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This paper reports on a novel decentralised technique for @nning agent schedules in dynamic task
allocation problems. Specifically, we use a stochastic ganfemulation of these problems in which
tasks have varying hard deadlines and processing requirenmés. We then introduce a new technique
for approximating this game using a series of statigotential games, before detailing a decentralised
method for solving the approximating games that uses the disbuted stochastic algorithm. Finally,
we discuss an implementation of our approach to a task allo¢ean problem in the RoboCup Rescue
disaster management simulator. The results show that our &hnique performs comparably to a
centralised task scheduler (within 6% on average), and alsainlike its centralised counterpart, it is
robust to restrictions on the agents’ communication and obsrvation ranges.
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1. INTRODUCTION of the system’s variables is handed to several agents,
that reason about the variables under their control using
The design and control of large, distributed systems is distributed (sometimes local, sometimes private) knogéed
a major challenge in computer science research. It is and by so doing, spread the system’s computational burden
important precisely because the application domains of and remove the brittleness and risk associated with a single
such systems are so broad and ubiquitous: they arisepoint of failure or a computational bottleneck [9]. Withhret
in disaster management and evacuation scenarios (e.g. [IMAS paradigm, agents are usually cast as one of two types
2]), wide—area surveillance and distributed sensor nééwor — they are eithecooperativeor they areself—interestedor
management (e.g. [3, 4]), industrial task allocation and noncooperative In the former case, agents explicitly share
scheduling problems (e.g. [5, 6]), and in the control the same goals, which are typically the system—wide goals,
and management of congestion within air, road, rail, and are designed to coordinate their actions to achieve thes
and information networks (e.g. [7]), among many other ends. However, achieving these goals typically requires
places. Now, scenarios in these domains are inevitably that the agents share a common view of the world in order
characterised by distributed information and costly and/o to compute the values of different variable configurations,
noisy communication, which limits the applicability of making them prone to similar risks as centralised control
traditional centralised control approaches, and by noisy mechanisms. In contrast, in the noncooperative case,agent
observations and inherent dynamism, which necessitatepossess their own internal motivations and act on their own
flexible, agile and robust decision—making. Furthermare, i local information, which removes these risks. Now, altHoug
certain settings, the timeliness of decisions is of pararthou these agents are self-interested, they are not necessarily

importance. adversarial; they simply hawverivate utility functionsthat
One broadly investigated approach to tackling these guide their reasoning and decision—-making processes. To
general challenges is known amilti—agent system®AS) date, self—interested agents are typically the focus ohope

— a paradigm that views such systems as a collection of systems, such as auctions and markets (e.g. [10, 11]),
autonomous, interacting, decision—making entities dalle trust and reputation systems (e.g. [12, 13]), or work—flow
agents[8]. In this framework, each agent usually controls provisioning (e.g. [14]). In particular, agents in thestisg

a small subset of the variables in the system, and theare used to automate the decision making of stakeholders
collective actions of the agents are then engineered tothat have divergent interests, and these interests areleuts
produce desirable system—wide behaviour. In this settimg,  the control of the system designer.

control we mean the problem of finding and implementing  However, self-interested agents can also be successfully
configurations of the system’s variables in order to achieve applied to the design of control mechanisms for large
certain global goals. Specifically, using a MAS, control distributed problems with a single stakeholder or global
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objective. This is because in many such design problems, thepossible and in the least amount of time, and may include
private motivations of the agents can be constructed in suchagents de—committing from tasks in order to maximise the
a way that they are aligned with the global system objectives total number when new tasks are revealed. Furthermore, the
(as in [15, 16, 17]). In particular, in this work we use such execution of some tasks precludes the execution of others,
self-interested agents to construct a MAS—based controland decisions made at a given time may affect the structure
mechanism for the dynamic task allocation and scheduling of the problem facing the agents in the future. For example,
problem at hand, because we believe that self-interestedhe decision to rescue one trapped casualty may mean that a
agents can provide the degree of robustness and flexibility second cannot be saved, but may not prevent the rescue of a
needed in large distributed applications. Specificallgrag third later, or the decision to extinguish a particular firaym

are designed to act on their local knowledge of the state remove the risk of nearby buildings catching alight. Con-
of the world and the actions of their neighbours such that sequently, agents must consider the future effects of their
improvements to their own payoffs only increase the global current actions during their negotiations.

solution quality. As a consequence, by following their  To jointly satisfy all three of the requirements of agility
own interests, they coordinate their actions to achieve aand robustness, timeliness, and high—quality solutiores, w
high quality system—wide outcome. The resulting control pursue a game theory—based approach, in which planning
mechanism is robust and flexible in the face of changes inis achieved via negotiation between agents. Using a
aspects of the underlying control problem or the resourcesnegotiation protocol allows us to spread the computational
available to implement the control mechanism precisely burden of solving the problem across the agents in the
because the agents only require local information to act: system, which adds to the control mechanism’s robustness
at no point must all the information regarding the world’s and the timeliness of its solutions. This approach is ddrive
state or the agents’ actions be available to a single deeisio by integrating two principled approaches to the separate
making entity. As such, the time, communication and problems of, first, reducing the original dynamic problem
computational costs of recomputing a solution to the cdntro to a tractable version via an appropriate approximation
problem at hand can be substantially reduced, thus meetingin order to improve the timeliness of solutions and the
the requirements of a control mechanism for a large communication requirements of the control mechanism),
distributed system: namely, flexibility and robustness to and second, incentivising the agents to behave in a manner
component changes, limited use of communication, and consistent with the global objectives of the system, withou
timeliness generation of solutions. requiring full global knowledge of the actions of all other

Given this background, the particular scheduling prob- agents or the complete set of tasks.

lems that we address in this work consist of a set of agents  |n more detail, we tackle the problem of designing a
that negotiate to assign themselves to, and execute, a dycontrol mechanism for distributed dynamic task allocation
namic stream of tasks, without the aid of a centralised man-py first defining a global utility function, which is
ager. Each task has a hard deadline and a particular proconstructed as if we were defining it for a centralised Markov
cessing requirement (e.g. in a disaster response scenariodecision problem (MDP). This is the global target function

a casualty must be taken to hospital by 10:30am and thiswe wish to maximise, and its approximation is discussed
will take 30 minutes). In particular, the task set is dynamic |ater. Next, we address the requirement of robustness
because it is gradually revealed over time. This, in turn, in our control mechanism. We satisfy this requirement
means we require a practical mechanism that can responcby giving control over the variables of the problem —
to such changes in a timely fashion. Now, an agent can at-the resources used to complete the tasks — to a set of
tend any task — there are no subtasks or specialisations —agents, each of which makes its own independent choices.
but it can act on only one task at a time and it performs this As a consequence, we use game theory to analyse their
task at a fixed rate of processing. As a consequence, some ofoint behaviour, because it is the natural way to model the
the tasks cannot be completed by an individual agent beforejnteraction of such autonomous agents. Specifically, if the
their deadlines, and so must be tackled by a team workingvariables of a MDP are controlled by a set of autonomous
together: For example, two fire crews working together to  agents, then we are in the realmsstdfchastic gamed 9]. In
extinguish a burning building have a greater chance of suc- this type of game, self—interested agents play a multiestag
cess than one, or act to reduce the time it takes to extinguishgame, in which the stage game varies probabilistically at
the fire. However, this induces a problem of scarcity among each time—step as a function of the state and actions taken in
competing tasks for limited agents. As the full set of tasks i the previous time—step. Here, each stage game corresponds
notknown at the outset, an agent has to continually negotiat to a particular set of tasks to be completed at that time
with other agents over the sequence of tasks to execute, s@ind the status of the agents in the system (their locations,
that all currently known tasks are considered in genera&ing commitments, etc). Each agent has its own private utility
solution. This negotiation is carried out in such a way that function which it aims to maximise. However, as discussed
the agents achieve their joint goal of completing as many asabove, we can define these such that, for any unilateral
switch in strategy, an agent’s change in payoff is equal to

~ 'Note that additional agents only help complete a task — thepat the change in the global utility. Consequently, the global
hinder each other. This uncomplicated task model means wetieed 0 ayimum is a pure strategy Nash equilibrium (i.e. it is a
adopt a sophisticated planning language to express theésagearactions . . .
(cf. [18], for example), because the value of all actions baneasily stable solution to the game). In this way, selfish agents can
expressed in terms of utilities. be used to solve an inherently cooperative problem, because
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their self—interest drives them towards solutions withhleig that they are aligned with the global objectives of the syste
global utility. In order to test the efficacy of OPGA, we empirically
Although our problem can be cast elegantly in such evaluate it on the ambulance—to—civilian allocation peofl
a model, it is not practical to solve it at real-world in RoboCup Rescue (RCR), which is an example of a
scales, because agents have to consider the utilities of théask allocation problem with hard deadlines and varying
future tasks present in all possible future states durieg th processing requirements. By doing so, we show that OPGA
negotiations. In particular, any multi-stage game with performs comparably to a centralised task scheduler when
stochastic state transitions is NEXP-complete [20], due to communication is not limited, and that it outperforms the
the factorial growth in the number of state—action—tramsit ~ centralised approach as the agents’ communication and
combinations. Thus, we must address the requirement ofobservation ranges are restricted. Interestingly, we also
the timeliness of the solutions generated by the control find that OPGA sometimes performs better with moderate
mechanism. To do this, we show that the stochastic gamerestrictions on its communication and observation range th
can be approximated using a sequence of finite length multi—it does when it has complete information. We conjecture
stage games of complete information. In this context, that this is due to a reduction in the space of possible
we approximate the global utility function with a receding solutions, resulting in a quicker rate of convergence, and
horizon version of the same function. This approximation consequently fewer occasions of a configuration that is not
incurs two penalties: (i) for truncating the length of the a Nash equilibrium being generated as a solution (which
decision window and therefore ignoring payoffs from future itself is down to the fact that due to the finite number of
states, and (i) for ignoring the possible future changes in iterations employed there is always a small probability tha
the state of the world, other than those brought about by the generated solution is not a Nash equilibrium).
the agents’ own actions. Our use of this approximation is  Given this context, this work extends the state of the art in
predicated on the assumption that changes in the world dothe following ways:
not significantly affect the long—run payoffs to the agents;
that is, all states arguiescent This assumption makes 1. We introduce a new technique for approximating

sense in our setting, because the effect of scarcity of agent stochastic games using a series of overlapping potential
to complete tasks means that the introduction of additional games.

tasks into the system only affects the agents’ payoffs at 2. We develop a novel distributed solution technique for

the margin, and does not alter the utility of those tasks the approximating games, based on the distributed

that the agents may have already begun to process (or  stochastic algorithm.
chosen not to process). Furthermore, we derive the agents’3. We show that our technique is robust to restrictions
utilities from the approximate global utility function duc on the range over which agents can communicate and
that the agents playpotential gamg21] at each time-step, observe (note that these are restrictions that typically
with the strategy space of the game for each subsequent  cause centralised approaches to fail).
time—stepoverlappingwith the games before (and after)
it. We do this by rewarding agents with their marginal The first contribution is aimed at balancing the need
contributions to task utilities. Generating a potentiainga  for high quality solutions with the requirement that
is very useful because, first, the maximum approximate the control mechanism itself is computationally feasible,
global utility is a Nash equilibrium, and second, it implies while, at the same time, the second contribution produces
that each game can be solved by a distributed local searcha robust and flexible mechanism that operates with
algorithm. In particular, we use the Distributed Stochasti limited communication overhead. The third contribution,
Algorithm [5] to solve each approximating game (we could then, demonstrates that the control mechanism we derive
equally well use alternative methods, such as Distributed successfully satisfies these aims. Elements of this paper ha
Simulated Annealing or Fictitious Play, as shown in [22]). appeared before in [23].
Thus, we call our technique tlwverlapping potential game The paper is organised as follows: In the next section we
approximation(OPGA). review other approaches to distributed dynamic scheduling
Beyond this, we extend the analysis of our approach to and argue why they do not meet our requirements. Section 3
situations where the communication and observation rangethen introduces the game-theoretic background to our
of the agents is restricted, so that we can test OPGA's model. In Section 4 we formulate the problem as a stochastic
robustness to these complications. In such settings, thegame, and describe our approximation of the global utility
agents cannot see the entire state of the world or do not knowfunction. Building on this, we show how to derive agents’
the strategies of all other agents, and therefore must makeutilities so that the resulting game is a potential game,
their decision on the basis of incomplete information. This and describe a local search algorithm that can be used
type of limitation is common in many real-world scenarios, to solve it. Finally, we discuss the effects of restricting
and particularly those that possess a spatial dimension. Fothe range over which agents can communicate. Then, in
example, in a disaster response setting, the central messagSection 5, we evaluate OPGA in the ambulance—civilian
distribution point may be out of action, or damage to allocation problem in RCR. This demonstrates the benefit
physical infrastructure may remove the ability to use wide— of using a decentralised method of control in settings where
area broadcast communication. In these situations, thecommunication and observation are limited. Section 6
agents’ utility functions can still be derived in suchaway s concludes.
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2. RELATED WORK in which an autonomous vehicle—target assignment problem
is addressed using a potential game formulation. In their
model, vehicles (agents) operate individually to optimase
global utility. The global utility optimisation is obtaide
via an appropriate design of the vehicles’ utilities andrthe
negotiation protocol. While we use a similar approach,
there are two fundamental differences. First, in their work

In this section we review a number of control methods
that could be applied to dynamic allocation and scheduling
problems. To date, the main approaches to dynamic
task allocation include: (i) domain—specific heuristid, (

modelling scheduling as a constraint program and solving

this with either a centralised or decentralised algorithm, : . ) ;
vehicles are assigned to a single target, whereas in our

and (iii) auction allocation mechanisms and more general ; ; ;
. scenario each agent is required to perform a sequence of
market—based approaches. Each of these will now be deal ; ) )
o . . asks, each of which has a hard deadline. This means that
with in turn. A comprehensive review of related problems . . i
can be found in [24] our agents are required to reason over the order in which they
: attend to tasks, not just which tasks to attend. Second, thei

First, there is a long history of using heuristics to solve .
: : . approach assumes that all tasks are known at the start, while
scheduling problems. In particular, [25] addresses thé§am . : .
we assume that they are continually discovered at run—time.

of earliest deadline firsheuristic algorithms for scheduling Finally, our approach to approximating the stochastic

in real-time scenarios comprising tasks with hard deaslline . . L X
game is motivated by a somewhat similar technique for

that compete for the same resources. The problem that we duci : luti allv—ob bl
tackle here falls into this general class of problems, and producing approximate solutions to partially-observable

. . stochastic games using a series of smaller Bayesian games
furthermore, the greedy algorithms we use as experimental

benchmarks in Section 5 are also based on such heuristics[So]' In that work, a fractable Bayesian game s

However, such algorithms rely on the centralisation of constructed at each time step from the most likely current

) ; . : ., states and state—transitions given an agent’s beliefss Thi
information and decision—making, and so are not apprapriat . . : .

. . Bayesian game is then solved to obtain a one—step policy
for our application domains.

Second, a number of optimal algorithms for multi-agent that approximates the globally optimal solution of the

scheduling problems have been proposed that work by0r|g|nal partially—observable stqchastlc game. In catfra
. . we construct a tractable multi-stage game of complete
reducing the problem to a constraint program. Examples of .

constraints includeesource relationswhich are shared by mformgtion at each_time step, apd because thi.s s a poltgntia
tasks that compete for the same resource, @rededence game, it can be eaglly solveq using a decentralised "’.“m‘mh
relations which are shared by subtasks that need to be The solution to .thls game is then us_ed as a multlple—step
completed in a certain order. From these relations, apohcyto apprOX|mat_e the glqbally opt_|mal solution.
constraint program is constructed. This can be solved cal:?i(;rdeozrto\;;\l/gmntmz XVI?:TDIBSH\? IE?O}?CEGXL?,QOS%Z tmgrk
centrally (as in [26]) or using a decentralised constraint :

programming algorithm (such as DPOP [27]). Again, we a.nd other work that has peen applied in the RoboCup Rgscue
X . . simulator* ALADDIN Project researchers have also applied
rule out using centralised constraint solvers. Moreove, t

distributed exact algorithms suffer from exponential gitow _I\/IAS—b_ased technlqu_es to the close_ly—related _problem of
. : industrial task allocation [6], evacuation scenarios [2f a
of some aspect of the solution process (e.g. the size of the

. ) N distributed sensor management [34, 3]. Research has also
messages passed in DPOP is exponential in the depth of th : C
o o . een carried out on fundamental problems that arise in MAS
communication network it is run on), so cannot easily be

anolied at the scales or in the timeframes we require design, including research into algorithms for distriloute
PDIle : quire. constraint optimisation problems (such as the Distributed
Third, auctions and other market mechanisms are

beginning to be used to add robustness to task alIocationStOChasnC.Alg.Orlthm used in this paper) [35], models
L . of congestion in common-resource usage games [7] and

by giving agents the autonomy to construct their own coalition formation problems [33, 36]

bids, based on their own private or partial knowledge P S

[28, 29]. However, such auctions often involve a

significant communication overhead, which can impact on 3. PRELIMINARIES

the timeliness of their solutions, and, to some degree, anThis section introduces the foundations of our model,

auctioneer represents a single point of failure (just like a peginning with noncooperative games, extending thessidea
methods, such as bargaining and exchange markets, ar@gtential games.

similar to our work, as the local search algorithm we
employ to solve each potential game effectively specifies
a negotiation protocol. However, our method differs from
this literature, because we are able to directly specifpeaje A noncooperative gamé, = (N,{S, Ui }ien), consists of a
utility functions? set ofagents N = {1,...,n}, and for each agente N, a

From this landscape, the work most similar to oursis [17],

3.1. Noncooperative Games

Swwv. al addi nproj ect. org

2In contrast, market-based task allocation methods aregrkssito 4See wwv. al addi npr oj ect . or g/ t echnol ogi es for applications in
incentivise agents with arbitrary utility functions to aict a way that RoboCup Rescue of auctions for efficient resource allocatidl],
maximises a social welfare function. Nonetheless, the ections between consistent multiple hypothesis estimation in the face aity@untrustworthy
our work and mechanism design, in particular G@ves mechanispare sensors or incomplete probabilistic models [32], and ogtimnytime
discussed in Section 4.3. coalition formation algorithms [33].
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set ofstrategies § and autility function y : S— R. A joint networks [37], and, recently, they have been used to analyse
strategy profiles € Sis referred to as aoutcomef the game, distributed methods of solving target assignment problems
whereS= UiN 1S is the set of all possible outcomes. An [17, 38] and job scheduling [5].

agent’s utility function ranks its preferences over outesm Formally, a functiorP : S— R is apotentialfor I if:

in terms of the payoff it receives for an outcome, such that

ui(s) > ui(s) if and only if the agent prefers outconseo P(s,s.i) —P(5,s.i) = Ui(s,5.) —Ui(5,5-i) Vs, § €S VieN.
outcomes. We will often use the notatios = {s,s i},
wheres_; is the complimentary set af.

In noncooperative games, an agent’s goal is to maximise
its own payoff, conditional on the choices of its opponents.
Stable points in such a system are characterised by the set o
Nash equilibria A joint strategys", such that no individual
agent has an incentive to change to a different strategy, is
Nash equilibrium, i.e.:

I is called apotential gameif it admits a potential.
Intuitively, a potential is a function of action profiles $uc
that the difference in its value induced by a unilateral
geviation equals the change in the deviating agent’s payoff
The usefulness of potential games lies in the fact
ahat the existence of a potential means that the game
possesses two particularly desirable properties. The first
is that every finite potential game possesses at least one
u(s',s) —ui(s,s’;) >0 Vs, Vi. (1) pure strategy equilibrium [21]. Now, pure strategy Nash
equilibria are particularly desirable in decentraliseérag
In the next subsection, we discuss an extension of this simpl based systems, as they imply a stable, unique outcome.
static game model to stochastic, multi-stage settings, inMixed strategy equilibria, on the other hand, imply a
which the agent’s payoff functions vary as a function the probability distribution over pure strategy profiles, whis

state of the world. not appropriate for the task allocation problems at hane. Th
second desirable property possessed by potential games is
3.2. Stochastic Games that they have thénite improvement propertyneaning that

. . any sequence of unilaterally improving moves converges
Stochastic games are an extension of standard noncooper:

i f ted int i in which th to a Nash equilibrium in finite time. This property is
ative games, for repeated interactions in whic e..gameimportant as it is used to guarantee the convergence of many
played by the agents at each time—steparies probabilis-

. 4 . . simple adaptive processes to Nash equilibria in potential
Flcally as qfunctlon of the_state and the ch0|pe of strategie games (including the Distributed Stochastic Algorithm, as
in the previous round, or simply as some environmental pro-

) . discussed in Section 4.3).
cess evolves [19]. Formally, a stochastic game is a tuple,
M= (N,Q,{{S,ui}ien}weq,q), comprising a set ohgents
N ={1,...,n}, a set ofstate variableso € Q, a set ofstage 4. THE TASK ASSIGNMENT MODEL
gamesy(w) indexed by elements d®, with each havinga e begin this section by defining our task allocation
strategy space‘Sand a set ofitility functions (°(s), defined  problem as a stochastic game. We then describe our
as in the standard noncooperative model above, &tdta  approach to this problems, called tbeerlapping potential
transition function g **|w,s). The state transition func- game algorithm beginning in 4.2 where we describe our
tion gives the probability that the next period's statesis®, finite—horizon approximation of the global utility functio
given the current statef and the strategy chosen by the Then in 4.3 we show how agent utility functions are derived
agents at time, . Although state transitions are stochastic, gq that the agents play a potential game. Section 4.4 then
agents are assumed to know with certainty the current state giscusses the distributed stochastic algorithm, which we
Intuitively, payoffsin the current stage game depend only 0 se to solve the approximating potential games. Finally,
the state and the agents’ current strategies, while theaprob jn 4.5 we discuss the effects on our approach of limiting the

bility distribution on the following state is completelytde- distance over which agents can observe or communicate.
mined by the current state and strategy selection. A siyateg

in a stochastic game C(.)mprl_ses a strategy for each of the4.1. Stochastic Game Formulation
stage games = {°}weq; that is, there is a strategy compo-

nent for every possible state of the world. Strategies inefini  The full task allocation model is a finite stochastic game
time step stochastic games are typically evaluated by theirof complete information: the current state is known, future

expected total reward £[ui(s,s-i)] = S{_o ui‘*" (s,550)- states are uncertain, agents have a finite set of strategies
and play for a finite number of time steps. Similar to
3.3. Potential Games the general stochastic game description in Section 3.2, our

. . model comprises:
Potential games are a subclass of noncooperative games.

They are characterised as those games that admit a potentiab A set of statesw € Q, each of which defines a set of

function, which is a real-valued function on the joint stgyt tasks X= {x1,%p, ... Xj,...}, with each task possessing

space whose gradient is the gradient of the constituents’ adeadlinetd, a number of requiregrocessing units

private utility functions [21]. The class of finite poteritia vy, and atasjk utility functionuy : S— R,

games have long been used to model congestion problems on, Ajset of agents N= {1, 27.”75’ ....n}, each with a
5This is in contrast to infinite time step stochastic gameschvypically strategy space S with elementss, composed of a

use the discounted expected total reward. sequence of tasks to attend to, one for each time step
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(i.e.s = {x},%%,...,x, ...}, and aragent utility function number of possible states and action vectors of extremely

u(s,s.i): S— R, large sizes (factorial on the number of tasks), evaluatiry a
A state transition functiog(w' |«'), and negotiating a set of joint strategies for this problem isudle
A global utility function ©(s) : S— R. a very computationally expensive process, that wouldyikel

. _ ) . take a great deal of time. Furthermore, given that we intend
The problem we face is twofold: we must design (i) the g geploy our agents in a system where they will be required
agents’ utility functions and (i) a distributed negot@ti 1, make decisions in a short time frame, constructing such
protocol such that the system produces high quality 5 grateqy for the full set of possible outcomes is pradiical
solutions. The other elements of the above model — the jhqssible, due to the huge number of possible future states
transition function and the task and global utility funct® 504 action combinations that need to be evaluated. For
— come directly from the problem specification, and are {hege reasons, we derive the agents’ utility functions from

detailed now. . _ _ a tractable approximation of the global utility functiorr fo
To begin, the transition function describes how new tasks ,a stochastic game.

are generated and introduced into the system. Then, the task
utility function represents the payoff for completing akias L . .
and in this case it is: 4.2. An Approximation of the Global Utility Function
c Rather than attempting to solve the stochastic game above,
g% if e (s) < td imate it usi ies of stati ial
Uy (S) = ¥ (S) < Ly ) we approximate it using a series of static potential games
‘ 0 otherwise, of complete information, and in so doing, we directly
address our requirement of tractability. Specifically,hist
wheret)fj (s) is the completion time for the task, given the section we approximate the global utility function using

agents’ strategies t¢ is the hard deadline for successfully @ technique similar to a look—-ahead policy or receding—
completing a task, and @ B < 1 is a discount factor horizon controllers commonly used in MDPs (see, [39]

that incorporates any benefit of completing the task earlier Chapter 5, for example). ~We can use this type of

The task utility function possesses two properties that are @PProximation because, in our application domains, we
important in our scenario. First, the conditional statemen €XPectall states to be quiescent; that is, changes in ttee sta

models the hard deadline, so if fewer than the minimum of the world do not significantly affect the long—run payoffs

number of agents that are required to complete the task!© the agents, or there are no ‘doomsday’ outcomes.
beforetd attend to it, the utility is zero, even if some _ [N more detail, the global utility is approximated as
]

agents do attend to the task. This is important because,fonor\:vs' Att, eatcht tlmeds';fap,daf gam? |sdcdons.trlucted. V(\j”th
in our scenarios, tasks that are incomplete at the deadlinee?c fatgen t's S rategy Ie Ine horf ?h Ixed decision win 0‘;‘,’
are equivalent to unattended tasks. Second, increasing th$! W Tuture ime steps. In each ot these games, an agents
number of agents beyond the number necessary to complet trategy is a vector of tasks to attend to during the interval

e +1 +w ; P
the task by its deadline improves the completion time, Li+w], § = {Xt’xt. ""’Xt. ) Inth.'s way, at each t_|me
which raises the task payoff. This captures the benefit of step, the stochastic game is approximated by a static game

completing tasks earliér. _(In_fhcomtpr)]lette |T(f0;qjtat|fon d;aﬂne_d overhthe ne\xt!metsteps.
Given this, the global utility function ranks the overall en, the task utility functions in each approximating game

allocation of tasks to agents, and is an aggregation of task?'© defined as in Equation 2, with the addition tha.‘t' for
utilities: tasks not completed byt w, payoffs are calculated as if all

Ug(s) = U (). 3) of t_he agents_' final strategy componeﬁtﬁ‘” are rqpeated
x,-%x ) until the task in question is completed or its deadline passe
If we did not assume the continuation of these tasks, the
This preserves the desirable properties of the task utility utility of all incomplete tasks at time+w would be zero,
function. _ _ potentially leading to an artificial bias against tasks with
Now that we have defined the task and global utility |arge processing requirements and/or long completiorsime

functions for our problem, if we were working directly  The global utility of this model is given by:
with the stochastic game model, we would define the

agents’ utility functions. However, note that an agent’s u‘éw(s) = Z<uxj (s), (4)
strategy space in this model is the set of all permutations x| €

of assignments to tasks for each period; a strategy prescrib

an action for each time step for every contingent state of the@nd we note that it is of the same form as that for the
world. Thus, an agent's strategy is a set of vectors of astion Stochastic game model given in Equation 3, except that
one vector for each state of the world, with an agent’s wtilit the constituent task utilities are defined over the regtict
function defined over this set and taking into account the intervalft,t+w].

transition probabilities between stage games. Giventgehu ~ This approximation of the global utility function intro-
duces two types of errors. The first source of error is the

6The value o3 in Equation 2 represents a trade—off between the number

of tasks completed and the timeliness of those completéd.tds we aim 7If any state is non—quiescent, then our use of a look—ahegd st
to maximise the number of tasks completed, we chose a vahse ¢b 1, approximation will suffer from théhorizon problem[39] meaning that it
however, if timeliness was our main concern, we would chaosewer will not be able to avoid entering states that lead, unadjdato bad
value. outcomes beyond the length of the decision window used.
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DECENTRALISEDDYNAMIC TASK ALLOCATION 7

restriction of strategies to the decision windfpyt+w]. The
result of this is that the value of future states beyond thx ne ]

w time steps are not evaluated with the current choice of jity 41—'J
strategy. Now, although we only maximise(s) over the
nextw time steps, any adverse effects on the digl(s) is ex-
pected to be small, because the game puts greaterimportance Y2 A
on tasks with closer deadlines. Similarly, if we used thé ful
stochastic game model, tasks with earlier deadlines would
be processed earlier. The second type of error is caused by X
not incorporating information about the exogenous evolu- beeeeen my’(s)
tion of the world (in our model, the arrival of new tasks) into ) )

the choice of state. However, as argued earlier, in the do-

mains we are considering, the state of the world moves slow

enough for us ignore this effect without introducing any sig  FjGURE 1. An example of task utility and agent marginal utility,

nificant errors (admittedly, this is a domain specific trait) with yx = 4,t3 = 2 andp = 0.9, and an agent processing rate of 1
Now, because we are working on a problem for which per time step.

a sequentially optimal solution is intractable, we are face

with a trade—off between the two sources of approximation

error. The first type is reduced as the restriction on the

size ofw is relaxed. On the other hand, the second type he effect of its actions on the global utility. To this enidet
is mltlgateq by using a shorter length window, becaus.e the marginal contribution of ageitto a task; is given by:
difference in the predicted and actual state reached in the

future is reduced. Consequently, our choice of window

length reflects the need to balance the effect of these two X;

sources of approximation error. Thus far, the valuevdas MU (81, 8-i) = Uy (S, 8-1) — Ux; (S0, 5-1), ()
to be determined experimentally as it depends on the domain

(elaborated in Section 5.2).

0 1 2 3 4 5
Number agents attending

where gy is the null strategy in which the agent does not
contribute to completing any task.

The relationship between the task utility function and an
Given the above approximation of the global utility funetio ~ agent's marginal contribution to the task utility is shown i
for our problem, the agents’ payoffs are designed so the example in Figure 1. This shows (s) andmy’ (s) for
that any increase in an agent's utility corresponds to an @ task requiring 4 units of processing and with a deadline
increase ini"(s). This enables us to produce high quality 2, in which an agent processes at a rate of 1 unit per time
solutions using a control mechanism comprised of self— step. A minimum of 2 agents are required to complete the
interested agents. However, in order to satisfy the rolmsstn ~ task — a constraint captured by the increase in the task and
requirement, these utilities cannot simply be set equal to agents’ utilities as the number of agents increases from 1 to
the global objective function, because that would mean each2. If more than this number of agents attend, the task utility
agent needs to have complete information of the strategiescontinues to increase as the completion time decreases,
of others in the system to evaluate their own strategy. however, the marginal contribution of each additional agen
Instead, because the global utility is the sum of task ietljit ~ beyond this point decreases.
an agent’'s marginal contribution to the global utility can An agent’s marginal utility values are used to construct its
be specified in terms of the sum of its contributions to payoff for each strategy, which is the sum of its marginal
individual tasks — that is, the difference between the task contributions to all the tasks it attends to in the nextme
utility when the agent contributes to the task and when it steps:
does not. This form of utility function is similar to the
Groves mechanism, in which agents in a team are paid an ,
amount equal to their marginal contribution to the team Ui(s,s-i) = 5 my’(s,s-i). (6)
utility [15].8 However, in our setting we can do away Xj€s
with the explicit utility transfers that occur in mechanism
design because the system designer is able to specify each
agent's utility function directly. Note that this type of Note that the first summation could be taken over all tasks in
Uti“ty structure is also similar to thevonderful life Ut”ity X with the same result, a:gqxj (Sas—i) is zero for all tasks
introduced by [16]. Specifically, by using the marginal to whichi does not contribute. This point is important, as
utility, a system designer can equate the agent's utility to it implies that a change in strategy that increases an agent’

- . _ utility always corresponds to an increase in the globaitytil
CIn order to make the connections clear, observe that if weewer yagricted to the decision windoW,t +w]. Consider the
trying to incentivise agents, who possess private prefegnto act in a

certain manner, then a mechanism design procedure, sutte a&3roves diﬁere.nce ini’s utility for SWitChinQ froms to §. The. )
mechanism, would be an appropriate choice of control mésiman following shows that the change in an agent’s own utility

4.3. Deriving the Agents’ Utility Functions
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8 CHAPMAN, MICILLO, KOTA AND JENNINGS

is equal to the change in the global utility:

T BT L L
ui(s,s-i) — Ui(s,5-i) “ S
t+1: &1 = +1 +2 +3 .. +1+w
— Z (Uxi (s’sii)_uxj (507&0) [ s s s s ]
Xj €S / / / /
_ Z (qu (#,S—i) _ qu (So,S,i)) t+2: g2 = [ §+2 §H3 §+4 §+2+w ]
xj€s
- XZX (ij (8,8)— Uy (S0,5-1) FIGURE 2. Recycling solutions: Typically, the+1 tot +w
! strategy components from garhare used as initial conditions for
— Uy (s,8.i)+ Uy; (So,Sfi)) DSA in gamet + 1, and so on.

= utéw(sv&i) - utG’W(év&i)'

best—response strategy, and with- p) it keeps its current
strategy. Finally, if no change improves the payoff, therdge
does not change its strategy. Importantly, DSA converges

over the decision window. There are two consequencesto a Nash equilibrium in potential games. Briefly, this is
to this result. First, the globally optimal allocation of because no agent will leave a Nash equilibrium after the first

tasks to agents in the window resides in the set of Nash time itis played, and for values of<_0_p_< 1,the probability_
equilibria. To see this, assume that the optimal point is not that the agents play a Nash equilibrium goes t_o 1 as time
a Nash equilibrium. Then there must be some agent thatPfO9r€sSSes, as a consequence of the finite Improvement
can alter its state to improve its utility, which in turn will propelrty._ '? contrast tohthte) complete algonthgn.s, the
improve the global utility, which contradicts the assuropti ~ COMPlexity of computing the best responses used in DSA
that the optimal point is not a Nash equilibrium. Despite is low. Specifically, the best—response function takes as an

that, in most cases some sub—optimal Nash equilibria a|soinputa§trategy foreve_ry ag_ent exgemomputes values-fo-r
exist at local maxima of the global objective function each of its own strategies given this context, and maximises

Second, the game has the finite improvement property (Seeover this vector, resullting in a worst—case complexity_efth
Section 3.3), implying the convergence of the distributed °'d€rO(n/s|), wherenis the number of agents | is the size

stochastic algorithm, as we discuss in the next section. ofi's strategy space. . _ _
In application domains with short decision horizons, like

RoboCup Rescue, a good initial set of conditions can
significantly improve the convergence time of DSA. For
The Distributed Stochastic Algorithm (DSA) is a local this reason, in our model, solutions to one approximating
iterative approximate best response algorithm [5]. We game are used as initial conditions, or partial solutions,
use it here because in previous work, which compared for DSA in the following game. In more detail, usually
the performance of such algorithms in the related class of the initial best response played by an agent using DSA
distributed constraint optimisation problems, we ideetifi is computed assuming that its neighbours are playing
it as an algorithm that can quickly produce good quality randomly. Instead, in our problem, because thel to
solutions with a low communication overhead [22]. Though t + w strategy components of consecutive games overlap,
we suggest DSA, many other decentralised negotiationwe can reuse these components as the starting conditions
protocols can also work well with our model (e.g. spatial for DSA in each subsequent game (as shown in Figure 2).
adaptive play or fictitious play, as catalogued in [35]). In particular, each agent assumes that its neighbours play
However, we note that using a complete algorithm in place of a strategy comprising theirt- 1 tot +w components from
DSA, such as DPOP [27], is not appropriate, because of theirthe previous game with a random final strategy component.
high computation time and communication requirements. Reusing the solutions to previous games as initial conuitio
This is particularly so in our setting since the constraint in this manner is particularly useful for situations where t
graphs for the task allocation problems addressed here areaumber of negotiation steps is limited by communication
fully connected; that is, every agent is connected to every restrictions (such as in RoboCup Rescue). A related issue
task. As such, the computational burden on complete is that newly arriving tasks with pressing deadlines haee th
algorithms would be prohibitively large, as the complexity =~ potential to induce significant re—coordination by the agen
these algorithms increases exponentially with the degiree o rendering the partial solutions negotiated in previousgjam
cyclicity of the constraint graph (as discussed in Sectjpn 2  strategies irrelevant. In this way, these new tasks have
In more detail, DSA is a synchronous algorithm, in that the potential to disrupt the convergence of the algorithm.
agents act in step, however, at each time step, an agenHowever, in practice, by using any reasonable valuepfor
has some probabilitp of activation, known as the degree (i.e. 0< p < 1) in conjunction with a long window, the
of parallel executions [5]. At each time step, an agent agents are seen to deal with such disruptions in a graceful
computes a strategy that increases its payoff the most — itsmanner. That is, as long gsimparts significant inertia on
best response. Then, with probabiljy it switches to this the existing strategy, it will prevent the algorithm fronirg

Thus, a game played between agents with utility functions
as given above is a potential game, with a potential function
given by the approximation of the global utility function

4.4. The Distributed Stochastic Algorithm
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DECENTRALISEDDYNAMIC TASK ALLOCATION 9

significantly disrupted. are, in effect, inaccessible to the agents. Nonetheless, th
Finally, we note that because the probability of DSA accessible local maxima of the approximate global utility a
converging goes to 1 in the time limit, defining a termination Nash equilibria of the game.
condition for the algorithm is problematic. However, in
practice, DSA converges reIiany and qwckly [5, 22], and 5. APPLICATION TO ROBOCUP RESCUE
as such, the algorithm is usually left to run for a predefined
number of iterations. In our setting, which is charactetise In this section, we describe an application of our overlagpi
by severe communication restrictions, we limit this number potential game algorithm (OPGA) to RoboCup Rescue
to oneiteration for each action time step. This may seem (RCR). RCR is a simulation of a disaster response scenario
an unreasonably severe restriction. However, due to thein a large city (seehttp://ww. robocuprescue. org
recycling of previous solutions described above, the actio for more details). RCR is a well-known domain used
taken at is iterated ovew times during the operation of the  for benchmarking solutions related to multi-agent based
OPGA algorithm. Thus, for large enoughconvergenceis  coordination, and an exemplar dynamic task allocation
expected with very high probability. and scheduling problem, which shares many salient
characteristics with other such problems. It is a complex
setting in which teams of agents have to allocate and
perform tasks using incomplete information in a non-
So far in this section, we have shown how to implement deterministic environment, in real-time. Thus, it proade
a general distributed technique for solving a dynamic task an ideal platform for evaluating the efficacy of our control
allocation problem. However, as motivated earlier, we mechanism.
also wish to develop a technique that is robust in the In more detail, RCR is composed of a map of a large city,
face of restrictions on the distance over which agents cancontaining buildings, roads, injured casualties, andethre
communicate. In particular, the technique we develop types of emergency service agents: ambulances, fire brigade
is a natural extension to the utility function described in and police. Figure 3 gives an example of the maps we
Section 4.3, and is appropriate for any task allocation used in our RCR experiments, the different agents marked as
problem with a spatial dimension. In more detail, we model dots. In more detail, ambulance agents work by extracting
situations where an agent can communicate over a limitedtrapped casualties from collapsed buildings, fire brigade
distance,r, and is only aware of some of the tasks. As agents have the task of extinguishing burning buildingd, an
such, the major changes in the method are that: (i) the setpolice agents unblock roads and search for trapped casualti
of strategy components available to an agent is restricted t and burning buildings. However, in this work, in order to
only those tasks it is aware of; C X,° and (i) the agents’  clearly identify the effects of using OPGA, we consider a
utility computations are carried out using only the stregeg  limited version of RCR containing no fires or blocked roads,
of those agents that are currently within its communication so the only problem is to coordinate the ambulance agents
range,j € Ni C N. This gives us the following agent utility =~ to extract injured civilians. The global objective, thes, i

4.5. Dealing with Limited Range Communication

function: to coordinate the actions of emergency service agents such
that they save as many casualties as possible, in as short
u(s,sy) =Y my’ (s,sy) = > (ux(si,5) — Uy (So,5n) 5 a time as possible. The performance qf a coordina_tion
X| €S X €5 strategy is measured by the sum of casualties ‘health points
_ ) . @) which decay over time while they are trapped in collapsed or
wheres is restricted to the set of tasks of whicls aware, burning building.

Xi. That is, an agent’s utility function is identical to the
setting without communication restrictions, and only the s
of tasks which it know of is restricted. Now, using this form
for an agent’s utility function means that the approximate
global utility function (Equation 4) need not be a potential
function for the game. However, if all agents are aware of
those agents attending to their tasks, then Equation 4 actypy order to apply the model developed in Section 4, we
as a potential function. This is always the case when the 35syme that each agerit, corresponds to an ambulance
agents are at (or sufficiently near) the location of theikéas  and each task; represents an injured civilian that needs
since once the agents are within each other's communicationesc,el® Each civilian has a hard deadling,, by which
ranges, they exchange all of thei_r informafci_on about thke_sta time it must reach arefuge ifitis to survive, ajnd aprocesgsin
of th.e wo_rld, and, thereforg, their tas_k yt'“ty computaso requirementyy., corresponding to the time it would take the
are identical (as they are in the unlimited communication crew of a singjle ambulance to be in a position to remove it
range setting). Moreover, under these conditions, DSA is from the scene. In RCR, the number of injured civilians is

also guaranteed 1o converg’e. On the other h‘?‘“d’ becaus?}/pically much greater than the number of ambulances, and
the components of an agent’s strategy are restricted te thos
tasks it is aware of, parts of the global utility function 10The ambulance to casualty allocation mechanism derivedhis t

Section represents a first step in deriving a complete selgofrithms
9The way that agents learn about tasks is typically specifithto integrating all of the allocation problems in RCR. This atiten extensions
domain, and how this occurs in RoboCup Rescue is discuss®ekcition 5. are discussed in Section 6.

We now map the ambulance—casualty allocation problem
in RCR to our generic OPGA framework, and then discuss
the experiments we use to evaluate our approach.

5.1. Ambulance—Civilian Allocation
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10 CHAPMAN, MICILLO, KOTA AND JENNINGS

Foligno is possible that an agent’s value for a task completion time

differs significantly from the true value. This may require
the agent to shift forward many elements of its strategy
vector (many more than illustrated in Figure 2). Now, if
too many elements are removed, the resulting recycling of
partial past solutions as initial conditions may be counter
productive. For this reason, if, in recycling past compdsgn
an agent'’s strategy vector is advanced up by less Wian
components, then with probabilitg the agent computes

a completely new strategy, and with probability— p) it
generates a new strategy for the remaining components only,
as in the usual operation of DSA (i.e. the same value of

is used as discussed in Section 4.4). However, if more than
thanw/s components are removed, maintaining the current
strategy will rarely be useful to the system, so the agent
always computes an entirely new stratégy.

Time:6  Score: 98.994872

FIGURE 3. Example of a map used in our RoboCup Rescue

experiments. 5.2. Experimental Design

We now discuss the design of the RCR experiments we

used to evaluate our OPGA algorithm. Specifically, we
not all the injured civilians are known to the ambulances at ran OPGA on three standard RCR maps — Kobe, Virtual
the start. Rather, they are discovered over time. This meansCity and Foligno (the map shown in Figure 3), each of
that an ambulance must negotiate a sequence of civilians towhich contain 80 civilians and 6 ambulances. Foligno is
attend to with other ambulances, with the rescue of somea larger and more unstructured map than Kobe or Virtual
civilians requiring more than one ambulance because of aCity, making it relatively hard to detect civilians therehd
highyy, and/or an imminerﬂfj . information about the casualties is gathered by fire—begad

Given this, the task completion timhfj, (s) in Equation 2, and police—patrols that explore the map and pass it on to the

is the time it takes a team of ambulances, given by the joint @Mbulances, thus simulating a dynamic continuous stream

strategy profiles, to rescue the civilian. This incorporates ©f tasks. In the limited range scenario, an exploring agent
both the civilian's processing requirement (the time nelede (I-€. @ police or fire-brigade) can pass on information to
by the team before taking it to the refuge) as well as N ambulance only when it is within the communication
estimates of the time it takes for the team members to 'ange, thus representing the limited observation range of
travel to the civilian. The global utilityg(s) increases ~ the ambulances. Each simulation is 300 time steps in
with the number of casualties rescued, and for each casualtyduration. We evaluate two parameter setting of our method
increases with lower completion times. Regarding an With p = 0.5 and 09 — OPGA(0.5) and OPGA(0.9) —
ambulance’s marginal utility (Equation 5), becapseclose ~ @nd a decision window ofv = 30 steps for both. = As

to 1, the contribution of an ambulance that is critical to the OU' pfe“mmary_experlments showed that the results were
rescue of civilianx; beforetd is greater than the benefit of 10t Very sensitive to differenp values between 0.5 and

speeding up the rescue of a civilian that is already assuredoﬁ.g’ we I|m|te(rj] our Icurrfent resulti to th? two encli_pqlnts of
of being saved. This effect is demonstrated in Figure 1. this range. The value fov was chosen from preliminary

Following this, an agent's utility (Equation 6) is then thays ~ €XPeriments, as it depends on the nature of the domain. To
of its contribution to all tasks in the windof,t +w], and achieve statistical significance (results are shown with 95

consequently, the approximate global utility functionscas confidence interva_1|s), each gxperiment was run 30 times.
a potential for the entire game. Thus, the salient featufres o The performance in an experiment is reflected by the score
this problem are captured in our model obtained at the end of the simulation. This score is a standar

Nonetheless, two small variations to the standard DSA Em\I’iﬂed .by th? ECR. f.rlgmevyorkh and is th_trahsu;n ?fhth(?
are necessary to successfully implement our model in RCR. ealth points of the civilians in the map. ¢ health o

First, one component of an ambulance’s role is to transport an unrescued civilian decreases with time until it reaches
rescued civilians to a refuge, which takes time and can upsetO (which, n _fact. constltutes_ thg deadline), while that of a
rescued civilian improves with time. We also measure the

the agent’s strategy. Because of the difficulties of captyri o . N
9 oy no! number of civilians saved over time, because it gives an

this requirement in an agent's strategy space, we allow . . i
the following innovation to DSA; whenever an ambulance "SIght into how the rate of rescue is affected by the rate
of discovery of casualties.

has returned a civilian to a refuge, it always computes a . .
9 Y P We ran two batches of experiments. In the first, the

completely new best response strategy. This is done because ' icati t restricted. W
its existing strategy will be completely outdated (i.e. the agents' communication range was not restricted. Vve use

tasks it had in its current strategy it will not have attenttgd these results to directly compare the performance of OPGA

Second, b_ecause ag_ents are not CompUting thei_r best ytratefg HExperimental evidence has shown two—thirds to be a reatowalue
at every time step, if others have changed their strategy, it for this threshold.
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100% performance of OPGA(0.9) and OPGA(0.5) compared to

the centralised and decentralised EDF methods in the
three maps. Although the difference in score between
OPGA and the centralised EDF heuristic is statistically
significant, OPGA produces solutions that are within 6% of
the centralised approach and, additionally, OPGA performs
significantly better than decentralised EDF. When taken
together, these results show that our approach, based on
overlapping potential games, is a good approximation of
the optimal solution to the stochastic game model of the
ambulance—to—civilian problem in RCR.

In more detail, both versions of OPGA perform better
in the Foligno and Virtual City scenario than in the Kobe
scenario. Furthermore, &r2factorial design test on the
results evaluating the effects of the valuepénd the map
on the score indicates that 95% of the variation of the score
is explained by variation in the map, and less than 1% by
Foligno Kobe Virtual City variations inp. The cause of the variation in scores between
maps is due to the rate at which new trapped civilians
are introduced. In particular, civilians are discovered at
quicker rate in the Kobe map than in Foligno or Virtual City.
This is illustrated clearly in Figure 5. Here, a slower rate
of discovery allows OPGA to find good quality solutions
more regularly than in maps where, at times, the rate of
civilians’ discovery is faster. Thus, OPGA performs better
in Foligno and Virtual City than in Kobe. Furthermore, this
|-_matches with the assumption we make that the state of the
world moves slowly enough for us ignore the effect of the
possible changes to the state of the world (in particular, th
list of civilians), without inducing significant errors. \&h

95%

90%

85%

Score

80%

75%

70%

65%

W Centralised EDF @ Decentralised EDF
EOPGA(0.5) OOPGA(0.9)

FIGURE 4. Comparing the methods across three maps.

to a centralised (myopic, greedyarliest deadline first

heuristic as a comparable lower benchmark. The former
lists civilians in order of their deadline, centrally albldes
free ambulances to the civilian with the earliest deadlipe u > o0 . .
to the point where it is assured of being completed, and this assumption is less war_ranted, as in the Kobe scenario,
then allocates ambulances to the next civilian on its list, the algonthm performs relatively worse.

and so forth. Now, because the allocation is performed OPservations of the behaviour of agents when
centrally, no mis—coordination is possible — neither fewer USiNg the three different approaches yield the fol-
nor more agents than are required will ever be allocated OWing deeper insights into the difference in their
to a civilian. As such, the centralised EDF scheduler is Performance. —— (We encourage the reader to visit
expected to out perform OPGA. Under the decentralised W @l addi nproj ect. org/technol ogi es. htni  to

EDF heuristic, each ambulance simply attends to the taskVIeW @ video demonstrating OPGA and contrasting it to the
with the shortest deadline. This approach will typicallgde ~ centralised and decentralised EDF heuristics.) Beginning
to an over—allocation of ambulances to civilians with short With the decentralised EDF heuristic, this algorithm’s be-

deadlines, and it will occasionally allocate ambulances to  aviour is characterised by ‘clumping’, meaning the agents
civilian even when their efforts to save it are bound to be 2l attend to the same task, and move to a new task together

futile. once the the current task has been processed. This often

In the second batch of experiments, we test the leads to severe over—allocatiqn of resources to tagks with
performance of OPGA with restrictions on the range of the ¢/0S€ deadlines, and the negative effects on the qualityeof t
agents’ communication and observations, as discussed in°°lutions generated are two—fold. First, the over-aliocat
Section 4.5. These restrictions are 20% 15%, 10%, and¢0Mes at the expense of other tasks completion, and, con-
5% of the maximum distance between two points on the Seauently, these other tasks’ deadlines pass before they
map in question (so the area covered by an agent's rangerecelv_e sufﬁmen_t processing. Second, tasks with imminent
decreases quadratically with these values). In this bateh, ~ deadlines and high processing requirements are started eve
compare OPGA(0.9) to the centralised EDF scheduler only. If they cannot be completed in time, representing a gross
We do this to test our hypothesis that OPGA performs better Waste of resources.

than the centralised EDF scheduler in scenarios where the Next, consider the centralised EDF heuristic. In the
communication and observation range is restricted. present full information setting, agents share the saméiwor

view (because communication ranges are not restricted).
Thus, centralised EDF succeeds in avoiding most of the
pitfalls of the decentralised EDF approach. Namely, first,
To begin with, we discuss the results of the first batch because it is centralised it can allocate only the minimum
of experiments. To this end, Figure 4 shows the mean number of agents to complete tasks, and so frees up

5.3. Results
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Foligno
100% — Kobe Virtual City
entralise!
100% 100%
OOPGA(0.9) b B Contralisod EOF 0 B Centralised EDF
90% - O OPGA(0.9) COPGA(0.9)
90% - 90% -
80% -
o 80% - 80% -
S 70% ® ]
3 % 70% - g 70% A
04 -
60% 60% - 60% -
50% 1 50% - 50% -
40% 40% 40% +
100% 20%  15%  10% 5% 100%  20%  15%  10% 5% 100% 20%  15%  10% 5%
Range restriction Range restriction Range restriction

FIGURE 6. Comparing the methods as the communication and observatiye is restricted.

resources to be allocated to other tasks with impending information about the state of the world. When the local
deadlines. Second, if a task cannot be completed beforeinformation held by the agents differs, the overall coheesn
its deadline, it is not attempted by the centralised EDF of the plans generated by the centralised EDF heuristic
approach. In the presence of full communication, then, this degrades, resulting in a rapid downturn in performance.

heuristic results in behaviour characterised by the oyderl  |n contrast OPGA performs better than the centralised
partition of agents among tasks, and little of the clumping approach whenever the agents’ communication range is
seen under the decentralised EDF algorithm (except whenrestricted (with the exception of Kobe when restricted to

warranted by the tasks at hand). 5%, which is probably due to stochastic variation, and not

Finally, OPGAs behaviour, as well as the quality of the statistically significant). This is because the perforngaoic
solutions it generates, falls between the two EDF heusistic OPGA does not depend on the degree of coherence between
Although for the main part, the agents’ behaviour under the agents’ world view to the same degree as centralised
OPGA follows the orderly division seen in the centralised EDF. OPGA is flexible enough to cope with different
EDF heuristic, some clumping behaviour emerges as doesinformation because it operates by exchanging strategies:
frequent reassignments or ‘thrashing’ (also noted by [5] in that is, best responses are always only computed on the basis
a jobs scheduling domain). Thrashing is more prevalent of known strateg!es of other agents in the system, not from a
with higher values ofp (i.e. p = 0.9 saw greater levels common world view.
of thrashing tharmp = 0.5), because the agents adopt new  However, when the range is severely restricted (such as
best responses more frequently and, therefore, are morewvhen it is restricted to 5% of the map), the information
likely to adopt conflicting strategies at the same time. flowing to the agents is minimal, hence the performance
Similarly, some over—allocation to tasks also occurs, Aiedt  of any method will tend to be poor. This is precisely
is more common with lower values @f due to the agents’  the effect of restricting the communication and observatio
not adjusting their strategies frequently enough. Theserange we expected to see, and justifies our arguments for
behaviours make OPGA's performance poorer than that of using a principled decentralised algorithm in restricttge
centralised EDF, and are an artefact of the DSA algorithm environments.

used to solve each of the static potential games. However, Fyrthermore, for moderate restrictions (15-20%), the
the agents do partition themselves between the tasks in gerformance of OPGA actually improves in both Kobe and
generally sensible fashion, so avoid the most costly errors\jrtyal City. This is a surprising result. It occurs because

that decentralised EDF commits. under restricted information, the quiescence assumption

Now we turn to the second batch of experiments, in which motivating our choice of approximation is better supported
the observation and communication ranges of the agentsthan in the full information case. That iS, the state of the
are restricted. Note that, because the decentralised EDFWorld, as perceived by each agent, is more stable when
heuristic does not communicate, its performance does nottheir communication and observation ranges are moderately
vary at all over the second batch of experiments, so it is not estricted. The subsequent degradation in performance of
considered. From Figure 6, we observe that the performanceOPGA is due to a simple lack of information flowing to the
of the centralised EDF heuristic degrades at a quicker rate@gents. This effect is not reproduced in Foligno because
than OPGA, both in terms of its mean performance and the OPGA does Well, even in the full communication case, as
variability in its performance (as seen in larger error tmrs ~ the rate of discovery of casualties is slow.
each restriction level). The reasons for this are as folows  Again from observations of the behaviour of the agents
recall that the centralised EDF heuristic operates by the we gain further insights into the reasons for the perforreanc
agents all following an identical decision procedure, vahic of the different algorithms. First, consider the centeadis
acts like an oracle. The good performance of this heuristic EDF heuristic. As the restrictions on the communication
is, therefore, dependent on the agents holding identicalrange begin to bite, agents using this heuristic begin
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FIGURE 5. Exemplar time series comparing the methods on the
Kobe, VC and Foligno maps, alongside the number of casealtie

found.

to act more like they are using the decentralised EDF communication overhead.
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However, worse than these two behaviours, for more limited
communication ranges, gross mis—allocation of resources
occurs. Specifically, individual agents act as if all others
share their world—view and allocate themselves to tasks
requiring more than just their own resources to complete
(plus the resources of any other similarly ‘deluded’ agents
This would appear to be the main cause of the dramatic
decline in the performance of the centralised EDF heuristic
in scenarios with communication range restrictions.

Second, OPGA’s behaviours and performance remains
relatively stable, with an increase in thrashing only seen
for severe communication range restrictions. Like the
centralised EDF heuristic, this is a result of the agents
sharing information only once they have moved into
range of each others’ communications. However, because
OPGA computes new best response strategies based on
communicated strategies alone, it avoids the other costly
mis—allocations that adversely affect the behaviour of
centralised EDF, thus resulting in better performance when
communication ranges are restricted.

6. CONCLUSIONS

In this paper, we derived a distributed game—theoretic
control mechanism for decentralised planning to address
dynamic task allocation problems. In more detail, there
are two main aspects to the problem addressed. First, each
agent has to perform a sequence of tasks over time and often
tasks may require more than one agent for their successful
completion. Second, the set of tasks is dynamic as new tasks
are discovered over time. This leads to a stochastic game
formulation.

However, stochastic games are generally intractable.
Consequently, an optimal algorithm would not have satisfied
the additional requirements of a control mechanism for the
domain, namely robustness and computational tractability
(with its consequences for communication use and the
timeliness of the solutions generated) as well as optignalit
In order to satisfy these requirements, we proposed a
technique for approximating a stochastic game using a
sequence of overlapping potential games, which are derived
from a finite horizon approximation of the global objective
function. Importantly, the agents’ utilities are derived i
such a way that they do not require complete information
about the state of the world or of the actions of other
agents in the system, and as such, the technique is robust
to communication restrictions. In order to generate a
solution, agents negotiate with each other to decide which
tasks to act on in the next few time steps, and, in
particular, we suggested the use of the distributed stdichas
algorithm as a negotiation technique, because it has been
shown to converge quickly and operates using a low
Empirical results showed the

The orderly partition of agents between tasks efficacy of our approach in stochastic environments with

Specifically, in order to test the

replaced by clumping behaviour and some thrashing. Theseperformance and robustness of our control mechanism, we
detrimental behaviours begin to emerge because informatio implemented it in the RoboCup Rescue disaster response

about the state of the world is exchanged only once simulator.

We found that it performs comparably to

the agents move into each others’ communication range.a centralised task scheduler when communication is not
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limited, and that it outperforms the centralised approach
as the agents’ communication and observation ranges are
restricted.

Possible extensions to this work include generalising
our model to capture other aspects of complex disaster
scenarios, such as allowing agents to have differing costs [9]
for performing the same task or representing deadlines by
a distribution over times, all of which the agents have to [10]

consider when making their decisions.

Furthermore, we

believe it is possible to incorporate heterogeneous tasits a
agents with differing resources at their disposal, to exten
the scope of the overlapping potential game technique. An

example application of this would be a control mechanism [

that integrates the coordination of all three agent typéisdn
RoboCup Rescue disaster response simulator— ambulances,
police and fire brigade.
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