Aloha is confirmed

in Figure 18 where we can see that the actual mean

number of hops to reach the destination is smaller for

CSMA than for Aloha. Since CSMA offers a better

exclusion area around the transmitter the packet can go

farther towards the destination.

Nonetheless the improvement in performance of

CSMA shown in Figures 17 and 18 comes at the price

of an optimization w.r.t. the carrier sense threshold

which is not independent of the node density. This is

shown in Figure 19. The optimizations for λ = 0.0005,

λ = 0.001 and λ = 0.002 lead to very different values

of the carrier sense threshold. This is in contrast to the

Observation 5.3, which says that the optimal Aloha MAP

p does not depend on the density of nodes.

The last remark is in line with a remark made in

[14] where we showed that CSMA with a fixed carrier

sense threshold offers a maximum throughput 0(1). This

throughput does not scale with λ whereas for Aloha

scheme it scales as 0(
√
λ); i.e. according to Gupta and

Kumar’s well known law [24].

VI. MATHEMATICAL ANALYSIS

In this section we will study opportunistic routing

under the Aloha MAC assumption using the theory

of point processes. In particular we will show how to

optimally tune the MAC parameters so as to minimize

the average number of time slots required to carry a

typical packet from origin to destination on long paths.

We show that this optimization is independent of the

network density.
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A. Minimizing End-to-end Delay for Long Paths

The aim of this section is to explain Observation 5.3,

namely that (and in what sense) there is an optimal value

p∗ that minimizes the mean end-to-end delay of the op-

portunistic routing for all values of the node density λ. In

our explanation we will use some “fictitious” directional

routing model which consists in a non-terminating do

loop of the same nature as in opportunistic radial routing

(see Section IV-F2) but with 2.4 replaced by:

2.4’ Among the nodes of S ∪ {A}, the one

with the largest abscissa in the

direction of the vector (O,D), is the

next relay;

Note that directional routing as defined above does not

aim at delivering a packet to a particular destination. It

corresponds rather to a situation where the destination

is at infinity, in the same direction as from O to D5

However, it is a suitable mathematical model for op-

portunistic radial packet forwarding between O-D pairs

that are separated by a large distance. Indeed, when

the remaining distance to the destination is large, then

the optimal receiver for the radial path and that for

the directional path (see steps 2.4 and 2.4’) tend to

coincide (cf. Figure 5 right).

A path can be seen as a sequence of progress segments

ξk for the tagged packet, where the k-th segment is that

connecting the location of the packet at the k-th time slot

to its location at the k + 1-st slot. The k-th segment is

degenerate and reduces to a point if the node harboring

this packet at slot k does not transmit at this time slot

or transmits without capture by a node closer to the

destination.

Let us define the progress Pk of a given progress

segment ξk as the length of the projections of ξk on the

O-D pair direction. Observation 5.3 could be explained

by the following two properties.

1) Radial and directional routing coincide far from

the destination: (cf. Figure 5 right).

2) For all n, the maximization w.r.t. p of the mean

progress of directional routing in n time steps

is invariant with respect to the intensity of the

underlying Poisson point process.

In what follows we will present a mathematical frame-

work in which these two properties can be formalized.

B. The detailed model

Let Φ = {Xi}i be a homogeneous Poisson point

process, with points Xi ∈ R
2 representing the locations

of nodes on the Euclidean plane. We denote by λ the

intensity of Φ. We will consider two independent se-

quences {ei}i, {Fi}i of independent marks of the points

of Φ.

For all i, let ei = {eni }n be a sequence of in-

dependent and identically distributed (i.i.d.) Bernoulli

random variables, where eni represents the transmission

indicator of node i at time n, or equivalently the fact

that this node tosses heads at time n. We assume that

P{ e = 1 } = 1−P{ e = 0 } = p, where e is the generic

transmission indicator.

5If one wants to consider the directional routing that delivers the

packet to the real destination D, then the direction in step 2.4’

should be modified at each location of the packet in such a way that

it always points towards D. Such a routing algorithm may however

lead to some oscillations when the packet is close to the destination

(cf. Figure 1), and seems to offer no advantage with respect to the

radial algorithm. Thus we prefer to consider it only as a mathematical

model with D at infinity.
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For all i, let Fi = {Fn
i,j}j,n be a family of random

vectors, where Fn
i,j represents the fading between nodes i

and j at time n. We assume that for each n, the variables

{Fn
i,j}i,j are i.i.d. with the same law as a generic variable

denoted by F a general non-negative distribution with

mean 1. For different n the variables Fn
i,j need not be

independent. We will consider the following 3 scenarios:

(M1) Fn
i,j ≡ 1 for all i, j, n,

(M2) Fn
i,j = F 0

i,j for all i, j, n,

(M3) Fn
i,j are i.i.d. for all i, j, n.

Let W > 0 be a given random variable representing the

thermal noise which is assumed to be independent of Φ.

Denote by l(r) = (Ar)−β the attenuation at distance r.

Let S denote the (fixed) power used by transmitters.

Let Φn
1 = {Xi : eni = 1} denote the point process of

transmitters at slot n and Φn
0 = {Xi : eni = 0} that of

receivers. Suppose that a transmitter is located at Xi ∈
Φn

1 . Consider a receiver located at Xj ∈ Φn
0 . Transmitter

Xi can establish a successful channel to receiver Xj if

and only if

SFn
i,jl(|Xi −Xj |)

W + IΦn
1
\{Xi}(Xj)

≥ T , (6.1)

where IΦn
1
\{Xi} is the shot-noise process of Φn

1 \ {Xi}:

IΦn
1
\{Xi}(Xj) =

∑

Xk∈Φn
1
\{Xi}

SFn
k,jl(|Xk −Xj |).

Let δ(Xi, Xj , n) be the indicator that the event (6.1)

holds.

When restricted to a bounded window, with W ≡ 0
and exponential F in M2 and M3, the above model

corresponds to the simulation scenarios described in

Section IV.

C. Opportunistic Neighborhood

Let us define the set of neighbors of Xi ∈ Φ at time

n as {Xi} plus the set of receivers which capture the

packet sent by Xi at time n provided Xi transmits:

V (Xi, n)

= {Xi} ∪
{

{Φn
0 ∋ Xj : δ(Xi, Xj , n) = 1} ifXi ∈ Φn

1

∅ otherwise.

Remark: The above SINR-based notion of neighbor-

hood is quite different from that based on the maximum

transmission range (used for the shortest path routing in

Section V). Besides the fact that the neighborhood of a

given node is different in different time slots (even in

the M1 scenario), using (6.1) one can prove (cf [25])

that no receiver at a given time slot can be a neighbour

of more than (1 + T )/T transmitters. In particular, if

T > 1 then different transmitters, have disjoint sets of

neighbors, even if they are very close to each other.

We will now show that the opportunistic neighbour-

hood is always finite (which is important, both from

the practical and theoretical points of view) and then

calculate the mean number of nodes in some particular

case. Note that the assumptions of the following result

are satisfied for all the scenarios considered (M1–M3).

Proposition 6.1: Assume that E[F 2/β ] < ∞ and

that either E[F−2/β ] < ∞ or E[W−2/β ] < ∞.

Then for any of the models M1–M3 P{#V (Xi, n) =
∞ for some i, n } = 0.

Proof: By Campbell’s formula [26, page 119], it is

enough to prove that E
0[#V (0, n)] < ∞ for fixed n,

where the expectation E
0 is taken with respect to the

Palm probability P
0. In the case of our independently

marked Poisson point process it corresponds to the

addition of a node at the origin X0 = 0 endowed with an

independent MAC sequence e0 and fading sequence F0

(see Slivnyak’s theorem, [26, page 41]). In what follows

we consider time n = 0 and omit it in the notation. Using

Campbell’s theorem for the second time and the fact that

Φ1 and Φ0 are independent Poisson point processes with

respective intensities λp and λ(1 − p), we have

E
0[#V (0)]

= 1 + E
0

[

1I(e0 = 1)
∑

i6=0

1I(Xi ∈ V (0))

]

= 1 + pλ(1 − p)

∫

R2

E
0,x[δ(0, x)|e0 = 1, ex = 0] dx ,

where the expectation E
0,x is taken with respect to

the two-fold Palm probability P
0,x, which in our case

corresponds to the addition of two nodes, at X0 = 0 and

at X = x, endowed with independent MAC and fading

sequences e0, ex, F0,Fx.

Noting that under P
0,x given e0 = 1, ex = 0 the

variable IΦ1\{0}(x) has the same distribution as IΦ1
(0)

under the stationary distribution P, and passing to polar

coordinates, we get from Fubini’s theorem that

∫

R2

E
0,x[δ(0, x)|e0 = 1, ex = 0] dx

= E

[
∫

R2

1I

(

A|x| ≤ T
W + IΦ1

(x)

SF0,x

)−1/β

dx

]

=
2π

A
E

[
∫ ∞

0
r1I

(

r ≤ T
W + IΦ1

(0)

SF

)−1/β

dr

]

,

where F is independent of W and IΦ1
(0). Consequently,
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we obtain

E
0[#V (0)] = 1 +

p(1 − p)λπ

AT 2/β
E[(SF )2/β ]

×E[(W + IΦ1
(0))−2/β ] .

Since we assume E[F 2/β ] <∞ , the right hand side in

the last formula is finite provided E[W−2/β ] < ∞. If

this latter condition does not hold, in particular if W =
0 with some positive probability, we need to prove the

finiteness of the same negative moment of the shot-noise.

For this we can proceed as follows:

E[(IΦ1
(0))−2/β ] ≤ E[(SF )−2/β ]E[( max

Xi∈Φ1

l(|Xi|))−2/β ] .

We assume E[F−2/β ] < ∞ and for our particular

attenuation function,

E[( max
Xi∈Φ1

l(|Xi|))−2/β ] =

∫ ∞

0
P{ max

Xi∈Φ1

l(|Xi|) ≤ r−β/2 } dr

=

∫ ∞

0
P{ min

Xi∈Φ1

|Xi| ≥
√
r/A } dr

=

∫ ∞

0
e−πλpr/A2

dr =
A2

πλp
<∞ .

which completes the proof.

Remark: For exponential F in models M2–M3, the

expected number of neighbors E
0[#V (0)] can be calcu-

lated explicitly. Indeed, the expectation E
0,x[. . . ] in (6.2)

is equal to

E
0,x[δ(0, x)|e0 = 1, ex = 0]

= E

[

exp

(

− TW

Sl(|x|)

)]

E

[

exp

(

−TIΦ1
(x)

Sl(|x|)

)]

= ψW (T/Sl(|x|))ψIΦ1
(T/Sl(|x|)) ,

where ψW , ψIΦ
(·) are, respectively, the Laplace trans-

forms of W and IΦ = IΦ(0). This last function is known

in closed from. In particular, for W ≡ 0 we obtain the

following formula:

E
0[#V (0)] = 1 +

(1 − p)β

4πT 2/βΓ(2/β)Γ(1 − 2/β)
,

where Γ(z) =
∫ ∞
0 tz−1e−t dt is the Gamma function, as

is easily shown by calculations similar to those in [12],

Section III.

D. Opportunistic Routing

A point map is a mapping which, for a given real-

ization of the point process Φ, maps each of its points

Xi ∈ Φ to some (possibly the same) point of Φ.

1) Next Relay in Radial Routing: Define the following

family of point maps: for n ≥ 0

An(Xi) = An(Xi,Φ) = arg min{|Xj | : Xj ∈ V (Xi, n)} .

The above point maps are almost surely well defined due

to the well known fact that the probability of finding

two or more points of the homogeneous Poisson point

process equidistant to the origin is equal to 0. They

represent the motion of a packet from Xi at time n to

An(Xi) in the time-space opportunistic radial routing

towards the final destination at the origin 0 of the plane.

In order to describe the route a packet makes from

a given point X ∈ R
2 of the plane to the origin 0, let

us add these points to the stationary configuration of

nodes and let us use the notation Φ0,X = Φ ∪ {0, X}.

Recall that Φ0,X represents the distribution of nodes

under the two-fold Palm distribution P
0,X . Denote by

e0, eX ,F0,FX the MAC and fading marks of nodes at 0
and X under Φ0,X . In the case of independently marked

Poisson point process they are independent of everything

else and have the respective generic distributions.

The radial (time-space opportunistic) path of a packet

from the source node X at time 0 towards the destination

node at the origin 0 of the plane is the sequence of visited

nodes {Yn}n defined by:

Y0 = X, Yn+1 = An(Yn,Φ
X,0) for n ≥ 0 .

2) Convergence of the Radial Routing: We will say

that the time-space opportunistic radial routing algorithm

converges if its path is such that Yn ≡ 0 after some finite

n. The following result indicates that in the presence of

the external noise, the (varying) fading is beneficial for

the convergence.

Proposition 6.2: Assume that either (i) W ≡ 0 or

(ii) M3 holds with F having unbounded support (i.e.

B(s) = Pr{F > s} > 0 for all s). Then the time-space

opportunistic radial routing algorithm converges almost

surely under P
0,X .

Proof: The convention that Xi ∈ V (Xi, n) implies

that no node of norm larger than |Yn| will ever be se-

lected as the next relay. Hence, for all n, |Yn+1| ≤ |Yn|.
In order to prove convergence, it is hence enough to show

that the probability that Yn+k = Yn for all k ≥ 1 and for

some n is 0 when Yn 6= 0. Assume M3 holds. Denote by

G the σ-algebra generated by Φ. Conditionally on G and

on the event Yn = Xi 6= 0 for a given Xi ∈ Φ ∪ {X},
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we have

P
0,X

{

Yn = Yn+1 = . . . = Yn+k

∣

∣

∣
G, Yn = Xi 6= 0

}

=

k−1
∏

i=0

P
0,X{Yn+i = Yn+i+1 | G, Yn+i = Xi 6= 0 }

=
(

P
0,X{Yn = Yn+1 | G, Yn = Xi 6= 0 }

)k

so it is enough to prove that

P
0,X{Yn+1 = Yn | G, Yn = Xi 6= 0 } < 1

to conclude the proof. But we have

P
0,X{ |Yn+1| < |Yn| | G, Yn = Xi 6= 0 }
≥ P

0,X{An(Xi,Φ) = 0 | G }

= p(1 − p)P0,X

{

SFn
i,0l(|Xi|)

W + IΦn
1
\{Xi}(0)

≥ T

∣

∣

∣
G, eni = 1, en0 = 0

}

.

Since Fn
i,0 is independent of IΦn

1
\{Xi}(0) and W , the

probability P
0,X{. . .} in the last formula can be ex-

pressed as

E
0,X

[

B

(

T (W + IΦn
1
\{Xi}(0))

Sl(|Xi|)

)

| G, eni = 1, en0 = 0

]

and is positive by the assumption B(s) > 0 and the fact

that IΦn
1
\{Xi}(0) <∞ a.s. as a Poisson shot-noise. This

concludes the proof of case (ii).

Consider now the case (i) W ≡ 0. Let H denote the

σ-algebra generated by Φ and the fading variables (under

M1 or M2, these variables do not vary over time). Using

the same argument as before it is enough to prove that

P
0,X{Yn+1 = Yn |H, Yn = Xi 6= 0 } < 1 .

And we have

P
0,X{ |Yn+1| < |Yn| | H, Yn = Xi 6= 0 }
≥ P

0,X{An(Xi,Φ) = 0 | H }

= P
0,X

{

SFi,0l(|Xi|)
IΦn

1
\{Xi}(0)

≥ T, eni = 1, en0 = 0
∣

∣

∣
H

}

= p(1 − p)P0,X

{

IΦn
1
\{Xi}(0) ≤ SFi,0l(|Xi|)

T
∣

∣

∣
H, eni = 1, en0 = 0

}

.

The proof then follows from the fact that the H-

conditional law of the Poisson shot-noise process

IΦn
1
\{Xi}(0) puts a positive mass on the interval [0, z]

for all positive z.

Remark: Note that result of Proposition 6.2 cannot be

immediately concluded from the fact that at any time

and current location of the packet there is a positive

probability of delivering it directly to the destination.

In fact, our routing protocol is not allowed to wait for

such an event. We also remark, that under M1 and M2

with W > 0, there is a non-negative probability that the

packet is trapped forever at some isolated node.

3) Directional Path: We now define the directional

point map. Denote by 〈x, y〉 the scalar product in R
2 and

for a given unit vector (think of a “direction”) d ∈ R
2,

|d| = 1, define

An
d (Xi) = arg max{〈Xj , d〉 : Xj ∈ V (Xi, n)} .

It is well known that the probability of finding two or

more points of a homogeneous Poisson point process

on a line with a given direction is equal to 0. Moreover,

under the assumptions of Proposition 6.1, the point maps

An
d are well defined.

Consider ΦX = Φ ∪ {X} and let the node at X
be marked by an independent MAC sequence eX and

fading sequence FX . The d-directional path followed

by a packet routed from X in the direction d by the

time-space opportunistic directional routing algorithm is

the sequence {Zn = Zn(X)}n≥0 defined by

Z0 = X, Zn+1 = An
d (Zn,Φ

X), for n ≥ 0 .

Property (1) can be formalized as the following con-

jecture: The finite-dimensional distributions of the se-

quence {Yn(X) −X}n under P
0,X converge weakly to

those of {Zn(0)} under P
0 when |X| → ∞ such that

−X/|X| = d. Roughly speaking this result is due to

the fact that the optimal choices in “arg min” in A and

“arg max” in Ad coincide with high probability when

the packet is far from the destination. A formal proof

could follow the lines of [27, Lemma 1,Theorem 1].

E. Scaling Properties of the Directional Paths

The directional routing reveals interesting scaling

properties which allow one to understand why Property

(2) holds true and hence to substantiate Observation 5.4.

We will prove the following result where P
0 = P

0
λ

denotes the probability measure under which the under-

lying Poisson point process Φ has intensity λ.

Proposition 6.3: Assume that W ≡ 0 and E[F 2/β ] <
∞, E[F−2/β ] < ∞ so that the directional path {Zn}
is well defined. Then for any of the models M1–M3, the

law of the sequence {Zn = Zn(0)}n under P
0
λ is the

same as that of {Zn/
√
λ}n under P

0
1.

Proof: Note that the distribution of the underly-

ing Poisson point process Φ = {Xi)}i under P
0
λ is

the same as the distribution of Φ(λ) = {(Xi/
√
λ)}i

under P
0
1. Moreover, under our assumptions on l and



17

W = 0, the SINR (in fact SIR) is invariant with

respect to the scaling Φ(λ) of the point process. In-

deed, l(|Xi/
√
λ − Xj/

√
λ|) = λβ/2l(|Xi − Xj |) and

IΦn
1
(λ)\{Xi/

√
λ}(Xj/

√
λ) = λβ/2IΦn

1
\{Xi}(Xj). More-

over, the dilation (our scaling) is a conformal map-

ping (preserves angles). Consequently, the directional

point map An
d (Xi/

√
λ) acting on Φ0(λ) is equal to

1/
√
λAn

d (Xi) acting on Φ0
1. This completes the proof.

For fixed n, consider now the optimization of the mean

progress of the directional path in n hops with respect

to the transmission probability p:

p∗(n, λ) = arg max
0≤p≤1

E
0
λ[〈Zn, d〉].

The following corollary is a simple consequence of

Proposition 6.3 (cf. Observation 5.3).

Corollary 6.4: Under the assumptions of Propos-

tion 6.3 the optimal transmission probability p∗(n, λ) =
p∗(n) does not depend on λ.

F. Other Point Maps and their Optimal Transmission

Probabilities

Several other point maps can be used or have already

been used for routing. Rephrased in the terminology of

the present paper, the authors of [12] used the following

directional point map:

Ãd(Xi) = arg max
Xj∈Φ0

{〈Xj −Xi, d〉p|Xj−Xi|} ,

where p|x| = E
0,x[δ(0, x)|ex = 0, e0 = 1] is the

probability of successful transmission from 0 to x. Note

that this point map is less adaptive (more parametric)

than Ad as it does not take advantage of the actual

state of the SINR conditions at the receivers but only of

their distance to the emitter; the indicator of successful

reception is replaced there by the reception probability

at a given location.

The distribution function of the associated progress in

one hop: P̃1 = maxXj∈Φ0
{〈Xj , d〉p|Xj |} was calculated

under P
0 under conditions which can be rephrased as:

(M4) Fn
i,j = Fn

i for all i, j, n and Fn
i are i.i.d. exponential

with mean 1.

Under these conditions it was shown that the mean

progress E
0[P1] offered in one time slot by the direc-

tional routing Ad is not smaller than E
0[P̃1] offered by

Ãd. Moreover, E
0[P̃1] was shown to scale like 1/

√
λ

and to be maximized by a value of the transmission

probability p̃∗ ≈ 0.05. It was argued in [12] that such a

one-hop optimization of Ãd is sufficient if the locations

of nodes are independently re-sampled in each time slot.

This last scenario is similar in spirit to the Poisson

Weighted Infinite Tree model of [28], and was argued to

be reasonable if the nodes are highly mobile; this model

is easier to analyze as the successive hops of the routing

become i.i.d. In consequence, in this “highly mobile”

scenario the optimization of the mean progress E
0[P̃1]

in one slot minimizes the mean end-to-end delay over a

long multi-hop radial path.

For the setting of Section V, the optimal transmission

probability is p∗ ≈ 0.014 for M1 and p∗ ≈ 0.018 for

M2 and M3. These optimal values differ slightly from

the optimal transmission probability p̃∗ ≈ 0.05 obtained

in [12] for M4 with the same parameter setting (β =
3,W = 0, T = 10). The discrepancy can be explained

by the differences alluded to above: a less adaptive point

map Ãd and different radio channel assumptions.

VII. CONCLUSION

In this paper we have proposed time-space oppor-

tunistic schemes using an optimized relay self selection

technique. This technique uses signalling bursts to select

the best relay towards the destination. We have shown

that this optimized relay self selection technique can

work with various access schemes such as Aloha, CSMA

or even TDMA.

We have used simulations to show that time-space

oppor- tunistic routing schemes signicantly improve the

performance of multi-hop networks compared to con-

ventional shortest path routing algorithms. The gain in

terms of average delay incurred by a packet traveling

from a source to a distant destination node is at least

2.8 depending on the actual network parameters. We

have also shown that time-space opportunistic routing

schemes still performs well even if only a small per-

centage of the nodes know their geographical position

exactly, the other nodes estimating their position using

a very simple localization algorithm.

We have compared our optimized relay self selection

technique when we use Aloha or CSMA as the access

scheme. This comparison has shown that CSMA actually

outperforms Aloha in terms of end-to-end delay when the

carrier sense threshold of CSMA is tuned for the node

density of the network. In contrast, we have shown that

for Aloha the optimization of the transmission p does

not depend on the node density of the network.

We have also proposed a new mathematical framework

based on stochastic geometry to prove some of the

observations made in the simulations. In particular, this

framework allowed us to prove that these routing algo-

rithms can be optimized so as to minimize the average

end-to-end delay incurred by a packet over long paths

and that the optimum transmission probability does not

depend on the node density in the random homogeneous
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case. The potential of this mathematical framework is

well illustrated by the fact that the scaling property of

Proposition 6.3 and the invariance property of Corol-

lary 6.4 remain true for more general scenarios, e.g.

when the routing is defined by more general classes of

point maps. Various challenging problems remain open.

On the practical side, we would quote in particular the

evaluation of the overhead associated with such schemes.

The simulation study also leads to several conjectures.
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