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Sensor management in information-rich and dynamic environments can be posed as a sequential
action selection problem with side information. To study such problems we employ the dynamic
multi-armed bandit with covariates framework. In this generalization of the multi-armed bandit,
the expected rewards are time-varying linear functions of the covariate vector. The learning goal is
to associate the covariate with the optimal action at each instance, essentially learning to partition
the covariate space adaptively. Applications of sensor management are frequently in environments
in which the precise nature of the dynamics is unknown. In such settings, the sensor manager tracks
the evolving environment by observing only the covariates and the consequences of the selected
actions. This creates difficulties not encountered in static problems, and changes the exploitation–
exploration dilemma. We study the relationship between the different factors of the problem and
provide interesting insights. The impact of the environment dynamics on the action selection problem
is influenced by the covariate dimensionality. We present the surprising result that strategies that

perform very little or no exploration perform surprisingly well in dynamic environments.
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1. INTRODUCTION

Sensor management refers to the theory and application of
dynamic resource allocation in a diverse system of sensors
and sensing modalities [1]. We are concerned with active
sensor management problems in which the sequence of sensor
actions is determined in an online and adaptive manner based
on the information gathered from previous actions. Active
sensor management can be viewed as a sequential decision-
making problem in that at each time one action from a
set of actions is selected, to satisfy certain objectives. The
fundamental challenge that arises in this type of problem is
that the consequences of each action are uncertain and must be
learnt. Learning in this context happens through interaction with
the environment, which consists of everything that is external
to the sensor manager [2]. This learning process is heavily
influenced by the sequence of action selections since only the
consequences of the selected action are observed.

The multi-armed bandit (MAB) [3] is the simplest formu-
lation of a sequential decision problem that captures these
characteristics. In its most basic formulation, the MAB involves
an agent that at each play selects one of K actions and receives
a reward derived from the probability distribution associated
with this action. The rewards from all the other actions are not
revealed. The goal is to identify the action with the maximum
expected reward within the minimum number of plays [2]. The
MAB constitutes the minimal formalization of the trade-off
between exploration (trying different actions to identify the
best) and exploitation (choosing the action believed to be the
best in order to maximize reward) that arises in all sequen-
tial decision problems. For this reason the MAB has been
extensively studied [4–6] and employed in numerous diverse
applications including clinical trials [7], adaptive routing [8],
real-world data retrieval problems with redundant sources [9],
economics [10] and sensor management [1]. In the following,
we adopt the MAB terminology and refer to the consequences
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of selecting an action as the reward from this action, and the
goal of the sensor manager becomes the selection of the action
with the highest expected reward. While the MAB minimal-
ism admits tractability and insight, it misses details that are
necessary for application to many realistic problems [11]. An
important aspect, ignored in the MAB formulation, is that the
agent can observe side information prior to each action selec-
tion. This information can be used to determine which action
to select. Another aspect is that the consequences of different
actions may change over time.

We address these issues in the context of sensor manage-
ment applications. In the problems we consider, the expected
reward of each action is a function of a set of covariates that are
observed prior to each action selection. A simple example is a
sensor used to monitor and assess the threat posed by a number
of vehicles. Actions in this setting correspond to assigning the
sensor to observe different vehicles, and the objective of the
sensor manager is to select the one that presents the highest
threat currently. Instead of assuming that the expected threat
of each vehicle is constant it is more realistic to relate it to a
number of covariates such as its location relative to the sensor
and a number of locations of interest, the identity currently
assigned to the vehicle and the route it has followed. A more
complicated scenario involves a potentially large number of
agents equipped with diverse sensing equipment deployed in
a particular area. At each time one agent is capable of sensing
and a central sensor manager decides which threat should be
monitored. Some of the additional covariates that influence the
reward from each action in this scenario are the type of the
sensing agent, the capabilities of the sensor it is equipped with
and its position relative to the threats. A detailed discussion
of the sensor management problem and various alternative
approaches is provided in [12]. In [13], sensor management in
a defence application context is discussed.

Sequential decision problems in which the reward from an
action is modified by covariates arise in a number of fields
other than sensor management. Some indicative examples
include matching advertisements to web-page content on the
World Wide Web [11, 14], adaptive generation of multimedia
messages [15] and video compression [16]. Indeed, settings in
which no information is available are rare in practice [11].

Two important properties of all the aforementioned
applications are first, that the consequences of each action
are felt immediately, and second, the selected action does not
affect the subsequent realizations of the covariates. Therefore,
we are not dealing with the complete reinforcement learning
problem [2]. In such problems, the objective is to learn which
is the optimal action, i.e. the action that yields the maximum
expected reward, for all possible realisations of the covariate
vector. A rule that associates covariates to actions is called a
policy, and learning the optimal policy is essentially learning
how to partition covariate space. We refer to this type of
problem as multi-armed bandits with covariates (MABC) [17].
Recently, a number of different formulations of this problem

have been proposed, and algorithms have been developed for
static versions of this problem [14, 17–19].

Sensor management is typically deployed in a dynamic
environment, which is not typical of most work on MABC.
In the present context, a dynamic environment is one in
which the relationship between the covariates and the expected
reward from each action changes over time. In most real life
applications, it is hard to a priori specify the precise type and
speed of the underlying process that governs change. Moreover,
some problems may be characterized by periods of relatively
small change, followed by periods in which the environment
undergoes major change. It is therefore important to develop
approaches that accommodate the possibility of time-variations
without requiring the knowledge of the precise type or even the
presence of dynamics.

In dynamic MABC problems, the relationship between the
rewards and the covariates changes sufficiently to induce a
time-varying optimal policy. Without knowing or imposing
assumptions concerning the nature of the dynamics, the
evolution of the environment must be tracked via the covariate
and the rewards observed from the selected actions. This
induces significant new problems which are not present in
the static case. According to the formulation of the MABC,
only the reward from the selected action is observed at each
play. In the static case, this does not affect the estimation of
the reward functions, in the sense that estimation accuracy
is not affected by the timing of each observation. In the
dynamic case, it creates a missing data problem which has a
substantial impact on estimation. Similarly, the role of covariate
dimensionality changes with the introduction of dynamics.
Under these conditions it is hard to derive analytical results
for the dynamic MABC. Therefore, in our analysis in Section 3
we resort to simulation.

The introduction of dynamics also affects the distinction
between exploration and exploitation. In a static environment,
there is relatively little information to be gained from
exploitation because actions that yield the highest expected
reward (greedy actions) are frequently selected and hence there
is little uncertainty about them. In a dynamic environment,
the selection of any action, even a greedy action, yields new
information simply because reward functions change. Hence,
there is an exploratory component in exploitation. A second
consideration is related to the cost of exploration. In a static
environment, the cost of an exploration step is the difference
between the expected reward from the greedy action and the
(probably) smaller reward from the exploratory action. In a
dynamic environment, there is the additional cost of missing
one observation from the evolution of a greedy action. This cost
can have repercussions in subsequent plays as well.

The paper is organized as follows: in Section 2 the
formulation of the MABC is presented; the next section is
devoted to the presentation of the empirical methodology and
results first on an artificial dynamic MABC problem and then
on a sensor management problem related to monitoring and
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assessing threats; the paper ends with concluding remarks in
Section 4.

2. MABC WITH LINEAR REWARD FUNCTIONS

In our formulation of the MABC, we assume that a covariate
vector is observed at each play, t = 1, 2, . . . , T . The true reward
function for each action, αi = α1, . . . , αN , is linear with an
additive noise term:

rαi
(x(t)) = βi,0 +

d∑
j=1

βi,j xj (t) + εi, εi ∼ N (0, σ 2
i ). (1)

It is often the case that the reward function of an action can
be well approximated by a linear function [2, 14, 19]. The
assumption of linearity also allows us to focus on the action
selection problem without confounding it with the general
function approximation problem. Even under this assumption,
however, the estimation of time-varying reward functions is
a challenging task, as will be shown in Section 3. More
complicated scenarios can be constructed by allowing the
distribution of the noise term in the reward functions, εi in
Equation (1), to be skewed. In this work, however, we restrict
our attention to the normal distribution.

A policy is a rule that associates covariates with actions,
π : R

d → A. The learning problem is to identify the optimal
policy, i.e. to identify the action with the highest expected
reward for all possible realizations of the covariate vector. A
simple instance of the MABC with the expected reward from
each action being a linear function of the covariates with three-
arms and a one-dimensional covariate is illustrated in Fig. 1.

In this example, the optimal policy is to select action 1
when x � 0, and action 2 when x < 0. Nowhere is it optimal
to select action 3. We call actions that are suboptimal for all x

globally suboptimal. We also define the degree of optimality of

 0
–2 –1.5 –1 –0.5  0  0.5  1  1.5  2

P
D

F

Covariate

 0

 1

 2

 3

 4

 5

E
xp

ec
te

d 
re

w
ar

d

Action 1

 0

 1

 2

 3

 4

 5

Action 2

 0

 1

 2

 3

 4

 5

Action 3

FIGURE 1. Expected reward functions of a three-armed MABC with
a one-dimensional covariate.

an action as the probability that this action will be optimal.
The degree of optimality of an action is therefore equal to
the probability that the covariate vector lies in the region in
which this action yields the highest expected reward. Because
the covariate is one-dimensional in the present example, the
optimal action changes at a point, which we call a decision
point. In higher dimensions, regions characterized by different
optimal action are separated by hyperplanes, called decision
surfaces.

We introduce dynamics in the MABC by having the coeffi-
cients of all the reward functions, βi = (βi,0, βi,1, . . . , βi,d)

�,
change at each play, while the distribution of the covariate is
constant. We do not consider a time-varying covariate distribu-
tion because it plays no role in the transformation of a static
sequential decision-making problem into a dynamic problem.
The defining characteristic of a dynamic sequential decision-
making problem is that the optimal policy changes over time.
The optimal policy associates covariates with the best action.
This association is not affected by the covariate distribution.
This claim should not be misunderstood to imply that introduc-
ing a time-varying covariate distribution will not affect perfor-
mance, or the difficulty of the learning task.

2.1. Estimation of time-varying reward functions

When a model of the dynamics is available, the sensor
manager can employ a sequential learning algorithm to infer
its parameters. For instance, if the coefficients of the reward
functions evolve at each time-step according to a linear
model, then its parameters can be estimated through the on-
line expectation maximization algorithm [20]. In the dynamic
MABC problem, an accurate model of the dynamics can
improve not only the estimation accuracy of the reward function
parameters, but also provide valuable information for the action
selection process. For example, with an estimate of the variance
of the reward from each action upper-confidence, bound type
of strategies [4] can be deployed. However, applications in
which the type of dynamics is unknown or even the existence
of dynamics is uncertain are frequently encountered in sensor
management. At present we focus on dynamic problems in
which the sensor manager has no knowledge of the nature of the
dynamics. In the MABC framework, it is very hard to construct
an accurate model for the dynamics with no prior knowledge and
within a finite number of plays. The major difficulty is due to the
fact that there are typically many actions while only the response
from the selected action is observed at any time. Furthermore,
the sampling frequency of each action is variable due to action
selection. We thus assume that the sensor manager is not
attempting to explicitly model, or learn, the dynamics.Avoiding
the explicit modelling of the dynamics has the advantage that it
enables the application of the same methodology to problems
in which the type or speed of dynamics can change.

In the absence of a model of the dynamics, the sensor
manager has to track the evolution of the reward functions
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only through the observed covariates and rewards. To this end,
sophisticated approaches such as Gaussian processes [21] can
be employed. The advantage of Gaussian processes is that they
provide an estimate of the variance of each reward, but they are
computationally demanding. Instead, we consider a simpler,
but computationally efficient, adaptive linear filter, namely the
Adaptive Recursive Least Squares (ARLS) algorithm [22, 23]
to track the evolution of the reward functions. The RLS
algorithm is one of the most popular adaptive filters [23, 24].
It handles time-varying systems by incorporating the concept
of forgetting, according to which older data are gradually
discarded in favour of more recent observations. The standard
linear least squares (LLS) estimation of the coefficients of the
linear relationship between the response, r , and the covariate
vector, x ∈ R

d , is given by [23]:

β̂(t) = (
X(t)�X(t)

)−1 (
X(t)�R(t)

)
, (2)

where X(t) ∈ R
T ×(d+1) is the data matrix storing in its kth

row the covariate vector x(k)�, and R(t) ∈ R
T is the vector

of desired responses. With the introduction of forgetting the
time-average correlation matrix, X(t)�X(t), becomes

X(t)�X(t) =
t∑

i=1

λt−ix(i)�x(i) + δλt I,

= λX(t − 1)�X(t − 1) + x(t)x(t)�, (3)

where λ ∈ (0, 1) is the forgetting factor, and δλt I is a
regularization term that ensures that the matrix is nonsingular
at all stages of the computation. As λ tends to unity, past
and present observations become equally weighted and for the
special case that λ = 1 RLS becomes equivalent to LLS. In
contrast, as λ tends to zero, recent data become more influential,
and the impact of past data is progressively reduced. The
appropriate choice of λ is critical for the accuracy of tracking
a time-varying system. The classical RLS algorithm uses a
constant forgetting factor. In the ARLS algorithm, λ is updated
at each iteration using a stochastic gradient descent algorithm
to minimize the squared a priori estimation error [22, 23, 25]:

λ(t) = λ(t − 1) + αξ(t)ψ(t − 1)�x(t)

∣∣∣λ+

λ−
, (4)

where ξ(t) = r(t) − β̂(t − 1)x(t) is the a priori estimation
error, ψ(t) is the derivative of the estimated coefficient vector
with respect to λ(t − 1), ψ(t) = ∂β̂(t)/∂λ and α is the step-
size. The bracket followed by λ+ and λ− indicates truncation.
The upper level of truncation, λ+, can be set close to unity. It
is the lower level of truncation, λ−, however, that plays a more
crucial role, and this value needs to be determined empirically.
In all the experiments the value of λ− was 0.7.

The most computationally demanding step in the estimation
of β̂(t) in Equation (2) is the inversion of X(t)�X(t). This
is particularly relevant in our MABC formulation because the

coefficient vector of the selected action must be updated at
each play. Employing the matrix inversion lemma [26] the
inversion of the matrix X(t)�X(t) at each new covariate-
response pair can be avoided. Instead, the inverse G(t) =
(X(t)�X(t))−1 can be recursively computed from G(t − 1)

reducing the computational cost from O(d3) to O(d2). The
estimated coefficient vector, β̂(t), can also be incrementally
updated [23].

ARLS is capable of tracking time-varying linear equations.
It can handle different and variable speeds of change by
adapting the degree of forgetting, without requiring the a priori
determination of this crucial parameter [23]. Finally, the low
computational cost renders it suitable for sequentially updating
the estimated coefficients. These characteristics render ARLS a
suitable adaptive filter for the purposes of the dynamic MABC
problem.

3. EMPIRICAL METHODOLOGY AND RESULTS

In this section, we discuss the experimental results obtained for
the dynamic MABC with linear reward functions. We first study
an artificial dynamic MABC problem that we used to investigate
the impact of different factors, like the covariate dimensionality
and the speed of the dynamics. Next we present a sensor
management problem related to monitoring and assessing
threat.

Before discussing the two problems we provide the
definitions of the two measures that will be used to assess the
performance of different action selection strategies. The first
performance measure that we employ is a transformation of
the regret metric, which is the standard evaluation measure
used in the MAB literature. Regret is defined as the difference
between the maximum expected reward and the expected reward
from the selected action, E[rα(t)(x(t))] [4, 19]:

T max
αi∈A

E[rαi
(x(t))] −

T∑
i=1

E[rα(t)(x(t))].

The expectation is over the distribution of the reward given
the covariate vector at play t . We apply a standard linear
transformation to bound the range of the regret metric in [0, 1],
and refer to this transformation as the normalized expected
regret measure:

1

T

T∑
i=1

maxαi∈A E[rαi
(x(t))] − E[rα(t)(x(t))]

maxαi∈A E[rαi
(x(t))] − minαi∈A E[rαi

(x(t))] . (5)

Normalized expected regret at each play is defined as the
difference between the maximum expected reward and the
expected reward from the selected action, E[rα(t)(x(t))], divided
by the difference between the maximum and the minimum
expected reward. The second measure we consider is the
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proportion of best action [2], which is defined as:

1

T

T∑
i=1

{
α(t) = argmaxαi∈AE[rαi

(x(t))]} , (6)

where {·} is the indicator function. Compared with normalized
expected regret this is a much harder evaluation criterion,
because the maximum penalty is received for selecting any
action other than the best. To receive the equivalent penalty
by the normalized expected regret criterion, the action with the
lowest reward must be selected.

3.1. Artificial dynamic environment

In this set of experiments, the covariate vector is obtained from
a multivariate normal distribution, x(t) ∼ N (μ, �), with the
elements of μ chosen uniformly in [−5, 5]. Without loss of
generality, we consider diagonal covariance matrices � with
each diagonal element in the range [3d, 6d]. The performance
of any action selection strategy depends on the relationship
between the covariance matrix � of the covariate vector and
the variance of the noise term of the reward equations σ 2

i

in Equation (1). To quantify this relationship we use the
covariance to noise ratio, CNR = ‖�‖1/σ

2
i , where ‖�‖1

is the 1-norm of �. The larger the value of CNR the more
informative observations become about the regression line, and
vice versa. To render comparable the results from experiments
with different covariate dimensionality we fix the value of CNR.

The simplest artificial model for inducing time-varying
coefficient vectors is the random walk, βi,j (t) = βi,j (t −
1) + η, with η ∼ N (0, σ 2

η ). For our present purposes the
problem with this model is that the occurrence of large values
of |η| frequently causes one action to dominate the others, or
conversely to become globally suboptimal, over long periods.
As a consequence the decision-making problem frequently
becomes trivial. An alternative model for the dynamics is one
in which the coefficients are randomly perturbed around an
equilibrium value, βi,j (t) = β

eq
i,j + η. However, the decision-

making problem associated with this type of change is static.
The exponential smooth transition autoregressive (ESTAR) [27]
model provides a compromise between the two aforementioned
types of variation. Two interpretations of the ESTAR model
are possible. On one hand, it can be thought of as a regime-
switching model that allows for two regimes (random walk and
mean reversion) with a smooth transition between them. On
the other hand, the ESTAR model can be said to allow for a
‘continuum’ of regimes [28].

We employ a simple ESTAR formulation, in which the j th
coefficient of the ith action at time t is determined by:

βi,j (t) = β
eq
i,j + (βi,j (t − 1) − β

eq
i,j )

× exp
(
−γ (βi,j (t − 1) − β

eq
i,j )

2
)

+ η, (7)

where β
eq
i,j is the equilibrium value of βi,j , which we set

to βi,j (0), η is an independent and identically distributed
random variable η ∼ N (0, σ 2

η ) and γ ∈ (0, ∞) is called
the smoothness parameter. The ESTAR model of Equation (7)
implies a nonlinear and symmetric adjustment of βi,j (t) for
deviations from its equilibrium value, βeq

i,j . For large deviations
the process becomes mean reverting and forces βi,j (t) towards
β

eq
i,j , while for small deviations the process exhibits near random

walk behaviour. Overall, although βi,j (t) is globally stationary,
it can exhibit a high degree of persistence.

Before discussing the balance between exploitation–
exploration in dynamic MABC problems, it is important to
address two issues. The first is the capability of theARLS filter to
track the evolution of time-varying reward function in the pres-
ence of missing data. The second issue is related to the impact
of the dimensionality of the covariate on the optimal policy.

3.1.1. Speed of change and missing data
By the formulation of the problem, at each play, t , the sensor
manager observes only the response from the selected action.
The rewards from all the other actions are not observed. In a
static environment, this fact does not affect estimation. In the
case of continuous dynamics, however, this is no longer true. As
an example, consider a linear function whose coefficients follow
a random walk. Observing the response from this function every
second play is equivalent to observing at each play a random
walk process with twice the variance. This issue is further
complicated by the fact that the sampling frequency of each
action is variable due to the action selection strategy, and ARLS
is fundamentally not suited to variable sampling frequency.

To investigate the tracking ability of the ARLS filter, we
monitor the values of the forgetting factor, λ(t), with respect to
the speed of change and the sampling frequency. As mentioned
in Section 2.1 the ARLS filter adapts λ(t) at each iteration using
stochastic gradient descent on the squared a priori estimation
error, Equation (4) [23]. We consider a time-varying linear
equation whose coefficients evolve at each iteration according
to the ESTAR model of Equation (7). The speed of change
is determined by σ 2

η , the variance of the noise term η in
Equation (7). At each iteration, the response from the linear
equation is observed with probability p, where p determines
the sampling frequency.

The results of this experiment for σ 2
η ∈ [0, 0.2], p ∈ [0, 1]

and d = 4, 14 are presented in Fig. 2. The left column of the
figure depicts the mean value of λ(t) over 5000 iterations, and
the right column depicts the variance. Figure 2 shows that when
the probability of observing the response is high, λ(t) assumes
values significantly lower than unity. In these cases, ARLS is
tracking the evolution of the equation by assigning more weight
to recent data compared with old data. As p declines and σ 2

η

increases, the average λ(t) increases and in the limit that p

tends to zero the average λ(t) tends to unity. When λ(t) tends
to unity ARLS weights past and recent observations equally,
performing an estimation equivalent to that of standard least
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FIGURE 2. Mean and variance of λ over 5000 iterations with respect to σ 2
η and the probability of observing the response at each iteration.

FIGURE 3. Probability of each action being optimal for x ∈ R
1 and x ∈ R

10 and different values of σ 2
η .
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squares. In these cases, the effective speed of change is too
large for the filter to track the time variations and treats the
phenomenon as static. Therefore, the ability of the ARLS filter
to perform accurate estimation constrains the decision-making
accuracy.

3.1.2. Evolution of optimality
The purpose of introducing dynamics in the MABC is to render
the decision-making problem dynamic. In other words, we are
interested in problems in which the optimal policy changes over
time. A time-varying optimal policy is characterized by chang-
ing degrees of optimality of actions over time. The speed of
change in Equation (7) is determined by the variance of the dis-
turbance term σ 2

η . However, as Fig. 3 shows, the impact of a par-
ticular value of σ 2

η on the evolution of the optimality of different
actions depends largely on the dimensionality of the covariate.

For a five action problem, Fig. 3 illustrates the evolution of
the proportion of times each action is optimal over 5000 plays
for x ∈ R

1 and x ∈ R
10 and different values of σ 2

η , given the
scaling of the covariance matrix of the covariate distribution �

with respect to dimensionality that we use. It is clear from the
figure that for a given value of σ 2

η the impact of the dynamics
is much more pronounced in lower dimensions. For x ∈ R

1 a
value of σ 2

η = 10−3 is sufficient to induce the ranking of the
optimality of different actions to change gradually, whereas a
value of σ 2

η = 10−2 renders the changes in ranking so frequent
and abrupt that tracking their evolution is very difficult. On the
other hand, for x ∈ R

10 a value of σ 2
η equal to unity is required

to induce a change in the ranking of different actions similar to
that for the case of x ∈ R and σ 2

η = 10−2.

3.1.3. Optimal degree of exploration
It appears intuitive that in a continuously changing environment
a higher degree of exploration is required compared with
the static case. In the static case, the expected returns
from exploration decrease over time, whereas this does not
necessarily hold in dynamic problems. As pointed out in
Section 1, there are several differences in the trade-off between
exploitation and exploration when dynamics are introduced.
First, because all the actions are continuously changing,
selecting a greedy action contributes to knowledge acquisition
and hence there is an element of exploration in exploitation.
Second, performing an exploratory action selection causes
a missing observation for a greedy action. Thus, the cost
and character of exploration is different in the dynamic
case.

The rationale behind exploration in a static environment
is that by improving one’s knowledge of the environment
higher rewards can be accrued in the future. For this reason,
in a static environment with known time horizon it is always
advantageous to perform an exploration phase first, followed
by an exploitation phase [11]. This rationale is not valid in a
continually changing environment, simply because the future
differs from the present.

Retaining the convention of characterizing as exploration the
selection of a non-greedy action, then for exploration to be
beneficial in a dynamic environment it must enable the detection
of changes in the optimal policy, that would not have been
detected (or would have been detected much later) had the
greedy strategy been used. Moreover, the cost of exploration
needs to be compensated by the higher reward induced by the
more accurate identification of optimal actions.

At this point it is useful to consider the distinction between
different types of change made by [29] for the dynamic MAB.
According to [29] the three types of changes that can occur in
a MAB are: (i) the best action remains the same, but its reward
changes; (ii) the reward of another action increases to the extent
that it exceeds that of the current best and (iii) the reward of the
best action decreases to the point that it becomes lower than that
of another action. In the context of the MABC there is no unique
best action, but the aforementioned categorization is directly
applicable if instead of the best action we consider the actions
that are part of the optimal policy (i.e. actions with positive

FIGURE 4. Optimal degree of exploration, ε, with respect to the speed
of change, σ 2

η , for x ∈ R.
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Prospects for Bandit Solutions in Sensor Management 1377

degree of optimality). Assuming that the true parameters of all
the reward functions are known at the start of a simulation, then
in terms of the above categorization, only a change of type (ii)
requires exploration. The other types of change, which refer to
changes in the reward functions of one of the optimal actions,
can be handled by greedy selection as long as an appropriate
estimation technique is used.

As shown in Section 3.1.2 the dimensionality of the covariate
determines to a large extent the impact of the speed of change
on the action selection problem. Values of σ 2

η that produce
abrupt and frequent changes in the degree of optimality of
different actions in low dimensions have little impact in higher
dimensions. Since simulation results for different values of d

are not comparable, we provide simulation results for two cases,
x ∈ R and x ∈ R

10. For x ∈ R the values of σ 2
η considered are in

the range [0, 0.01], while for x ∈ R
10, σ 2

η is in [0, 1]. The range
of σ 2

η is chosen so that the problem exhibits behaviour ranging
from static to abruptly and frequently changing optimal policy.
In both cases the number of actions is set to 20. Note that for
x ∈ R

10, the maximum value of σ 2
η is five times larger than

the maximum value considered in the experiments performed

concerning the behaviour of the ARLS filter. Moreover, the
number of actions is so large that there are bound to be actions
that are very rarely observed. Equivalent to exact initialization
in the static case we make the assumption that the true reward
equations are known at time zero.

We consider the ε-greedy [30] action selection strategy
with ε ∈ [0, 0.5] with a step size of 10−2. According to
this strategy, at each play the greedy action is selected with
probability (1 − ε), while with the remaining probability, ε, a
random action is selected. Note that without making explicit
assumptions about the nature of the dynamics, the sensor
manager cannot construct confidence bounds for the reward of
each action. Hence, upper confidence bound-type strategies [4,
19] are not applicable.

The optimal value of ε with respect to the mean proportion of
best action for the case of x ∈ R is depicted in Fig. 4 for CNR =
1, 10−3. The optimal degree of exploration with respect to the
normalized expected regret measure is always zero. A plot sim-
ilar to Fig. 4 is not produced for the case of x ∈ R

10 because the
optimal ε is zero for all the values of σ 2

η . For x ∈ R, the optimal ε
with respect to the proportion of best action exhibits variability

FIGURE 5. Error bars for the performance of different ε-greedy strategies for the case of 20 actions and x ∈ R.
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1378 N. G. Pavlidis et al.

but is always low, <0.1. Figure 5 depicts the performance of all
the ε-greedy strategies, for the cases in which the highest opti-
mal ε is obtained, namely σ 2

η = 0.0088 for CNR = 1, and σ 2
η =

0.001 for CNR = 10−3. Figure 5 shows that for higher values
of CNR, there is a clear tendency for performance with respect
to the proportion of best action to degrade as the degree of
exploration increases. The interquartile ranges of the ε-greedy
strategies with very small ε overlap and hence the difference
between any one of them and the one with the highest median
performance is not substantial. As the value of CNR decreases
the choice of ε appears to affect performance less. On the other
hand, the superior performance of strategies that perform little
or no exploration is clear when normalized expected regret is
considered. Performance with respect to this criterion exhibits
much less variability because it is a continuous measure.

The performance of the optimal ε-greedy strategy for the
different values of σ 2

η and CNR = 1 is illustrated in Fig. 6.
Mean performance with respect to both measures is declining

while variability increases as σ 2
η increases. Even in cases in

which the dynamics induce frequent and abrupt changes, the
optimal action selection strategy manages to perform an order
of magnitude better than random action selection with respect
to the proportion of best action.

3.2. Sensor management application

We investigate a simple formulation of a sensor management
problem that involves monitoring and assessing the threat posed
by different sources in an urban environment. We formulate
the problem as follows. From the onset K threats that must be
monitored are identified. We consider a discrete time model in
which threats move at each time-step, but the type of motion
is unknown. The sensor manager selects sequentially which
threat to monitor. Each threat poses a danger to a number of
locations of interest. The term locations of interest is used
generically to refer to different types of entities, including static

FIGURE 6. Average proportion of best action and normalized expected regret for MABC with 20 actions for x ∈ R
1 (top row) and x ∈ R

10

(bottom row) with respect to the value of σ 2
η .
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entities, like buildings, and moving entities such as vehicles.
The threat level is a function of a number of factors, including
the type/identity of the threat, its distance from a number of
locations of interest, the importance/priority of each location
of interest, and its previous activities. The contribution of
some factors to the current threat level is constant over time.
Such examples are the type/identity of a threat, the danger
that a type of threat poses to different types of locations of
interest and the priorities of the locations. Other factors, like
the distance of a threat from each location of interest change
at each time-step. The latter set of factors form the covariate
vector upon which the sensor manager conditions its decision
at each time-step.

The precise form of the threat function for each type of threat
is context dependent. We set the current threat level of each
threat, ci(t), to be a linear function of the distance of the threat
to each of the L locations interest:

ci(t) =
L∑

j=1

βi,j (t)di,j (t) + εi . (8)

We make the general assumption that the closer a threat is to
a particular location the higher its potential to inflict damage.
Therefore, the coefficients, βi,j (t), are nonpositive.

The current assessment of each threat is also influenced by
its history of threat levels. Since only one threat is monitored
at each time, this information cannot be part of the covariate
vector. Instead, we incorporate this dependence by having
the coefficients βi,j (t) be functions of an overall threat level
measure, li(t), that captures the history of threat levels. This
measure is bounded in [1, 5] with 1 referring to the lowest
possible threat and 5 representing the greatest threat. The overall
threat level is updated by fixed increments of h. In particular,
if the current threat level exceeds the previous threat level by
a margin m, then li(t) is increased by h, and vice versa. If the
margin is not exceeded in any direction, the overall threat level
is unchanged.

li(t + 1) =

⎧⎪⎪⎨
⎪⎪⎩

li(t) + h, if �ci(t) > m,

li(t) − h, if �ci(t) < m,

li(t), otherwise.

(9)

FIGURE 7. Optimal degree of exploration, ε, with respect to the speed of change parameter α.
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We let the coefficients βi,j (t) be inversely related to li(t):

βi,j (t) = βi,j (0)

α + li(t)
, βi,j (0) < 0. (10)

In this formulation, βi,j (0) reflects the contribution of all the
static parameters of the scenario (such as the type of the threat,
and the relative priority of each location). The influence of
changes of li(t) on the current values of the coefficients is
controlled by α. Smaller values of α increase the impact of a
change of li(t), on the value of βi,j (t) and vice versa. Hence, the
speed of the dynamics is determined by the parameter α. The
sensor manager is unaware of this deterministic scheme, but
instead attempts to track the evolution of the coefficient vectors
through the observed covariate vector and the reward obtained
at each instance.

As in the previous section, we investigate the exploitation–
exploration dilemma in this setting using the ε-greedy strategy,
with ε ∈ [0, 0.5]. The top row of Fig. 7 shows the maximum
median proportion of best action, and the minimum normalized
cumulative regret for different values of α on a problem with 20
threats. As expected, increasing the speed of the dynamics, i.e.

smaller values of α, reduces the best attainable performance.
An exception occurs for small values of α were an increase
appears to impair the optimal median performance with respect
to normalized cumulative regret. This can be attributed to the
higher variability of performance that is observed when the
speed of dynamics increases, which will be discussed below.
The bottom row of the figure depicts the values of ε that yielded
the best performance with respect to the two criteria. As in
the artificial dynamic MABC the optimal value of ε is lower
when normalized expected regret is used as the performance
criterion. The optimal value of ε is below 0.1 even when the
mean proportion of best action is used as performance criterion.

A more detailed illustration of the overall performance
induced by different ε-greedy strategies is provided in Fig. 8.
This figure depicts the performance of ε-greedy strategies with
ε ∈ [0, 0.5] on a problem with 20 threats, for two values of α.
The top row of the figure corresponds to α = 20, and the bottom
row corresponds to α = 2. Clearly, increasing the speed of the
dynamics (i.e. a lower value of α) impairs the performance of
the sensor manager for all the values of ε. However, irrespective
of the value of α, there appears a distinct pattern in performance

FIGURE 8. Average proportion of best action and cumulative normalized expected regret in sensor management simulation with 20 threats for
α = 40 (top row) and α = 2 (bottom row).
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FIGURE 9. Proportion of best action over time for α = 2, 20.

with respect to ε. Introducing a marginal degree of exploration
improves performance over the purely greedy strategy with
respect to both measures. Increasing ε further can cause an
increase in median performance, but the interquartile ranges of
the performance of strategies with small ε overlap substantially.
For values of ε exceeding 0.1 there is an apparent trend of
performance degradation.

Figure 9 illustrates the evolution of performance of three
ε-greedy strategies and two benchmark strategies, namely

random and round robin assignment. By ignoring the covariate
information both random and round robin assignment identify
the optimal action at each time-step with a constant probability
of 1/N , where N is the number of actions. For the two values
of α considered the three ε-greedy strategies are capable of
identifying the optimal action more accurately. For the case of
slower dynamics, α = 20, the 0.01-greedy strategy improves
its performance over time and eventually identifies the optimal
action almost as well as the 0.1-greedy strategy. Figure 9b shows
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that as the speed of dynamics increases the performance of
different strategies becomes indistinguishable.

4. CONCLUDING REMARKS

In this work, we investigate sensor management problems in
which the consequences of different actions are affected by a
set of covariates that are observed prior to each action selection.
In our formulation, the consequences of the actions are
immediately felt, and selected actions do not affect subsequent
realizations of the covariates. The sensor manager’s goal is to
learn the optimal policy, which is a rule that associates covariate
vectors to the optimal action. Sensor management is typically
deployed in dynamic environments, where there is frequently
uncertainty concerning the underlying process that governs
change. In the present context, a dynamic environment is
characterized by changing relationships between the covariates
and the rewards. The sensor manager therefore has to revise
its policy over time to attain satisfactory performance. The
dynamic multi-armed bandit with covariates is a natural
implementation of this framework. At present we restrain our
attention to the case that the rewards are linear functions of the
covariates.

We study the case in which the sensor manager does not know
and is not trying to learn the nature of the dynamics, but instead
employs an adaptive filter to estimate the parameters of the
reward functions. The incorporation of dynamics has important
repercussions for both the estimation and the action selection
problems. Introducing dynamics blurs the distinction between
exploitation and exploration. Because the rewards are changing,
there is an exploratory component in every action selection, even
in exploitation, as information about the evolution of a greedy
action is obtained. Furthermore, in a changing environment
the future differs from the past and the present. Therefore,
the reasoning that exploration improves the knowledge of the
environment and enables better action selection in the future
may not be valid.

Experimental results show that when the speed of change is
large and the sampling frequency of the time-varying equation is
low the adaptive filter behaves like standard LLS. Therefore, in
problems in which accurate estimates of the reward functions
are required, an explicit model, or a learning mechanism, is
necessary to handle dynamics. We also show that increasing
the dimensionality of the covariate, while holding the rate of
change constant, renders the estimation problem harder, but not
the decision-making problem.

Through simulation we show that for different types of
dynamics and a wide range of parameter settings, the optimal
behaviour of the sensor manager is to be almost completely
greedy. Therefore, in dynamic problems in which the type of
dynamics is unknown the cost of exploration appears to exceed
the benefit. Surprisingly, this is true for both slowly and rapidly
changing environments. In slowly changing environments the

changes in the optimal policy are so gradual that monitoring
suboptimal actions degrades overall performance. In contrast,
in rapidly changing environments there is no time for the sensor
manager to accrue the benefits from learning more accurately
the current configuration of the reward functions. Therefore,
the intuitive argument that in a changing environment more
exploration is required to timely identify changes in the optimal
policy does not seem to hold in this case. To perform accurate
action selection in dynamic sensor management applications
without a model of the dynamics requires either that the speed
of the dynamics is relatively slow or that the type of dynamics
is such that the sensor manager has to effectively distinguish
between few actions. The experimental results suggest that as
the speed of change increases the performance of all the action
selection strategies degrades and approaches that of random
action selection. To improve performance in these cases, or
to render this performance degradation more gradual a highly
accurate model of the dynamics is necessary.

In this work, we studied a single agent action selection
problem. An extension of this work would be to consider multi-
agent action selection in uncertain and dynamic environments.
In this context, at each time each agent selects an action and
the joint actions determine the overall reward. Such extensions
have been investigated in the ALADDIN project. For example,
a sensor management application of this formulation is the
determination of the sampling frequency of each sensor in
a sensor field, with the overall reward being a measure of
tracking accuracy. In this case, each sensor sets its sampling
frequency so as to obtain regular measurements of the target, but
also avoid network congestion that causes delays and therefore
performance deterioration [31]. An online multi-agent action
selection approach based on MAB is also relevant to disaster
recovery applications [32, 33] where a population of agents,
for example mobile sensors, must coordinate their actions to
optimize collective information acquisition.
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