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The efficient management of the limited energy resources of a wireless visual sensor
network is central to its successful operation. Within this context, this article
focuses on the adaptive sampling, forwarding, and routing actions of each node in
order to maximise the information value of the data collected. These actions
are inter-related in a multi-hop routing scenario because each node’s energy
consumption must be optimally allocated between sampling and transmitting its
own data, receiving and forwarding the data of other nodes, and routing any data.
Thus, we develop two optimal agent-based decentralised algorithms to solve this
distributed constraint optimization problem. The first assumes that the route by
which data is forwarded to the base station is fixed, and then calculates the optimal
sampling, transmitting, and forwarding actions that each node should perform.
The second assumes flexible routing, and makes optimal decisions regarding both
the integration of actions that each node should choose, and also the route by
which the data should be forwarded to the base station. The two algorithms
represent a trade-off in optimality, communication cost, and processing time. In
an empirical evaluation on sensor networks (whose underlying communication
networks exhibit loops), we show that the algorithm with flexible routing is able
to deliver approximately twice the quantity of information to the base station
compared to the algorithm using fixed routing (where an arbitrary choice of
route is made). However, this gain comes at a considerable communication and
computational cost (increasing both by a factor of 100 times). Thus, while the
algorithm with flexible routing is suitable for networks with a small numbers of
nodes, it scales poorly, and as the size of the network increases, the algorithm

with fixed routing is favoured.

1. INTRODUCTION

Wireless sensor networks, composed of locally battery-
powered sensor nodes that wirelessly communicate
and route information sampled from the environment
through the network to a base station, are receiving
significant multi-disciplinary research interest from
institutions around the globe. Due to their flexibility,
cost effectiveness, ease of deployment, scalability,
and dynamic coverage, wireless sensor networks are
becoming increasingly prevalent in a wide variety
of applications, including environmental and habitat
monitoring [1, 2, 3], structural health surveillance
[4], smart buildings [5], and other health related
applications [6].

The rapidly increasing computational power of the

nodes deployed within such networks has allowed them
to perform ever more sophisticated tasks, and recently,
wireless visual sensor networks (WVSNs), whose nodes
consist of spatially distributed smart camera devices,
have received increasing attention within the research
community. Each node within these networks has
its own image sensor, image processing, storage,
communication, and limited power units (see Fig. 1
for an example of a wireless smart camera mote),
such that it is capable of performing basic capturing
and compression of visual data before relaying it to a
base station, in a multi-hop fashion, to be processed,
analysed, or fused into some form more useful than
the individual data (e.g. to reconstruct the entire
surveillance area covered by the network). WVSNs
are therefore intended for distributed image acquisition
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(a) (b)

FIGURE 1. (a) Wireless smart camera mote (taken from
[13]) which is battery-powered and equipped with two VGA
colour image sensors, SIMD (Single Instruction Multiple
Data) image-analysis processor and 8051 micro-controller,
a dual port RAM with 128KB memory, and a ZigBee IEEE
802.15.4 communication module, as shown in (b).

(in a variety of applications such as object tracking
in battlefields [7, 8], unattended area surveillance
[9, 10], and other security related applications) over
large and possibly hostile environments and, as such,
are required to operate for extended periods of time
with minimal human intervention. However, the
increased computational power of the nodes within a
WVSN compared to those typically deployed within
a conventional wireless sensor network, the large
amounts of visual information that they collect, and
the high energy cost of wirelessly communicating this
information through the network, mean that efficient
energy management remains a key challenge in these
networks [11, 12].

To date, efficient power management has been
addressed through (i) hardware and (ii) software.
Within the former, advances in chip manufacture have
successfully reduced the power consumption of nodes,
helping to improve their longevity, and, in turn, the
network’s lifetime [14, 15]. Moreover, in some sensor
network applications, an additional facility is available
to ameliorate the energy problem by using rechargeable
batteries and energy harvesting technologies such as
solar panels, wind turbines, piezo-electric harvesters, or
other transducers [16, 17]. From the latter perspective,
however, work has addressed the two main actions that
such sensor nodes can vary in order to make their
energy management more efficient: (i) their sampling

rate (i.e. how much visual data they acquire) and (ii)
their communication of data capabilities (those include
selecting the most energy efficient path between the
node and the base station given that the nodes may have
different energy constraints and communication costs).

In particular, recent work has explored decentralised
coordination algorithms that enable the nodes to
autonomously adapt and adjust their sampling and
communication behaviour. This coordination is
computationally expensive since the sampling and
communication decisions are inter-dependent in a
multi-hop routing scenario. This is because each
node’s energy consumption must be optimally allocated
between sampling and transmitting its own data,
receiving and forwarding the data of other nodes, and

routing any data. In such a setting, the choices
of one node can potentially affect all other nodes
in the network. As such, much of this work has
developed approximate decentralised algorithms, or has
used simple heuristic algorithms that allow the nodes to
make local decisions to improve the overall performance
of the network (see Sect. 5 for more details).

While such approaches have proved valuable in
the context in which they were developed, the move
to WVSN means that there is now the possibility
of deploying complete algorithms that can optimally
maximise the overall effectiveness of the dynamic
network through distributed computation, rather than
local heuristics. It is this challenge that we address,
and to this end, we adopt an agent-based approach
in which each node is represented as an autonomous
agent (with private information regarding its own
state), and the complex, inter-connected, and rapidly
changing network, as a multi-agent system in which
the individual agents need to coordinate their activities
cooperatively in a distributed manner towards achieving
the system-wide goals (that is, each agent is capable of
reactive, social, and goal-directed behaviour). Within
this context, each node must be able to decide for
itself whether or not to perform an action requested
by another node. This is different from the node being
a passive distributed object which encapsulates some
private states and has public methods corresponding
to operations that other nodes are always allowed to
perform on these states.

Against this background, in this article, we develop
a novel distributed algorithm that varies each node’s
inter-dependent sampling, transmitting, and forwarding
rates (or actions) to ensure all nodes in a network focus
their limited resources on maximising the information
content of the data collected at the base station. The
algorithm is complete meaning that it is capable of
finding an optimal solution, if one exists, otherwise it
correctly reports that no solution is feasible. We first
assume that the route by which data is forwarded to
the base station is fixed (either because the underlying
communication network is a tree, or because an
arbitrary choice of route has been made), and show that
the resulting algorithm is scalable (running on hundreds
or even thousands of nodes in real-time) and has
minimal memory requirements. By utilizing distributed
dynamic programming techniques, each node makes
computationally tractable and optimal local decisions
regarding its integration of actions by only exchanging
a small number of coordination messages with its parent
and children nodes.

Using the same technique to extensively truncate the
search space of potential resource allocation decisions,
we then extend the fixed route algorithm to deal
with flexible routing, in which each node not only
makes optimal decisions regarding the inter-related
sampling, transmitting, and forwarding actions, but
also determines the optimal route by which each item of
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sensed data should be forwarded to the base station. To
ground and evaluate these algorithms, we empirically
evaluate them and show that they represent a trade-
off in optimality, communication cost, and processing
time. In more detail, we show that when deployed
on sensor networks with loopy topology (i.e. where
data can follow multiple paths to the base station),
the algorithm with flexible routing is able to deliver
approximately twice the quantity of information to
the base station compared to that of the algorithm
using fixed routing. However, this gain comes at a
considerable communication and computational cost
(increasing both by a factor of 100 times). Thus,
while the algorithm with flexible routing is suitable
for networks with a small numbers of nodes, it scales
poorly, and as the size of the network increases, the
algorithm with fixed routing is favoured.

The remainder of this paper is organized as follows.
In Sect. 2 we state the formal model of our distributed
constraint optimization problem (i.e. the inter-
related adaptive sampling, transmitting, forwarding,
and routing problem). In Sect. 3 we detail our two
novel algorithms and show how we find the optimal
local allocation decisions. Our experimental results are
presented in Sect. 4. We present previous work in this
area in Sect. 5 and we conclude in Sect. 6.

2. PROBLEM DESCRIPTION

Here, we formalise the generic inter-related adaptive
sampling, transmitting, forwarding, and routing
problem that we face. To this end, let n be the number
of visual sensor nodes within a WVSN system and the
set of all nodes (or agents) be I = {1, . . . , n}. Each
node i ∈ I can sample at si different rates over a period
of time. Its set of possible sampling (or frame) rates
is denoted by Ci = {c1

i , . . . , c
si

i }. Specifically, each

element of this set, c
j
i , is a positive integer that describes

the number of samples that the node takes during any
specific time interval.

Each node has private information regarding the
information content of the samples that it acquires,
and this is represented by an array of 2-tuples Fi =
[

(0, 0) ,
(

c1
i , v

c1
i

i

)

, . . . ,
(

csi

i , v
c

si
i

i

)]

, where the first value

of each tuple is the number of samples that the node

may take and v
c

j

i

i is the corresponding information

content for those c
j
i samples. Now, given the fact

that more samples will generally generate visual data
with a higher information content, we choose a simple

linear information valuation function given by v
c

j

i

i =

αi · c
j
i , where αi is a weighting factor (with support

[0, 1]) that models the typical situation that the sensors
within the network are heterogeneous, having different
capabilities (i.e. the resolution of their cameras, the
quality of their optics, or the sophistication of their
image processing algorithms) and varying fields of view.
Hence, samples from some sensors will contribute more

to the total amount of information collected at the
base station than others [18]. However, we remark
that our algorithms are not restricted to this linear
information valuation function and, in some domains, it
may be more valid to model the information as a strictly
concave function where continuing to increase the
sampling rate generates decreasing gains in information
content [19].1 We assume that should the node choose
to acquire no samples, it will yield zero information
value. Furthermore, we assume that the visual data
captured by a node needs to be processed at the base
station with that of other nodes, and therefore the
information content of the data will only be accounted
for if it arrives successfully at the base station.

We further assume that each node has an energy
budget, Bi (also a private value initially known only
to the node), such that its total energy consumption
can not exceed this budget. We consider three specific
kinds of energy consumption for each node in the
network; namely the energy required to (i) acquire, es

i ,
(ii) transmit, eTx

i , and (iii) receive, eRx
i , a single sample.

We disregard the energy required for other types of
processing since it is negligible in comparison. Now,
since the node has to transmit its own data towards
the base station, the total energy required for this
activity is thus ES

i = es
i + eTx

i per sample (we will
later on refer to the combination of these processes as
sensing). Similarly, the node could potentially spend a
portion of its energy to help its neighbourhood nodes
to forward their own samples (and/or data that these
nodes are forwarding for another node). This incoming
data forwarding process requires a total energy of EF

i =
eRx
i + eTx

i per sample.
Each node initially stores its collected samples into

its local memory buffer in order to be transmitted at
a later stage. The transmission period and interval are
predetermined. During each transmission phase, the
transmitter module of each node is turned on for the
purpose of transmitting data or message packets to the
base station in a multi-hop fashion since some nodes
might be out of the base station’s wireless range (see
Fig. 2 and 3) and, hence, require the help of others
to relay their packets. Battery-powered visual sensor
nodes typically offer reasonably small on-board memory
and, hence, at the end of the transmission phase, each
node’s memory buffer is flushed, reinitialized, and ready
to store new sampled data [20].

We describe the route through which the samples, c
j
i ,

will be transmitted to the base station by the vector
R(cj

i ) = (r1
i , . . . , rb

i ), where rl
i ∈ I. The first element

of this vector is the origin node that actually takes
the samples. Each subsequent element of this vector is

1More comprehensive information valuation functions in the
domain of image processing could have also been used, such
as those based on the difference in the scene between frames.
However, they would typically be too computationally intensive
to be run on nodes with the physical constraints of computational
and power resources.
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unique and rl
i will forward the data to rl+1

i . Thus, for

the data value of c
j
i samples to be taken into account,

its routing set must contain the base station node as its
last node.

Given the formal description of the problem above,
we now wish to maximise the value of the collected data
that arrives at the base station. That is, we wish to
solve:

D
∗
i = arg max

{Di,Fi}

n
∑

i=1

∑

c
j

i
∈Ci

d
R(cj

i
)

i v
c

j

i

i (1)

In this expression, d
R(cj

i
)

i ∈ Di ∈ {0, 1} is a decision
variable where “1” represents a state where the node
carries out the corresponding c

j
i sampling action and

the samples follow the R(cj
i ) route to arrive at the

base station, and “0” represents the state where the
node does not carry out the corresponding c

j
i sampling

action. This objective function is maximised subject to
the energy budget constraint on each node i ∈ I, such
that:

Bi ≥ c
j
iE

S
i + fiE

F
i (2)

where fi represents the total incoming data (or for-
warded number samples from its set of neighbourhood
nodes Di), and is given by:

fi =
∑

d∈Di

c
j
d + fd (3)

where i ∈ R(cj
d). Note that the total outgoing number

of samples from node i is thus c
j
i + fi. We must also

constrain the node to chose one and only one sampling
rate, such that:

∑

c
j

i
∈Ci

d
R(cj

i
)

i = 1 (4)

for all different possible routes in the network.
Now, consider a simple scenario expected in Fig. 2.

Here, nodes i, 1, and 3 have their own sets of sampling
actions with si, s1, and s3 being different numbers of
sampling actions respectively. The nodes also have
their corresponding energy budgets, Bi, B1, and B3 to
perform either sampling and transmitting their own
data (requiring ES

i amount of energy per sample)
and/or receiving and forwarding the other nodes’ data
(requiring EF

i amount of energy per sample). For the
sake of simplicity, we here assume ES

i requires 8 units
of energy and EF

i requires 12 units of energy2, ∀i ∈ I.
Each sampling action has a corresponding information
value if the samples (collected by the corresponding
sampling action) successfully arrive at the base station.
In this case, it turns out that the optimal resource
allocation for maximising the gathered information
value is where node 1 spends its energy to acquire

2This is just for illustration purposes and our algorithms will
naturally work for any values.
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FIGURE 2. A WVSN configured to form a connected
and undirected tree structured network (of which any two
nodes are connected by exactly one path). Each node only
has a single transmission level. We further assume that
communication is bi-directional and multiple nodes within
range can thus establish a connection. Dotted node i could
represent any subtrees in the network.

only two samples, while reserving a portion to relay
one and two of nodes i’s and 3’s samples respectively.
The information value collected at the base station is
optimized with these sensing and forwarding actions
(acquiring the total value of 52.60).

In the case of a network with loops, as depicted
in Fig. 3, node i now has two options to route its
data through; namely (i) node 1 which results in route
R(cj

i ) = (i, 1, base station) and (ii) node 2 which results

in route R(cj
i ) = (i, 2, base station). In this case, we

simply disregard both nodes 4’s and 5’s sets of possible
sampling actions for the sake of simplicity. With our
effective and efficient coordination mechanism (which
we will describe shortly in the next section), node 2
will decide to use up all its energy to sample five times
as both nodes 4 and 5 do not sample. Node 1, however,
will sample only twice and reserve some of its energy
to relay one of each node i’s, 3’s and 6’s samples. The
optimal information value collected with these nodes’
behaviour is thus 88.74.

For both these small sized networks with complete
information, a näıve approach to finding the optimal
subset of actions is to simply enumerate all possible
combinations. This approach, however, is too
computationally intensive and works only for very small
problems as it very rapidly becomes intractable. For
instance, consider the case in which each node, in
a tree-structured network, has 30 different sampling
actions, the näıve algorithm would now need to evaluate
approximately 3 · 1029 (

∏n

i=1 csi

i ) solutions (where n

is the number of nodes within the network), and
considerably more possibilities (

∏n

i=1 (qi · c
si

i ), where qi

is the total number of unique routes from node i to the
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FIGURE 3. A WVSN configured to form an arbitrary
network with loops. The dotted arrow represents an
alternative flow of data towards the base station.

base station) for the case in a loopy network. These are
clearly impossible to compute in a reasonable amount
of time regardless of processor speed.

Against this background, the problem as formulated
above, is similar to a multiple-choice knapsack problem3

(i.e. an NP-complete resource allocation problem) [21],
that exhibits the overlapping subproblems4 and optimal

substructure5 properties. Given this insight, we propose
algorithms based on the sort of computationally efficient
dynamic programming technique that are often used
on such knapsack problems for solving this multi-agent
distributed coordination problem.

3. THE ALGORITHMS

We now focus on the algorithms used by the nodes
to make optimal use of their energy resources in
order to cooperatively sense, forward, and route
data to the base station. Our approach places
higher priority on those samples that have a higher
information content, and this is achieved by exchanging
coordination messages between connected nodes. To
this end, we distinguish three types of messages
being exchanged by the nodes; namely (i) actual data

messages containing visual data sampled by the nodes,

3There are m items and the set of all items T = {1, . . . , m}.
Each item t ∈ T has a value vt and a weight wt. The items are
subdivided into o categories and exactly one item must be taken
from each category. The maximum weight that can be carried in
a bag is G. Given these, we need to determine which items to
include in the bag such that the total weight does not exceed its
given limit, while the total value is maximised.

4A problem with the overlapping subproblems property means
that it can be broken down into subproblems which are reused
several times.

5A problem with the optimal substructure property means
that the optimal solution to the problem can be constructed
efficiently from optimal solutions to its subproblems.

and two types of coordination messages composed of
(ii) meta-data messages describing the information
content of the visual data together with the number

of samples taken to produce that data (i.e. v
c

j

i

i and

c
j
i respectively), and (iii) control messages containing

the allocation decisions. In WVSNs, the size of
the actual data messages overwhelms that of the
coordinations messages and, hence, exchanging these
before sending the actual data can significantly increase
the information collected at the base station by making
more efficient use of each node’s constrained energy.

The goal of the algorithms that we derive is to
calculate the optimal sensing, forwarding, and next-hop
decisions of each node. This is given by:

CmaxI ={(i, cj
i , R(cj

i ))|d
R(cj

i
)

i = 1,

∀i ∈ I,∀c
j
i ∈ Ci,∀d

R(cj

i
)

i ∈ D
∗
i } (5)

and represents a set of 3-tuples indicating for each node
in the network, the sensing and forwarding rates that
it should adopt, and the route that it should use to
transmit its own and its forwarded data to the base
station, in order to maximise the objective function in
(1), subject to the constraints in (2) and (4). We now
present our two novel algorithms. Both of them are
efficient as they satisfy the data flow conservation of the
network where no energy is wasted by transmitting data
that later will not be forwarded to the final destination.
We start with the algorithm that assumes that the route
by which data is forwarded to the base station is fixed,
and then progress to the other that assumes flexible
routing.

3.1. The Algorithm With Fixed Routing

In this case, each node i ∈ I can only forward its
data to exactly one other node (which will later be
referred as its parent). This may be because the
underlying communication network of the WVSN is tree
structured, or because it actually exhibits loops but
an arbitrary choice of route has been made (effectively
turning the loopy communication network into a tree).
An example of a WVSN whose underlying network
structure is a tree structure is shown in Fig. 4. Note
that in such tree-structured networks, there is only one
unique route between each node and the base station
(e.g. R(cj

4) = (4, 2, base station), R(cj
3) = (3, 1, base

station), and R(cj
6) = (6, i, 1, base station)).

In general, the nodes within a network will deplete
their energy resources at different rates since they will
have different sampling rates, and will be transmitting
and forwarding different quantities of visual data.
Each node i ∈ I thus needs to compute the highest
information value it can transmit by using at most
bk
i ≤ Bi of its energy. As described earlier, the energy

consumption of node i only includes ES
i and EF

i (i.e.
the energy to sense and forward a sample respectively).
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FIGURE 4. The flow of the algorithm in a connected and
undirected tree-structured WVSN.

It is therefore sufficient that bk
i satisfies:

bk
i = c

j
iE

S
i + fiE

F
i where c

j
i , fi ≥ 0

bk
i ≤ Bi

(6)

where c
j
i is its own number of samples and fi is the

number of forwarded incoming samples.

Now, let Oi =
[

(

b1
i , V max1

i , Cmax1
i

)

, . . . ,
(

bKi

i ,

V maxKi

i , CmaxKi

i

)]

denote an array of 3-tuples sorted

incrementally by bk
i where k = 1, . . . ,Ki, and bk

i is the
energy limit that satisfies (6) (i.e. Ki is the number of
feasible bk

i -s for node i) which will later on be referred to
as the labels of Oi. V maxk

i is the maximum information
value that node i can transmit to its parent by using at
most bk

i , and Cmaxk
i is the set of sensing and forwarding

actions that will produce data with the value of V maxk
i .

This set of actions is calculated by taking into account
its own and its descendants’ data.

The algorithm installed on each node runs in three
phases (see the state diagram in Fig. 4 and Algorithm
1). In the first, meta-data message propagation is
initiated by the base station. To this end, messages
containing the value of each node’s energy budget,
Bi, and energy consumption for forwarding, EF

i , are
propagated down the tree (i.e. as soon as any node
receives this information from its unique parent node,
pi (see state 1 or line 7), it sends its own information to

its set of children, Ji =
{

j1
i , . . . , jMi

i

}

(line 9)). Having

sent this information each node i then enters an idle
mode in which it waits for the O meta-data arrays from
its child nodes. With regard to Fig. 4, the leaf nodes
(3, 5, and 6) eventually receive the meta-data message
of nodes 1, 4, and i respectively.

In the second phase, after all the O meta-data
arrays have arrived from its children (denoted by
Oj1

i
, . . . ,O

j
Mi
i

, see state 2 or lines 14-15), node i then

calculates its own Oi (line 18). To do so, it constructs
a table, Ti, which has Mi + 1 rows numbered from 0 to
Mi, and Ki columns. See Table 1 in which each column
k has label bk

i . Let Ti [x, y] denote the element of the
table that is in the xth row and the column with label b

y
i .

As every node could choose not to sample (yielding zero
value), then Ojm

i
[0] = Ti [m, 0] = 0 for all 0 ≤ m ≤ Mi,

where Ojm
i

[x] is the xth element of Ojm
i

, which is a 3-
tuple. Moreover, we can assume that the set of labels
in each Ojm

i
that node i has received is the same as the

set of labels in its table Ti. We will show how we can
guarantee this later on. Ti’s other elements are filled as
follows:

Ti [0, k] = max{v
c

j

i

i } (7)

Ti [m, k] = max
0≤r≤k

{

Ti [m − 1, r] + V maxk−r
jm
i

}

(8)

for all 1 ≤ k ≤ Ki and 1 ≤ m ≤ Mi, where (cj
i , v

c
j

i

i ) ∈
Fi, and Fi is the array of 2-tuples defined in the previous
section.

According to (7), we can see that Ti [0, k] stores
the maximum information value of data that can be
delivered to node i’s parent by sensing only (with the
energy consumption not exceeding the energy limit bk

i ).
Due to the fact that each of the sets of labels in Ojm

i
is

equivalent to the set of labels of table Ti, (8) gives the
maximum value of data that node i can deliver to its
parent (noting that this data does not only include its
own sensed data but also its children’s data that will
potentially be forwarded through it). Hence, Ti [1, k]
is the maximum value that can be sent by taking into
account the sensed data and the data from j1

i , with
respect to the bk

i energy limit. Ti [2, k] stores the
maximum value when the data from child node j2

i is
also included. In general, Ti [m, k] is the maximum
information value that node i can transmit to its parent,
given the bk

i energy limit. The data considered is the
potential forwarded data from child nodes j1

i ,. . . ,jm
i and

node i’s own sensed data.
Note that while it is necessary to construct the

entire table, as in conventional dynamic programming
solutions to the multiple-choice knapsack problem, it
is only the last row that provides useful meta-data
regarding the maximum information value of data that
can be transmitted given different feasible values of bk

i .
Indeed, it is only the last element of this row that
represents the maximal information value that node i

can transmit to the parent node.
To illustrate how the elements of the table are

calculated in a clearer way, consider Tables 1 and 2 in
which the information values of node i’s sensed data and
the V maxk

jm
i

values of Ojm
i

arriving from its child nodes
jm
i respectively are chosen arbitrarily for illustrative

purposes. The rows of Table 1 represent the set of
nodes whose data has been taken into account. For
instance where row = i, if node i has b0

i , b1
i , b2

i , b3
i , or

b4
i amount of energy limit, in return it will be able to
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Algorithm 1 Optimal adaptive sensing and forwarding with fixed routing.
1: loop

2: if sT ime = NOW then ⊲ Time to sample

3: readings← PerformSampling(sT ime) ⊲ Sampling action, c
j
i

4: SetSTime(sT ime + sRate)
5: end if

6: if tT ime = NOW then ⊲ Time to transmit, transmission module is turned on

7: [Bpi
, EF

pi
]←WaitMetaData(pi) ⊲ Receives Bpi

and EF
pi

from its unique parent node, pi

8: for each jm
i ∈ Ji do ⊲ Iterates each child node in Ji =



j1
i

, . . . , j
Mi
i

ff

9: SendMetaData(jm
i ,

h

Bi, EF
i

i

) ⊲ Sends Bi and EF
i

to child node jm
i

10: end for

11: CalcFirstRowTables(readings) ⊲ Calculates the 1st rows of Ti and Ui using (7) and (10) respectively

12: if ¬leafNode then

13: for each jm
i ∈ J do

14: Ojm
i
←WaitMetaData(jm

i ) ⊲ Receives Ojm
i

from child node jm
i

15: CalcTheRestTables(Ojm
i

) ⊲ Calculates the other rows of Ti and Ui using (8) and (11) respectively

16: end for

17: end if

18: Oi ← CalcMetaDataArray() ⊲ Determines Oi which is basically the last row of Ui

19: SendMetaData(pi, Oi) ⊲ Sends Oi to unique parent node, pi

20: CmaxI ←WaitControlMessage(pi) ⊲ Receives control message from unique parent node, pi

21: PropagateControlMessage(jm
i , CmaxI) ⊲ Sends control message to each child node, jm

i
∈ Ji

22: PerformTransmit(readings, CmaxI)
23: SetNodeOptimalBehaviour(CmaxI) ⊲ Sets node’s optimal sensing and forwarding actions

24: SetTTime(tT ime + tRate) ⊲ Node sets its next transmitting time

25: readings← {}
26: end if

27: end loop

sense it own data with the maximum value of 0, 12.34,
14.56, 28.25, or 50.98 correspondingly. These values
are calculated using (7). Oj1

i
then arrives (see Table

2 where row = Oj1
i
) from its child node j1

i containing
the maximum values that this node could potentially
forward to node i.

The elements of Ti’s second row (i.e. row = {i∪ j1
i })

can thus be calculated using (8). These elements
represent the maximum information that node i could
send by taking into account not only its own sensed
data, but also the data that could be potentially
forwarded from its child node j1

i . For instance where
column = b1

i , node i could allocate all its b1
i energy

resources to either sense and transmit its own data or
to forward data from its child node j1

i . In this case, the
node chooses to sense and transmit its own data since
it has a higher value. Where column = b2

i , however, the
node could again allocate all its b2

i energy resources to
either sense its own data or to forward its child node j1

i ’s
data. Alternatively it could as well divide its b2

i energy
resources by allocating a portion of b1

i energy resources
to its own and another b1

i to its child node. In this
case, it turns out that the latter alternative yields the
highest information value of 19.32. Ti’s other elements
are calculated in a similar way.

Now, the next step of the algorithm is to calculate Oi.
To do so, let Ui denote a table similar to Ti. However,
its labels bl

i, now, satisfy the following:

bl
i = (cj

i + fi)E
F
pi

where c
j
i , fi ≥ 0

bl
i ≤ Bpi

(9)

where Bpi
is the energy budget of i’s unique parent

node, pi, and EF
pi

is the value of energy consumption of
the parent for forwarding a sample. Recall that these
values were delivered to node i in the first stage. Let Li

denote the number of all bl
i that satisfy (9). Similarly,

we can calculate table Ui’s elements in a similar fashion
to those of Ti as described earlier, but with the new
labels:

Ui [0, l] = min
(

max{v
c

j

i

i }, Ti [0,Ki]
)

(10)

Ui [m, l] = min

(

max
0≤r≤l

{

Ui [m − 1, r] + V maxl−r
jm
i

}

, Ti [m,Ki]

)

(11)

for all 1 ≤ l ≤ Li and 1 ≤ m ≤ Mi, where (cj
i , v

c
j

i

i ) ∈ Fi.
We can now construct the meta-data array of

node i such that Oi =
[(

b1
i , Ui [Mi, 1] , Cmax1

i

)

, . . . ,
(

bLi

i , Ui [Mi, Li] , CmaxLi

i

)]

, where Ui [Mi, l] is the

maximum information value that node i can transmit
to its parent node (by using at most bk

i energy) which
can subsequently forward the received i’s data by using
at most bl

i energy. Cmaxl
i is the set of sensing and

forwarding actions that will produce data with the value
of Ui [Mi, l]. Hence, once Oi is sent to the parent node,
its labels will be the same as those in table Tpi

of the
parent node. This second phase meta-data message
containing Oi propagates up the network arriving back
at the base station (line 19).

In the third phase of the algorithm, each parent
node will have received meta-data arrays from all of
its children. The base station will be able to calculate
the highest information value it can potentially receive
from all the nodes beneath it in the network. Based on
the structure of Oi, each node i can easily determine
what amount of data it should receive from each child
node and, hence, how many samples it should acquire
and transmit itself. A control message containing this
set is then propagated down the network (see state 3 or
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8 J. Kho, L. Tran-Thanh, A. Rogers, and N. R. Jennings

TABLE 1. The Ti table of node i. Its Oi meta-data array
is represented by the dotted rectangle.

0 12.34

0 12.24

14.56 28.95

19.32

28.78

45.89

45.89

58.23

58.23

Ti

{  }i

0 12.34{  U }i U ... Uj ji i

1 Mi

bi

0
bi

1
bi

2
bi

3
bi

4
bi

k

50.98

}{  Ui ji

1

TABLE 2. Ojm
i

meta-data arrays that have arrived from

each child nodes j1

i , . . . , j
Mi
i .

bi

0
bi

2
bi

3
bi

4
bi

k

0 6.98 15.67 45.89

51.8835.89

48.99

0 6.79 28.78

bi

1
.

lines 20-21), and this control message informs each node
of its optimal decisions (lines 22-23). In this way, there
is a guarantee that all of the data transmitted by each
node will reach the base station. The control message
eventually reaches the leaf nodes which then start to
acquire and transmit visual data as planned.

3.2. The Algorithm with Flexible Routing

Next, we consider the algorithm which assumes flexible
routing, and makes optimal decisions regarding both
the sensing and forwarding actions that each node
should perform, and also the route by which data should
be forwarded to the base station (see Fig. 5 for an
illustration of this case). In order to make the routing
decision tractable, we place one minor restriction on the
routes that our algorithm can consider. Specifically,
we assume that the nodes always forward their data
toward the base station; that is, they will not forward
data to a node that is further from the base station
(in terms of hop count) than themselves. We believe
this is a reasonable assumption. There may be cases
where several nodes are better off taking longer paths.
However, in general such paths will deplete the energy
resources of a greater number of nodes, and are thus
unlikely to be optimal solutions. Furthermore, we
assume that the data samples of a node can only be
sent as a bundle (i.e. they are indivisible). The
data readings of different nodes can, however, be sent
through different routes to the base station if there is
more than one option to choose from.

With these assumptions, we now need to organize
the nodes into different levels. To this end, a network
simulator using a BGP -based6, robust, and scalable
routing discovery TCP/IP protocol is developed. Our
coordination mechanism will therefore sit on top of this

6BGP stands for Border Gateway Protocol and it is a common
network routing protocol on the Internet [22].

1, 3
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1, 3

1, 3

2

2

1, 3 2

1, 3

1, 3

2
2
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3

1

2

33335

33334

3333i

33336

2

1, 3

1, 3

2

i.1.1) Sending of node 6’s samplesc6

j

i.1.2) Sending only of node 6’s samplesc6
j

i.1.3) Sending only c ii
j
of node ’s samples

i.1.4) Sending none

i.2.4) Sending of node 6’s samplesc6

j
i.2.3) Sending only of node 6’s samplesc

6

j
i.2 c ii

j
of node ’s samples.2) Sending only

i.2.1) Sending nonePossible routing diversion from

Possible routing diversion from

and c ii
j
of node ’s samples

node   to node :i 2

and c ii
j
of node ’s samples

node   to node :1i

={6}

={1,2}

+

+

Same Unique Identifier

FIGURE 5. The flow of the algorithm that assumes
flexible routing and makes optimal decisions regarding both
sensing, forwarding, and next-hop (or routing) decisions.
The phases involved in this algorithm are similar to those
in the algorithm for fixed routing.

network protocol. The first level consists of all the nodes
that have a 1-hop shortest path to the base station
(nodes 1 and 2 in Fig. 5). Nodes that belong to the
second level have a 2-hop shortest path to the base
station (nodes i, 3, and 4). Nodes 5 and 6 have a 3-
hop shortest path. Now, according to this hierarchy,
each node can only forward its data to higher level
nodes within its transmission range. In Fig. 5, for
example, node i has two potential shortest routes to
choose from; namely (i) node 1 which results in route
R(cj

i ) = (i, 1, base station) and (ii) node 2 which results

in route R(cj
i ) = (i, 2, base station). Node i does not

consider routing through node 6 since 6 is a greater hop
count away from the base station than it is.

Furthermore, as we can see from the figure, node i

has potentially two bundles of data to consider (its own
and data that it is forwarding for node 6). In addition,
it has two possible shortest paths to choose between
(either through node 1 or 2 for each of the bundled
data). Thus, a number of routing options exist for
this node. It could send both bundles of data through
node 1, such that R(cj

i ) contains (i, 1, . . . ) and R(cj
6)

contains (. . . , i, 1, . . . ), or it could send them through
node 2, such that R(cj

i ) contains (i, 2, . . . ) and R(cj
6)

contains (. . . , i, 2, . . . ). Other alternatives are to send
each of them separately through each possible route,
such that R(cj

i ) contains (i, 1, . . . ) and R(cj
6) contains

(. . . , i, 2, . . . ), or the other way around.
Now, let Pi denote the set of parent nodes (which

are nodes with a one hop shorter shortest path to
the base station) of node i and Ci denote the set
of its descendants. Thus, at each node i ∈ I,

there are at most |Pi|
|Ci|+1

possibilities to forward
the bundled data, where |Pi| and |Ci| are the sizes
of Pi and Ci respectively. This is because each node
has to forward |Ci| + 1 bundles through |Pi| different
shortest paths. Next, let Li denote the set of these

possibilities (with |Li| = |Pi|
|Ci|+1

) and each lti ∈ Li,
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Algorithm 2 Optimal adaptive sensing and forwarding with flexible routing.
1: loop

2: if sT ime = NOW then ⊲ Time to sample

3: readings← PerformSampling(sT ime) ⊲ Sampling action, c
j
i

4: SetSTime(sT ime + sRate)
5: end if

6: if tT ime = NOW then ⊲ Time to transmit, transmission module is turned on

7: for each pn
i ∈ Pi do ⊲ Iterates each parent node, pn

i
∈ Pi

8: [Bpn
i

, EF
pn

i
]←WaitMetaData(pn

i ) ⊲ Receives B
pn

i
and EF

pn
i

from parent node pn
i

9: end for

10: for each jm
i ∈ Ji do ⊲ Iterates each child node in Ji = {j1

i
, . . . , j

Mi
i

}

11: SendMetaData(jm
i ,

h

Bi, EF
i

i

) ⊲ Sends Bi and EF
i

to child node jm
i

12: end for

13: CalcFirstRowTables(readings) ⊲ Calculates the 1st rows of Ti and U
pn

i
i

(for each parent node, pn
i

in Pi) using (7) and (10) respectively

14: Ci ← {i} ⊲ Adds this node to the set of descendants Ci

15: if ¬leafNode then

16: for each jm
i ∈ Ji do

17: Oi
jm
i
←WaitMetaData(jm

i ) ⊲ Receives Oi
jm
i

from child node jm
i

18: CalcTablesWithIdentifier(Oi
jm
i

) ⊲ Calculates the other rows of Ti using (8) by identifying the same forwarding partition with the same

unique identifier

19: Ci ← Ci ∪ jm
i ⊲ Adds child node jm

i
to the set of descendants Ci

20: end for

21: end if

22: for each pn
i ∈ Pi do

23: Li ← PartitionPossibleForwarding(Ci) ⊲ Partitions the possible forwardings using a mapping function that decides the direction of each

bundle, u
j
i
, from one of its descendants in Ci

24: O
pn

i
i
← CalcMetaDataArray(Li) ⊲ Calculates the other rows of U

pn
i

i
using (11) to form its own O

pn
i

i
meta-data for parent node pn

i

25: SendMetaData(pn
i , O

pn
i

i
) ⊲ Sends O

pn
i

i
to parent node pn

i

26: end for

27: CmaxI ←WaitControlMessage(pn
i ) ⊲ Receives control message from parent node pn

i
in Pi

28: PropagateControlMessage(jm
i , CmaxI) ⊲ Sends control message to each child node, jm

i
∈ Ji

29: PerformTransmitIncRouting(readings, CmaxI)
30: SetNodeOptimalBehaviourIncRouting(CmaxI) ⊲ Sets node’s optimal sensing, forwarding, and next-hop decisions

31: SetTTime(tT ime + tRate) ⊲ Node sets its next transmitting time

32: readings← {}
33: end if

34: end loop

a possible partition of forwarding at node i. That

is, lti =
[

F
(

u1
i

)

, . . . , F
(

u
|Ci|+1
i

)]

where u
j
i is the jth

bundle that might arrive at node i from one of its

descendants, F
(

u
j
i

)

is a mapping function that decides

the forwarding direction (or path) for this particular

bundle, and u
|Ci|+1
i is node i’s own bundle of samples.

Given this, our algorithm with flexible routing is
similar to that with fixed routing, and as before, it
runs in three phases (see Algorithm 2). The first, in
which the parent nodes send their information regarding
Bpn

i
and EF

pn
i

to their child nodes (where pn
i ∈ Pi), is

identical (see lines 7-13). There are, however, slight
modifications in the next phase. These modifications
are needed to keep track of all the possible partitions of
forwarding for nodes which have more than one shortest
path routes to the base station.

In more detail, in the second phase, instead of sending
one Oi to a unique parent (as in the case of tree-
structured networks), here, each node i has to calculate

all the O
pn

i

i (lti) meta-data arrays for each lti ∈ Li

partition of forwarding for each pn
i ∈ Pi (see lines 23-

25). Specifically, this is achieved by first calculating
the Ti table as we did for the first algorithm (line
17). In this case, however, we join each of the arriving

Oi
jm
i

(

ltjm
i

)

from its children j1
i , . . . , jMi

i with those

that belong to the same forwarding partition with the

same unique identifier (line 18). The unique identifier
is formed and attached to a particular partition of
forwarding when there are more than one possible
routes to forward to (line 23). As in Fig. 5, a feasible
unique identifier could be the index of ltjm

i
. Next, we

calculate U
pn

i

i tables for each pn
i ∈ Pi as in the first

algorithm (line 24).
The rest of the second phase and third phase remain

the same as that of the algorithm with fixed routing
described previously (see lines 27-30).

4. EMPIRICAL EVALUATION

Having described the algorithms with fixed and flexible
routing, we now seek to evaluate their performance
and effectiveness when applied to typical WVSNs
whose communication networks exhibit loops. Our
goal in this empirical evaluation is to quantify the
performance of the algorithms in terms of the quantity
of information that they deliver to the base station,
and the communication and computational costs of the
coordination. We expect the algorithm with flexible
routing to deliver more information, but make greater
demands of computation and communication resources
(because of the large number of alternative routes
for the data that it must evaluate). However, given
that the algorithm with fixed routing can always be
applied in this setting by ignoring the fact that there
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10 J. Kho, L. Tran-Thanh, A. Rogers, and N. R. Jennings

exist alternative routing options, and just making
an arbitrary choice, we are interested in the trade-
off between the loss in information and the saving
in resources that results. We first describe the
experimental setup and then go on to the actual
evaluation.

4.1. Network and Parameters Setup

In our experiments, we create instances of a WVSN
by randomly deploying the nodes within a unit
square (i.e. x and y coordinates within the square
are randomly drawn from a uniform distribution
with support [0, 1]), and connecting them according
to a randomly determined radio transmission range
(extending this range as necessary to ensure that there
are no unconnected nodes). Each resulting WVSN
exhibits a loopy communication network such that for
each node there are multiple alternative routes to the
base station.

We consider twenty different sampling actions for
each node such that the possible sampling rates, Ci,
of each node are initialized to Ci = {1, . . . , 20}.

The corresponding information content v
c

j

i

i for each of

the c
j
i ∈ Ci samples is generated using the generic

information metric (defined in Sect. 2), with the factor,
αi, randomly drawn from a uniform distribution with
support [0, 1].

The energy budget of each node is randomly
generated (drawn from the same distribution) with
a predetermined maximum value that ensures the
network as a whole is energy constrained, and no node
is able to sample and transmit at its maximum rates.
We scale this predetermined maximum value with the
number of nodes in the network since larger networks
require sensors to forward data for a larger number
of nodes. We assume that each real valued number
inside a coordination message (e.g. the value of node
i’s energy budget, Bi, or its optimal sampling rate, c

j
i )

occupies 4 bytes of communication cost, and the energy
consumption for sensing and forwarding a sample is
fixed throughout the entire experiment.7

We apply our algorithm with flexible routing just
once, directly on the loopy communication network of
the WVSN (see Fig. 6(a) for an exemplar scenario),
such that it determines both the optimal sensing and
forwarding actions, as well as the routes. Prior to
applying our algorithm with fixed routing, we allow
each node to make an arbitrary choice of the route that
its data (and any data that it forwards for other nodes)
will take toward the base station. This effectively turns
the loopy communication network into a tree-structured
one, with each node effectively selecting their parent in

7Note that we do not consider the failure, addition, or removal
of nodes. Also, we do not consider the dropping or corruption
of meta-data or control message packets, and hence assume
that message packets are always transferred successfully to the
destination.

i

Base Station

(a)

i

Base Station

(b)

FIGURE 6. (a) A randomly created and connected WVSN
(of 60 nodes) whose underlying communication network
exhibits loops. (b) The resulting tree-structured network
formed when each node makes an arbitrary choice of the
route that its data will take toward the base station. The
dotted circle in each graph represents the wireless range of
node i. Neighbourhood nodes within this transmission range
can hear the transmitted messages of the node. In both these
networks, all nodes are set with the same transmission range.

the tree (see Fig. 6(b)). We then apply our algorithm
with fixed routing to calculate the optimal sensing and
forwarding decisions of each node. For each instance of
the WVSN, we repeat this process 100 times, averaging
over the unique instances of trees that result.

We perform repeated experiments by creating 100
instances of the WVSN with 6, 9, 12, 15, . . . , 60 nodes.
The algorithm with flexible routing, however, is only
run with up to 21 nodes. This is solely due to the
insufficient memory allocated for the java heap space
that is used to keep track all possible partitions of
forwarding which grows exponentially with the number
of nodes and potential routes.

4.2. Benchmark Algorithm

In this experiment, we also benchmark our two
algorithms against a uniform non-adaptive algorithm
with fixed routing. This algorithm dictates that each
sensor i ∈ I in the network should simply choose to
allocate its energy budget, Bi, equally to itself and
each of its descendants such that it will näıvely sample

and transmit the minimum of

(

Bi

|Ci|·ES
i

,
Bpi

|Cpi |·ES
pi

)

times

regardless of whether the samples will eventually be
forwarded towards the base station. |Ci| and |Cpi

| are
the numbers of descendants of node i and node i’s
parent, pi, respectively, and Bpi

is the energy budget
of node pi. ES

i and ES
pi

are the energy required by node
i and pi correspondingly in order to sense a sample.

4.3. Results

We present the results of the simulation process
described above in Fig. 7, 8, and 9. We note that
the standard error in the mean is close to the size of
the plot symbols and, thus, error bars are omitted from
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FIGURE 7. Simulation results showing the performance
of the algorithms with flexible, fixed (with maximum and
minimum performance), and uniform non-adaptive routing
against total information collected at the base station.

the plots for clarity.
Considering first Fig. 7, we observe that the

algorithm with flexible routing delivers close to twice
the quantity of information to the base station
compared to the algorithm with an arbitrary fixed
routing. This is as expected since in loopy
communication networks, there are typically many
alternative routes available for routing data, and the
flexible algorithm is able to exploit them to deliver
the maximum possible information to the base station.
Note that the quantity of information delivered does
not increase monotonically, but decreases in a number
of cases. This effect is due to the way in which we
have scaled the maximum energy budget of the nodes
as the network increases in size. This scaling fails
to fully account for the necessary increase in sample
forwarding and, thus, the network becomes increasingly
energy constrained as it grows in size. The uniform non-
adaptive algorithm, however, performs poorly as it has
no intelligence of adapting the nodes’ actions.

In the same figure, we also show the mean maximum
and minimum performance (that is, for each loopy
network, we record the performance of the best and
worst tree, and then average over each loopy network
that we test) of the algorithm with fixed routing. We
remark that by making an appropriate choice of parent,
we can derive performance close to that of the algorithm
with flexible routing without incurring any additional
computation or communication cost as will be explained
shortly.

However, the increased information delivered by the
algorithm with flexible routing comes at considerable
communication and computational cost. Fig. 8 and 9
show the total size of coordination messages exchanged
by the nodes and the average computation time of
each node. Note that these figures are presented on a
logarithmic scale for a clearer visualization. Specifically,
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FIGURE 8. Simulation results showing the performance
of the algorithms with flexible, fixed (with maximum and
minimum performance), and uniform non-adaptive routing
against total communication cost for coordination.

Fig. 8 shows that typically only a few tens of kilobytes
of coordination message packets are required by the
algorithm with fixed routing, while the algorithm with
flexible routing exhibits approximately two orders of
magnitude more; with a few megabytes of coordination
message packets being exchanged. The increase is due
to the way in which the flexible routing algorithm keeps
track all possible partitions of forwarding that grow
exponentially with the number of nodes and potential
routes.

Likewise, Fig. 9 shows that the average computation
time of a node required by the algorithm with fixed
routing is typically less than 1 millisecond, while that
of the algorithm with flexible routing approaches 100
milliseconds (a two orders of magnitude increase).8 The
increase in terms of computation time is due to the
additional time which the flexible routing algorithm
requires in order to enumerate each possible partition
of forwarding.

Speaking more generally, these results indicate that
the algorithm with flexible routing is able to deliver
significantly more information to the base station,
but it incurs a considerable additional computation
and communication cost in doing so. The choice
of algorithm thus largely depends on the actual
application domain. If the network is small, and the size
of the actual data messages is large, then the algorithm
with flexible routing is most appropriate. However, this
algorithm scales poorly as the size or connectivity of
the network increases (due to the exponential growth in
the number of possible combinations of routing options
that it must evaluate). In such cases, the size of the
coordination messages may rapidly approach that of

8These measurements were performed on a 3GHz desktop PC.
Typically, the nodes within a WVSN will use much lower powered
processors and, thus, while we would expect the ratio between the
algorithms to be the same, the overall computation time is likely
to be longer.
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FIGURE 9. Simulation results showing the performance
of the algorithms with flexible, fixed (with maximum and
minimum performance), and uniform non-adaptive routing
against average computation time at each node.

the actual data messages, and hence, coordination may
not actually yield any energy saving. To address this,
the algorithm with fixed routing may be run on the
original loopy network by ignoring the fact that there
exist alternative routing options, and having each node
make an arbitrary choice of route. While the quantity
of information delivered to the base station will be
reduced (by up to 50% in our experiments), this solution
will scale well and use minimal communication and
computational resources.

5. RELATED WORK

The work that is most closely related to ours is
that of Padhy et al. who develop a decentralised
adaptive sampling and routing protocol [23]. Within
this mechanism, each node adjusts its sampling rate
depending on a valuation function that assigns a value
to newly sampled data. This protocol is intended for
low power, computationally constrained devices, and
as such, relies on a heuristic approach to estimate the
opportunity energy cost used by each sensor for sensing,
forwarding, and routing data. The protocol is not
efficient and the integration of the node’s actions is very
limited since there is no guarantee that the transmitted
data will actually be forwarded to the base station. For
instance, there might be cases where nodes with data
of a high value are unable to send their data to the
base station because intermediate nodes have depleted
their energy. The protocol could thus result in no data
collection.

In a somewhat similar setting, but still concerned
with the decentralised approaches to decision making
within sensor networks, Mainland et al. present a
market-based approach for determining efficient node
resource allocations [24]. Rather than manually tuning
node resource usage, or providing specific algorithms as
we do here, their approach defines a virtual market in

which nodes sell goods (e.g. data sampling, listening, or
forwarding) in response to global price information that
is established by the end user. However, this approach
involves an external coordinator to set prices in order
to induce any particular global behaviour, and it is not
clear how this price determination should be performed
in order to elicit desirable system-wide properties.

Within agent-based approaches, a useful technique
that has emerged for solving multi-agent distributed
coordination problems is that of distributed constraint
optimization. To date, there has been a rich set
of real-world distributed applications, such as in the
domain of networked systems, for which this technique
has been used, particularly, in distributed applications
where constraints exist among agents. In more
detail, a number of algorithms in this area have
been developed; these include Synchronous Branch

and Bound (SBB) [25], Distributed Breakout Algorithm

(DBA) [26], Asynchronous Distributed Optimization

(ADOPT) [27], Distributed Pseudotree Optimization

Procedure (DPOP) [28], Asynchronous Partial Overlay

(APO) [29], and Max-Sum [30]. Now, many of these
algorithms are also based on the dynamic programming
method because it is often used to solve problems with
distinguished properties of overlapping subproblems
and optimal substructure. The method works by (i)
breaking down the multi-agent problem into smaller
subproblems, (ii) solving these subproblems optimally
using this three-step process recursively, and (iii)
constructing an optimal solution to the original problem
by using these optimal solutions of the subproblems.

However, SBB is found to be ineffective due to its slow
performance. Moreover, it uses the notion of a virtual
agent that acts as a central manager to deliver messages
among agents and that is aware of all of the delivered
messages’ state. DBA is preferable when we want a
near optimal solution much quicker than SBB, however,
it may fail to return a solution even if one exists and
also it cannot correctly determine if no solution exists.

To counter the limitations introduced by system-
atic, synchronous, and sequential message exchanges
between nodes, ADOPT and DPOP are guaranteed to
converge to the optimal solution while using only lo-
calized asynchronous communication and computation
in the setting of a sensor resource allocation problem.
However, since these algorithms are complete and asyn-
chronous, they require an exponential increase in either
the total message size being exchanged or the mem-
ory complexity on the agents (unlike the case of our
algorithm with fixed routing). This is unrealistic for
sensor networks in which the nodes are typically in-
stalled with limited computational, storage, and mem-
ory resources. Moreover, they are not specifically tai-
lored to the specific problem that we address here. We,
however, adopt a similar message propagation method
where each node coordinates and exchanges meta-data
regarding the utility of the actual data with its neigh-
bourhood nodes before sending the actual data itself.
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This is done in order to efficiently make use of the lim-
ited energy resources.

In contrast, APO uses centralised mediator agents to
compute the solution for portions of the original prob-
lem and, therefore, lacks distributed control. Finally,
Max-Sum exchanges messages between conflicting low-
power sensor nodes using a cyclic bipartite factor graph
representation. It scales very well in tree-structured
graphs and generates approximate solutions close to the
global ones returned by ADOPT and DPOP. However,
it is not a complete algorithm, and may fail to converge
in cyclic graphs as there is no built-in termination al-
gorithm to stop the message exchange process.

In a different setting, Pizzocaro et al. try to optimize
a sensor mission assignment problem by modelling it as
a NP-complete multiple knapsack problem [31]. They
introduce the sensor utility maximization model in
which each sensor-mission pair is associated with a
utility offer. Each mission might require and compete
for the same sensors, however, a sensor can only be
assigned to serve only one mission at any point of time.
A profit function is formulated and this represents the
value that a sensor can bring to a mission. The goal
is therefore to maximise the total profit, while ensuring
that the total utility cumulated by each mission does
not exceed its uncertain demand (otherwise, some
utility offer will be wasted). A novel greedy algorithm
is developed and showed to perform better compared to
a number of benchmarks by offering the best trade-off
between the quality of the returned solution and the
computational cost. However, the algorithm considered
here follows a centralised approach, where all the
intensive computation takes place at a central node
which has all the information about the system’s state.
The dynamism of the sensor-mission pair, where a
mission may change or adapt its priority value over time
if its demand is not met after a certain period of time,
is also missing in this work.

6. CONCLUSIONS

In this article, we have considered the problem of
inter-related adaptive sensing, forwarding, and routing
within WVSNs in order to manage the limited energy
resources of nodes in an effective and efficient way.
We have developed two novel optimal decentralised
algorithms: one which assumes fixed routing and
calculates the optimal sensing and forwarding actions
that each node should perform, and one which assumes
flexible routing, and makes optimal decisions regarding
both the integration of actions that each node should
choose, and also the route by which data should
be forwarded to the base station. In an empirical
evaluation, we showed that the algorithm with flexible
routing delivered approximately twice the quantity of
information to the base station, but at a considerably
higher communication and computational cost. Thus,
while the algorithm with flexible routing is suitable

for networks with a small numbers of nodes, it scales
poorly, and as the size of the network increases, the
algorithm with fixed routing is favoured.

Our ongoing work in this area includes relaxing the
restriction that the nodes may only forward data to
nodes that are closer to the base station (in terms of
hop count) than themselves and, in particular, we would
like to characterise the circumstances in which this may
yield some benefit. More significantly, we would also
like to develop a principled algorithm for making the
choice of route when applying the algorithm with fixed
routing to loopy WVSNs (rather than having the nodes
make an arbitrary choice of parent in order to convert
the loopy network into a tree-structured network as we
have done here). Our empirical results indicate that
the performance of the algorithm with fixed routing is
very close to that of the algorithm with flexible routing
if the appropriate fixed route is selected (see Fig. 7),9

and thus, there is great potential in doing so.
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