
Decentralised Dynamic Task
Allocation Using Overlapping

Potential Games
ARCHIE C. CHAPMAN1, ROSA ANNA M ICILLO 2, RAMACHANDRA KOTA1

& N ICHOLAS R. JENNINGS1

1School of Electronics and Computer Science, University of Southampton, SO17 1BJ, UK
2Department of Information Engineering, Second Universityof Naples, Aversa (CE), Italy

Email: {acc,rck05r,nrj}@ecs.soton.ac.uk, rosaanna.micillo@unina2.it

This paper reports on a novel decentralised technique for planning agent schedules in dynamic task
allocation problems. Specifically, we use a stochastic gameformulation of these problems in which
tasks have varying hard deadlines and processing requirements. We then introduce a new technique
for approximating this game using a series of staticpotential games, before detailing a decentralised
method for solving the approximating games that uses the distributed stochastic algorithm. Finally,
we discuss an implementation of our approach to a task allocation problem in the RoboCup Rescue
disaster management simulator. The results show that our technique performs comparably to a
centralised task scheduler (within 6% on average), and also, unlike its centralised counterpart, it is

robust to restrictions on the agents’ communication and observation ranges.

Received 29 August 2009; revised 20 November 2009

1. INTRODUCTION

The design and control of large, distributed systems is
a major challenge in computer science research. It is
important precisely because the application domains of
such systems are so broad and ubiquitous: they arise
in disaster management and evacuation scenarios (e.g. [1,
2]), wide–area surveillance and distributed sensor network
management (e.g. [3, 4]), industrial task allocation and
scheduling problems (e.g. [5, 6]), and in the control
and management of congestion within air, road, rail,
and information networks (e.g. [7]), among many other
places. Now, scenarios in these domains are inevitably
characterised by distributed information and costly and/or
noisy communication, which limits the applicability of
traditional centralised control approaches, and by noisy
observations and inherent dynamism, which necessitate
flexible, agile and robust decision–making. Furthermore, in
certain settings, the timeliness of decisions is of paramount
importance.

One broadly investigated approach to tackling these
general challenges is known asmulti–agent systems(MAS)
— a paradigm that views such systems as a collection of
autonomous, interacting, decision–making entities called
agents[8]. In this framework, each agent usually controls
a small subset of the variables in the system, and the
collective actions of the agents are then engineered to
produce desirable system–wide behaviour. In this setting,by
control we mean the problem of finding and implementing
configurations of the system’s variables in order to achieve
certain global goals. Specifically, using a MAS, control

of the system’s variables is handed to several agents,
that reason about the variables under their control using
distributed (sometimes local, sometimes private) knowledge,
and by so doing, spread the system’s computational burden
and remove the brittleness and risk associated with a single
point of failure or a computational bottleneck [9]. Within the
MAS paradigm, agents are usually cast as one of two types
— they are eithercooperativeor they areself–interested(or
noncooperative). In the former case, agents explicitly share
the same goals, which are typically the system–wide goals,
and are designed to coordinate their actions to achieve these
ends. However, achieving these goals typically requires
that the agents share a common view of the world in order
to compute the values of different variable configurations,
making them prone to similar risks as centralised control
mechanisms. In contrast, in the noncooperative case, agents
possess their own internal motivations and act on their own
local information, which removes these risks. Now, although
these agents are self–interested, they are not necessarily
adversarial; they simply haveprivate utility functionsthat
guide their reasoning and decision–making processes. To
date, self–interested agents are typically the focus of open
systems, such as auctions and markets (e.g. [10, 11]),
trust and reputation systems (e.g. [12, 13]), or work–flow
provisioning (e.g. [14]). In particular, agents in these setting
are used to automate the decision making of stakeholders
that have divergent interests, and these interests are outside
the control of the system designer.

However, self–interested agents can also be successfully
applied to the design of control mechanisms for large
distributed problems with a single stakeholder or global

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????

2 CHAPMAN , M ICILLO , KOTA AND JENNINGS

objective. This is because in many such design problems, the
private motivations of the agents can be constructed in such
a way that they are aligned with the global system objectives
(as in [15, 16, 17]). In particular, in this work we use such
self–interested agents to construct a MAS–based control
mechanism for the dynamic task allocation and scheduling
problem at hand, because we believe that self–interested
agents can provide the degree of robustness and flexibility
needed in large distributed applications. Specifically, agents
are designed to act on their local knowledge of the state
of the world and the actions of their neighbours such that
improvements to their own payoffs only increase the global
solution quality. As a consequence, by following their
own interests, they coordinate their actions to achieve a
high quality system–wide outcome. The resulting control
mechanism is robust and flexible in the face of changes in
aspects of the underlying control problem or the resources
available to implement the control mechanism precisely
because the agents only require local information to act:
at no point must all the information regarding the world’s
state or the agents’ actions be available to a single decision–
making entity. As such, the time, communication and
computational costs of recomputing a solution to the control
problem at hand can be substantially reduced, thus meeting
the requirements of a control mechanism for a large
distributed system: namely, flexibility and robustness to
component changes, limited use of communication, and
timeliness generation of solutions.

Given this background, the particular scheduling prob-
lems that we address in this work consist of a set of agents
that negotiate to assign themselves to, and execute, a dy-
namic stream of tasks, without the aid of a centralised man-
ager. Each task has a hard deadline and a particular pro-
cessing requirement (e.g. in a disaster response scenario,
a casualty must be taken to hospital by 10:30am and this
will take 30 minutes). In particular, the task set is dynamic
because it is gradually revealed over time. This, in turn,
means we require a practical mechanism that can respond
to such changes in a timely fashion. Now, an agent can at-
tend any task — there are no subtasks or specialisations —
but it can act on only one task at a time and it performs this
task at a fixed rate of processing. As a consequence, some of
the tasks cannot be completed by an individual agent before
their deadlines, and so must be tackled by a team working
together.1 For example, two fire crews working together to
extinguish a burning building have a greater chance of suc-
cess than one, or act to reduce the time it takes to extinguish
the fire. However, this induces a problem of scarcity among
competing tasks for limited agents. As the full set of tasks is
not known at the outset, an agent has to continually negotiate
with other agents over the sequence of tasks to execute, so
that all currently known tasks are considered in generatinga
solution. This negotiation is carried out in such a way that
the agents achieve their joint goal of completing as many as

1Note that additional agents only help complete a task — they do not
hinder each other. This uncomplicated task model means we donot need to
adopt a sophisticated planning language to express the agents’ interactions
(cf. [18], for example), because the value of all actions canbe easily
expressed in terms of utilities.

possible and in the least amount of time, and may include
agents de–committing from tasks in order to maximise the
total number when new tasks are revealed. Furthermore, the
execution of some tasks precludes the execution of others,
and decisions made at a given time may affect the structure
of the problem facing the agents in the future. For example,
the decision to rescue one trapped casualty may mean that a
second cannot be saved, but may not prevent the rescue of a
third later, or the decision to extinguish a particular fire may
remove the risk of nearby buildings catching alight. Con-
sequently, agents must consider the future effects of their
current actions during their negotiations.

To jointly satisfy all three of the requirements of agility
and robustness, timeliness, and high–quality solutions, we
pursue a game theory–based approach, in which planning
is achieved via negotiation between agents. Using a
negotiation protocol allows us to spread the computational
burden of solving the problem across the agents in the
system, which adds to the control mechanism’s robustness
and the timeliness of its solutions. This approach is derived
by integrating two principled approaches to the separate
problems of, first, reducing the original dynamic problem
to a tractable version via an appropriate approximation
(in order to improve the timeliness of solutions and the
communication requirements of the control mechanism),
and second, incentivising the agents to behave in a manner
consistent with the global objectives of the system, without
requiring full global knowledge of the actions of all other
agents or the complete set of tasks.

In more detail, we tackle the problem of designing a
control mechanism for distributed dynamic task allocation
by first defining a global utility function, which is
constructed as if we were defining it for a centralised Markov
decision problem (MDP). This is the global target function
we wish to maximise, and its approximation is discussed
later. Next, we address the requirement of robustness
in our control mechanism. We satisfy this requirement
by giving control over the variables of the problem —
the resources used to complete the tasks — to a set of
agents, each of which makes its own independent choices.
As a consequence, we use game theory to analyse their
joint behaviour, because it is the natural way to model the
interaction of such autonomous agents. Specifically, if the
variables of a MDP are controlled by a set of autonomous
agents, then we are in the realms ofstochastic games[19]. In
this type of game, self–interested agents play a multi–stage
game, in which the stage game varies probabilistically at
each time–step as a function of the state and actions taken in
the previous time–step. Here, each stage game corresponds
to a particular set of tasks to be completed at that time
and the status of the agents in the system (their locations,
commitments, etc). Each agent has its own private utility
function which it aims to maximise. However, as discussed
above, we can define these such that, for any unilateral
switch in strategy, an agent’s change in payoff is equal to
the change in the global utility. Consequently, the global
maximum is a pure strategy Nash equilibrium (i.e. it is a
stable solution to the game). In this way, selfish agents can
be used to solve an inherently cooperative problem, because

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????

DECENTRALISEDDYNAMIC TASK ALLOCATION 3

their self–interest drives them towards solutions with higher
global utility.

Although our problem can be cast elegantly in such
a model, it is not practical to solve it at real–world
scales, because agents have to consider the utilities of the
future tasks present in all possible future states during the
negotiations. In particular, any multi–stage game with
stochastic state transitions is NEXP-complete [20], due to
the factorial growth in the number of state–action–transition
combinations. Thus, we must address the requirement of
the timeliness of the solutions generated by the control
mechanism. To do this, we show that the stochastic game
can be approximated using a sequence of finite length multi–
stage games of complete information. In this context,
we approximate the global utility function with a receding
horizon version of the same function. This approximation
incurs two penalties: (i) for truncating the length of the
decision window and therefore ignoring payoffs from future
states, and (ii) for ignoring the possible future changes in
the state of the world, other than those brought about by
the agents’ own actions. Our use of this approximation is
predicated on the assumption that changes in the world do
not significantly affect the long–run payoffs to the agents;
that is, all states arequiescent. This assumption makes
sense in our setting, because the effect of scarcity of agents
to complete tasks means that the introduction of additional
tasks into the system only affects the agents’ payoffs at
the margin, and does not alter the utility of those tasks
that the agents may have already begun to process (or
chosen not to process). Furthermore, we derive the agents’
utilities from the approximate global utility function such
that the agents play apotential game[21] at each time–step,
with the strategy space of the game for each subsequent
time–stepoverlappingwith the games before (and after)
it. We do this by rewarding agents with their marginal
contributions to task utilities. Generating a potential game
is very useful because, first, the maximum approximate
global utility is a Nash equilibrium, and second, it implies
that each game can be solved by a distributed local search
algorithm. In particular, we use the Distributed Stochastic
Algorithm [5] to solve each approximating game (we could
equally well use alternative methods, such as Distributed
Simulated Annealing or Fictitious Play, as shown in [22]).
Thus, we call our technique theoverlapping potential game
approximation(OPGA).

Beyond this, we extend the analysis of our approach to
situations where the communication and observation range
of the agents is restricted, so that we can test OPGA’s
robustness to these complications. In such settings, the
agents cannot see the entire state of the world or do not know
the strategies of all other agents, and therefore must make
their decision on the basis of incomplete information. This
type of limitation is common in many real–world scenarios,
and particularly those that possess a spatial dimension. For
example, in a disaster response setting, the central message
distribution point may be out of action, or damage to
physical infrastructure may remove the ability to use wide–
area broadcast communication. In these situations, the
agents’ utility functions can still be derived in such a way so

that they are aligned with the global objectives of the system.
In order to test the efficacy of OPGA, we empirically

evaluate it on the ambulance–to–civilian allocation problem
in RoboCup Rescue (RCR), which is an example of a
task allocation problem with hard deadlines and varying
processing requirements. By doing so, we show that OPGA
performs comparably to a centralised task scheduler when
communication is not limited, and that it outperforms the
centralised approach as the agents’ communication and
observation ranges are restricted. Interestingly, we also
find that OPGA sometimes performs better with moderate
restrictions on its communication and observation range than
it does when it has complete information. We conjecture
that this is due to a reduction in the space of possible
solutions, resulting in a quicker rate of convergence, and
consequently fewer occasions of a configuration that is not
a Nash equilibrium being generated as a solution (which
itself is down to the fact that due to the finite number of
iterations employed there is always a small probability that
the generated solution is not a Nash equilibrium).

Given this context, this work extends the state of the art in
the following ways:

1. We introduce a new technique for approximating
stochastic games using a series of overlapping potential
games.

2. We develop a novel distributed solution technique for
the approximating games, based on the distributed
stochastic algorithm.

3. We show that our technique is robust to restrictions
on the range over which agents can communicate and
observe (note that these are restrictions that typically
cause centralised approaches to fail).

The first contribution is aimed at balancing the need
for high quality solutions with the requirement that
the control mechanism itself is computationally feasible,
while, at the same time, the second contribution produces
a robust and flexible mechanism that operates with
limited communication overhead. The third contribution,
then, demonstrates that the control mechanism we derive
successfully satisfies these aims. Elements of this paper have
appeared before in [23].

The paper is organised as follows: In the next section we
review other approaches to distributed dynamic scheduling,
and argue why they do not meet our requirements. Section 3
then introduces the game–theoretic background to our
model. In Section 4 we formulate the problem as a stochastic
game, and describe our approximation of the global utility
function. Building on this, we show how to derive agents’
utilities so that the resulting game is a potential game,
and describe a local search algorithm that can be used
to solve it. Finally, we discuss the effects of restricting
the range over which agents can communicate. Then, in
Section 5, we evaluate OPGA in the ambulance–civilian
allocation problem in RCR. This demonstrates the benefit
of using a decentralised method of control in settings where
communication and observation are limited. Section 6
concludes.

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????

4 CHAPMAN , M ICILLO , KOTA AND JENNINGS

2. RELATED WORK

In this section we review a number of control methods
that could be applied to dynamic allocation and scheduling
problems. To date, the main approaches to dynamic
task allocation include: (i) domain–specific heuristics, (ii)
modelling scheduling as a constraint program and solving
this with either a centralised or decentralised algorithm,
and (iii) auction allocation mechanisms and more general
market–based approaches. Each of these will now be dealt
with in turn. A comprehensive review of related problems
can be found in [24].

First, there is a long history of using heuristics to solve
scheduling problems. In particular, [25] addresses the family
of earliest deadline firstheuristic algorithms for scheduling
in real–time scenarios comprising tasks with hard deadlines
that compete for the same resources. The problem that we
tackle here falls into this general class of problems, and,
furthermore, the greedy algorithms we use as experimental
benchmarks in Section 5 are also based on such heuristics.
However, such algorithms rely on the centralisation of
information and decision–making, and so are not appropriate
for our application domains.

Second, a number of optimal algorithms for multi–agent
scheduling problems have been proposed that work by
reducing the problem to a constraint program. Examples of
constraints includeresource relations, which are shared by
tasks that compete for the same resource, andprecedence
relations, which are shared by subtasks that need to be
completed in a certain order. From these relations, a
constraint program is constructed. This can be solved
centrally (as in [26]) or using a decentralised constraint
programming algorithm (such as DPOP [27]). Again, we
rule out using centralised constraint solvers. Moreover, the
distributed exact algorithms suffer from exponential growth
of some aspect of the solution process (e.g. the size of the
messages passed in DPOP is exponential in the depth of the
communication network it is run on), so cannot easily be
applied at the scales or in the timeframes we require.

Third, auctions and other market mechanisms are
beginning to be used to add robustness to task allocation
by giving agents the autonomy to construct their own
bids, based on their own private or partial knowledge
[28, 29]. However, such auctions often involve a
significant communication overhead, which can impact on
the timeliness of their solutions, and, to some degree, an
auctioneer represents a single point of failure (just like a
central decision maker). Other market–based allocation
methods, such as bargaining and exchange markets, are
similar to our work, as the local search algorithm we
employ to solve each potential game effectively specifies
a negotiation protocol. However, our method differs from
this literature, because we are able to directly specify agents’
utility functions.2

From this landscape, the work most similar to ours is [17],

2In contrast, market–based task allocation methods are designed to
incentivise agents with arbitrary utility functions to actin a way that
maximises a social welfare function. Nonetheless, the connections between
our work and mechanism design, in particular theGroves mechanism, are
discussed in Section 4.3.

in which an autonomous vehicle–target assignment problem
is addressed using a potential game formulation. In their
model, vehicles (agents) operate individually to optimisea
global utility. The global utility optimisation is obtained
via an appropriate design of the vehicles’ utilities and their
negotiation protocol. While we use a similar approach,
there are two fundamental differences. First, in their work,
vehicles are assigned to a single target, whereas in our
scenario each agent is required to perform a sequence of
tasks, each of which has a hard deadline. This means that
our agents are required to reason over the order in which they
attend to tasks, not just which tasks to attend. Second, their
approach assumes that all tasks are known at the start, while
we assume that they are continually discovered at run–time.

Finally, our approach to approximating the stochastic
game is motivated by a somewhat similar technique for
producing approximate solutions to partially–observable
stochastic games using a series of smaller Bayesian games
[30]. In that work, a tractable Bayesian game is
constructed at each time step from the most likely current
states and state–transitions given an agent’s beliefs. This
Bayesian game is then solved to obtain a one–step policy
that approximates the globally optimal solution of the
original partially–observable stochastic game. In contrast,
we construct a tractable multi–stage game of complete
information at each time step, and because this is a potential
game, it can be easily solved using a decentralised algorithm.
The solution to this game is then used as a multiple–step
policy to approximate the globally optimal solution.

More broadly, this work is also linked to other work
carried out within the ALADDIN Project.3 Alongside this
and other work that has been applied in the RoboCup Rescue
simulator,4 ALADDIN Project researchers have also applied
MAS–based techniques to the closely–related problem of
industrial task allocation [6], evacuation scenarios [2] and
distributed sensor management [34, 3]. Research has also
been carried out on fundamental problems that arise in MAS
design, including research into algorithms for distributed
constraint optimisation problems (such as the Distributed
Stochastic Algorithm used in this paper) [35], models
of congestion in common–resource usage games [7] and
coalition formation problems [33, 36].

3. PRELIMINARIES

This section introduces the foundations of our model,
beginning with noncooperative games, extending these ideas
to stochastic games, and finally considering the class of
potential games.

3.1. Noncooperative Games

A noncooperative game,Γ = 〈N,{Si ,ui}i∈N〉, consists of a
set ofagents, N = {1, . . . ,n}, and for each agenti ∈ N, a

3www.aladdinproject.org
4See www.aladdinproject.org/technologies for applications in

RoboCup Rescue of auctions for efficient resource allocation [31],
consistent multiple hypothesis estimation in the face of faulty/untrustworthy
sensors or incomplete probabilistic models [32], and optimal anytime
coalition formation algorithms [33].

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????

DECENTRALISEDDYNAMIC TASK ALLOCATION 5

set ofstrategies Si, and autility function ui : S→ R. A joint
strategy profiles∈Sis referred to as anoutcomeof the game,
whereS= ∪N

i=1Si is the set of all possible outcomes. An
agent’s utility function ranks its preferences over outcomes
in terms of the payoff it receives for an outcome, such that
ui(s) > ui(s′) if and only if the agent prefers outcomes to
outcomes′. We will often use the notations = {si ,s−i},
wheres−i is the complimentary set ofsi .

In noncooperative games, an agent’s goal is to maximise
its own payoff, conditional on the choices of its opponents.
Stable points in such a system are characterised by the set of
Nash equilibria. A joint strategy,s∗, such that no individual
agent has an incentive to change to a different strategy, is a
Nash equilibrium, i.e.:

ui(s
∗
i ,s

∗
−i)−ui(si ,s

∗
−i) ≥ 0 ∀ si , ∀ i. (1)

In the next subsection, we discuss an extension of this simple
static game model to stochastic, multi–stage settings, in
which the agent’s payoff functions vary as a function the
state of the world.

3.2. Stochastic Games

Stochastic games are an extension of standard noncooper-
ative games, for repeated interactions in which the game
played by the agents at each time–step,t, varies probabilis-
tically as a function of the state and the choice of strategies
in the previous round, or simply as some environmental pro-
cess evolves [19]. Formally, a stochastic game is a tuple,
Γ = 〈N,Ω,{{Si ,ui}i∈N}ω∈Ω,q〉, comprising a set ofagents
N = {1, . . . ,n}, a set ofstate variablesω ∈ Ω, a set ofstage
gamesγ(ω) indexed by elements ofΩ, with each having a
strategy space Sω and a set ofutility functions uωi (s), defined
as in the standard noncooperative model above, and astate
transition function q(ωt+1|ωt ,st). The state transition func-
tion gives the probability that the next period’s state isωt+1,
given the current stateωt and the strategy chosen by the
agents at timet, st . Although state transitions are stochastic,
agents are assumed to know with certainty the current state.
Intuitively, payoffs in the current stage game depend only on
the state and the agents’ current strategies, while the proba-
bility distribution on the following state is completely deter-
mined by the current state and strategy selection. A strategy
in a stochastic game comprises a strategy for each of the
stage gamessi = {sω

i }ω∈Ω; that is, there is a strategy compo-
nent for every possible state of the world. Strategies in finite
time step stochastic games are typically evaluated by their
expected total reward:5 E[ui(si ,s−i)] = ∑T

t=0 uωt

i (si ,s−i).

3.3. Potential Games

Potential games are a subclass of noncooperative games.
They are characterised as those games that admit a potential
function, which is a real-valued function on the joint strategy
space whose gradient is the gradient of the constituents’
private utility functions [21]. The class of finite potential
games have long been used to model congestion problems on

5This is in contrast to infinite time step stochastic games, which typically
use the discounted expected total reward.

networks [37], and, recently, they have been used to analyse
distributed methods of solving target assignment problems
[17, 38] and job scheduling [5].

Formally, a functionP : S→ R is apotentialfor Γ if:

P(si ,s−i)−P(s′i ,s−i) = ui(si ,s−i)−ui(s
′
i ,s−i) ∀ si , s′i ∈ Si ∀ i ∈ N.

Γ is called a potential gameif it admits a potential.
Intuitively, a potential is a function of action profiles such
that the difference in its value induced by a unilateral
deviation equals the change in the deviating agent’s payoff.

The usefulness of potential games lies in the fact
that the existence of a potential means that the game
possesses two particularly desirable properties. The first
is that every finite potential game possesses at least one
pure strategy equilibrium [21]. Now, pure strategy Nash
equilibria are particularly desirable in decentralised agent-
based systems, as they imply a stable, unique outcome.
Mixed strategy equilibria, on the other hand, imply a
probability distribution over pure strategy profiles, which is
not appropriate for the task allocation problems at hand. The
second desirable property possessed by potential games is
that they have thefinite improvement property, meaning that
any sequence of unilaterally improving moves converges
to a Nash equilibrium in finite time. This property is
important as it is used to guarantee the convergence of many
simple adaptive processes to Nash equilibria in potential
games (including the Distributed Stochastic Algorithm, as
discussed in Section 4.3).

4. THE TASK ASSIGNMENT MODEL

We begin this section by defining our task allocation
problem as a stochastic game. We then describe our
approach to this problems, called theoverlapping potential
game algorithm, beginning in 4.2 where we describe our
finite–horizon approximation of the global utility function.
Then in 4.3 we show how agent utility functions are derived
so that the agents play a potential game. Section 4.4 then
discusses the distributed stochastic algorithm, which we
use to solve the approximating potential games. Finally,
in 4.5 we discuss the effects on our approach of limiting the
distance over which agents can observe or communicate.

4.1. Stochastic Game Formulation

The full task allocation model is a finite stochastic game
of complete information: the current state is known, future
states are uncertain, agents have a finite set of strategies
and play for a finite number of time steps. Similar to
the general stochastic game description in Section 3.2, our
model comprises:

• A set of statesω ∈ Ω, each of which defines a set of
tasks X= {x1,x2, . . . x j , . . .}, with each task possessing
a deadline, td

xj
, a number of requiredprocessing units,

yxj , and atask utility function, uxj : S→ R,
• A set of agents N= {1,2, . . . , i, . . . ,n}, each with a

strategy space Si , with elementssi , composed of a
sequence of tasks to attend to, one for each time step

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????

6 CHAPMAN , M ICILLO , KOTA AND JENNINGS

(i.e.si = {x1,x2, ...,xt , ...}, and anagent utility function
ui(si ,s−i) : S→ R,

• A state transition functionq(ωt+1|ωt), and
• A global utility function uG(s) : S→ R.

The problem we face is twofold: we must design (i) the
agents’ utility functions and (ii) a distributed negotiation
protocol such that the system produces high quality
solutions. The other elements of the above model — the
transition function and the task and global utility functions
— come directly from the problem specification, and are
detailed now.

To begin, the transition function describes how new tasks
are generated and introduced into the system. Then, the task
utility function represents the payoff for completing a task,
and in this case it is:

uxj (s) =

{

βtcxj
(s)

if tc
xj

(s) ≤ td
xj

,

0 otherwise,
(2)

wheretc
xj

(s) is the completion time for the task, given the

agents’ strategiess, td
xj

is the hard deadline for successfully
completing a task, and 0< β ≤ 1 is a discount factor
that incorporates any benefit of completing the task earlier.
The task utility function possesses two properties that are
important in our scenario. First, the conditional statement
models the hard deadline, so if fewer than the minimum
number of agents that are required to complete the task
before td

xj
attend to it, the utility is zero, even if some

agents do attend to the task. This is important because,
in our scenarios, tasks that are incomplete at the deadline
are equivalent to unattended tasks. Second, increasing the
number of agents beyond the number necessary to complete
the task by its deadline improves the completion time,
which raises the task payoff. This captures the benefit of
completing tasks earlier.6

Given this, the global utility function ranks the overall
allocation of tasks to agents, and is an aggregation of task
utilities:

uG(s) = ∑
xj∈X

uxj (s). (3)

This preserves the desirable properties of the task utility
function.

Now that we have defined the task and global utility
functions for our problem, if we were working directly
with the stochastic game model, we would define the
agents’ utility functions. However, note that an agent’s
strategy space in this model is the set of all permutations
of assignments to tasks for each period; a strategy prescribes
an action for each time step for every contingent state of the
world. Thus, an agent’s strategy is a set of vectors of actions,
one vector for each state of the world, with an agent’s utility
function defined over this set and taking into account the
transition probabilities between stage games. Given the huge

6The value ofβ in Equation 2 represents a trade–off between the number
of tasks completed and the timeliness of those completed tasks. As we aim
to maximise the number of tasks completed, we chose a value close to 1,
however, if timeliness was our main concern, we would choosea lower
value.

number of possible states and action vectors of extremely
large sizes (factorial on the number of tasks), evaluating and
negotiating a set of joint strategies for this problem is clearly
a very computationally expensive process, that would likely
take a great deal of time. Furthermore, given that we intend
to deploy our agents in a system where they will be required
to make decisions in a short time frame, constructing such
a strategy for the full set of possible outcomes is practically
impossible, due to the huge number of possible future states
and action combinations that need to be evaluated. For
these reasons, we derive the agents’ utility functions from
a tractable approximation of the global utility function for
the stochastic game.

4.2. An Approximation of the Global Utility Function

Rather than attempting to solve the stochastic game above,
we approximate it using a series of static potential games
of complete information, and in so doing, we directly
address our requirement of tractability. Specifically, in this
section we approximate the global utility function using
a technique similar to a look–ahead policy or receding–
horizon controllers commonly used in MDPs (see, [39]
Chapter 5, for example). We can use this type of
approximation because, in our application domains, we
expect all states to be quiescent; that is, changes in the state
of the world do not significantly affect the long–run payoffs
to the agents, or there are no ‘doomsday’ outcomes.7

In more detail, the global utility is approximated as
follows. At each time step, a game is constructed with
each agent’s strategy defined for a fixed decision window
of w future time steps. In each of these games, an agent’s
strategy is a vector of tasks to attend to during the interval
[t,t + w], si = {xt ,xt+1, . . . ,xt+w}. In this way, at each time
step, the stochastic game is approximated by a static game
of complete information defined over the nextw time steps.
Then, the task utility functions in each approximating game
are defined as in Equation 2, with the addition that, for
tasks not completed byt +w, payoffs are calculated as if all
of the agents’ final strategy componentsst+w

i are repeated
until the task in question is completed or its deadline passes.
If we did not assume the continuation of these tasks, the
utility of all incomplete tasks at timet + w would be zero,
potentially leading to an artificial bias against tasks with
large processing requirements and/or long completion times.
The global utility of this model is given by:

ut,w
G (s) = ∑

xj∈X
uxj (s), (4)

and we note that it is of the same form as that for the
stochastic game model given in Equation 3, except that
the constituent task utilities are defined over the restricted
interval[t,t +w].

This approximation of the global utility function intro-
duces two types of errors. The first source of error is the

7If any state is non–quiescent, then our use of a look–ahead style
approximation will suffer from thehorizon problem[39] meaning that it
will not be able to avoid entering states that lead, unavoidably, to bad
outcomes beyond the length of the decision window used.

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????

DECENTRALISEDDYNAMIC TASK ALLOCATION 7

restriction of strategies to the decision window[t,t +w]. The
result of this is that the value of future states beyond the next
w time steps are not evaluated with the current choice of
strategy. Now, although we only maximiseuG(s) over the
nextw time steps, any adverse effects on the fulluG(s) is ex-
pected to be small, because the game puts greater importance
on tasks with closer deadlines. Similarly, if we used the full
stochastic game model, tasks with earlier deadlines would
be processed earlier. The second type of error is caused by
not incorporating information about the exogenous evolu-
tion of the world (in our model, the arrival of new tasks) into
the choice of state. However, as argued earlier, in the do-
mains we are considering, the state of the world moves slow
enough for us ignore this effect without introducing any sig-
nificant errors (admittedly, this is a domain specific trait).

Now, because we are working on a problem for which
a sequentially optimal solution is intractable, we are faced
with a trade–off between the two sources of approximation
error. The first type is reduced as the restriction on the
size of w is relaxed. On the other hand, the second type
is mitigated by using a shorter length window, because the
difference in the predicted and actual state reached in the
future is reduced. Consequently, our choice of window
length reflects the need to balance the effect of these two
sources of approximation error. Thus far, the value ofw has
to be determined experimentally as it depends on the domain
(elaborated in Section 5.2).

4.3. Deriving the Agents’ Utility Functions

Given the above approximation of the global utility function
for our problem, the agents’ payoffs are designed so
that any increase in an agent’s utility corresponds to an
increase inut,w

G (s). This enables us to produce high quality
solutions using a control mechanism comprised of self–
interested agents. However, in order to satisfy the robustness
requirement, these utilities cannot simply be set equal to
the global objective function, because that would mean each
agent needs to have complete information of the strategies
of others in the system to evaluate their own strategy.
Instead, because the global utility is the sum of task utilities,
an agent’s marginal contribution to the global utility can
be specified in terms of the sum of its contributions to
individual tasks — that is, the difference between the task
utility when the agent contributes to the task and when it
does not. This form of utility function is similar to the
Groves mechanism, in which agents in a team are paid an
amount equal to their marginal contribution to the team
utility [15].8 However, in our setting we can do away
with the explicit utility transfers that occur in mechanism
design because the system designer is able to specify each
agent’s utility function directly. Note that this type of
utility structure is also similar to thewonderful life utility
introduced by [16]. Specifically, by using the marginal
utility, a system designer can equate the agent’s utility to

8In order to make the connections clear, observe that if we were
trying to incentivise agents, who possess private preferences, to act in a
certain manner, then a mechanism design procedure, such as the Groves
mechanism, would be an appropriate choice of control mechanism.

0 1 2 3 4 5

Number agents attendingx j

1/2

1

Utility

ux j (s)

mu
x j

i (s)

FIGURE 1. An example of task utility and agent marginal utility,
with yx = 4, td

x = 2 andβ = 0.9, and an agent processing rate of 1
per time step.

the effect of its actions on the global utility. To this end, the
marginal contribution of agenti to a taskx j is given by:

mu
xj
i (si ,s−i) = uxj (si ,s−i)−uxj (s0,s−i), (5)

wheres0 is the null strategy, in which the agent does not
contribute to completing any task.

The relationship between the task utility function and an
agent’s marginal contribution to the task utility is shown in
the example in Figure 1. This showsuxj (s) andmu

xj
i (s) for

a task requiring 4 units of processing and with a deadline
2, in which an agent processes at a rate of 1 unit per time
step. A minimum of 2 agents are required to complete the
task — a constraint captured by the increase in the task and
agents’ utilities as the number of agents increases from 1 to
2. If more than this number of agents attend, the task utility
continues to increase as the completion time decreases,
however, the marginal contribution of each additional agent
beyond this point decreases.

An agent’s marginal utility values are used to construct its
payoff for each strategy, which is the sum of its marginal
contributions to all the tasks it attends to in the nextw time
steps:

ui(si ,s−i) = ∑
xj∈si

mu
xj
i (si ,s−i). (6)

Note that the first summation could be taken over all tasks in
X with the same result, asmu

xj
i (si ,s−i) is zero for all tasks

to which i does not contribute. This point is important, as
it implies that a change in strategy that increases an agent’s
utility always corresponds to an increase in the global utility
restricted to the decision window[t,t + w]. Consider the
difference in i’s utility for switching from si to s′i . The
following shows that the change in an agent’s own utility

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????

8 CHAPMAN , M ICILLO , KOTA AND JENNINGS

is equal to the change in the global utility:

ui(si ,s−i)−ui(s
′
i ,s−i)

= ∑
xj∈si

(

uxj (si ,s−i)−uxj (s0,s−i)
)

− ∑
xj∈s′i

(

uxj (s
′
i ,s−i)−uxj (s0,s−i)

)

= ∑
xj∈X

(

uxj (si ,s−i)−uxj (s0,s−i)

−uxj (s
′
i ,s−i)+uxj (s0,s−i)

)

= ut,w
G (si ,s−i)−ut,w

G (s′i ,s−i).

Thus, a game played between agents with utility functions
as given above is a potential game, with a potential function
given by the approximation of the global utility function
over the decision window. There are two consequences
to this result. First, the globally optimal allocation of
tasks to agents in the window resides in the set of Nash
equilibria. To see this, assume that the optimal point is not
a Nash equilibrium. Then there must be some agent that
can alter its state to improve its utility, which in turn will
improve the global utility, which contradicts the assumption
that the optimal point is not a Nash equilibrium. Despite
that, in most cases some sub–optimal Nash equilibria also
exist at local maxima of the global objective function.
Second, the game has the finite improvement property (see
Section 3.3), implying the convergence of the distributed
stochastic algorithm, as we discuss in the next section.

4.4. The Distributed Stochastic Algorithm

The Distributed Stochastic Algorithm (DSA) is a local
iterative approximate best response algorithm [5]. We
use it here because in previous work, which compared
the performance of such algorithms in the related class of
distributed constraint optimisation problems, we identified
it as an algorithm that can quickly produce good quality
solutions with a low communication overhead [22]. Though
we suggest DSA, many other decentralised negotiation
protocols can also work well with our model (e.g. spatial
adaptive play or fictitious play, as catalogued in [35]).
However, we note that using a complete algorithm in place of
DSA, such as DPOP [27], is not appropriate, because of their
high computation time and communication requirements.
This is particularly so in our setting since the constraint
graphs for the task allocation problems addressed here are
fully connected; that is, every agent is connected to every
task. As such, the computational burden on complete
algorithms would be prohibitively large, as the complexityof
these algorithms increases exponentially with the degree of
cyclicity of the constraint graph (as discussed in Section 2).

In more detail, DSA is a synchronous algorithm, in that
agents act in step, however, at each time step, an agent
has some probabilityp of activation, known as the degree
of parallel executions [5]. At each time step, an agent
computes a strategy that increases its payoff the most — its
best response. Then, with probabilityp, it switches to this

t: st =
[

st
i st+1

i st+2
i · · · st+w

i

]

t+1: st+1 =
[

st+1
i st+2

i st+3
i · · · st+1+w

i

]

t+2: st+2 =
[

st+2
i st+3

i st+4
i · · · st+2+w

i

]

	 	 	 	

	 	 	 	

FIGURE 2. Recycling solutions: Typically, thet + 1 to t + w
strategy components from gamet are used as initial conditions for
DSA in gamet +1, and so on.

best–response strategy, and with(1− p) it keeps its current
strategy. Finally, if no change improves the payoff, the agent
does not change its strategy. Importantly, DSA converges
to a Nash equilibrium in potential games. Briefly, this is
because no agent will leave a Nash equilibrium after the first
time it is played, and for values of 0< p< 1, the probability
that the agents play a Nash equilibrium goes to 1 as time
progresses, as a consequence of the finite improvement
property. In contrast to the complete algorithms, the
complexity of computing the best responses used in DSA
is low. Specifically, the best–response function takes as an
input a strategy for every agent excepti, computes values for
each of its own strategies given this context, and maximises
over this vector, resulting in a worst–case complexity of the
orderO(n|si |), wheren is the number of agents|si | is the size
of i’s strategy space.

In application domains with short decision horizons, like
RoboCup Rescue, a good initial set of conditions can
significantly improve the convergence time of DSA. For
this reason, in our model, solutions to one approximating
game are used as initial conditions, or partial solutions,
for DSA in the following game. In more detail, usually
the initial best response played by an agent using DSA
is computed assuming that its neighbours are playing
randomly. Instead, in our problem, because thet + 1 to
t + w strategy components of consecutive games overlap,
we can reuse these components as the starting conditions
for DSA in each subsequent game (as shown in Figure 2).
In particular, each agent assumes that its neighbours play
a strategy comprising theirt + 1 to t + w components from
the previous game with a random final strategy component.
Reusing the solutions to previous games as initial conditions
in this manner is particularly useful for situations where the
number of negotiation steps is limited by communication
restrictions (such as in RoboCup Rescue). A related issue
is that newly arriving tasks with pressing deadlines have the
potential to induce significant re–coordination by the agents,
rendering the partial solutions negotiated in previous game’s
strategies irrelevant. In this way, these new tasks have
the potential to disrupt the convergence of the algorithm.
However, in practice, by using any reasonable value forp
(i.e. 0≪ p ≪ 1) in conjunction with a long window, the
agents are seen to deal with such disruptions in a graceful
manner. That is, as long asp imparts significant inertia on
the existing strategy, it will prevent the algorithm from being

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????

DECENTRALISEDDYNAMIC TASK ALLOCATION 9

significantly disrupted.
Finally, we note that because the probability of DSA

converging goes to 1 in the time limit, defining a termination
condition for the algorithm is problematic. However, in
practice, DSA converges reliably and quickly [5, 22], and
as such, the algorithm is usually left to run for a predefined
number of iterations. In our setting, which is characterised
by severe communication restrictions, we limit this number
to one iteration for each action time step. This may seem
an unreasonably severe restriction. However, due to the
recycling of previous solutions described above, the action
taken att is iterated overw times during the operation of the
OPGA algorithm. Thus, for large enoughw convergence is
expected with very high probability.

4.5. Dealing with Limited Range Communication

So far in this section, we have shown how to implement
a general distributed technique for solving a dynamic task
allocation problem. However, as motivated earlier, we
also wish to develop a technique that is robust in the
face of restrictions on the distance over which agents can
communicate. In particular, the technique we develop
is a natural extension to the utility function described in
Section 4.3, and is appropriate for any task allocation
problem with a spatial dimension. In more detail, we model
situations where an agent can communicate over a limited
distance,r, and is only aware of some of the tasks. As
such, the major changes in the method are that: (i) the set
of strategy components available to an agent is restricted to
only those tasks it is aware of,Xi ⊆ X,9 and (ii) the agents’
utility computations are carried out using only the strategies
of those agents that are currently within its communication
range,j ∈ Ni ⊆ N. This gives us the following agent utility
function:

ui(si ,sNi) = ∑
x j∈si

mu
x j

i (si ,sNi) = ∑
x j∈si

(

ux j (si ,sNi)−ux j (s0,sNi)
)

,

(7)
wheresi is restricted to the set of tasks of whichi is aware,
Xi . That is, an agent’s utility function is identical to the
setting without communication restrictions, and only the set
of tasks which it know of is restricted. Now, using this form
for an agent’s utility function means that the approximate
global utility function (Equation 4) need not be a potential
function for the game. However, if all agents are aware of
those agents attending to their tasks, then Equation 4 acts
as a potential function. This is always the case when the
agents are at (or sufficiently near) the location of their tasks,
since once the agents are within each other’s communication
ranges, they exchange all of their information about the state
of the world, and, therefore, their task utility computations
are identical (as they are in the unlimited communication
range setting). Moreover, under these conditions, DSA is
also guaranteed to converge. On the other hand, because
the components of an agent’s strategy are restricted to those
tasks it is aware of, parts of the global utility function

9The way that agents learn about tasks is typically specific tothe
domain, and how this occurs in RoboCup Rescue is discussed inSection 5.

are, in effect, inaccessible to the agents. Nonetheless, the
accessible local maxima of the approximate global utility are
Nash equilibria of the game.

5. APPLICATION TO ROBOCUP RESCUE

In this section, we describe an application of our overlapping
potential game algorithm (OPGA) to RoboCup Rescue
(RCR). RCR is a simulation of a disaster response scenario
in a large city (seehttp://www.robocuprescue.org
for more details). RCR is a well–known domain used
for benchmarking solutions related to multi–agent based
coordination, and an exemplar dynamic task allocation
and scheduling problem, which shares many salient
characteristics with other such problems. It is a complex
setting in which teams of agents have to allocate and
perform tasks using incomplete information in a non–
deterministic environment, in real–time. Thus, it provides
an ideal platform for evaluating the efficacy of our control
mechanism.

In more detail, RCR is composed of a map of a large city,
containing buildings, roads, injured casualties, and three
types of emergency service agents: ambulances, fire brigade
and police. Figure 3 gives an example of the maps we
used in our RCR experiments, the different agents marked as
dots. In more detail, ambulance agents work by extracting
trapped casualties from collapsed buildings, fire brigade
agents have the task of extinguishing burning buildings, and
police agents unblock roads and search for trapped casualties
and burning buildings. However, in this work, in order to
clearly identify the effects of using OPGA, we consider a
limited version of RCR containing no fires or blocked roads,
so the only problem is to coordinate the ambulance agents
to extract injured civilians. The global objective, then, is
to coordinate the actions of emergency service agents such
that they save as many casualties as possible, in as short
a time as possible. The performance of a coordination
strategy is measured by the sum of casualties ‘health points’,
which decay over time while they are trapped in collapsed or
burning building.

We now map the ambulance–casualty allocation problem
in RCR to our generic OPGA framework, and then discuss
the experiments we use to evaluate our approach.

5.1. Ambulance–Civilian Allocation

In order to apply the model developed in Section 4, we
assume that each agent,i, corresponds to an ambulance
and each taskx j represents an injured civilian that needs
rescue.10 Each civilian has a hard deadline,td

xj
, by which

time it must reach a refuge if it is to survive, and a processing
requirement,yxj , corresponding to the time it would take the
crew of a single ambulance to be in a position to remove it
from the scene. In RCR, the number of injured civilians is
typically much greater than the number of ambulances, and

10The ambulance to casualty allocation mechanism derived in this
Section represents a first step in deriving a complete set of algorithms
integrating all of the allocation problems in RCR. This and other extensions
are discussed in Section 6.

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????

10 CHAPMAN , M ICILLO , KOTA AND JENNINGS

Foligno

FIGURE 3. Example of a map used in our RoboCup Rescue
experiments.

not all the injured civilians are known to the ambulances at
the start. Rather, they are discovered over time. This means
that an ambulance must negotiate a sequence of civilians to
attend to with other ambulances, with the rescue of some
civilians requiring more than one ambulance because of a
highyxj and/or an imminenttd

xj
.

Given this, the task completion time,tc
xj

(s) in Equation 2,
is the time it takes a team of ambulances, given by the joint
strategy profiles, to rescue the civilian. This incorporates
both the civilian’s processing requirement (the time needed
by the team before taking it to the refuge) as well as
estimates of the time it takes for the team members to
travel to the civilian. The global utilityuG(s) increases
with the number of casualties rescued, and for each casualty,
increases with lower completion times. Regarding an
ambulance’s marginal utility (Equation 5), becauseβ is close
to 1, the contribution of an ambulance that is critical to the
rescue of civilianx j beforetd

xj
is greater than the benefit of

speeding up the rescue of a civilian that is already assured
of being saved. This effect is demonstrated in Figure 1.
Following this, an agent’s utility (Equation 6) is then the sum
of its contribution to all tasks in the window[t,t + w], and
consequently, the approximate global utility function acts as
a potential for the entire game. Thus, the salient features of
this problem are captured in our model.

Nonetheless, two small variations to the standard DSA
are necessary to successfully implement our model in RCR.
First, one component of an ambulance’s role is to transport
rescued civilians to a refuge, which takes time and can upset
the agent’s strategy. Because of the difficulties of capturing
this requirement in an agent’s strategy space, we allow
the following innovation to DSA; whenever an ambulance
has returned a civilian to a refuge, it always computes a
completely new best response strategy. This is done because
its existing strategy will be completely outdated (i.e. the
tasks it had in its current strategy it will not have attendedto).
Second, because agents are not computing their best strategy
at every time step, if others have changed their strategy, it

is possible that an agent’s value for a task completion time
differs significantly from the true value. This may require
the agent to shift forward many elements of its strategy
vector (many more than illustrated in Figure 2). Now, if
too many elements are removed, the resulting recycling of
partial past solutions as initial conditions may be counter–
productive. For this reason, if, in recycling past components,
an agent’s strategy vector is advanced up by less thanw/3

components, then with probabilityp the agent computes
a completely new strategy, and with probability(1− p) it
generates a new strategy for the remaining components only,
as in the usual operation of DSA (i.e. the same value ofp
is used as discussed in Section 4.4). However, if more than
thanw/3 components are removed, maintaining the current
strategy will rarely be useful to the system, so the agent
always computes an entirely new strategy.11

5.2. Experimental Design

We now discuss the design of the RCR experiments we
used to evaluate our OPGA algorithm. Specifically, we
ran OPGA on three standard RCR maps — Kobe, Virtual
City and Foligno (the map shown in Figure 3), each of
which contain 80 civilians and 6 ambulances. Foligno is
a larger and more unstructured map than Kobe or Virtual
City, making it relatively hard to detect civilians there. The
information about the casualties is gathered by fire–brigades
and police–patrols that explore the map and pass it on to the
ambulances, thus simulating a dynamic continuous stream
of tasks. In the limited range scenario, an exploring agent
(i.e. a police or fire–brigade) can pass on information to
an ambulance only when it is within the communication
range, thus representing the limited observation range of
the ambulances. Each simulation is 300 time steps in
duration. We evaluate two parameter setting of our method
with p = 0.5 and 0.9 — OPGA(0.5) and OPGA(0.9) —
and a decision window ofw = 30 steps for both. As
our preliminary experiments showed that the results were
not very sensitive to differentp values between 0.5 and
0.9, we limited our current results to the two endpoints of
this range. The value forw was chosen from preliminary
experiments, as it depends on the nature of the domain. To
achieve statistical significance (results are shown with 95%
confidence intervals), each experiment was run 30 times.
The performance in an experiment is reflected by the score
obtained at the end of the simulation. This score is a standard
provided by the RCR framework and is the sum of the
health points of the civilians in the map. The health of
an unrescued civilian decreases with time until it reaches
0 (which, in fact constitutes the deadline), while that of a
rescued civilian improves with time. We also measure the
number of civilians saved over time, because it gives an
insight into how the rate of rescue is affected by the rate
of discovery of casualties.

We ran two batches of experiments. In the first, the
agents’ communication range was not restricted. We use
these results to directly compare the performance of OPGA

11Experimental evidence has shown two–thirds to be a reasonable value
for this threshold.

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????

DECENTRALISEDDYNAMIC TASK ALLOCATION 11

65%

70%

75%

80%

85%

90%

95%

100%

Foligno Kobe Virtual City

S
co

re

Centralised EDF Decentralised EDF
OPGA(0.5) OPGA(0.9)

FIGURE 4. Comparing the methods across three maps.

to a centralised (myopic, greedy)earliest deadline first
(EDF) scheduler as an upper bound and a decentralised EDF
heuristic as a comparable lower benchmark. The former
lists civilians in order of their deadline, centrally allocates
free ambulances to the civilian with the earliest deadline up
to the point where it is assured of being completed, and
then allocates ambulances to the next civilian on its list,
and so forth. Now, because the allocation is performed
centrally, no mis–coordination is possible — neither fewer,
nor more agents than are required will ever be allocated
to a civilian. As such, the centralised EDF scheduler is
expected to out perform OPGA. Under the decentralised
EDF heuristic, each ambulance simply attends to the task
with the shortest deadline. This approach will typically lead
to an over–allocation of ambulances to civilians with short
deadlines, and it will occasionally allocate ambulances toa
civilian even when their efforts to save it are bound to be
futile.

In the second batch of experiments, we test the
performance of OPGA with restrictions on the range of the
agents’ communication and observations, as discussed in
Section 4.5. These restrictions are 20% 15%, 10%, and
5% of the maximum distance between two points on the
map in question (so the area covered by an agent’s range
decreases quadratically with these values). In this batch,we
compare OPGA(0.9) to the centralised EDF scheduler only.
We do this to test our hypothesis that OPGA performs better
than the centralised EDF scheduler in scenarios where the
communication and observation range is restricted.

5.3. Results

To begin with, we discuss the results of the first batch
of experiments. To this end, Figure 4 shows the mean

performance of OPGA(0.9) and OPGA(0.5) compared to
the centralised and decentralised EDF methods in the
three maps. Although the difference in score between
OPGA and the centralised EDF heuristic is statistically
significant, OPGA produces solutions that are within 6% of
the centralised approach and, additionally, OPGA performs
significantly better than decentralised EDF. When taken
together, these results show that our approach, based on
overlapping potential games, is a good approximation of
the optimal solution to the stochastic game model of the
ambulance–to–civilian problem in RCR.

In more detail, both versions of OPGA perform better
in the Foligno and Virtual City scenario than in the Kobe
scenario. Furthermore, a 2kr factorial design test on the
results evaluating the effects of the value ofp and the map
on the score indicates that 95% of the variation of the score
is explained by variation in the map, and less than 1% by
variations inp. The cause of the variation in scores between
maps is due to the rate at which new trapped civilians
are introduced. In particular, civilians are discovered ata
quicker rate in the Kobe map than in Foligno or Virtual City.
This is illustrated clearly in Figure 5. Here, a slower rate
of discovery allows OPGA to find good quality solutions
more regularly than in maps where, at times, the rate of
civilians’ discovery is faster. Thus, OPGA performs better
in Foligno and Virtual City than in Kobe. Furthermore, this
matches with the assumption we make that the state of the
world moves slowly enough for us ignore the effect of the
possible changes to the state of the world (in particular, the
list of civilians), without inducing significant errors. When
this assumption is less warranted, as in the Kobe scenario,
the algorithm performs relatively worse.

Observations of the behaviour of agents when
using the three different approaches yield the fol-
lowing deeper insights into the difference in their
performance. (We encourage the reader to visit
www.aladdinproject.org/technologies.html to
view a video demonstrating OPGA and contrasting it to the
centralised and decentralised EDF heuristics.) Beginning
with the decentralised EDF heuristic, this algorithm’s be-
haviour is characterised by ‘clumping’, meaning the agents
all attend to the same task, and move to a new task together
once the the current task has been processed. This often
leads to severe over–allocation of resources to tasks with
close deadlines, and the negative effects on the quality of the
solutions generated are two–fold. First, the over–allocation
comes at the expense of other tasks completion, and, con-
sequently, these other tasks’ deadlines pass before they
receive sufficient processing. Second, tasks with imminent
deadlines and high processing requirements are started even
if they cannot be completed in time, representing a gross
waste of resources.

Next, consider the centralised EDF heuristic. In the
present full information setting, agents share the same world
view (because communication ranges are not restricted).
Thus, centralised EDF succeeds in avoiding most of the
pitfalls of the decentralised EDF approach. Namely, first,
because it is centralised it can allocate only the minimum
number of agents to complete tasks, and so frees up

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????

12 CHAPMAN , M ICILLO , KOTA AND JENNINGS

Foligno

40%

50%

60%

70%

80%

90%

100%

100% 20% 15% 10% 5%

Range restriction

S
co

re

Centralised EDF
OPGA(0.9)

Kobe

40%

50%

60%

70%

80%

90%

100%

100% 20% 15% 10% 5%

Range restriction

S
co

re

Centralised EDF
OPGA(0.9)

Virtual City

40%

50%

60%

70%

80%

90%

100%

100% 20% 15% 10% 5%

Range restriction

S
co

re

Centralised EDF
OPGA(0.9)

FIGURE 6. Comparing the methods as the communication and observationrange is restricted.

resources to be allocated to other tasks with impending
deadlines. Second, if a task cannot be completed before
its deadline, it is not attempted by the centralised EDF
approach. In the presence of full communication, then, this
heuristic results in behaviour characterised by the orderly
partition of agents among tasks, and little of the clumping
seen under the decentralised EDF algorithm (except when
warranted by the tasks at hand).

Finally, OPGA’s behaviour, as well as the quality of the
solutions it generates, falls between the two EDF heuristics.
Although for the main part, the agents’ behaviour under
OPGA follows the orderly division seen in the centralised
EDF heuristic, some clumping behaviour emerges as does
frequent reassignments or ‘thrashing’ (also noted by [5] in
a jobs scheduling domain). Thrashing is more prevalent
with higher values ofp (i.e. p = 0.9 saw greater levels
of thrashing thanp = 0.5), because the agents adopt new
best responses more frequently and, therefore, are more
likely to adopt conflicting strategies at the same time.
Similarly, some over–allocation to tasks also occurs, and this
is more common with lower values ofp, due to the agents’
not adjusting their strategies frequently enough. These
behaviours make OPGA’s performance poorer than that of
centralised EDF, and are an artefact of the DSA algorithm
used to solve each of the static potential games. However,
the agents do partition themselves between the tasks in a
generally sensible fashion, so avoid the most costly errors
that decentralised EDF commits.

Now we turn to the second batch of experiments, in which
the observation and communication ranges of the agents
are restricted. Note that, because the decentralised EDF
heuristic does not communicate, its performance does not
vary at all over the second batch of experiments, so it is not
considered. From Figure 6, we observe that the performance
of the centralised EDF heuristic degrades at a quicker rate
than OPGA, both in terms of its mean performance and the
variability in its performance (as seen in larger error barsat
each restriction level). The reasons for this are as follows:
recall that the centralised EDF heuristic operates by the
agents all following an identical decision procedure, which
acts like an oracle. The good performance of this heuristic
is, therefore, dependent on the agents holding identical

information about the state of the world. When the local
information held by the agents differs, the overall coherence
of the plans generated by the centralised EDF heuristic
degrades, resulting in a rapid downturn in performance.

In contrast OPGA performs better than the centralised
approach whenever the agents’ communication range is
restricted (with the exception of Kobe when restricted to
5%, which is probably due to stochastic variation, and not
statistically significant). This is because the performance of
OPGA does not depend on the degree of coherence between
the agents’ world view to the same degree as centralised
EDF. OPGA is flexible enough to cope with different
information because it operates by exchanging strategies:
that is, best responses are always only computed on the basis
of known strategies of other agents in the system, not from a
common world view.

However, when the range is severely restricted (such as
when it is restricted to 5% of the map), the information
flowing to the agents is minimal, hence the performance
of any method will tend to be poor. This is precisely
the effect of restricting the communication and observation
range we expected to see, and justifies our arguments for
using a principled decentralised algorithm in restricted range
environments.

Furthermore, for moderate restrictions (15–20%), the
performance of OPGA actually improves in both Kobe and
Virtual City. This is a surprising result. It occurs because,
under restricted information, the quiescence assumption
motivating our choice of approximation is better supported
than in the full information case. That is, the state of the
world, as perceived by each agent, is more stable when
their communication and observation ranges are moderately
restricted. The subsequent degradation in performance of
OPGA is due to a simple lack of information flowing to the
agents. This effect is not reproduced in Foligno because
OPGA does well, even in the full communication case, as
the rate of discovery of casualties is slow.

Again from observations of the behaviour of the agents
we gain further insights into the reasons for the performance
of the different algorithms. First, consider the centralised
EDF heuristic. As the restrictions on the communication
range begin to bite, agents using this heuristic begin

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????

DECENTRALISEDDYNAMIC TASK ALLOCATION 13

50 100 150 200 250 300
0

10

20

30

40

50

60

70

80

Foligno

Time

C
iv

ili
an

s
R

es
cu

ed
/F

ou
nd

Centralised Greedy
Decentralised Greedy
OPGA(0.9)
Civilians Found

50 100 150 200 250 300
0

10

20

30

40

50

60

70

80

Kobe

Time

C
iv

ili
an

s
R

es
cu

ed
/F

ou
nd

Centralised Greedy
Decentralised Greedy
OPGA(0.9)
Civilians Found

50 100 150 200 250 300
0

10

20

30

40

50

60

70

80

Virtual City

Time

C
iv

ili
an

s
R

es
cu

ed
/F

ou
nd

Centralised Greedy
Decentralised Greedy
OPGA(0.9)
Civilians Found

FIGURE 5. Exemplar time series comparing the methods on the
Kobe, VC and Foligno maps, alongside the number of casualties
found.

to act more like they are using the decentralised EDF
heuristic. The orderly partition of agents between tasks
seen with full communication range disappears, and is
replaced by clumping behaviour and some thrashing. These
detrimental behaviours begin to emerge because information
about the state of the world is exchanged only once
the agents move into each others’ communication range.

However, worse than these two behaviours, for more limited
communication ranges, gross mis–allocation of resources
occurs. Specifically, individual agents act as if all others
share their world–view and allocate themselves to tasks
requiring more than just their own resources to complete
(plus the resources of any other similarly ‘deluded’ agents).
This would appear to be the main cause of the dramatic
decline in the performance of the centralised EDF heuristic
in scenarios with communication range restrictions.

Second, OPGA’s behaviours and performance remains
relatively stable, with an increase in thrashing only seen
for severe communication range restrictions. Like the
centralised EDF heuristic, this is a result of the agents
sharing information only once they have moved into
range of each others’ communications. However, because
OPGA computes new best response strategies based on
communicated strategies alone, it avoids the other costly
mis–allocations that adversely affect the behaviour of
centralised EDF, thus resulting in better performance when
communication ranges are restricted.

6. CONCLUSIONS

In this paper, we derived a distributed game–theoretic
control mechanism for decentralised planning to address
dynamic task allocation problems. In more detail, there
are two main aspects to the problem addressed. First, each
agent has to perform a sequence of tasks over time and often
tasks may require more than one agent for their successful
completion. Second, the set of tasks is dynamic as new tasks
are discovered over time. This leads to a stochastic game
formulation.

However, stochastic games are generally intractable.
Consequently, an optimal algorithm would not have satisfied
the additional requirements of a control mechanism for the
domain, namely robustness and computational tractability
(with its consequences for communication use and the
timeliness of the solutions generated) as well as optimality.
In order to satisfy these requirements, we proposed a
technique for approximating a stochastic game using a
sequence of overlapping potential games, which are derived
from a finite horizon approximation of the global objective
function. Importantly, the agents’ utilities are derived in
such a way that they do not require complete information
about the state of the world or of the actions of other
agents in the system, and as such, the technique is robust
to communication restrictions. In order to generate a
solution, agents negotiate with each other to decide which
tasks to act on in the next few time steps, and, in
particular, we suggested the use of the distributed stochastic
algorithm as a negotiation technique, because it has been
shown to converge quickly and operates using a low
communication overhead. Empirical results showed the
efficacy of our approach in stochastic environments with
limited information. Specifically, in order to test the
performance and robustness of our control mechanism, we
implemented it in the RoboCup Rescue disaster response
simulator. We found that it performs comparably to
a centralised task scheduler when communication is not

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????

14 CHAPMAN , M ICILLO , KOTA AND JENNINGS

limited, and that it outperforms the centralised approach
as the agents’ communication and observation ranges are
restricted.

Possible extensions to this work include generalising
our model to capture other aspects of complex disaster
scenarios, such as allowing agents to have differing costs
for performing the same task or representing deadlines by
a distribution over times, all of which the agents have to
consider when making their decisions. Furthermore, we
believe it is possible to incorporate heterogeneous tasks and
agents with differing resources at their disposal, to extend
the scope of the overlapping potential game technique. An
example application of this would be a control mechanism
that integrates the coordination of all three agent types inthe
RoboCup Rescue disaster response simulator— ambulances,
police and fire brigade.

ACKNOWLEDGEMENT

This work was supported by the ALADDIN (Autonomous
Learning Agents for Decentralised Data and Information
Systems) project and is jointly funded by a BAE Systems
and EPSRC (Engineering and Physical Sciences Research
Council) strategic partnership (EP/C548051/1). The authors
thank Sebastian Stein and Simon Williamson for their useful
comments.

REFERENCES

[1] Kitano, H., Todokoro, S., Noda, I., Matsubara, H., and
Takahashi, T. (1999) Robocup rescue: Search and rescue
in large-scale disaster as a domain for autonomous agents
research. IEEE International Conference on System, Man,
and Cybernetics (SMC ’99), Tokyo, Japan, 12–15 October,
pp. 739–743. IEEE.

[2] Filippoupolitis, A. and Gelenbe, E. (2009) A distributed
decision support system for building evacuation.Proceedings
of the 2nd IEEE International Conference on Human System
Interaction, Catania, Italy, 21–23 May, pp. 323–330. IEEE.

[3] Stranders, R., Farinelli, A., Rogers, A., and Jennings,
N. R. (2009) Decentralised coordination of mobile sensors
using the max–sum algorithm. Proceedings of the 21st
International Joint Conference on Artificial Intelligence
(IJCAI–09), Pasadena, CA, USA, 11–17 July, pp. 601–608.
Elsevier, Amsterdam, Netherlands.

[4] Heikkinen, T. (2006) A potential game approach to distributed
power control and scheduling. Computer Networks, 50,
2295–2311.

[5] Zhang, W. and Xing, Z. (2002) Distributed breakout vs.
distributed stochastic: A comparative evaluation on scan
scheduling. Proceedings of the AAMAS–02 workshop on
Distributed Constraint Reasoning, Bologna, Italy, 16 July, pp.
192–201.

[6] Stranjak, A., Dutta, P. S., Ebden, M., Rogers, A., and
Vytelingum, P. (2008) A multi–agent simulation system for
prediction and scheduling of aero engine overhaul. In
Padgham, L., Parkes, D., Müller, J., and Parsons, S.
(eds.),Proceedings of the 7th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS–08),
Estoril, Portugal, 12–16 May, pp. 81–88. IFAAMAS.

[7] Byde, A., Polukarov, M., and Jennings, N. R. (2009)
Games with congestion-averse utilities.Proceedings of the

2nd International Symposium on Algorithmic Game Theory,
Cyprus, 18–20 October, pp. 220–232.

[8] Jennings, N. R. (2001) An agent-based approach for building
complex software systems.Communications of the ACM, 44,
35–41.

[9] Jennings, N. R. and Bussmann, S. (2003) Agent-based control
systems.IEEE Control Systems Magazine, 23, 62–74.

[10] Greenwald, A., Kirby, R. M., Reiter, J., and Boyan, J.
(2001) Bid determination in simultaneous auctions: A case
study. Proceedings of the 3rd ACM Conference on Electronic
Commerce (EC–01), Tampa, Florida, 14–17 October, pp.
115–124. ACM, NY, USA.

[11] Gerding, E. H., Dash, R. K., Yuen, D. C. K., and Jennings,
N. R. (2007) Bidding optimally in concurrent second-price
auctions of perfectly substitutable goods.Proceedings of
the 6th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS–07), Honolulu, Hawai’i, USA,
14–18 May, pp. 267–274. IFAAMAS.

[12] Dasgupta, P. (1998) Trust as a commodity. In Gambetta, D.
(ed.),Trust: Making and Breaking Cooperative Relations, pp.
49–72. Blackwell, MA, USA.

[13] Teacy, W. T. L., Chalkiadakis, G., Rogers, A., and Jennings,
N. R. (2008) Sequential decision making with untrustworthy
service providers. Proceedings of the 7th International
Conference on Autonomous Agents and Multiagent Systems
(AAMAS–08), 12–16 May, pp. 755–762. IFAAMAS.

[14] Stein, S., Jennings, N. R., and Payne, T. (2008) Flexible
service provisioning with advance agreements.Proceedings
of the 7th International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS–08), Estoril,
Portugal, 12–16 May, pp. 249–256. IFAAMAS.

[15] Groves, T. (1973) Incentives in teams.Econometrica, 41,
617–631.

[16] Wolpert, D. H. and Tumor, K. (1999) An overview of
collective intelligence. In Bradshaw, J. M. (ed.),Handbook
of Agent Technology. AAAI Press/MIT Press, MA, USA.

[17] Arslan, G., Marden, J. R., and Shamma, J. S. (2007) Au-
tonomous vehicle-target assignment: A game theoretical for-
mulation. ASME Journal of Dynamic Systems, Measurement
and Control, 129, 584–596.

[18] Hindriks, K., van der Hoek, W., and van Riemsdijk, B. 10–
15 May Agent programming with temporally extended goals.
In Decker, K., Sichman, J., Sierra, C., and Castelfranchi, C.
(eds.),Proceedings of the 8th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS–09),
Budapest, Hungary, 10–15 May, pp. 137–144. IFMAAMAS.

[19] Littman, M. L. (1994) Markov games as a framework for
multi-agent reinforcement learning.Proceedings of the 11th
International Conference on Machine Learning (ICML–94),
New Brunswick, NJ, USA, 10–13 July, pp. 157–163. ACM,
NY, USA.

[20] Goldman, C. V. and Zilberstein, S. (2004) Decentralized con-
trol of cooperative systems: Categorization and complexity
analysis.Journal of Artificial Intelligence Research, 22, 143–
174.

[21] Monderer, D. and Shapley, L. S. (1996) Potential games.
Games and Economic Behavior, 14, 124–143.

[22] Chapman, A. C., Rogers, A., and Jennings, N. R. (2008)
Benchmarking hybrid algorithms for distributed constraint
optimisation games. Proceedings of the 1st International
Workshop on Optimisation in Multi-Agent Systems (OptMas–
08), Estoril, Portugal, 10 May, pp. 1–11.

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????

DECENTRALISEDDYNAMIC TASK ALLOCATION 15

[23] Chapman, A. C., Micillo, R. A., Kota, R., and Jennings, N. R.
(2009) Decentralised dynamic task allocation: A practical
game–theoretic approach.Proceedings of the 8th Conference
on Autonomous Agents and Multiagent Systems (AAMAS–09),
Budapest, Hungary, 10–15 May, pp. 915–922. IFAAMAS.

[24] Chapman, A. C. (2009)Control of Large Distributed Systems
Using Games with Pure Strategy Nash Equilibria. PhD The-
sis, School of Electronics and Computer Science, University
of Southampton. http://eprints.ecs.soton.ac.uk/18234.

[25] Stankovic, J. A., Spuri, M., Ramamritham, K., and Buttazzo,
G. C. (1998)Deadline Scheduling for Real-time Systems.
Springer, Berlin.

[26] van Hoeve, W.-J., Gomes, C. P., Lombardi, M., and Selman,
B. (2007) Optimal multi-agent scheduling with constraint
programming. Proceedings of the 19th Conference on
Innovative Applications of Artificial Intelligence (IAAI–07),
Vancouver, British Columbia, Canada, 22–26 July, pp. 1813–
1818. AAAI Press / The MIT Press, MA, USA.

[27] Ottens, B. and Faltings, B. (2008) Coordinating agent
plans through distributed constraint optimization.ICAPS–
08 Multiagent Planning Workshop, Sydney, Australia, 14
September.

[28] Wellman, M. P., Walsh, W. E., Wurman, P. R., and MacKie-
Mason, J. K. (2001) Auction protocols for decentralized
scheduling.Games and Economic Behavior, 35, 271–303.

[29] Koenig, S., Tovey, C., Zheng, X., and Sungur, I. (2007)
Sequential bundle-bid single-sale auction algorithms for
decentralized control.Proceedings of the 20th International
Joint Conference on Artificial Intelligence (IJCAI–07),
Hyderabad, India, 6–12 January, pp. 1359–1365. Elsevier,
Amsterdam, Netherlands.

[30] Emery-Montemerlo, R., Gordon, G., Schneider, J., and
Thrun, S. (2004) Approximate solutions for partially observ-
able stochastic games with common payoffs.Proceedings of
the 3rd International Conference on Autonomous Agents and
Multiagent Systems (AAMAS–04), NY, USA, 19–23 July, pp.
136–143. IFAAMAS.

[31] Vetsikas, I. A. and Jennings, N. R. (2009). Bidding strategies
for realistic multi–unit sealed–bid auctions. Journal of
Autonomous Agents and Multi-Agent Systems. In press.

[32] Osborne, M. A., Rogers, A., Ramchurn, S., Roberts, S. J.,
and Jennings, N. R. (2008) Towards real-time information
processing of sensor network data using computationally
efficient multi–output Gaussian processes.International
Conference on Information Processing in Sensor Networks
(IPSN–08), 22–24 April, pp. 109–120.

[33] Rahwan, T., Ramchurn, S. D., Giovannucci, A., and Jennings,
N. R. (2009) An anytime algorithm for optimal coalition
structure generation. Journal of Artificial Intelligence
Research, 34, 521–567.

[34] Ebden, M. ., Briers, M., and Roberts, S. (2008) Decentralized
predictive sensor allocation.Proceedings of the 47th IEEE
Conference on Decision and Control (CDC–08), Cancún,
Mexico, 9–11 December, pp. 1702–1707. IEEE.

[35] Chapman, A. C., Rogers, A., Jennings, N. R., and Leslie,
D. S. (2009). A unifying framework for iterative approxi-
mate best response algorithms for distributed constraint opti-
misation problems.The Knowledge Engineering Review. In
press.

[36] Chalkiadakis, G., Elkind, E., Polukarov, M., and Jennings,
N. R. (2009) The price of democracy in coalition formation.
The 8th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS–09), Budapest, Hungary, 10–15
May, pp. 401–408. IFAAMAS.

[37] Rosenthal, R. W. (1973) A class of games possessing pure-
strategy Nash equilibria. International Journal of Game
Theory, 2, 65–67.

[38] Krainin, M., An, B., and Lesser, V. (2007) An application
of automated negotiation to distributed task allocation.
IEEE/WIC/ACM International Conference on Intelligent
Agent Technology (IAT–07), Silicon Valley, California, USA,
2–5 November, pp. 138–145. IEEE.

[39] Russell, S. and Norvig, P. (2002)Artificial Intelligence: A
Modern Approach, 2nd edition. Prentice Hall, NJ, USA.

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????

