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Security-critical systems are challenging to design and implement correctly and securely. A lot
of vulnerabilities have been found in current software systems both at the specification and the
implementation levels. This paper presents a comprehensive approach for model-based security
assurance. Initially, it allows one to formally verify the design models against high-level security
requirements such as secrecy and authentication on the specification level, and helps to ensure that
their implementation adheres to these properties, if they express a system’s run-time behaviour.
As such, it provides a traceability link from the design model to its implementation by which the
actual system can then be verified against the model while it executes. This part of our approach
relies on a technique also known as run-time verification. The extra effort for it is small as most
of the computation is automated; however, additional resources at run-time may be required. If
during run-time verification a security weakness is uncovered, it can be removed using aspect-
oriented security hardening transformations. Therefore, this approach also supports the evolution
of software since the traceability mapping is updated when refactoring operations are regressively
performed using our tool-supported refactoring technique. The proposed method has been applied
to the Java-based implementation JESSIE of the Internet security protocol SSL, in which a security
weakness was detected and fixed using our approach. We also explain how the traceability link can
be transformed to the official implementation of the Java Secure Sockets Extension (JSSE) that was
recently made open source by Sun.
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INTRODUCTION

specified either within a UML specification (using the UML

There has been successful research over the last years to
provide security assurance tools for the lower abstraction
levels of software systems. However, these tools usually
search for specific security weaknesses, such as buffer
overflow vulnerabilities. What is so far largely missing
is automated tool support which would support security
assurance throughout the software development process,
starting from the analysis of software design models (e.g.,
in UML) against abstract security requirements (such as
secrecy and authentication), and tracing the requirements to
the code level to make sure that the implementation is still
secure.

This article presents a tool-supported approach that
supports such a software security assurance, which can be
used in the context of an approach for Model-based Security
Engineering (MBSE) that has been developed in recent
years (see e.g., [1, 2] for details and Figure 1 for a visual
overview). In this approach, recurring security requirements
(such as secrecy, integrity, authentication and others) and
security assumptions on the system environment, can be

extension UMLsec [1]), or within the source code (Java
or C) as annotations. One can then formally analyse the
UMLsec models against the security requirements using the
UMLsec tool suite which makes use of model checkers and
automated theorem provers for first-order logic (see Figure 2
and [3, 4]). The approach has been used successfully in a
number of industrial applications (e.g., at BMW [5] and O,
(Germany) [6]).

However, it is not enough that the specification is
secure: we must also ensure that the implemented system
is secure as well. There are at least two ways to approach
this problem: static code verification, or a technique
called run-time verification [7, 8, 9] (see Section 3.1
for an introduction). In this paper, we focus on using
(online) run-time verification for our purposes. It has
an important advantage over static verification: In static
verification, one can only verify the implementation on
the basis of predefined assumptions. For example, these
include assumptions on the behavioural semantics of the
programming language, the compiler that will compile the
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source code to byte code, and/or byte code to machine code,
the execution environment (operating system, hardware,
physical environment), etc. When trying to apply static
verification to complex implementations, one usually needs
to make additional simplifying abstractions in order to make
an automated formal verification of such implementations
feasible in the first place, and one thus needs to make the
additional assumption that these abstractions do not limit
the scope of the verification. The verification procedure
is then only known to be sound where these assumptions
are fulfilled, and it is usually not feasible to verify
formally whether they are fulfilled for a given execution
environment. The advantage of run-time verification is
now that the targeted execution environment itself is part
of the verification environment (since verification is done
at run-time anyway), so by construction the verification
will be sound for the execution environment at hand. For
this reason, run-time verification also does not suffer from
the same scalability issues that static verification does as
systems or system models become more complex: run-
time verification always considers one concrete behaviour
produced by the running system rather than the overall state-
space of all the possible states it can be in.

Since run-time verification is a formal yet also dynamic
technique (i.e., it operates on the running system as
compared to a system model) there exist, besides similarities
to other formal verification techniques such as model
checking, some similarities to testing; however, the
context and goals are different: Testing for complex
implementations can usually not be applied exhaustively.
In contrast to that, run-time verification ensures, by
construction, that every system trace that will ever be
executed will be verified—while it is executed. In the
case of the cryptographic protocols that we consider, it is
indeed sufficient to notice attempted security violations at
run-time to still be able to maintain the security of the
system: The monitor is constructed in such a way that, if
it detects a violation, the current execution of the security
protocol will be terminated before any secret information
is leaked out on the network. Therefore, despite the
similarities between testing and run-time verification, run-
time verification can provide a level of assurance that goes
beyond what testing can usually achieve when applied to
highly complex security-critical software.

In practice, however, systems do not remain the same
after they are deployed. On the contrary, many systems
evolve over their life-time, and usually their life-time
is significantly longer than expected when they were
implemented (this became very apparent with the year 2000
bug). Manually re-establishing the verified traceability link
for a new version of an implementation would be time-
intensive. It would therefore be preferable if we enable our
security assurance approach to cope automatically with the
fact that systems will evolve at run-time, and still provide
valid run-time security assurance. This is non-trivial to
achieve: As the implementation or the used libraries evolve,
the instrumentation may no longer guarantee the correct link
to the protocol design. It is therefore important to have a
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FIGURE 1. Model-based Security Engineering

way to perform refactoring steps in a traceable way.

In addition, we explain how to achieve security hardening
through systematic instrumentations. As security vulnera-
bilities are often scattered throughout the implementation,
we choose aspect-oriented programming (AOP) for security
hardening.

One goal of our work is thus to maintain traceability
between the design and the implementation of a crypto-
based software through a dedicated software refactoring
approach which supports system evolution.

Note that an alternative approach could aim to generate
complete implementations out of cryptographic protocol
specifications, rather than establishing a link between the
specification and an existing implementation, and hardening
that implementation if necessary. If that would be
possible, that would automatically also update the link
between the specification and the implementation whenever
the specification is changed, by just generating a new
implementation. =~ However, this is not our goal here.
Rather, we would like the approach we develop here to
be applicable to existing legacy implementations, rather
than generating new implementations. The reason for
this is that, in practice, there is often a strong desire to
use a particular existing implementation. For example,
that implementation might be conformant with certain
standards or certifications, or satisfy stringent performance
requirements (which an implementation automatically
generated from a specification would usually not be able
to satisfy). Since legacy implementations are usually too
complex to verify statically, this again motivates the use of
run-time verification and our approach.

One should note that our approach, at this point, focusses
on a certain class of attacks which can be detected when
observing the running implementation at a certain degree of
abstraction, namely those attacks that rely on an interaction
of the attacker with the protocol participants where the
passive or active (man-in-the-middle) attacker can read,
memorise, insert, change, and delete message parts into
the communication between the protocol participants. In
each case, we assume the actual cryptographic algorithms
and their implementations (such as encryption and digital
signature) to be secure, and we aim to detect insecurities
in the way they are used in the context of a cryptographic
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protocol. We do not aim to detect attacks that rely on
breaking these assumptions, such as statistical attacks or
type confusion attacks.

1.1. A Brief Overview of the Approach

Let us briefly summarise the approach taken in this paper.
Our approach supports the following steps:

(1) security protocols are specified and verified using the
security extension UMLsec of UML,

(2) an implementation is linked to this UML model,

(3) temporal logic formulae are derived from the UML
model,

(4) a security monitor is generated automatically from the
temporal logic formulae created in step (3) in order to
verify the implementation at run-time,

(5) the relation between the UML model and the code is
maintained as the implementation evolves over time,

(6) errors in the implementation can be corrected using
AOP, and

(7) the security monitor is updated with respect to the
changes arising from step (6).

There are practical considerations why such a process is
not fully automated, but rather has to be semi-automated;
that is, some manual work is required and may be desired
to have full control over the system as it evolves over time.
However, steps (4) to (7) can be fully automated and are
thus repeatable, given that the specifications from (1) to (3)
are established manually. The time and effort spent on steps
(1) to (3) can be considered as an overhead to the normal
software development process, while steps (4) to (7) save
the effort to accommodate changes in the evolving system.
Moreover, it helps us in maintaining traceability links as this
happens.

Note that our approach is interesting to apply not only
to legacy systems (where there is often no alternative
to manually re-engineering a specification, and static
verification of the software is often not an option because
of its complexity). It is also useful to apply our approach
in a situation where model-based development techniques
are used to develop a system: Experiences from practice
indicate that, in such a context, changes are often done
on the code level after the development of the model has
been finished, which often means that the code becomes
inconsistent with the model, which makes it necessary to
monitor the code at run-time.

Our approach thus supports verified traceability that is
robust under evolution at various stages of the system life-
cycle:

e  Verified traceability from security requirements to de-
sign: one includes security requirements as annotations
into UML models and automatically verifies the models
against these requirements (see Section 2).

e  Verified traceability of security requirements from
design to execution time: using run-time verification
(see Section 3).

e  Verified traceability of security requirements from
one version of the implementation to another through
system evolution (see Section 4).

e Traceable security hardening for code-level security
vulnerabilities (see Section 5).

1.2. Advance over Prior State of the Art

In this section, we explain in which respect the work
presented in this paper constitutes an advance over the prior
state of the art in this field.

New methodology: We have developed a new integrated
methodology for run-time security verification of crypto-
graphic protocol implementations that can handle system
evolution.

Prior to our work there existed, to the extent of our
knowledge, no approach to security run-time verification
of cryptographic protocols, and even less an approach that
would be able to handle evolution. There exist other
approach for run-time verification of security properties but
to the extent of our knowledge they have not been applied
to implementations of cryptographic protocols, which pose
particular challenges for run-time verification that have thus
not been addressed by other approaches.

In particular, we developed a new approach for model-
based security assurance that covers properties from the
design level all the way down to the implementations.

We validated the new methodology by applying it to
several versions of two industrial size applications, the
Java Secure Sockets Extension (JSSE) and the open-source
implementation JESSIE. To keep the paper readable, we
cannot give complete accounts of these whole applications,
but can only focus on several examples taken from them.
Nevertheless, the size and complexity of the overall
application allows us to draw significant conclusions about
the applicability of the methodology.

Advance over prior work: Some but not all parts of the
methodology build on prior work, although that prior work
needed to be further developed significantly in order to be
applicable to run-time security monitoring of cryptographic
protocol implementations that can handle system evolution,
since neither of the prior work was able to deal with this task
on the whole.

The work presented in this paper thus constitutes an
advance over prior work in the following directions:

e model-based security analysis
e run-time verification
e software evolution

We will shortly discuss the advance over prior work in
these directions.

Model-based security analysis The work presented here
exceeds the prior work in the area of model-based
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security analysis in so far that we have developed an
approach which allows one to combine automated static
verification on the model level (using UML models as
a specification approach together with a formalization
in first-order logic and the use of automated theorem
provers for first-order logic) with run-time verification
for monitoring the assumptions on which the static
verification is based at run-time.

Run-time verification With regards to run-time verifica-
tion, because of the particular challenges involved with
run-time verification of cryptographic protocols (as op-
posed to other security-critical software), we base our
work on a specialised approach of monitoring temporal
logic formulae using 3-valued semantics, whose theo-
retical foundations were first presented in [10], how-
ever, without a detailed evaluation or application to a
case study. Our discussion in this paper of which prop-
erties are monitorable by this particular run-time veri-
fication approach will demonstrate that this technique
has significant advantages when applied to run-time
verification of cryptographic protocol implementation.
The approach has been implemented in terms of [11]
by the first author of this paper. The implementation,
which we also use in this paper, is available as open
source software via a SourceForge web site.

Software evolution The work presented here exceeds the
prior work with respect to software evolution in so
far that it supports a combined static and run-time
security verification approach in the context of software
evolution. The work addresses in particular the
challenge that an accurate design to implementation
traceability is required to make the approach applicable
in the context of software evolution.  Although
refactoring and aspect-oriented programming are two
well-known subjects and are well supported by the
integrated development environments, this work is to
the best of our knowledge the first to use refactoring
to create and maintain traceability for secure software
development that enables the use of AOP techniques to
fix security weaknesses related traceability failures. We
also show that our approach improves the precision of
the traceability.

An additional contribution of this work is then also to
show how these techniques can be combined in an efficient
manner, and how they can be used in the context of
developing security critical systems.

In this paper, we focus specifically on cryptographic
protocols, since these are a compact yet highly security-
critical and non-trivial to design part of a secure system, and
thus serve as a particularly good example to demonstrate our
approach.

Significant practical applications We have applied this
new methodology in a significant new application to the
SSL protocol implementations JESSIE and JSSE, which are
industrial strength implementation with a large user base

(particularly in the case of JSSE which is part of the standard
Java security architecture).

More precisely, we demonstrate the approach by an
application to the Java-based implementation JESSIE of
the Internet security protocol SSL. We also explain how
the traceability link can be transformed to the official
implementation of the Java Secure Sockets Extension (JSSE)
that was recently made open source by Sun.

Again, run-time verification of widely used crypto-
protocol implementations such as JESSIE and JSSE have
to the extent of our knowledge not been attempted
so far, and they pose particular challenges since these
implementations are significantly complex. In particular,
this application allowed us to detect a previously unknown
security vulnerability in one of the implementations, which
was then hardened using our approach.

In addition to being applications that are interesting on
their own, these industrial-size applications also allowed
us to validate the new methodology proposed in this
paper. In particular, the size and complexity of the overall
application allows us to draw significant conclusions about
the applicability of the methodology.

Comparison to previous work The work presented in this
paper is new: although there has been a lot of work on
formally verifying abstract specifications of cryptographic
protocols, the only prior work on run-time verification
for cryptographic protocols is (to our knowledge) the
precursory conference paper [12], which however did not
include support for automated security hardening, and for
maintaining the verification results when the system evolves.

From a broader point of view, the goal of this work is to
allow the use of formally based verification techniques (such
as automated theorem provers and run-time verification) in
practice by encapsulating them in an industrially accepted
development approach (based on UML models) and apply
them to an industrially used programming language (Java).
We hope to thus contribute to dealing with the challenges
faced when trying to use formal methods in a practical
environment (cf. [13, 14, 15] for relevant discussions).

The approach presented here has to be seen in the context
of other approaches to model-based security based on UML
developed over the last few years (see [1] for a more
complete overview). There are also many other relevant
approaches to model-based assurance of security-critical
systems which are not based on UML, such as [16, 17].
The work presented here differs from that in that it is based
on a modelling notation routinely used in industry today to
facilitate uptake in practice, and that it includes a link to
implementation level security assurance. Also related are
several approaches to formally verifying implementations of
cryptographic protocols developed recently, such as [18, 19,
20]. The current work is different in that it does not verify
the implementation directly against security properties, but
verifies specification models against security properties, and
then verifies the implementation against the models with a
focus on the security properties, using techniques including
run-time security verification. The motivation for this
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FIGURE 2. MBSE tool framework

two-step verification process is to facilitate application to
complex legacy software.

See Section 6 for a more detailed comparison to previous
research.

1.3. Outline of the Rest of the Paper

The rest of this paper proceeds as follows. In Section 2,
we give an overview of model-based security engineering
as a means of analysing models of security-critical systems
in the UMLsec specification notation at design-time using
first-order logic (FOL) theorem proving. We also explain
how this technique was applied to the SSL protocol. Then,
in Section 3, we discuss run-time verification as a dynamic
verification technique in more detail, how to obtain run-time
security properties of a system, and apply this approach to
our case study, a Java implementation of the SSL protocol,
JESSIE. As such we discuss the link between model and
code of a system. In Section 4, we give a detailed account
on how to maintain the links between models and code,
in the face of system evolution, e.g., occurring program
changes due to fixing bugs, or extending the functionality
of a program. That is, we establish mappings between
elements of our system models and code, and use automated
refactoring techniques for changing an implementation.
Finally, in Section 5, we outline an AOP-based approach
that allows us to react to security weaknesses detected in an
implementation by security hardening.

Related work is discussed Section6 and we draw
conclusions from our work in Section 7.

2. MODEL-BASED SECURITY ANALYSIS

In this section, we give an overview of the part of
our approach that applies to the specification level of a
cryptographic protocol. We start by giving a general
overview of the approach we use there (called model-based
security engineering), then explain the relevant part of that

approach in technical detail, and finally apply it to our
running example, the SSL protocol.

2.1. Model-based Security Engineering

Model-based Security Engineering [1, 2, 21] provides a
soundly based approach for developing security-critical
software where recurring security requirements (such
as secrecy, integrity, authentication and others) and
security assumptions on the system environment can
be specified either within a UML specification, or
within the source code as annotations (cf. Figure 1).
Various analysis plug-ins in the associated UMLsec tool
framework [22, 4] (Figure 2) generate logical formulae
formalising the execution semantics and the annotated
security requirements. Automated theorem provers and
model checkers are used to try to automatically establish
whether the security requirements hold. (Note that
security requirements in general are undecidable, so there
may be worst-case examples which cannot be decided
automatically, although in our experience most practical
applications are unproblematic.) If not, a Prolog-based tool
automatically generates an attack sequence violating the
security requirement which can be examined to determine
and remove the weakness. Thus we encapsulate knowledge
on prudent security engineering and make it available to
developers who may not be security experts. Since the
analysis that is performed is too sophisticated to be done
manually, it is also valuable to security experts.

Note that some of the activities contained in Figure 1 are
done manually or supported with pre-existing tools outside
the UMLsec tool suite, and therefore the relevant workflows
do not appear in Figure 2. For example, to generate Java
code from UML models (or vice versa) one can use the
commercial tool suite Borland Together [23].

Part of the Model-based Security Engineering (MBSE)
approach is the UML extension UMLsec for secure
systems development which allows the evaluation of UML
specifications for vulnerabilities using a formal semantics of
a simplified fragment of the UML [24, 25, 1]. The UMLsec
extension is given in form of a UML profile using the
standard UML extension mechanisms. Stereotypes are used
together with fags to formulate the security requirements
and assumptions. Constraints give criteria that determine
whether the requirements are met by the system design,
by referring to a precise semantics of the used fragment
of UML. The security-relevant information added using
stereotypes includes security-relevant information covering
the following aspects:

e  Security assumptions on the physical system level, for
example the stereotype ( encrypted», when applied to
a link in a UML deployment diagram, states that this
connection has to be encrypted.

e  Security requirements on the logical level, for example
related to the secure handling and communication of
data, such as «secrecy) or (integrity ).

e Security policies that system parts are required to obey,
such as «fair exchange) or «data security).
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encg: (E) (encryption)

decp(E) (decryption)

hash(E) (hashing)

signg (E) (signing)

verg/ (E,E") (verification of signature)
kgen(E) (key generation)

inv(E) (inverse key)

conc(E,E’) (concatenation)

head(E) and tail(E) (head and tail of concat.)

FIGURE 3. Abstract Cryptographic Operations

In each case, the assumptions, requirements, and policies
are defined formally and precisely in [1] on the basis of
a formal semantics for the used fragment of UML. We do
not repeat these definitions here, since in this paper we will
look at one specific security analysis scenario, where the
assumptions and requirements are defined precisely at the
level of the used formalisation in first-order logic.

The UMLsec tool-support (illustrated in Figure 2) can
then be used to check the constraints associated with
UMLsec stereotypes mechanically, based on XMI output
of the diagrams from the UML drawing tool in use
[4, 2]. There is also a framework for implementing
verification routines for the constraints associated with the
UMLsec stereotypes. Thus advanced users of the UMLsec
approach can use this framework to implement verification
routines for the constraints of self-defined stereotypes. The
semantics for the fragment of UML used for UMLsec is
defined in [1] using so-called UML Machines, which is
a kind of state machine with input/output interfaces and
UML-type communication mechanisms. On this basis,
important security requirements such as secrecy, integrity,
authentication, and secure information flow are defined.
To support stepwise development, one can show secrecy,
integrity, authentication, and secure information flow to
be preserved under refinement and the composition of
system components. The approach also supports the secure
development of layered security services (such as layered
security protocols). See [1] for more information on the
above.

2.2. Analysing Cryptographic Protocols

In the current paper, we concentrate on applying model-
based security engineering to the special case of crypto-
graphic protocols which are a particularly interesting target
since they are compact pieces of highly security-critical soft-
ware which are nevertheless highly non-trivial to design and
implement correctly.

Using UML sequence diagrams, each message in a
cryptographic protocol is specified by giving the sender,
the receiver, the message, and possibly a precondition (in
equational first-order logic (FOL)) which has to be fulfilled
so that the message is sent out.

As usual in the formal analysis of cryptographic software,
the cryptographic algorithms (such as encryption and
decryption) are viewed as abstract functions. Our aim in this
paper is not to verify the implementation of these algorithms,
but we work on the basis of the assumption that these are
correct, and aim to verify whether they are used correctly
within the cryptographic protocol implementation.

We assume a set Keys of encryption keys disjointly
partitioned in sets of symmetric and asymmetric keys.
We fix a set Var of variables and a set Data of data
values (which may include nonces and other secrets). The
algebra of expressions ExXp is the term algebra generated
from the set Var U Keys U Data with the operations
given in Figure 3. There, the symbols E, E’, and E”
denote terms inductively constructed in this way. Note
that encryption encg/(E) is often written more shortly as
{E}g, and that we sometimes use a specific notation
symencg (E) for symmetric encryption (although these
alternative notations are both “syntactic sugar” without
impact on the formalisation). In this term algebra, we
impose the following equations, formalising the fact that
decrypting with the correct key gives back the initial
plain-text, and similarly for verification of signatures:
decg-1(encg(E)) = E (for all E € Exp and K € Keys) and
verg/(E,E") = true (for all E € Exp and K € Keys). We
also assume the usual laws regarding concatenation, head (),
and tail(), and that K = K~! for any symmetric encryption
key K.

A cryptographic protocol can then be verified for
the relevant security requirement such as secrecy and
authentication using the UMLsec tools presented above,
which rely on a translation from the UMLsec sequence
diagram to a security-sensitive interpretation in FOL-based
on the Dolev-Yao attacker model as explained in [2], which
is then verified using automated theorem provers for FOL.
The idea here is that an adversary can read messages sent
over the network and collect them in his knowledge set. The
adversary can merge and extract messages in the knowledge
set and can delete or insert messages on the communication
links. The security requirements can then be formalised
using this adversary model. For example, a data value
remains secret from the adversary if it never appears in the
knowledge set of the adversary.

We now explain how to analyse the UMLsec specification
by making use of our translation from cryptographic
protocols specified as UML sequence diagrams to FOL
formulae which can be processed by the automated theorem
prover e-SETHEO [26]. The formalisation automatically
derives an upper bound for the set of knowledge the
adversary can gain. The usage of the FOL generation
explained in the following is complementary to the model-
level security analysis mentioned above: Although using
the approach described earlier one can make sure that
the specification is secure, this does not imply that the
implementation is secure as well, since we cannot make
any assumptions on how it was constructed (as we would
like to deal in particular with legacy implementations such
as OpenSSL). The FOL-based approach described in the
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VE1,E;.(knows(E1) A knows(E) = knows(E| :: E2) Aknows({E1}E,) A knows(signg, (E1)))
A(knows(Ej :: E5) = knows(E; ) Aknows(E>)) A (knows({E; }£,) A knows(E; ') = knows(E))
/\(knows(signEgl (E1)) Aknows(E>) = knows(E}))

FIGURE 4. FOL rules for attacker knowledge generation

PRED(l) = Vexpy,...,exp,.(knows(exp;) A... Aknows(exp,) A cond(expy,... exp,)
= knows(exp(expy,...,exp,) A PRED(I')))

FIGURE 5. FOL rule for attacker interaction

following therefore has the goal to verify the UML sequence
diagram against the given security requirements such as
secrecy.

The idea is to use a predicate knows(E) meaning that the
adversary may get to know E during the execution of the
protocol. For any data value s supposed to remain secret as
specified in the UMLsec model, the FOL formalisation will
thus compute all scenarios which would lead the attacker to
derive knows(s).

The FOL rules generated for a given UMLsec
specification are defined as follows. For each
publicly  known  expression E, one  defines
knows(E) to hold. The fact that the adversary may
enlarge his set of knowledge by constructing new ex-
pressions from the ones he knows (including the use of
encryption and decryption) is captured by the formula in
Figure 4.

For our purposes, a sequence diagram is essentially a
sequence of command schemata of the form await event
e — check condition g — output event e’ represented as
connections in the sequence diagrams (where e is a variable
of the type Exp defined above and €' is a term which
evaluates to a value of type Exp). Connections are the
arrows from the life line of a source object to the life line
of a target object which are labelled with a message to be
sent from the source to the target and a guard condition that
has to be fulfilled.

Suppose we are given a connection [ =
(source(l),guard(l), msg(l),target(l)) in a sequence
diagram with guard(l) = cond(arg,,...,arg,), and
msg(l) = exp(argy,...,arg,), where the parameters arg;
of the guard and the message are variables which store the
data values exchanged during the course of the protocol.
Suppose that the connection !’ is the next connection in the
sequence diagram with source(l’) = source(l). For each
such connection /, we define a predicate PRED(/) as in
Figure 5. If such a connection I’ does not exist, PRED(!) is
defined by substituting PRED(!’) with true in Figure 5.

The formula formalises the fact that, if the adversary
knows expressions expy,...,exp, validating the condition
cond(expy,...,exp,), then he can send them to one of the
protocol participants to receive the message exp(expy, ...,

expn) in exchange, and then the protocol continues. This
way, the adversary knowledge set is approximated from
above (e.g. one abstracts away from the message sender and
receiver identities and the message order). In particular,
one will find all possible Dolev-Yao type attacks on the
protocol, but execution traces may also be generated that are
not actually executable for a valid implementation. This has
however not been a problem in practical applications of the
approach.

For each object O in the sequence diagram, this gives
a predicate PRED(O) = PRED(I) where [ is the first
connection in the sequence diagram with source(l) =
O. The axioms in the overall FOL formula for a given
sequence diagram are then the conjunction of the formulae
representing the publicly known expressions, the formula in
Figure 4, and the conjunction of the formulae PRED(O) for
each object O in the diagram. The conjecture, for which the
automated theorem prover will check whether it is derivable
from the axioms, depends on the security requirements
contained in the class diagram. For the requirement that the
data value s is to be kept secret, the conjecture is knows(s).
An example is given in the next section.

2.3. Application to SSL

We have applied the approach to the core part of
the SSL 3.0 handshake protocol given in Figure 6 to-
gether with the open source Java implementation JESSIE
(http://www.nongnu.org/jessie) of the Java Secure Socket
Extension as will be presented as a running example
throughout this paper. SSL is the de-facto standard for se-
curing http-connections and is therefore an interesting target
for a security analysis. It may be interesting to note that early
versions of SSL (before becoming a “standard” renamed as
TLS in RFC 2246) had been the source of several significant
security vulnerabilities in the past [27]. In order to simplify
the exposition, we concentrate on the fragment of SSL that
uses RSA as the cryptographic algorithm and provides server
authentication (there is no specific reason why we chose this
particular fragment, and we concentrate on a fragment just
to simplify the explanations). The protocol participants (here
the instances C of class Client and S of class Server) are rep-
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C:Client

S1: ClientHello(Pver, R ., 5id, Ciph[], Compl])

S:Server

) 4

F 3

S2: ServerHello(Pver, R ¢, 5id, Ciph, Comp)

53 Certificate(X509Certg)

54: ClientKeyExchange(ency . (FMS))

S5: Finished(symency (md5), symency, (sha)

v

S6: Finished (symency (md5), symency, (sha))

[md5. = md5 A sha; =sha]

[ver(cert]]
[md5; =md5 A shag'=sha] | |4
Ry =args,,

cerig’=args,

K;= getkey(certg)
Kz=kgen(pms. R . R.))
md3g = symdecy (argg,,)
sha; "= symdecy (args,,)

S7: ExchangeData

R¢ =argg,

pms = decy L (arge, )
Ki=kgen(pms" B R.)
mdi; = symdecy (arg )
sha. = symdecy (arg;,,)

FIGURE 6. Handshake protocol of SSL3 using RSA and Server Authentication

resented by vertical boxes, and the messages between them
are represented by arrows. A logical expression next to an
outgoing arrow is the guarding constraint that needs to be
checked by the relevant protocol participant before the mes-
sage is sent out. The assignments specified below the model
in Figure 6 describe how the data that is received should be
used by the receiving instance. Here the expression arg; , p
corresponds to the pth element of the nth message sent by the
object instance i. For example, Rg‘:=args i 1 means that the
random number Rg, which was sent by the server in the mes-
sage ServerHello, is stored in the variable Rg* at the Client,
after receiving the message. In the guards, the local designa-
tions are used. The guard [ver(certs)] means that the certifi-
cate X509Cert_s previously received from the server must
be verified. The guards [md5s’ = md5 A shag’ = sha] and
[md5¢’ = md5 A shae’ = sha] express the condition that
the hash values of the instance which receives a Finished
message have to agree with the hash values of the other in-
stance. K is the symmetric session key which is created sepa-
rately at each of the protocol partners, making use of the pre-
master secret PMS. The values md5 and sha used as mes-
sage arguments are created by the sender of the respective
message by using the MD5 respectively SHA hash algorithm

over the message elements received so far. ExchangeData
represents the communication of data over the established
channel once the handshake protocol is finished and also
has an associated guard. For simplification, we specify the
encryption of a compound message as the concatenation of
the encryptions of the separate message elements (for exam-
ple Finished(symencg(md5), symenck(sha)) rather than
Finished(symenck(mdS::sha))); we assume that type or
message confusion attacks are ruled out using the usual pro-
tocol design rules not under investigation here.

We used the UMLsec tools to verify the UMLsec model
of the SSL protocol (cf. Figure 6) against relevant security
requirements such as secrecy. Verifying secrecy of a value s
can be done by checking whether the statement knows(s)
is derivable from the FOL formulae generated from the
protocol specification. In each case, the properties were
proved within less than a minute, e.g., the verification of
the secrecy of the master secret communicated in the SSL
protocol took 2 seconds.

3. LINKING MODELS TO CODE

We now explain how to link the formally verified
specification to a crypto-based implementation which may
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not be trustworthy (for example, it might have been
implemented insecurely from a secure specification, either
maliciously or accidentally), in a way that enforces the
security of the running system. That is, we use (online)
run-time verification (cf. [7, 8, 9]; see also Section 3.1 for
a detailed overview of this technique) to check whether
or not the implementation conforms to our formal security
properties while it executes. We currently focus on Java as
the implementation language.

3.1. Run-time Verification using LTL

In a nutshell, run-time verification is a formal but dynamic
technique to establish whether or not an executing system
adheres to a predefined property (or a set thereof), by
monitoring whether the system satisfies the property while
it is used. Properties are typically specified in a temporal
logic, such as LTL [28], and the object under scrutiny is
the actual system and not its representation in terms of an
abstract model or code as is the case with a static technique.

As such, run-time verification bears not only strong
resemblance to testing since both techniques are dynamic, as
already pointed out in the introduction, but also to rigorous
formal verification methods such as (LTL-) model checking
(cf. [29]), for instance. The idea of (LTL-) model checking
is roughly as follows. A model of the system under scrutiny
is checked against a formal correctness property, usually
specified in terms of a temporal logic such as LTL, by
verifying that all possible executions specified by the model
adhere to the specified behaviour by the property. However,
depending on the temporal logic used, the complexities
of model checking range from polynomial in the size of
the system model and property to PSpace-complete in the
formula as is the case for LTL, which we are concerned with
in this paper. While model checking has been successfully
employed, e.g., for checking models of protocols (cf. [30]),
using it to verify software in terms of low-level source
code abstractions is still an active research subject due
to the large state-spaces that result from using low-level
models extracted from source code as compared to high-
level behavioural models such as sequence diagrams or state
machines (cf. [31, 32]). The advantage of model checking,
however, is that once correctness has been established, we
can be sure that the specified behaviour does, indeed, adhere
to the intended behaviour—all possible executions have been
checked. If model checking a system fails, then usually the
model checker returns a counterexample in terms of a system
execution that leads to the violation of the temporal logic
property. In such a case, the system can be repaired with
respect to the counterexample and perhaps model checked
again.

Run-time verification (cf. [7, 8]) is similar to the above in
the sense that it also employs, usually, a formal correctness
property, specified in temporal logic, to capture either
intended behaviour (i.e., when one is interested to detect
occurrence of a certain “good” behaviour), or unwanted
behaviour (i.e., when one is interested in detecting when
something “bad” has happened). However, model checking

is a static verification technique as it operates on the model-
level, whereas run-time verification operates directly on the
system implementation. Moreover from a formal point of
view, let L(M) be the language generated by some system
model and L(@) be the language of some formal property, @.
Then, model checking translates to checking whether or not
the formal language generated by the system is contained in
the formal language generated by the property, i.e., whether
L(M) C L(@) holds. Run-time verification, on the other
hand, asks for the answer of a word problem: Let u be the
prefix of some potentially infinite word w, which resembles
the system’s behaviour, then we want to know whether or
not w € L(@) after reading u. Or, in other words, we want
to know, after seeing the finite sequence of behaviour u,
whether or not for all possible extensions of u, our property
will be satisfied, violated, or neither. Note that the last
case simply means we have to wait for more behavioural
observations until we can give a conclusive answer to this
question. (For a more formal account on this form of run-
time verification, see Sections 3.1.2 and 3.1.4.).

From a methodological point of view, in run-time
verification, a so-called monitor, whose task it is to
observe the system behaviour as it executes, is automatically
generated from a security property (or a set thereof)
formalised as an LTL formula, also referred to as an LTL
property. This process is somewhat similar to constructing
finite automata from regular expressions [33], which are
also a formal means to define sequences of actions, i.e.,
system behaviour. If a monitor detects a violation of the
security property it raises an alarm, if it detects that a
security property was fulfilled it signals accordance, and
otherwise keeps monitoring the executing system. Unlike
regular expressions, temporal logic and, in particular, LTL-
based temporal logic, has established itself in the area of
formal verification and is nowadays frequently used also in
industry to define the behaviour of systems (cf. [34]).

3.1.1. Definitions and Notation
In what follows, we briefly recall some formal definitions
regarding LTL and introduce the necessary notation. First,
let AP be a non-empty set of atomic propositions, and
Y := 24" be an alphabet. Then infinite words over X are
elements from X® and are abbreviated usually as w,w/,....
Finite words over X are elements from X* and are usually
abbreviated as u,u’, . ... The notion of infinite words makes
sense when we consider the system under scrutiny being a
reactive system, where the assumption is that the system
is never switched off, and the words as a means to model
the observable behaviour of that system. In run-time
verification, however, we always observe only the prefix of
a potentially infinite behaviour, hence we need a reasonable
interpretation for LTL formulae over finite words as well.
More specifically, our monitors adhere to the semantics
introduced in [10] and realised by the open source monitor
generator in [11]. It is explained also in Section 3.1.4.

We will adopt the following terminology with respect to
monitoring LTL formulae. We will use the propositions in
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AP to represent atomic system actions, which is what will be
directly observed by the monitors introduced further below.
As an example, an action may correspond to a specific
function call, or a specific message that is sent or received
by a participant in a protocol. This depends somewhat on
the property being monitored, and the application at hand.
A more comprehensive example is discussed in Section 3.3.
Note also that, by making use of dedicated actions that
notify the monitor of changes in the system state, one can
also indirectly use them to monitor whether properties of
the system state hold. Thus, we can use the terms “action
occurring” and “proposition holding” synonymously. We
will refer to a set of actions as an event, denoting the fact
that certain actions may have occurred simultaneously, or
that a certain state holds, described by a set of actions.

3.1.2. LTL Syntax and Semantics
The set of LTL formulae over X, written LTL(Y), is
inductively defined by the following grammar:

Qu=true|[p|-0|oVo|oUo|Xo,

The semantics of LTL formulae is defined inductively over
its syntax as follows. Let @,Q;,9, € LTL(X) be LTL
formulae, p € AP an atomic proposition, w € X® an infinite
word, and i € N a position in w. Let w(i) denote the ith
element in w (which is a set of propositions).

The (infinite word) semantics of LTL formulae is then
defined inductively by the following logical statements.

p € AP.

w,i [ true

w,i = - & wilEe

wilE=p < pew(i)

WiEQIVe & wikEoQ VwiE@

wiEQUp, < Jk>iwkE@A
Vi<l<kowl o
(“1 until 927

w,i =X < witlEQ  (“next@”)

Here w,i denotes the ith position of w. We also write w = @,
if and only if w,0 = ¢, and use w(i) to denote the ith element
in w which is a set of propositions, i.e., an event. (Notice the
difference between w, i and w(i).)

Intuitively, the statement w, i |= @ is supposed to formalise
the situation that the event sequence w satisfies the formula
¢ at the point when the first i events in the event sequence w
have happened. In particular, defining w,i |= true for all w
and { means that true holds at any point of any sequence of
events.

Further, as is common, we use F¢ as short notation
for trueU¢@ (intuitively interpreted as “eventually ¢”), G@
short for —F—¢ (“always ¢”), and ¢; W@, short for G V
(91 U@, ), which is thus a weaker version of the U-operator.
For brevity, whenever ¥ is clear from the context or
whenever a concrete alphabet is of no importance, we will
use LTL instead of LTL(X).

3.1.3. Examples
We give some examples of LTL specifications. Let p € AP
be an action (formally represented as a proposition). Then

GFp asserts that at each point of the execution of any of the
event sequences produced by the system, p will afterwards
eventually occur. In particular, it will occur infinitely often
in any infinite system run.

For another example, let @1, @, € LTL be formulae. Then
the formula @U@, states that @; holds until ¢, holds and,
moreover, that @, will eventually hold. On the other hand,
Gp asserts that the proposition p always holds on a given
trace (or, depending on the interpretation of this formula,
that the corresponding action occurs at each system update).

3.1.4.  Finite-Word Monitor Semantics

To see how our monitors cope with the situation that at
run-time only prefixes of potentially infinite words are
observable, we also outline the semantics employed by
the monitors, which is slightly different from the above
LTL semantics, but based on it. Notably, it is a 3-valued
semantics and defined as follows. Let ¢ € LTL, and u € £*.
Then, a monitor for @ returns the following values for a
processed u, written [u = @]:

T, ifforall veX® we have uv = ¢
uEo:=¢ L, ifforallveX®we have uv =@
7, otherwise.

The [-] is used to separate the 3-valued monitor semantics
for @ from the classical, 2-valued LTL semantics introduced
above.

In other words, this definition says that a monitor which
was generated for a formula ¢ will, upon reading some prefix
u, return T if for all possible extensions of u the infinite word
semantics is fulfilled (i.e., uv |= @), and _L if for all possible
extensions of u the infinite word semantics is violated (i.e.,
uv = @). Moreover, if there exists an extension v to u such
that uv’ € @, and there exists another extension v" such that
w' & @, then the monitor returns ? and keeps monitoring
until « is long enough to allow for a conclusive answer (i.e.,
Tor L).

Such conclusive prefixes are also referred to as good
(respectively bad) prefixes (cf. [8]) with respect to the
monitored language that is given by ¢. From that point of
view, we can say that a monitor detects good (respectively
bad) prefixes for the monitored property. Note, however, that
not all properties that can be formalised in LTL necessarily
have such a good or a bad prefix. Therefore, monitoring
is often restricted to so called safety properties, where
violations can be detected via bad prefixes (cf. [35]). In
contrast, our monitoring procedure is not restricted to safety
properties alone, but also to properties that lie outside
this language-theoretic categorisation. For a more detailed
comparison between the approach discussed in [35] and our
monitoring framework, see [8].

3.2. Linking Cryptographic Protocol Models to Code

In this section, we explain how to approach the problem of
creating a link between the cryptographic protocol model
and its implementation.
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Note that our aim is not to provide a fine-grained formal
refinement from the specification to the code level. Such
a refinement would require a formal behavioural semantics
both of the model and the implementation of the protocol.
Although such semantics exist in principle for our modelling
notation (UMLsec) as well as the implementation language
(Java), their treatment requires several chapters (in [1])
respectively, even an entire book on its own (such as [36]).
Such a treatment would exceed the goals of the current work.

Fortunately enough, for our purposes it is not necessary
to construct a fine-grained refinement relation, but it is
sufficient to create a link between the points in the
specification and the code where a message is received,
where the required cryptographic check is performed, and
where the next message is sent out (as explained below).
Since our goal is to use run-time verification, rather than
static verification of the code, we only need to consider these
points in the code, and therefore do not depend on a full
formal semantics for all of Java: instead of referring to a
static semantics of Java, we will refer to a given, concrete
execution trace at run-time, and with respect to that, we only
need to consider the messages that are received and sent
out, and make sure that the necessary checks are performed
in between. Indeed, this is one of the advantages in using
run-time verification compared with static verification. We
only need to know which library functions need to be called
to receive or send messages from or to the network, and
be able to determine whether the required cryptographic
checks have been performed in between. The link between
the relevant points in the model and the implementation is
defined formally, although, as argued above, it is sufficient
to do this on a syntactic (rather than semantic) level. An
example for that is given in the next section in Table 1.

There is a distinct advantage, from a practical point of
view, to work with a relatively abstract specification model,
which is directly linked by a mapping to the implementation
level: when the implementation changes (which usually
happens quite frequently during the lifetime of a piece of
software like a cryptographic protocol), this minimises the
amount of changes that have to be done at the model level,
but as far as possible localises the necessary changes to the
model-code mapping itself. This is a practical advantage,
in so far as the problem of keeping a model in synch with
the changing code base is one of the major impediments
to a larger update of rigorous model-based development
approaches in practice.

As explained above, the cryptographic algorithms are
viewed as abstract functions. In our application here, these
abstract functions represent the implementations from the
Java Cryptography Architecture (JCA). The messages that
can be created from these algorithms are then as usual
formally defined as a term algebra generated from ground
data such as variables, keys, nonces, and other data using
symbolic operations. These symbolic operations are the
abstract versions of the cryptographic algorithms. Note that
the cryptographic functions in the JCA are implemented as
several methods, including an object creation and possibly
initialisation. Relevant for our analysis are the actual

cryptographic computations performed by the digest(),
sign(), verify(), generatePublic(), and generatePrivate()
methods which correspond to the abstract operations
hash(E), signg/(E), verg/(E,E"), kgen(E) from Figure 3.
Encryption and decryption are implemented in the JCA
using the functions nextBytes() (encrypting or decrypting
the next bytes of a message, depending on context), and
doFinal() (finalising the encryption or decryption process).
As mentioned above, our goal is not to provide a precise
representation of the cryptographic generation process from
the code level on the model level, but only to compare the
values that were created at the points where they are received
from or sent to the network.

First, we need to determine how important elements at the
model level are implemented at the implementation level.
This can be done in the following three steps:

e Step 1: Identification of the data transmitted in the
sending and receiving procedures at the implementation
level.

e Step 2: Interpretation of the data that is transferred and
creation of a mapping to the relevant elements in the
sequence diagram.

e Step 3: Identification and analysis of the cryptographic
guards at the implementation level.

In step 1, the communication at the implementation level
is examined and it is determined how the data that is sent and
received can be identified in the source code, with the goal to
relate it to the model level. Afterwards, in step 2, a meaning
is assigned to this data. The interpreted data elements of
the individual messages are then linked to the appropriate
elements in the model. In step 3, it is described how one can
identify the guards from the model in the source code with
the goal to ensure that the guards specified in the sequence
diagram are correctly implemented in the code.

To be able to determine the data that is sent and
received, it first needs to be identified at which points in
the implementation messages are received and sent out,
and which messages these exactly are. To be able to
do this, we exploit the fact that in many implementations
of cryptographic protocols, message communication is
implemented in a standardised way (which can be used
to recognise where messages are sent and received). The
common implementation of sending and receiving messages
in cryptographic protocols is through message buffers,
by writing the data into type-free streams (ordered byte
sequences), which are sent across the communication link,
and which can be read at the receiving end. The receiver is
responsible for reading out the messages from the buffer in
the correct order in storing it into variables of the appropriate
types. We assume that each message is represented by
a message class (as done in many implementations such
as JESSIE or JSSE). It stores the data to be written
in the communication buffer. Conversely, this class can
also read messages from the communication buffer (this
communication principle is visualised in Figure 7). We
found that this mechanism is implemented at the class
level using the methods write() (for sending messages), and
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Send Receive
write(data, ),..., write(data,,) read(data, ),...,read(data )
x
‘ N Buffer bytes > Buffer

FIGURE 7. Communication in the SSL protocol

read() (for receiving them). Furthermore, the occurrences
of the method write() (respectively, read()) which are
called at the class java.io.OutputStream (respectively,
java.io.InputStream) are used to identify the individual
message parts within the communication procedure in the
form of parameters that are delivered or the assignments
made.

In the next subsection, we will explain how the ideas
explained above were used in the application to the SSL
Implementation JESSIE.

3.3. Security Monitoring the SSL Implementation
JESSIE

We now explain how we applied run-time verification to the
implementation of the Internet security protocol SSL in the
project JESSIE, which is an open source implementation of
the Java Secure Sockets Extension (JSSE). JESSIE 1.0.1 has
27271 lines of uncommented code in Java (measured using
the sloccount utility).

First, we explain how we applied the approach for linking
cryptographic protocol models to code (as explained in the
previous section) to the case of JESSIE.

In our particular protocol, setting up the connec-
tion is done by two methods: doClientHandshake()
on the client side and doServerHandshake() on the
server side, which are part of the SSLsocket class in
jessie —1.0.1/org/metastatic/jessie/provider. After some
initialisations and parameter checking, both methods per-
form the interaction between client and server that is
specified in Figure 6. Each of the messages is imple-
mented by a class, whose main methods are called by the
doClientHandshake(), respectively doServerHandshake(),
methods.

As explained above, communication is implemented as
follows: With the method call msg.write(dout, version),
the message msg is written into the output buffer dout.
Each occurrence of such a method call can be identified
and associated with the specification of sending a message
in a UMLsec sequence diagram (by an outgoing arrow
from the life line of the sender). The method call
dout.flush later flushes the buffer. The assignment msg =
Handshake.read reads a message from the buffer during
the handshake part of the protocol. As an example, the
code fragment for initialising and sending the ClientHello
message is given in Figure 8.

In order to be able to construct a link between the im-
plementation with the abstract model, we must first deter-
mine for the individual pieces of data how they are imple-
mented on the code level. For example consider the vari-
able randomBytes written by the method ClientHello to

TABLE 1. Mapping messages from symbols to program entities

Symbols Program entities
1.C clientHello
2.8 serverHello
3. Pyer session.protocol version
4. Rc clientRandom
Ry serverRandom
5. 8iq sessionld
6. Ciph[] | session.enabledSuites
7. Comp|] | comp
8. Veri Lines 1518-1557
9. Dy getNotBefore()
Dna getNotAfter()

the message buffer. By inspecting the location at which
the variable is written (the method write(randomBytes)
in the class Random), we can see how exactly the value
of randomBytes is defined. In particular, the contents
of the variable depends on the initialisation of the cur-
rent random object and thus also on the program state.
Thus we need to trace back the initialisation of the ob-
ject. In the current program state, the random object
was passed on to the ClientHello object by the construc-
tor. This again was delivered at the initialisation of the
Handshake object in SSLSocket.doClientHandshake()
to the constructor of Handshake. Here (within doClien-
tHandshake()), we can find the initialisation of the Ran-
dom object that was passed on. The second parame-
ter is generateSeed() of the class SecureRandom from
the package java.security. This call determines the value
of randomBytes in the current program state. Thus the
value randomBytes is mapped to the model element R¢
in the message ClientHello on the model level. For
this, java.security.SecureRandom.generateSeed() must
be correctly implemented.

In the case of the SSL protocol, we had to link the
symbols in its UMLsec specification in Figure 6 to their
implementation in JESSIE version 1.0.1. To illustrate this,
Table 1 presents nine example instances of this mapping.
The first column shows the names of symbols as used in the
cryptographic protocol model. The second column shows
the names of corresponding program entities in the JESSIE
library. Here one can also see that in general there does
not need to be a one to one correspondence between the
design and the code. For example, the design symbol Veri
is implemented by a code fragment spread out over several
lines of the code.

We now explain in particular how one can use run-
time verification to increase one’s confidence that the
implementation adheres to the security properties previously
demonstrated at the model and code levels. Note that
our goal is not to provide a full formal verification of the
correctness of the implementation against the specification,
but to raise one’s confidence in its security by demonstrating
that certain particularly security-relevant parts (such as the
checking of cryptographic certificates) are securely included
into the implementation context. However, as discussed at
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ClientHello clientHello = new ClientHello(session.protocol, clientRandom,
sessionld ,session.enableSuites ,comp, extensions );
Handshake msg = new Handshake (Handshake.TYPE.CLIENT_HELLO, clientHello);

msg. write (dout, version);

FIGURE 8. Initialising and sending the CLIENT_HELLO message

the beginning of the last section, run-time verification can
provide a higher level of assurance for crypto-based software
than for example model-based testing, since full test
coverage is in general not achievable for highly interactive
and complex software like cryptographic protocols.

According to the information that is contained in a
sequence diagram specification of a cryptographic protocol,
the run-time verification needs to keep track of the following
information:

(1) Which data is sent out? and
(2) Which data is received?

The run-time checks will enforce that the relevant part of
the implementation conforms to the specification in the
following sense.

(1) The code should only send out messages that are
specified to be sent out according to the specification
and in the correct order, and

(2) these messages should only be sent out if the conditions
that have to be checked first according to the
specification are met.

An example of such a property in the case of the SSL-
protocol specified in Figure 6 is given by the following
requirement that arises from the above discussion:

“ClientKeyExchange(enck,(PMS))  is  not
sent by the client until it has received the
Certificate(X509Cer,) message from the server,
has performed the validity check for the certificate
as specified in Figure 6, and this check turned out
to be positive.”

Next, we explain how to capture such a requirement using
LTL. Together with Figure 6, this requirement gives rise to
the following set of atomic propositions:

AP := {ClientKeyExchange(encg, (PMS)),
Certificate(X509Cers)},

whose names correlate with the ones displayed in Figure 6.
Notice that LTL as introduced above does not cater for
parameters. Therefore, parameters in an action’s name are
not a semantic concept, but merely syntactic sugar to ease
readability and establish a link with the names used in
Figure 6. The link from symbol names to the actual names
used in the monitor, and finally in the implementation code
of JESSIE, is also exemplified by Table 5. Based on AP we
can now formalise the required property in LTL as follows:

¢ := ~—ClientKeyExchange(encg, (PMS))
WCertificate(X509Cers).

The formula uses the “weak until” operator, which in
particular allows for the fact that if the certificate is
never received, then the formula is satisfied if in turn
the message ClientKeyExchange(enck,(PMS)) is never
sent.  This meets our intuitive interpretation of the
“until” in the natural language requirement because if,
for example, a man-in-the-middle attacker deletes any
certificate message sent by the server, we cannot possibly
demand that ClientKeyExchange(encg, (PMS)) should be
eventually sent by the client. The derived monitor will later
signal the value T (“property satisfied””) once the certificate
was received and checked, L (“property violated”) if the
client sends the key without a successful check, and it will
signal the value ? (“inconclusive”) as long as neither of the
two conditions holds. Recall that the stream of events that
is processed by the monitor consists of elements from 247
(i.e., the powerset of all possible system actions). That is, at
each point in time, the monitor keeps track of both events:
the sending of ClientKeyExchange(enck,(PMS)) and the
receiving of Certificate(X509Cers). Hence, as long as none
of the events is observed, the monitor basically processes the
empty event.

Once we have formalised the natural language require-
ments in terms of LTL formulae as above, we can then use
the tool from [11] to automatically generate finite state ma-
chines (FSMs) from which we derive the actual (Java) mon-
itor code. The FSMs obtained from the tools are of type
Moore, which means that, in each state that is reached, they
output a symbol (i.e., 2, T (TOP), L (BOT), or ?). States are
changed as new system actions become visible to the mon-
itor. In that sense, the states keep track of the context in
which new actions are to be interpreted. For example, there
may be an action, such as the sending of a secret key, which
constitutes a security violation in one context, but is a neces-
sary and desired action in another context, e.g., as part of a
protocol. The monitor’s states keep track of the current con-
text, and the reaching of a new state means reaching a new
context in which to interpret future actions. The FSM gener-
ated for the run-time security property ¢ is given in Figure 9.
The initial state is (0,0) whose output is ?. If event {cerr}
occurs, short for {Certificate(X509Cers)}, then the monitor
takes a transition into state (1, —1) and outputs T to indicate
that the property is satisfied. On the other hand, if neither
cert nor cke, short for ClientKeyExchange(encg, (PMS)),
occurs, then the automaton remains in (0,0) and outputs
? anew, indicating that so far @ has not been violated, but
also not been satisfied. A violation would be the reaching
of (—1,1), if event {cke} occurs (before cert), such that the
monitor would output L. Here is an example run of the client
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=(<empty>)(cert&&cke)cert)cke)

FIGURE 9. Automatically generated FSM for the property

which first yields ? as output for three time steps until, fi-
nally, T is returned in the fourth because the message was
sent but the certificate also received and checked:

w:={{},{}{} {cert,cke}).

At this point this particular monitor may stop monitoring
for the remaining session. On the other hand, consider the
following run:

w' = ({3 {3} {cke}).

This run is indicative that the client has attempted to send
ClientKeyExchange(enck, (PMS)) prematurely, resulting in
the monitor returning L in the fourth time step. In formal
terms, for all v € X® we have uv = ¢ (i.e., [u =] = T), and
for all v € £® we have u'v |~ ¢ (i.e., [W' = @] = L1). On the
other hand, if we shortened u and «’ by one observation, we
obviously would have [u |= @] = ?and [« | @] = ?.

Further properties as the ones above, which are
monitorable in this particular application, are also discussed
in [8]. The relationships between symbol names used in
these specifications, the monitor FSMs, and the code are
then given in Table 5 on page 21.

A Note on Efficiency The monitors we generate for each
security property are minimised in a sense that we find a
smallest possible state machine which corresponds exactly
to the language of the security property by exploiting the
well-known Myhill-Nerode equivalence relation between
states of a finite automaton (cf. [37]). The latest version of
our monitor generation tools [11] perform this minimisation
and thus return the smallest monitor possible for a given
language. In other words, it is not possible to find a
smaller monitor without altering the monitored language,
i.e., the generated monitors are optimal. Therefore, the
efficiency of the proposed method solely depends on the
respective security property chosen, i.e., the formal language
it gives rise to and the means by which the state machines
are implemented for the application at hand. Specifically,
efficiency depends on

(1) the number of states in the monitor, which is
the smallest number possible by the Myhill-Nerode
equivalence,

(2) the time it takes to accept a system action and to change
state in the monitor, and

(3) the time it takes for the monitor to emit the
corresponding output symbol.

However, if the monitor contains only a very small number
of states, as was the case in our examples, then it is very
difficult to effectively measure items 2 and 3 in the above list
of items, because they require only microseconds (or less)
and exact measurements in these ranges can only be obtained
reliably using real-time operating systems. However, due
to the monitors being optimal in the above sense, we have
a guarantee that the run-time overhead is minimal, which,
indeed, resulted in no noticeable performance changes
in our application. It may, however, be the case that
for very involved specifications to be monitored in other
application domains, that there is a noticeable overhead
and that, indeed, additional resources are necessary to
facilitate this technique. After all, the monitors are of
worst-case exponential size with respect to the specification,
and sometimes the worst case cannot be avoided, which
is particularly limiting when the formula was already of a
large size to begin with. Our experiences with the given
application, however, did not reveal such cases, which leads
us to believe that in many practical situations the worst-case
behaviour can be avoided. Moreover, after minimalisation,
the state-space of the generated monitors was < 10 states,
which is a good indication for how efficiently this method
can be implemented.

Notice also that run-time verification is a method which
scales well, in a sense that the size of the system under
scrutiny does not impact on the efficiency of the method.
Run-time verification operates on a concrete behaviour,
whereas static verification techniques like model checking
or ones which try to establish correctness with the help of
a theorem prover, as we have laid them out in Section 2,
explore the overall state-space of a system imposed by
a model representation of it. Naturally, as system sizes
increase, it affects the efficiency of such techniques, whereas
run-time verification stays constant.
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4. MAINTAINING TRACEABILITY UNDER EVO-
LUTION

There are two kinds of traceability associated with our use
of run-time verification. First, as discussed in Section 3, we
use it as a tool to trace high-level security properties beyond
code and down to the actual execution level. Second, we
have to tackle traceability within our run-time verification
framework itself as security properties and the code change,
which may affect the generated monitors. In this section, we
focus mainly on the second kind of traceability with regard
to run-time verification; that is, we examine how our LTL
properties and monitors are affected by changes of the high-
level security properties and of the implementation code.

We now explain how to maintain the traceability link
constructed using the approach explained in the previous
section in the presence of code evolution. We then explain
how to apply the approach for run-time security verification
explained in the previous section in this situation.

4.1. Evolution as Code Refactoring

Software refactoring [38] by definition changes the
internal structure of an implementation without changing
its externally observable behaviour. By this definition,
refactoring transformations are program transformations that
preserve externally observable program behaviour. Note
that therefore transformations that change the externally
observable behaviour of a program are beyond the definition
of refactoring, and thus not considered in the following.
Modification of the behaviour due to refactoring would be
considered a bug of the refactoring engine that needs to be
fixed eventually.

In practice, the refactoring engine in programming IDEs
implements a subset of possible refactoring transformations
which are commonly used in programming activities, such
as renaming, extracting methods, etc.

For example, the general refactoring engine in Eclipse
is provided by a set of plug-ins called the refactoring
Language Toolkit (LTK)[39], which allows one (1) to
perform refactoring operations, (2) to save the history of
refactoring operations into an XML-based script, and (3) to
apply a refactoring script automatically. The plug-ins are
applicable to any programming or specification language.
The Java Development Tool (JDT), for example, instantiates
LTK with a number of Java-specific refactoring operations.
Rather than refactoring Java source, another refactoring tool
in the Plugin Development Environment (PDE) instantiates
LTK with a number of refactoring operations specific for the
plug-in metadata.

We use refactoring scripts to maintain traceability
between a design and its evolving implementations.
Modern IDEs such as Eclipse support refactoring by
automated scripts, allowing users to perform, record and
replay refactoring steps as if they were basic editing
operations. The advantage over traditional editing scripts
is that refactoring scripts preserve the externally observable
behaviour of the program. Otherwise, Eclipse would
reject the execution of an operation that might change the

behaviour. For example, renaming class field x to y will
change behaviour if there is already a local variable y
in some method(s), because the renamed references to x
will now become references to the local variable. This is
carefully excluded by Eclipse.

However, such basic refactoring support is inadequate
for our purpose, namely to maintain traceability between
changing code bases. For example, adding or deleting
a single space can make the extract.method (see below)
operation inapplicable. To enhance reusability of refactoring
operations regarding such kind of code changes, we
extended the Eclipse Refactoring Language Toolkit (LTK)
using a new approach to make the operating context of
refactoring more tolerant to changes. To ease specifying
these refactoring operations, we also implemented a utility
to convert refactoring scripts saved from Eclipse into our
specification language.

An llustrative Example To illustrate Java refactoring,
Figure 10 shows a running example specific to Eclipse JDT,
where a series of refactoring operations are applied to a small
“Hello World” program.

Assume that initially the source file abc.java is located at
a source folder Src in the project abc. A series of refactoring
operations are applied as follows. Step 1: The class
abc is renamed to hello and abc.java is also renamed to
hello.java, accordingly. This refactoring operation is called
rename.type. Step 2: The statement System.out.printin is
extracted into the body of a new method print_ hello(). This
operation is called extract.method. Step 3: The expression
"Hello” is explicitly assigned to a new local variable string.
This operation is called extract.temp. Finally, Step 4: The
method main2 is renamed to a new method name main.
This last operation is called rename.method.

After performing the above refactoring operations in
Eclipse one can save the history into a refactoring script.
Such a script can be automatically applied on the original
code again to replay the changes. Figure 11 shows a
snippet from the refactoring script in XML format. It briefly
specifies the rename.type and extract.method operations
used in the first two steps.

Every refactoring is recorded as an XML element
refactoring, whose attributes specify the operation. Ev-
ery operation has an identifier ID, indicating the type of
the operation. Here, org.eclipse. jdt.ui.rename.type
is the internal name used by JDT for rename.
type refactoring. For readability, we omit the common
prefix in the following and call it rename.type. The tar-
get of a refactoring operation for rename.type is a new
class name, whereas the target for extract.method is a new
method name. They are completely specified by the name
attribute. On the other hand, the source of a refactoring
operation is suggested by attributes including project, input
and optionally selection. The values of these attributes
typically indicate the context of an operation. The project
attribute specifies the subject project of the refactoring oper-
ation; the input attribute specifies the source folder, package
and class name in which the source element is refactored;
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/% $workspace/abc/src/abc. java x/
public class abc {
public void main2(String args[]) {
System.out. println (”Hello”);
}

}
Step 1. rename.type
/% $workspace/abc/src/hello.java =/
public class hello { ... }
—— Step 2. extract.method ——
public void main2(String args[]) {
print_hello ();

private void print_hello () {
System.out. println (”Hello”);
}

Step 3. extract.temp

String string = “Hello”;

System.out.println(string);
—— Step 4. rename.method ——
public class hello {

public void main(String args[]) {

print_hello ();

}

private void print_hello () {

String string = “Hello”;

System.out. println (string);

FIGURE 10. A running example illustrates refactoring

<?xml version="1.0"?>
<session version="1.0">
<refactoring comment="..."
id="org.eclipse.jdt.ui.rename.type”
description="Rename type ’abc’”
project="abc” input="/src&lt;abc.java[abc”
name="hello” ... />
<refactoring comment="..."
description="Extract method ’print_hello ’”
id="org.eclipse.jdt.ui.extract.method”
project="abc” input="/src&lt;{hello.java”
name="print_hello” selection="64 28”
LI>

</session>

FIGURE 11.
Figure 10)

Operations of Eclipse refactoring script (cf.

the selection attribute, when used, specifies the exact offset
and length of the string selected for the refactoring.

In our example the extract.method refactoring is
applicable only if the selection of a substring of 28
characters starting from the offset 68 in hello.java matches
the statement to extract, character by character. Given such
strict specifications of refactoring contexts in Eclipse, we
can see that existing refactoring scripts are inadequate if
source code has been modified by evolution or by previously
applied refactoring operations, or when source code from a
different library implementation is used. For example, it is
required to modify the offset/length value if an extract.temp
operation was applied earlier.

4.2. Maintaining Model-Code Traceability

In this subsection, we explain how to maintain traceability
between a UMLsec specification of a cryptographic
protocol and its implementation while the code evolves (cf.
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FIGURE 12. Traceability for reuse

Figure 12).

We present our new refactoring engine that overcomes the
limitation of the native Eclipse JDT refactoring operations,
while making the refactoring operations reusable for
maintaining design traceability in different legacy code.

Specifically, we need to map any symbolic name S
that appears in the design model to an identifier / on the
implementation level.

Refactoring scripts are used for maintaining such
traceability: they guarantee that the externally observable
behaviour of the program is preserved as far as expressed
in the traceability links to the model level. We can apply the
mapping in a round-trip fashion:

(1) to convert the program entities to names on the design
level and

(2) to convert the names on the design level to names in the
implementation.

When a relation between a symbol S and an entity / in
the program is established, it will be maintained through
a number of refactoring operations that transform every
occurrence and update every reference of / into S.

When the program entity already has an identifier in a
form of class, method, field or local variable, renaming op-
erations such as rename.type, rename.method, rename.field
and rename.local.variable can be used; when the program
entity does not have an associated identifier, then extract-
ing operations such as extract.method, extract.temp and ex-
tract.field can be used to directly extract an identifier named
by S.

The renaming operations, when applied in low granularity
(e.g., rename.local.variable), are typically change sensitive
as a selection offset/length is required to specify the exact
context of source. The extracting operations, by definition,
always need to specify the context of the source explicitly.

The mapping between symbols and program entities is not
one to one. The same symbol from the design model may
be implemented differently in different contexts. Therefore
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SPECIFICATION := OPERATION SPECIFICATION
OPERATION := '@ ’{’ NAME °’,’ FIELDS ’}’
NAME := Identifier [ ’.  NAME ]

FIELDS := FIELD [’,’ FIELDS]

FIELD := KEY ’=’ VALUE

KEY := Identifier

VALUE := String

FIGURE 13. The extended BNF for the syntax of our refactoring
language

more than one refactoring operation can be applied to
resolve the symbol names. Since a symbol may even be
called differently in different parts of the program, the actual
program entities have to be checked to find out whether they
are the same throughout the design. Such checks must in
particular ensure that the name can be differentiated by using
the context of the messages.

If S is a complex design element, such as a message in a
message sequence chart, its mapping may at the same time
require a mapping from its arguments to their corresponding
identifiers. In order to create such a mapping, a sequence
of basic refactoring operations needs to be performed.
Therefore, such dependencies among refactoring operations
need to be respected.

As we have mentioned, the refactoring of 7 to S, when
applied after other editing/refactoring operations, have to be
carried out independently of the previous changes.

4.3. Reuse Support for Traceability Refactoring

One can reuse the traceability information discovered when
linking the implementation to the UML model. For example,
this can be done if one wants to apply the refactoring
operations defined for one version of the implementation
to a different version of that implementation, or to a
different library. To this end, we create a refactoring plug-
in that can apply parameterised refactoring operations'. Our
refactoring tool is implemented on top of LTK refactoring
plug-ins, which support languages beyond Java. In order
to limit the changes to the existing refactoring engine, we
invoke the context-specific refactoring operations in JDT
by instantiating a scripting template with the parameters
derived from our specifications.

In [40], Krueger classified software reusability as five
connected facets: abstraction, classification, selection,
specialisation and integration. Our traceability refactoring
engine supports this view.

Abstraction. An extended BNF grammar of the abstract
refactoring language is given in Figure 13.

A specification consists of one to many refactoring
operations. Every operation has a name indicating the class
that handles the refactoring and one to many fields. A field
is a pair of a key identifier and a value string. It is up to

I These automated refactoring tools (ART), including their source code
and examples in the paper, can be downloaded from the project subversion
repository linked from [4].

@{org.eclipse.jdt.ui.rename.type,
project="abc”, source="src”, package="",
class="abc”, mname="hello”

}

@{org.eclipse.jdt.ui.extract.method,
project="abc”, source="src”, package="",
class="hello”, method="main”,
toclass="hello”, name="print_hello”,
regexp="S.x(\" Hello\”);”,
count="1"

FIGURE 14. Our specification for refactoring (cf. Figure 11)

the refactoring class to decide the concrete list of fields to be
used.

Our declarative specification language abstracts away
context-sensitivity of existing refactoring operations and can
describe generally any refactoring operation supported by
LTK, beyond Java. The refactoring context is parameterised
to remove certain change-resisting dependencies (e.g.,
selection in Figure 11). Similar in format to that of BibTeX,
a specification consists of a list of entries. Each entry
is made of a list of fields, separated by a comma. The
first field is a key, which matches one type of the existing
refactoring operations (as in JDT). The remaining fields
are in the form of name="string” pairs, where the quoted
string can span multiple lines. As in Java, every quotation
in the string must be escaped. Depending on the type of
refactoring operations, the number of required fields may
vary. The main reason why we chose this format is to
support variability for recording refactoring operations.

Corresponding to Figure 11, the snippet in Figure 14 lists
two refactoring operations in our specification language.

Selection and Specialisation. Most fields have evident
meaning and usage as they correspond to the attributes in
the Eclipse refactoring scripts. We introduce the new fields
to compute the context (input) of the source element, such
as source, package. The fields regexp and count in this
specification indicate a selection to be refactored that is
matching a regular expression, counted from the beginning.
Our regular expression-based selection for context-sensitive
refactoring operations increases the chance of reusability
when changes happen to the code. In the implementation,
we can actually construct a regular expression from a normal
one by replacing white spaces with an arbitrary number
of white spaces. In this way, even if a programmer or
a code formatter inserted some indentation, the selection
can still be matched. Introducing count is done mainly to
be able to selectively refactor some instances of matching
selection rather than the first one. When unspecified, the first
matching selection will be chosen. The selection parameter
is specialised from the other parameters by parsing the Java
source file, searching for the method name in the given class
to obtain the offset to the method in the source range, and
then searching for the local variable in the source of the
selected method and adding its relative offset to the method
to obtain the absolute offset to the file.

Classification. As refactoring consists of a sequence of
operations, we classify existing refactoring operations by
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TABLE 2. Refactoring operations parameterised by our refactoring tool

ID change resistant? | context source selection | specified in Eclipse | our specification
org.eclipse.jdt.ui.rename.project no workspace | project project project
org.eclipse.jdt.ui.rename.folder no project folder folder folder
org.eclipse.jdt.ui.rename.package no folder package package package
org.eclipse.jdt.ui.rename.type no package class class class
org.eclipse.jdt.ui.rename.method no class method method method
org.eclipse.jdt.ui.move.method no class method method method
org.eclipse.jdt.ui.extract.method yes class statements (offset, len) (regexp [, count])
org.eclipse.jdt.ui.rename.local.variable | yes method variable (offset, len) (regexp [, count])
org.eclipse.jdt.ui.extract.local.variable yes method expression (offset, len) (regexp [, count])

context-sensitivity and discuss its impact on exchangeability
and invertibility.

Context-free operations are more reusable whereas
context-resistant or sensitive ones require more care. Since
it is more likely to have the other parts of the code
changed rather than the pattern of regular expressions,
our new refactoring operation becomes less sensitive to
code changes. According to our experience, when relaxed
patterns are used in the regular expression, the context
specification of refactoring operation is more tolerant to
changes.

In practice we have found that if one performs
larger-granularity refactoring operations (say, a) earlier
than smaller-granularity ones (say, b), the reusability of
refactoring operation sequences can be increased. To allow
reordering operations, side-effects of an operation on the
context of another must be captured by changes to their
parameters, i.e. a®b = b ®d. For example, the two
operations in our running example are not exchangeable. If
one were to swap their order, one needs to accordingly apply
the latter refactoring to the refactoring script of the former
one. If one would apply the extract.method operation first,
then the rename.type operation should be applied to the
specification such that it is a method in the class abc rather
than the class hello being extracted.

In Table 2, we list some JDT refactoring operations that
have been parameterised in our refactoring engine. We also
show which JDT operations are considered change resistant
and a brief description on how such limitations are resolved.

Integration.  After selection and specialisation, our
tool delegates the domain-specific (here Java) refactoring
integration tasks to LTK in Eclipse. We also support both
interactivity and transparency for programmers to preview
the effects of a refactoring if they choose to, and to
avoid manually constructing the specification from the saved
refactoring history in Eclipse.

The implementation of our refactoring plug-in adds two
command buttons to the Eclipse GUI: one of them performs
all refactoring operations automatically, while the other
brings up a dialogue for each operation to preview the
effects of a refactoring. This allows us to verify if there
are any potential maintenance problems arising from the
operation. For example, when renaming a variable to R_C,

we can see a warning message from the Eclipse IDE that, by
programming convention, it is not recommended to let the
name of a variable start with capital letters. However, since
our purpose is to facilitate the reuse of traceability in security
analysis, such a renaming does not affect programmers
because they can always edit the original source code.

Another utility program we implemented is a transforma-
tion that converts an XML-based refactoring script from the
Eclipse IDE into our own specification language. By such a
conversion, a string selected by offset and length is replaced
with a regular expression and its count of its matching occur-
rence. For the string selected, the utility generates a regular
expression with wildcards and an occurrence count such that
it could match precisely with the selection string in the refac-
toring context (e.g., a method body), while being agnostic to
the change to other parts of the program. For example, if
the extract.method is applied to a set of statements, they will
be remembered by the generated regular expression so that
the method can be matched even when the other part of the
method is changed.

After translation, the resulting specification is still further
customisable. We also implemented a headless tool to
invoke the functionality of the automated button as an RCP
command. The argument of the command provides the name
of a refactoring specification file.

4.4. The SSL Case Studies

In general, the run-time verification of a protocol like
SSL should be invariant to implementation changes if
the properties that are to be monitored are derived from
the specification of the protocol (unless, of course, the
specification of the protocol changes). In other words, if we
have a security property that we want a correctly operating
implementation of the SSL-protocol to adhere to at run-time,
we want a modified implementation to also adhere to this
property regardless of how it achieves it internally. This view
asserts that run-time verification considers the system under
scrutiny as a “black box™.

4.4.1.  Evolution in the JESSIE Case Study
To perform the model-based security analysis as explained
above on a different version of JESSIE, one only needs to
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modify the specifications of the refactoring operations that
provide the traceability of the model to the implementation
level, without making any other adjustments to our
refactoring engine. In particular, we considered the two
versions JESSIE 1.0.0 (released on June 9, 2004 according
to its CVS repository) JESSIE 1.0.1 (released on October 12,
2005 according to its CVS repository).

However, in the case of monitoring JESSIE, we linked
the run-time verification directly to code elements and,
therefore, changes to code may affect an existing integration
of a monitor. For example, in Section 3, we have defined
an abstract run-time security property in LTL and, in doing
so, have performed a mapping from elements in the design
model (and therefore also in the LTL formula) to elements
used in the monitor code. Moreover, there also exists a
mapping from elements used in the monitor code to elements
used in JESSIE’s code. Table 5 exemplifies these mappings
for three different run-time security properties (where the
first is our running example, discussed in Section 3).

Evolution 1Inside the org.metastatic.jessie.provider
package in JESSIE the 1.0.1 version has got 24 code
block differences compared to that of 1.0.0 version. These
changes cause that the selection-sensitive operations in
the refactoring history script saved from Eclipse cannot be
applied to JESSIE 1.0.0. After converting the script into
our specification language, all of the refactoring operations
(some of which are listed in Table 3) become reusable in our
enhanced refactoring engine (cf. the column JESSIE 1.0.0).
The only necessary change made to our original refactoring
specification for JESSIE 1.0.1 was a global substitution of
the project attribute for all operations from jessie-1.0.1 to
jessie-1.0.0.

As part of the library release, two model-based unit tests
for the message sequences in JESSIE 1.0.1 were provided:
testclient.java and testserver.java. After refactoring, we
were able to reuse them for the two other implementation
libraries as well.

Since the “hooks” required in the code are different but
conceptually the same, we focussed on only the first of the
three properties in this paper given again in Table 5. All of
the mentioned code can be found inside SSLSocket.java.
The first column of Table 5 shows the name of an entity on
the design model level as well as its symbol name in the
corresponding LTL formula, the second column shows the
action symbol as it is used within the generated monitor,
and the last column displays the corresponding entity in
the JESSIE source code. Notably, some properties share
symbol names, which has to be respected by potential
refactoring steps. That is, when we apply refactoring
steps that affect elements in the given table, we have to
make the according changes there as well to notify the
run-time verification framework of the occurring changes.
Internally, our refactorings reflect the links represented by
that table and its crucial symbol names and code segments.
This gives us a straightforward, but manageable, means
to evolve our monitors along with code changes. As the
properties that we monitor are fairly generic properties

that are derived from the SSL-protocol specification itself,
they have not changed between versions 1.0.1 and 1.0.0
of the SSL-protocol implementation JESSIE. However,
this type of book-keeping does not in general give us any
indication when refactorings or other code changes do not
affect our monitors, because code which has been identified
relevant to the monitors may have become “dead code”
by a modification outside the scope of our book-keeping.
Note however that dead code detection can typically also be
automated, e.g. using static analysis (cf. [41]).

Evolution Beyond Simple Refactoring In order to preserve
externally observable behaviour, the refactoring steps
defined in previous sections represent relatively small and
simple changes on the code base (e.g. consistent renaming
of identifiers). However, in practice, systems often undergo
more significant evolutions which may in particular not
be behaviour-preserving. In these cases, the definition of
the LTL formula to be monitored may have to be adapted
manually to account for the system evolution. In this section,
we demonstrate this in terms of an example.

We consider the situation where an initial version of
a protocol implementation does not provide for dedicated
error handling in the case that one of the cryptographic
checks in the protocol is violated. We investigate how a
monitor for such an implementation will have to evolve if
the implementation is adjusted to provide dedicated error
handling, to make sure that the error handling leads to
a fail-safe system state. This will prevent the protocol
implementation from proceeding with an insecure protocol
execution, e.g. by sending out secret information even
though the cryptographic checks were violated.

We therefore distinguish between the following cases:

(1) The system fails and does not reach a fail-safe state
(monitor returns ).

(2) The system succeeds or reaches a fail-safe state,
assuming an error occurred (monitor returns T).

(3) Neither of the two conditions holds (monitor returns ?).

What we have done is, basically, added an exception to
our rule, and thereby mapped two different events to one
truth value, namely T. This, however, is not uncommon in
specifying behaviour of software and systems. For example,
exceptions are incorporated into many different specification
languages that are based on LTL and regular languages (cf.
[34, 42, 43]). The one presented in [42], SALT, introduced
the accepton x directive for this purpose, where x represents
the exception.

As we are using LTL directly in this paper, we
give a straightforward extension of our previously used
specification (see Section 3) that caters for such an exception
and demonstrates the concept:

@ss := —ClientKeyExchange(encg, (PMS))
W(Certificate(X509Cers)
Vfailsafe).

Using our monitor generator [11], it is easy to verify in terms
of the resulting monitor FSM that this extension has the
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TABLE 3. Refactorings for the traceability to the protocol
(cf. Figure 6)

Messages in sequence op. | diff | Time (sec)

S1: C — S : (Pyer,Rc, Sjq, Ciph[ ], Comp] ]) 7 31 13.891

$2. 8 = C: (Pyer,Rs, S;g, Ciph[ ], Comp| ]) 5| 20 9.437

S3. S — C: Certificate[X509Cert;] 2 2 1.474

S4. C: Veri(X509Cert,) 2 2 3.854

Total of 7 messages and 3 checks 27 86 40.303

desired effect. Had we used the LTL meta-language SALT as
introduced in [42], we could have simply added an exception
as follows

¢, := (—ClientKeyExchange(enck,(PMS))
WCertificate(X509Cers))
accepton failsafe,

which would then have been translated into the above LTL
formula. While with short formulae such as the above,
it does not seem to make any difference as to whether
meta-level constructs like accepton are employed, which
subsequently “weave” the exception into all subformulae of
a given specification, more comprehensive formulae may be
difficult to specify in LTL alone and without such directives.
Semantically, however, a language such as SALT is equally
expressive to LTL. We therefore abstain from discussing it
further in this paper as the resulting monitors are the same.

For all the 19 symbols, 7 messages and 3 checks in
Figure 6, in total we have defined 27 refactoring steps in
the specification to maintain the traceability between the
protocol design and the JESSIE 1.0.1 code. The third column
of Table 3 shows the count of changed segments by the
refactoring steps. Using dif £, each block of changes, even
when they contain multiple lines, is counted as one. When
the number of changed blocks is larger than the number of
steps, changes have happened to more than one places on
average. The last column shows the performance, i.e., how
much time in seconds it took to perform the refactoring steps
using our tools. Note the time required for the refactoring
steps varies depending on its type and the number of
occurrences in the code. For example, renaming a sessionld
field into S_id took only 0.141ms whereas renaming a local
variable sessionld into S_id took 1.484ms. The automatic
execution of all the steps took about 40 seconds running our
plug-ins inside Eclipse SDK 3.3 on a dual-core laptop (with
a CPU running at 2 x 1.8GHz). Given the significant pay-off
provided by the fact that the externally observable behaviour
of the code is preserved during the complex refactoring
steps, such performance figures do not impose a bottleneck
within the overall process. On the contrary, much more time
is spent on the security analysis and the manual creation of
the refactoring steps, which will be paid back by reusing the
scripts on different implementations.

4.4.2.  Maintaining Monitor-Code Traceability
To illustrate this refactoring mapping, Table 4 presents
some instances of such a mapping for our example

TABLE 4. Refactoring program entities in a traceable way

Symbols Program entities Identif. | Refactoring op.
1.C clientHello C rename.type
2.8 serverHello S rename.type
3. Pyer session.protocol P_ver extract.temp
version
4. Re clientRandom R.C rename.local.variable
Rg serverRandom RS rename.local.variable
5. Siq sessionld S.id rename.field
sessionld S-id rename.local.variable
6. Ciph[] session.enabledSuites | Ciph extract.temp
7. Comp[]| | comp Comp extract.temp
8. Veri Lines 1518-1557 Veri extract.method
implementation. The first column shows the names of

symbols as used in the cryptographic protocol model. The
second column shows the names of the corresponding
program entities in the implementation. The third column
shows the identifiers that are the target names of the
refactoring operations. The type of the refactoring operation
is shown in the last column. The implementation and
execution of these refactoring operations is done using
refactoring scripts. These scripts only allow a limited kind of
refactoring which guarantees that the externally observable
behaviour of the program is preserved (e.g. renaming
identifiers in a way that is ensured not to create any
conflicts). Each refactoring operation is declared as a
transformation from a program entity (a collection of
executable statements or declarations) to a symbolic entity
which is named after the corresponding symbol in the design
model. For example, the clientRandom variable is mapped
to the symbol R_C in the protocol.

4.4.3. Reusing JESSIE Refactoring Transformations for
JSSE

We also investigated how to reuse the model-code trace-
ability links for SSL from the JESSIE project for JSSE,
another implementation of SSL. JSSE is part of Sun’s
Java Secure Sockets Extension (JSSE), a library in the
standard JDK since version 1.4, released by Sun from
version 1.6 onwards as an open source project called
OpendDK. Specifically, we considered JSSE 1.6 (re-
leased on May 8, 2007). The source code of the JSSE
library can be checked out from its Subversion repos-
itory: https://openjdk.dev.java.net/svn/openjdk/jdk/
trunk/j2se/src/share/classes/sun/security/ssl.  In this
case, we found that most of the refactoring operations
cannot be applied as is. The doHandshake protocol
is mainly implemented in the class SSLSocket of the
JESSIE 1.0.1 library, whereas in the JSSE library im-
plementation in the OpenJDK 1.6 (hereafter called JSSE
1.6), the protocol is mainly implemented in the class
sun.security.ssl.HandshakeMessage. Nevertheless, the
naming of the symbols can be traced to the implementation.

Table 6 lists the mappings from the symbols in
Table 1 to their naming in the JSSE library. To
reuse the existing refactoring operations, we have to
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TABLE 5. Mapping model elements to monitor code and JESSIE (SSLSocket.java)

Model / LTL symbol

[ Monitor [ Concrete representation in JESSIE

1: —ClientKeyExchange(enck, (PMS))WCertificate(X509Cers)

ClientKeyExchange(encg, (PMS)) cke

Certificate(X509Cers) cert

ProtocolVersion v =
session.enabledProtocols.last ()
byte[] b =
session.random.nextBytes
preMasterSecret = Util.concat(v.getEncoded (), b);
EME_PKCS1_V1I.5 pkesl =
EME_PKCS1_V1.5. getInstance ((RSAPublicKey)
serverKex) ;
Biglnteger bi =
(preMasterSecret ,
bi = RSA.encrypt ((RSAPublicKey)
ClientKeyExchange ckex =
(Util.trim(bi));

Certificate
msg. getBody () ;

X509Certificate [] peerCerts =
serverCertificate .

(ProtocolVersion)

new byte[46];
(b);

new Biglnteger(1l, pkcsl.encode
session .random)) ;
serverKex , bi);
new ClientKeyExchange

serverCertificate = (Certificate)

getCertificates () ;

2: (=Finished(HashMD5(... WArrayequal(md5;,md5.)) A (FArrayequal(md5;, md5.) = FFinished(HashMD5(md5;,ms,...)))

finis

= generateFinished (version ,

(IMessageDigest)

Finished(HashMD5(md5s,ms,PAD1,PAD2)) | finished md5. clone (), (IMessageDigest) sha.clone(), true);
msg = new Handshake (Handshake.Type.FINISHED, finis);
if (!Arrays.equals(finis.getMD5Hash() ,
verify .getMD5Hash ()) ||
Arrayequal(md5s,md5,.) equal ! Arrays.equals (finis .getSHAHash (),
verify .getSHAHash () ))
3: ~DataWArrayequal(md5;,md5,)
if (!Arrays.equals(finis.getMD5Hash() ,
verify .getMD5Hash()) ||
Arrayequal(md5s,md5,.) equal ! Arrays.equals (finis .getSHAHash () ,
verify .getSHAHash ()))
Data data (Various stream read and write methods.)

instantiate their specifications with different parameters
for its source (i.e., project, folder, package, class)
and its context (i.e., regexp, count). In some cases
even the type of refactoring operation needs to be
changed. For example, Veri(X509Certy) is refactored by the
extract.method operation in JESSIE (Table 4). However, to
obtain the same symbol, a rename.method operation in JSSE
is required (Table 6).

Such changes, however, do not influence the target
name attribute for the operations because they are derived
from the same protocol design. Modifying the refactoring
specifications might seem a lot of work. However, we
experienced little difficulty in applying them with the
help of automated execution of the declarative refactoring
specification. The benefit of such an effort is that we can
reuse the model-based security test cases.

5. SECURITY HARDENING

Using the approach to run-time security verification
explained in the previous sections, one can raise an alarm

TABLE 6. Symbol-code mappings for JSSE

Symbols JSSE 1.6
1.C HandshakeMessage.ClientHello
2.8 HandshakeMessage.ServerHello
3. Pyer protocol Version
4. Rc cInt_random
Rg svr_random
5. 8iq sessionld
6. Ciph][ | cipherSuites
7. Comp] | compression_methods
8. Veri Certificate Verify.verify()
9. DpotBefore | cert.getNotBefore()
Dy otAfter cert.getNotAfter()

at run-time in case of a security violation, and terminate the
given protocol execution, before the secret is leaked out to
the network. In such a situation, it would however be even
more useful if one could go a step further, and remove the
security vulnerability in the implementation that has been
detected in this way to make sure the same problem will not

THE COMPUTER JOURNAL,

Vol. 77, No. 7?7, 77?




22 BAUER, JURJENS, YU

/\
\/

C Aspect

.

FIGURE 15. Comparing component-based with aspect-oriented
systems in light of the inverse of control principle

appear again. In this section, we explain how this is achieved
in an approach making use of automated instrumentation
techniques.

One often has to fix a vulnerability in multiple places
of the code, making it difficult to maintain the changes
consistently. In order to automate the vulnerability fix for
security hardening, we therefore choose to apply aspect-
oriented programming (AOP) techniques.

In the following subsection, we explain the basic concepts
of aspect-oriented programming (AOP) in detail.

5.1. Aspect-Oriented Programming (AOP)

Aspect-oriented programming (AOP, [44, 45]) separates
crosscutting concerns that tangle the code into aspect
modules.  The tangled code at various control flow
points (so-called “joinpoints”) are encapsulated into a
module when they match with the signatures of pointcut
expressions. The functionality of the existing code can
be altered by weaving additional statements (so-called
“advices”) before, after or around the existing joinpoints.
AOP has advantages for maintenance as one can change
the crosscutting behaviour of the system without directly
modifying the source. AOP is supported in systems such
as aspect] [44] and Hyper/J [45] and fully supported in Java
IDEs such as Eclipse through the AJDT project.

AOP Principles In a previous paper, we compared
the fundamental difference in the methods reflected by
component-based programming and AOP [46]. Figure 15
illustrates two modularisations to divide a problem into
subproblems and to compose their solution later. In the
component-based manner (left), the composition requires
at various points an explicit invocation of the component
module, whilst in the AOP manner (right), the aspect module
has two parts: pointcuts and advices. The pointcuts are
expression for the aspect module to figure out the various
points that would be otherwise scattered in the components;
and the advices are instrumentations that need to be weaved
into the base system by automatically composing the advices
at points (i.e., joinpoints) that match with the pointcuts
expression. One of the major advantages of AOP is that
the scattered joinpoints are modularised by the pointcut
expressions, thus reducing the complexity in code. This
principle is also known as Inversion Of Control (I0C).

AOQP can reduce the complexity given that the base system
cannot be easily disentangled and the joinpoints scattered

/+ HelloWorld.java x/
public class HelloWorld {
public static void main(String[] args) {
System.out. println ("Hello_world!");
}

}

/* GoodbyeWorld.java =/
public class GoodbyeWorld {
public static void main(String[] args) {
System.out. println ("Goodbye,  world!");
}

}

/+ HelloFromAspectJ.aj =/
public aspect HelloFromAspect] {
pointcut mainMethod ()
execution (public static void
main(String []));
after () returning mainMethod () {
System.out. println("Hello_from
Aspectd");

FIGURE 16. An illustrative aspect] program

among them as crosscuts. As one often sees, similar
security vulnerability are often scattered in the code thus
making them good candidates for joinpoints. By weaving
the advices into these scattered places, AOP can help one
harden the security in the design and implementation of the
base system.

AOP with aspect] There are several implementations of
AOP, among which aspectJ for Java is the most widely
used. To convey the basic concepts of AOP, and also
to explain the example used in this paper, we illustrate
the syntax and semantics of the AOP language using the
following illustrative example.

Two Java classes “HelloWorld” and “GoodbyeWorld”
serve as the original system which an aspect “HelloFro-
mAspect].aj” implements an advice that instrument the orig-
inal program to print an additional message “Hello from As-
pect]” (see Figure 16).

In the aspect] module, for example, the pointcut
expression mainMethod () matches the main methods in
both Java classes according to the interface signature of
the method. The specification of the advice introduces
the boolean pointcut expression by the keyword “after”.
Because it matches with the two joinpoint methods in the
Java classes, the statement in the body of the advice will be
inserted after the invocation of main method. According to
the semantics of the aspect] language, one can also specify
“before” and “around” advices. Namely, the before advice
will be executed before the execution of the method at the
joinpoint, and the around advice will be executed instead
of the execution of the method at the joinpoint. Therefore,
it is clear that AOP can completely change the behaviour
of the original method, making it suitable to fix security
vulnerability as opposed to the refactoring transformations.
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5.2. Traceability under Evolution in the Presence of
Aspects

The joinpoint model of AOP such as aspect] is powerful:
according to the specification an aspect specified in aspect]
can match with methods of classes. On the other hand,
it does not include support for loops, super calls, throws
clauses, multiple statements, etc. According to the literature
[47], a joinpoint model at the method level has an important
advantage over one at the lower statement level as it ensures
modularity of the code. Using aspect], therefore, we cannot
base our solution on a statement level joinpoint model. If
one wants to alter the behaviour of a group of statements, a
necessary step is to perform a refactoring operation such as
extract.method.

Another issue is that when expressed in an aspect, the
pointcuts must match with names in a particular library.
If one does not change the function names or naming
conventions used in the pointcut expressions, the aspects can
be harder to reuse for a different library. In order to improve
the reusability of such security aspects, we therefore abstract
away the names from the implementation by substituting
them with the corresponding symbolic name in the design
model. These again require refactoring operations.

Therefore to exploit the refactoring traceability, we need
to make sure that the traceability-preserving refactoring
also preserves the aspect-oriented joinpoints used in that
approach. Thus we need to define joinpoints in terms of the
symbol names and the joinpoint model in aspect] (methods
and fields). Such joinpoints must be aware of the context of
the method invocations or field accesses.

When the identifiers are methods or fields, then they
can already be matched by pointcut expressions in the
aspects.  Otherwise, more refactoring operations need
to be performed to prepare for AOP instrumentations.
As the joinpoint model in aspect] does not support the
instrumentation of a group of statements inside a method,
for example, it is necessary to apply more refactoring
operations such as extract.method to group these statements
into a method. Having the joinpoints symbols refactored as
methods and fields, they can now be used to define aspect
pointcut expressions.

As long as program changes are captured by changing the
refactoring scripts, one can maintain the pointcut expression
unchanged. Similarly, if one wants to apply the same aspect
to a different library where the symbols are implemented
differently, the reusability of such security aspects eliminates
the need to change the definition of the aspects. This effort
for maintaining the traceability has a payoff only when
a mapping can be used to express security aspects which
otherwise would be non-reusable.

Since refactoring operations can improve the internal
structures, these mappings can be performed selectively on
the joinpoints that are made immediately useful for the
aspects.

5.3. The SSL Case study: Fixing a Vulnerability in
JESSIE

Since the places that need to get changed to fix a security
vulnerability are often scattered across the code, it can
be difficult and error-prone for humans to manually and
consistently update the code.

We demonstrate how we use aspects for security
hardening with an example from the JESSIE project.

In the JESSIE implementation, we found a signifi-
cant security vulnerability as the certificate verification
Veri(X509Cert_s) is not always invoked when the certifi-
cate message is received, which is an essential security check
according to the protocol specification. It is needed because
otherwise a man-in-the-middle attacker could insert a forged
certificate containing his own public key into the communi-
cation and thereby decrypt the session key that is encrypted
using that key, and thus eavesdrop on the encrypted commu-
nication in that session without being noticed by the com-
munication partners. Therefore the current implementation
of the SSL protocol in the JESSIE project does not enforce
its security requirements. Below, we explain how this vul-
nerability arises and how one can use our approach to insert
additional checks into the protocol implementation to harden
its security.

Table 7 highlights the vulnerability by showing the
execution log of four different test cases. In this table, the
eight steps on the handshake protocol message sequence
chart are shown by the rows. The second column shows the
code corresponding to these steps that has been tested by the
test cases. The third column highlights the differences in the
instances of the four test cases.

If the certificate was checked at step S4, in Cases 3 and 4,
the cheVal should report false in a correct implementation.
However, we found they reported true instead.

Additional checks can be inserted into the protocol to
harden its security. For example, using an aspect to
crosscut every joinpoint of the program where a certificate
is received, we found nothing is called by the program
to check the issuing date.  Therefore we find it is
necessary to instrument the program with the functionality
to check validity of the certificate against its date range
issued by OpenSSL. Interestingly, this functionality was
defined in JESSIE as a utility method checkValidity() in
X509CertBridge.java. However it was never called, as
indicated by a warning message in Eclipse.

Besides fixing the vulnerability by weaving an aspect
into the refactored code we can also apply it to the
implementation of the original program: After renaming
checkValidity to cheVal, the aspect in Figure 17 is enabled
to insert an additional check on the validity of certificate
date (cheVal). Also, the refactored Veri is called right
after a certificate is obtained through the pointcut expression
certificate(). Without these refactoring operations, this
aspect cannot be weaved through the original program.

This aspect whose design is derived from the protocol
design model introduced earlier assumes the existence of
a method for Veri. This method is created from the given
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TABLE 7. Test cases for assessing security

Seq. | Tested Code Example Test Case
C = mew ClientHello (P_pre, R.C, Casel: ClientHello (TLSvl, clientRandoml ,
- §-id, Ciph, Comp); [B@b012a558, enabledSuitesl , zlib)
Case2 —4: ClientHello (TLSvl, clientRandom?2 ,
[B@b01b0558, enabledSuites2, zlib)
Casel: ServerHello (TLSv1,
serverRandom1 ,[ B@b0134ed8,
S S.ServerHello (P_ver, R_S, TLS_DHE_RSA_WITH_AES_256_CBC_SHA, zIlib)
S_id, Ciph, Comp); Case2 —4: ServerHello (TLSvI,
serverRandom2 ,[ B@b0Olbaed8 ,
TLS_DHE_DSS_WITH_AES_256_CBC_SHA, =zlib)
S3 C.Certificate (X509Cert\ _s) Casel —4: Certificate(serverCertificate)
Casel ,2: cheVal((107,2,2),(108,3,2))==True
S4 Chevgl\(?l\()*t‘x’f‘t]:gore’ Case3: cheVal((107,2,1),(107,3,1))!=False
- Case4: cheVal((107,2,3),(107,3,1))!=False
S5 Ver K_CA(Sig) Casel—.4: sigVerity ((1.2.840.113549.1.1.5
Signature))
S6 clientKeyExchange (ckex) Casel —4: ClientKeyExchange (ckex1)
.o Casel —4: finished (gnu.java.security.hash.MD5@b00d27f8,
s7 S.finished (md5\_C, sha\.C) gnu.java.security .hash.Shal60@b00d2f78)
.. . Casel —4:
S8 C.finished (verifyData) finished ("6a:df:3d:90:ec:0b:33:bc:2d:ce:ef:aa")

implementation by extracting 58 lines of code from the
doClientHandshake method into a new public method Veri
in the SSLSocket class. The extracted Veri method is
then called in the advice to reimplement the already existing
check. In addition to this check, we introduced an additional
cheVal method into the aspect module. After weaving in
this aspect, the date validity check is performed before the
existing certificate check.

Using the test aspect, we were able to detect that
the certificate() pointcut crosscuts three call sites with
different argument settings (see accordingly the wildcard
signature call(* C.certificate(..)) defined for this pointcut
in our aspect definition above). One of them is without
any arguments, whilst the other two are instantiated with
arguments. From the execution log, we found all are
executed after weaving our security aspect. However,
if our aspect is not woven in (i.e. in the original
JESSIE implementation), the original library only invokes
the function of Veri when certificate is called without
argument. In other words, the aspect has placed the check on
all obtained certificates whilst the existing implementation
misses some of them, which clearly results in a significant
security vulnerability as explained earlier.

When weaving in the security aspect at the JSSE
implementation, we could determine that it did not
further harden the security for JSSE beyond the existing
implementation since the security check implemented in
the aspect is already correctly enforced in JSSE. This is
confirmed by the logs of the two test cases that were reused.

These test cases also helped us to verify that the messages
are sent and received in a way that is consistent with the
sequence diagram in Figure 6.

5.4. Continuous Integration

Continuous integration [48] has been adopted by our process
where the regression test subprocess is augmented with
the regressive refactoring: whenever code or model are
changed in the repository — e.g., a developer committed
a set of changes — the continuous integration script will
check out the change set into a sandbox to conduct various
automated builds and tests. Adding our refactoring scripts
to the continuous integration script allows us to integrate our
security assurance approach with the continuous integration
framework. The error report subprocess is also augmented
with an explanation of the counter-example of potential
attack traces and the mismatch between the UMLsec model
and the implementation code. Therefore we can incorporate
a continuous integration process to make sure that whenever
there is a change to the artefacts in the repository, a sequence
of actions will be triggered to fully integrate the otherwise
separate security tools.

For example, the usual compilation and function test steps
are integrated with the additional actions in our proposed
framework. Whenever there is a change in the design or in
the implementation of the system, or there is a change to the
refactoring scripts, the automated refactoring tool (ART) is
called to check whether this causes the traceability links to
be broken. If so, then the run-time verification tools will be
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public aspect testCryptoProtocolSecurity {
pointcut certificate ():
call(x Certificate.Certificate (..));
Object around(): certificate () {
X509Certificate [] X509Cert_s =
(X509Certificate []) proceed();
if (! X509Cert_s.checked) {
System.out. println ("Problematic,,
traceability_found!");
}

}
}

public aspect CryptoProtocolSecurity {
pointcut certificate ():
call (x Certificate . Certificate (..));
Object around(): certificate () {
X509Certificate [] X509Cert_s =
(X509Certificate []) proceed();
SSLSocket s = (SSLSocket)
thisJoinPoint. getThis () ;
for (int m=0; nxpCs.length ;m++) {
assert cheVal(pCs[m].D_nb(),
pCs[m].D.na()):
"+++_The _date_is_invalid_+++";

s.Veri(X509Cert_s);
return X509Cert_s;

FIGURE 17. Aspect to check vulnerable certificates

invoked to check whether the new system still has correct
traceability between design and implementation. If not, the
developers will be informed to obtain a new refactoring
script through further analysis.

The CruiseControl system is one of the most widely
used continuous integration systems. A CI process in
CruiseControl is driven by an XML-based build script for
the Java-based build tool Apache Ant’>. By default, the
script would periodically monitor the designated repository
for any changes. Then, based on the Ant build dependencies,
these changes may trigger a sequence of actions, normally
including building (compilation, packaging, deploying) and
testing.

We extend the CruiseControl system by adding a few
more tasks to the Ant build and test scripts. A daemon
process on the build/test machine periodically monitors
whether there is any change to the repository. Whenever
changed artifacts (including the code, the model, the test
cases, the refactoring scripts and the security aspects and
assurance test cases) are committed, the event triggered a
run of the extended Ant build.xml script, cf. the following
example:

Zhttp://ant.apache.org

<project name="jessie"
default="test"
basedir="jessie">
<target name="build" depends="refactoring"/>
<target name="test" depends="build"/>
/! the following tasks are augmented
<target name="umlsec"/>
<target name="refactoring"/>
<target name="saspect" depends="test"/>
</project>

The first parameter specifies an environment variable for
the Eclipse headless build process. Since our refactoring
and aspect tools have dependencies on the basic Eclipse
platform and JDT, in order to run the scripts for refactoring
and security aspects it is necessary to start Eclipse without
GUL

The dependencies between the targets of the build.xml
are straightforward. = Before one can build the new
system, the modified code must be refactored such that the
changes committed by the programmers are synchronised
with the model. The UMLsec security check for model
vulnerabilities is performed after the system is built and
the refactoring is done. Based on the UMLsec model and
the LTL formulae to be monitored, an updated security
monitor can now be generated automatically, if required by
the system changes.

Integrating with the rest of the system through continuous
integration, these aspects are thus reusable whenever a
change to the design or the code does not affect the
traceability.

6. RELATED WORK

6.1. Formal Security Verification and Model-based
Security

Model-based Security [49] uses UML for the risk
assessment of an e-commerce system within the CORAS
framework for model-based security risk assessment. This
framework is characterised by an integration of aspects
from partly complementary risk assessment methods. [50]
proposes an extension of the i*/Tropos requirements
engineering framework to deal with security requirements.
[51] shows how UML can be used to specify access
control in an application and how one can then generate
access control mechanisms from the specifications. The
approach is based on role-based access control and gives
additional support for specifying authorisation constraints.
[52] presents the SECTET framework for Model Driven
Security which is then specialised towards a domain-specific
approach for healthcare scenarios, including the modelling
of access control policies, a target architecture for their
enforcement, and model-to-code transformations. [53]
presents an approach for the transformation of security
requirements to software architectures.

In an approach for model-based development of crypto-
graphic protocols, [54] explains how to generate “provably
correct” implementations from formal models.
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Formally Verifying Cryptographic Protocol Implementa-
tions: There have recently been some approaches towards
formally verifying implementations of cryptographic pro-
tocols against high-level security requirements such as se-
crecy, for example [18, 19, 20].

6.2. Security Traceability and Maintenance

Traceability and Model Synchronisation ~ Software mainte-
nance makes use of related models at different stages of
development. Example models are goal trees for require-
ments, UML diagrams for design and source code for im-
plementation. When some model elements change, it is nec-
essary to synchronise the change on related elements in or-
der to maintain model consistency [55]. Existing traceabil-
ity approaches aim to recover traceability links that con-
nect elements of certain software engineering artifacts in
requirements, design and implementation [56, 57, 58, 59].
Search-based techniques recover traceability links between
documents and code with a precision below 100% [56, 59];
a probability-model based approaches relies on a softgoal-
interdependency graph to recover traceability links between
functional and non-functional requirements [58]; a scenario-
driven approach generates traceability links from observa-
tions of system executions [57]. Other work on requirements
tracing includes [60]. In general, none of them can recover
accurate requirements traceability links. Though efficient
techniques have been proposed to account for incremental
update of traceability links recovered from search-based ap-
proaches, these incrementally maintained traceability links
are still inaccurate [59]. Graph transformation-based tech-
niques [55] may accurately trace structural semantics, yet
another mechanism is required to trace behavioural seman-
tics.

Reverse Engineering Existing reverse engineering frame-
works were proposed to improve accuracy of traceability
for reference architecture [61] and for known design pat-
terns [62]. In our previous work [63], refactoring was pro-
posed to enable accurate abstraction of behavioural imple-
mentations such that they can be compared to the goal-
oriented requirements. In this work, refactoring is not only
used for comparing the source and target, but also for trans-
forming the source into the target.

Refactoring Scripts Dig et al. [64] first studied the
evolution of component APIs that can be replayed as
refactoring steps. They argued that the refactoring of library
components may indeed change the behaviour of the overall
system especially when the client of the components are
not refactored accordingly. For example, a function ‘foo’
may be renamed to ‘bar’ in the library, yet the call site
of the function may still try to invoke ‘foo’, only to find
broken contracts. Therefore, it is useful to keep track of
(or detect in Dig’s case) the refactoring steps as a script
such that they can be replayed at the client side. Our
tool supports tracking refactoring steps by translating the
refactoring steps recorded by the IDE into change resilient

refactoring specifications. Comparing with [64]’s work, our
use of refactoring is not for replaying the changes, rather
for maintaining the traceability between design elements
and implementation regardless of changes. Though the
RefactorCrawler tool [64] cannot be used directly, we can
make use of the refactoring preview dialog code in the
MolhadoRef tool [65].

Refactoring for Aspects In [66, 67], specialised refactoring
actions are defined mainly for aspect-orientation. In
this work, we expand the scope to any general-purpose
refactoring steps supported by existing tools. We
have exploited the opportunity to perform aspect-oriented
instrumentation in order to harden the security that require
general-purposed refactoring actions. In [68], Binkley
et al. proposed a number of aspect-aware refactoring
transformations to convert object-oriented programs into
aspect-oriented ones. If the design element is implemented
by crosscutting code, then Binkley et al.’s technique may
be applied to our work to maintain the traceability between
such elements. Since refactoring alone does not change
the behaviour of the system, aspects derived from such
refactoring transformations must not change the behaviour.
Consequently, they cannot improve the security of existing
implementation. In our work, we employ AOP to instrument
the code with additional functionality to enforce security
hardening. Therefore our aspect is introduced for a different
purpose.

6.3. Run-time Verification for Traceability

In this work we employ run-time verification as a tool to
trace security requirements not only to the source code level,
but beyond to the level of the execution of code. There
are various reasons as to why this is advantageous. For
example, assumptions that are inherent in design models
may not adequately address real-world challenges, such
as assumptions about attacker behaviour or the correctness
of an implementation. Run-time verification as used in
Section 3 has become a popular tool to verify that a system’s
execution adheres to a set of predefined properties.

As far as we know, this is the first work in which run-time
verification is used for the traceability of high-level security
properties in evolving systems.

Work in the area of run-time verification such as [69,
70, 10] consider it foremost from a theoretical point of
view; that is, the complexity of the underlying problems, the
theoretical expressiveness of the formalism used to express
monitoring properties, or the efficiency of the generated
monitors. In contrast, we focus on the methodological
aspects of this technique for achieving traceable security
beyond the source-code level.

As such, there are two aspects to be considered:

(1) the use of run-time verification for traceability of
security properties in evolving systems, and

(2) the evolution of the run-time verification “layer” itself
in terms of changing properties, monitor code, etc.
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Regarding 1), although there seems to be no prior work on
run-time security verification for evolving systems, there is
some previous work on run-time security verification. The
techniques used in run-time verification bear a resemblance
with the well-known security automata as introduced by
Schneider [35]. Formally, Schneider’s work is based on
temporal logic as well, however, it imposes restrictions on
the types of formulae which can be monitored or “enforced”,
to use the terminology of [35]. Security automata are
restricted to the so-called safety fragment (of LTL) and
do not impose an explicit acceptance condition; that is, a
trace (finite or infinite) is accepted as long as there exists a
corresponding run on it in the automaton. When a security
automaton is used to monitor a safety property such as Ga
(“always a”), then this semantics, arguably, is the desired
one; that is, the automaton would yield “accept” as long as
a is observed and “reject”, otherwise. In our application,
however, we encountered properties that are expressed, for
example, using (sub-) formulae of the kind aUb (“a until b”),
for which, arguably, a more fine grained distinction between
observations is desirable. For these types of formulae, our
monitors would yield ? if the first observation contained
an a (and not b), and “accept” if the first observation
contained a b. Disregarding the fact that this formula is not
a safety formula, and as such by definition not enforceable
using security automata, a security automaton—would it be,
nonetheless, applied—would yield “accept” in both cases,
i.e., if the first observation contained an a (and not b) and
if the first observation contained only b. In other words, it
would not distinguish whether or not all future observations
will indeed be satisfying the formula, or whether or not it
is still possible to violate the formulae in the future. Our
monitors do give the user this type of fine grained feedback
for the properties we identified relevant to our application of
monitoring cryptographic protocols.

However, it is worth mentioning that some properties
which are not safety are, in fact, monitorable using security
automata in a way not anticipated in [35]; that is, if the
properties belong to a complementary class of properties, the
so-called co-safety properties. Then, a security automaton
could be built for the negated formula (say, —¢), and the
monitor’s result be inverted by the user; that is, a reported
violation would then, in fact, signal that the system has
satisfied the original co-safety property, ¢. However, since
not all properties are divisible into safety and co-safety
properties, this method is not generally applicable. For
example, consider Property 2 of Table 5, which is neither
a safety nor a co-safety property, yet we were able to build a
3-valued monitor for it using our methods.

Another application of monitoring to security was
presented in [71]. The paper proposes a caller-side rewriting
algorithm for the byte-code of the .NET virtual machine
where security checks are inserted around calls to security-
relevant methods. The work is different from ours in
that it has not been applied to the security verification
of cryptographic protocols, which pose specific challenges
(such as the correct use of cryptographic functions and
checks). In another approach, [72] proposes to use

formal patterns of LTL formulae that formalise frequently
reoccurring system requirements as security monitoring
patterns. Again, this does not seem to have been applied
to cryptographic protocols so far.

Regarding 2), an important step regarding evolvable
systems was recently also made by Barringer et al. in
[73]. However, their view on evolution differs from the
one presented in this paper. Notably, their approach to
run-time verification is not just passive, but active, in that
a failing system is modified by a monitor noticing the
failure. As such, the failing system evolves, and the monitors
continuously adapt. In contrast, the evolution of our systems
is sparked by comparably major changes in the software’s
implementation, e.g., triggered by new requirements that
warrant a new release of a system, or specific rewrites for
efficiency gains. As a consequence, our use of run-time
verification is not as tightly integrated as that presented in
[73], formally and practically.

7. CONCLUSIONS

We have used an approach for model-based security
verification in which a design model in the UML
security extension UMLsec can be formally verified against
high-level security requirements such as secrecy and
authentication. An implementation of the specification can
then be verified against the model by making use of run-
time verification. Using the approach to run-time security
verification, one can raise an alarm at run-time in case
of a security violation, and terminate the given protocol
execution, before the secret is leaked out to the network. We
also explained how to remove the security vulnerability in a
implementation that has been detected in this way to make
sure the same problem will not appear again, making use of
techniques from aspect-oriented programming (AOP).

Despite the similarities between testing and run-time
verification, run-time verification can provide a level of
assurance that goes beyond what testing can usually
achieve when applied to highly complex security-critical
software: While testing complex systems can usually not be
exhaustive, run-time verification ensures, by construction,
that every system trace that will ever be executed will
be verified — while it is executed. In the case of the
cryptographic protocols that we consider, it is indeed
sufficient to notice attempted security violations at run-time
to still be able to maintain the security of the system: The
monitor is constructed in such a way that, if it detects a
violation, the current execution of the security protocol will
be terminated before any secret information is leaked out on
the network.

In practice, systems do not remain unchanged after they
are being used but may evolve over their life-time. We have
therefore enabled our security assurance approach to cope
automatically with the fact that systems will evolve at run-
time, and still provide valid run-time security assurance.

We demonstrated the approach at the hand of an
application to the Java-based implementation JESSIE of
the Internet security protocol SSL, in which a security
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weakness was detected and fixed using our approach. We
also explained how the traceability link can be transformed
to the official implementation of the Java Secure Sockets
Extension (JSSE) that was recently made open source by
Sun.

There are a number of possible directions for future work.

e Although run-time verification is quite effective,
sometimes it would be preferable to be able to statically
verify at least a particularly critical part of the code,
to further increase its trustworthiness. In future
work we plan to investigate how to combine run-time
security verification with static compositional software
verification such as [74].

e In another direction, it would be interesting to
see whether it would be possible to expand the
kinds of attacks that could be detected by this
approach, for example by including weaknesses in the
implementations of cryptographic algorithms (such as
encryption and digital signature). It remains, however,
to be seen which impact this would have on the
performance of the monitors.

e  The current monitoring approach relies on the assump-
tion of having access to the source code of the moni-
tored software. It would be interesting to see whether
one could develop a monitor approach that does not rely
on this assumption but is still sufficiently precise and
performant.
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