N

N

A Generic Component-based Approach for
Programming, Composing and Tuning Sensor Software

Amirhosein Taherkordi, Frédéric Loiret, Romain Rouvoy, Frank Eliassen

» To cite this version:

Amirhosein Taherkordi, Frédéric Loiret, Romain Rouvoy, Frank Eliassen. A Generic Component-
based Approach for Programming, Composing and Tuning Sensor Software. The Computer Journal,
2011, 54 (2), pp.1-19. 10.1093/comjnl/bxql02 . inria-00563687

HAL Id: inria-00563687
https://inria.hal.science/inria-00563687

Submitted on 17 Jun 2011

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00563687
https://hal.archives-ouvertes.fr

9,810V The Computer Journal

UNIVERSITY PHESS

A Generic Component-based Approach for Programming,
Composing and Tuning Sensor Software

Journal:

The Computer Journal

Manuscript ID:

COMPJ-2010-08-0332.R1

Manuscript Type:

Original Article

Date Submitted by the
Author:

06-Nov-2010

Complete List of Authors:

Taherkordi, Amirhosein; University of Oslo, Informatics
Loiret, Frederic; INRIA Lille - Nord Europe

Rouvoy, Romain; INRIA Lille - Nord Europe

Eliassen, Frank; University of Oslo, Informatics

Key Words:

Wireless Sensor Networks, High-level Programming, Component
Model, Event-driven

ONE™

Page 1 of 18

1

2

3 .

4 A Generic Component-based

5

? Approach fOr Programmmg,

8 . .

0 Composing and Tuning Sensor

10

u Software

13

14 AMIRHOSEIN TAHERKORDIf, FREDERIC LOIRETI, ROMAIN ROUVOY?],

ig AND FRANK ELIASSEN{

17

18 tUniversity of Oslo, Department of Informatics,

19 Oslo, Norway

20 FINRIA Lille — Nord Europe, ADAM Project-team,

21 University Lille 1, LIFL CNRS UMR 8022,

22 Villeneuve d’Ascq, France

23 Email: amirhost@ifi.uio.no, frederic.loiret@inria.fr, romain.rouvoy@inria.fr, frank@ifi.uio.no

24

25 Wireless Sensor Networks (WSNs) are being extensively deployed today in various

26 monitoring and control applications by enabling rapid deployments at low cost

27 and with high flexibility. However, high-level software development is still one

28 of the major challenges to wide-spread WSN adoption. The success of high-

29 level programming approaches in WSNs is heavily dependent on factors like

30 ease of programming, code well-structuring, degree of code reusability, required

31 software development effort, and the ability to tune the sensor software for

32 a particular application. Component-based programming has been recognized

33 as an effective approach to satisfy such requirements. However, most of the

34 componentization efforts in WSNs were ineffective due to various reasons, such

35 as high resource demand or limited scope of use. In this article, we present

36 Remora, a novel component-based approach to overcome the hurdles of WSN
software implementation and configuration. Remora offers a well-structured

37 programming paradigm that fits very well with resource limitations of embedded

38 systems, including WSNs. Furthermore, the special attention to event handling

39 in Remora makes our proposal more practical for embedded applications, which

40 are inherently event-driven. More importantly, the mutualism between Remora

41 and underlying system software promises a new direction towards separation of

42 concerns in WSNs. This feature also offers a practical way to develop sensor

43 middleware services which should be generic and developed close to the operating

44 system. Additionally, it allows the customization of sensor software—deploying

45 only application-required system-level services on nodes, instead of installing a

46 fixed large system software image for any application. Our evaluation results show

47 that the deployed Remora applications have an acceptable memory overhead and

48 a negligible CPU cost compared to the state-of-the-art development models.

4513 Keywords: Wireless Sensor Networks; High-level Programming; Component Model;

51 Event-driven

52 Received 00 Month 2010; revised 00 Month 2010

53

54

55

56 1. INTRODUCTION

57

58 Wireless Sensor Networks (WSNs) are a rapidly

59 emerging research area because of their vast application

60 vistas in real-world environments. = The advances

in wireless communications and miniaturization of
hardware components have enabled the development of
low-cost, low-power, and multifunctional sensor nodes.

These tiny devices can be easily embedded in the
environment, establish a wireless ad-hoc network, and
compose a distributed system to collaboratively sense
and process the surrounding physical phenomenons as
data. However, WSNs differ from the conventional
distributed systems in many aspects. Resource
scarceness is the most important uniqueness of WSNs.

THE COMPUTER JOURNAL,

Vol. 7?7, No. 77, 7777

©CoO~NOUTA,WNPE

e
[Ny

U OO A DMBEBRAMDIMBAEDIAMDIMNDMOWWWWWWWWWWNDNNDNNNNNNNRPRPRERREREREPR
QOO NOUPRRWNRPOOO~NOURARWNPRPOOONOUOPRARWNRPOOONOODURAWNRPOOO~NOOOMWN

Page 2 of 18

2 A. TAHERKORDI ET AL.

Sensor nodes are often equipped with a limited energy
source and a processing unit with a small memory
capacity. Additionally, the network bandwidth is much
lower than for wired communications and radio-based
operations are the dominant energy consumer within
a sensor node. The sensor nodes and network are
less reliable than in conventional distributed systems.
Depending upon the configuration of network and
environment circumstances, wireless links may become
degraded or unviable.

These factors make the way to develop WSN
applications quite critical and also different from the
other existing network systems. However, this concept
is still immature in the context of WSNs for various
reasons. Firstly, the existing diversities in WSN
hardware and software platforms have brought the
same order of diversity to programming models for
such platforms [1]. Moreover, developers’ expertise in
state-of-the-art programming models become useless in
WSN programming as the well-established discipline
of program specification is largely missing in this
area. Secondly, the structure of programming models
for WSNs are usually sacrificed for resource usage
efficiency, thereby, the outcome of such models is
usually a piece of tangled code hardly maintainable
by its owner. Finally, application programming in
WSNs is mostly carried out very close to the operating
system, forcing developers to learn low-level system
programming models. This not only diverts the
programmer’s focus from the application logic, but also
needs low-level programming techniques, which imposes
a significant burden on the programmer.

From a software composition perspective, the way
to implement WSN applications is also becoming
increasingly important as today’s sensor software not
only consists of application and system modules, but
also includes various off-the-shelf, third-party software
products, such as middleware services. Ideally, such
integrations should be realized through a meta-level
abstraction with minimum programming effort. This,
in fact, indicates the capability of a WSN programming
model to facilitate the development of middleware
services and their integration to target application
software.

The ability to tune the sensor software for a particular
use-case or application domain is the other major
issue in this context. As sensor nodes are typically
equipped with a limited memory capacity, operating
system developers need to keep the size of system
modules as small as possible in order to preserve
enough memory space for application modules, and
they also have to ensure the portability of system
software to various sensor platforms. This mostly leads
to software artifacts with either degraded functionality
not satisfying all end-user expectations, or suffering
from the lack of modularity and maintainability. One
solution to tackle this problem is to consider the
operating system as a collection of well-defined services

deployable on a minimized kernel image so that the
programmer has the ability to involve only application-
required system services in the process of software
installation. Therefore, this can bring a significant
efficiency to resource usage in sensor nodes by avoiding
installing a single monolithic operating system for any
application.

Software componentization has been recognized as
a well-structured programming model able to tackle
the above concerns. Component-based programming
provides an high-level programming abstraction by
enforcing interface-based interactions between system
modules and therefore avoiding any hidden interaction
via direct function call, variable access, or inheritance
relationships. This abstraction rather offers the
capability of black-box integration of modules in
order to simplify configuration and maintenance of
software systems. Module reusability and provision of
standard API are some other advantages of adopting
component-based software development [2, 3]. Although
using this paradigm in earlier embedded systems was
relatively successful [4, 5, 6, 7], most of the efforts
in the context of WSNs remain inefficient or limited
in the scope of use. The TINYOS programming
model, named NESC [8], is perhaps the most popular
component model for WSNs. Whereas NESC eases
WSN programming, this component model remains
tightly bound to the TiNYOS platform. Other
proposals, such as OPENCOM [9] and THINK [10], are
either too heavyweight for WSNs, or not able to support
event-driven programming, which is of high importance
in WSNs.

In this article, we present extended results on
REMORA, a lightweight component model designed
for resource-constraint embedded systems, including
WSNs [11]. The strong abstraction promoted
by this model allows a wide range of embedded
systems to exploit it at different software levels
from Operating System (OS) to application. To
achieve this goal, REMORA provides a very efficient
mechanism for event management, as embedded
applications are inherently event-driven. ~REMORA
components are described in XML as an extension of
the Service Component Architecture (SCA) model [12]
in order to make WSN applications compliant
with the state-of-the-art componentization standards.
Additionally, the C-like language for component
implementation in REMORA attracts both embedded
system programmers and PC-based developers to
programming for WSNs. REMORA also features
a coherent mechanism for component instantiation
and property-based component configuration in order
to facilitate lightweight event-driven programming in
WSNs. Notably, in this paper the aforementioned
features of REMORA are extended in the following ways.
First, we propose a programming approach, based
on the concept of Autonomous Composable Module
(ACM), to achieve a practical and efficient way of

THE COMPUTER JOURNAL,

Vol. 77, No. 77, 1777

Page 3 of 18

©CoO~NOUTA,WNPE

e
[Ny

U OO A DMBEBRAMDIMBAEDIAMDIMNDMOWWWWWWWWWWNDNNDNNNNNNNRPRPRERREREREPR
QOO NOUPRRWNRPOOO~NOURARWNPRPOOONOUOPRARWNRPOOONOODURAWNRPOOO~NOOOMWN

COMPONENT-BASED APPROACH FOR SENSOR SOFTWARE 3

developing component-based middleware systems in
WSNs. Second, we introduce a mechanism to enable
tuning system software by componentizing the OS-
level services and customizing OS functionality based
on target application’s requirements. The REMORA
specifications and their implementation techniques are
also extensively explored in this paper.

As a matter of validation, we demonstrate the com-
prehensive evaluation results of deploying REMORA
components on Contiki—a leading operating system for
WSNs [13]. Specifically, we extend our earlier evalua-
tion efforts in [11] with considering a complementary set
of performance figures, such as required programming
effort. The efficient use of Contiki features, such as
process management and event distribution [14], on the
one hand, and the abstraction layer linking REMORA
to Contiki, on the other hand, promise a very effective
and generic approach towards practical high-level pro-
gramming in WSNs. In particular, we present the func-
tionality of REMORA within the context of a real use
case involving a network-level application suite in order
to support code distribution in dynamic sensor appli-
cations. Finally, the evaluation work is completed by
carrying out a comprehensive investigation of existing
software component models for WSNs and comparing
them with REMORA.

The remainder of this article is therefore organized as
follows. In Section 2, the specification of the REMORA
component model is presented. Section 3 describes how
REMORA is implemented, while the evaluation results
are reported in Section 4, including the assessment of a
real REMORA-based deployment. A survey of existing
approaches and a discussion on REMORA extension
opportunities are presented in Section 5 and Section
6, respectively. Finally, Section 7 concludes this paper
and identifies some future work.

2. REMORA COMPONENT MODEL

In this section, we first discuss the primary design
concepts in REMORA and then we explain the
specifications of the REMORA component model. The
first obvious principle is that WSN applications in our
approach are built out of components conforming to
the REMORA component model. The other design
principles of REMORA include:

XML-based Component Description. The first
design goal emphasizes simplicity and generality of
the technique for describing REMORA components. In
REMORA, we therefore adopt XML technologies to
describe components. The basis for the XML schema
we defined is the Service Component Architecture
(SCA) notations in order to provide a uniform
component model covering components from sensors to
the Internet, as well as to accelerate standardization
of component-based programming in WSNs. As
SCA was originally designed for large-scale systems-
of-systems [12], REMORA extends SCA with its own

architectural concerns to achieve realistic component-
based programming in WSN.

C-like Language for Component Implementa-
tion. REMORA components are written in a C-like lan-
guage enhancing the C language with features to sup-
port component-based and structured programming.
The other objective in this enhancement is to attract
both embedded systems programmers and PC-based de-
velopers towards high-level programming in WSNs.
OS Abstraction Layer. The REMORA component
framework is integrated with the underlying operating
system through a well-defined OS-abstraction layer.
This thin layer can be developed for various WSN
operating systems supporting the C language, such
as Contiki. This feature ensures the portability of
REMORA components towards different OSs. The
abstraction provided by REMORA becomes more
valuable when the component framework is easily
configured to reuse OS-provided features, such as event
processing and task scheduling.

Event Handling. Event-driven programming is a
common technique for programming embedded systems
as memory requirements in this programming model
is very low. Besides the support for events at the
operating system level in embedded systems, we also
need to consider event handling at the application layer.
REMORA therefore proposes an high-level support of
event generation and event handling, which makes it
one of the key features of our proposal. In particular,
REMORA achieves this goal by reifying the concept of
event as a first-class architectural element simplifying
the development of event-oriented scenarios.

Before describing our component model, we first
define the basic terms used throughout this article.
Figure 1 illustrates the development process of
REMORA-based applications. A REMORA application
consists of a set of REMORA Components, containing
descriptions and implementations of software modules.
The REMORA engine processes the components and
generates standard C code deployable within the
REMORA framework. The framework is an OS-
independent module supporting the specification of the
REMORA component model. Finally, the REMORA
application is deployed on the target sensor node via
the REMORA runtime, which is an OS-abstraction layer
integrating the application to the system software.

D, I Machis

Sensor Node

REMORA Components Deployable

<XML> i
REMORA Framework
Erie .
REMORA Framework

** REMORA Runtime

C-like

Implementation

FIGURE 1.
applications.

Development process of REMORA-based

THE COMPUTER JOURNAL,

Vol. 77, No. 77, 1777

0
1
2
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

PRPRPOO~NOOUOPRAWDNPE

Page 4 of 18

4 A. TAHERKORDI ET AL.

2.1. Component Specification

A REMORA component contains two main artifacts:
component description and component implementation.
The component description is an XML document con-
taining the specifications of the component including its
services, references, producedEvents, consumedFEvents,
and properties (cf. Figure 2). A service can expose a
REMORA interface, which is a separate XML document
specifying the functions provided by the component,
while a reference indicates the operations required by
the component as an interface. Likewise, a producedE-
vent identifies an event type generated by a component,
whereas a consumedFEvent specifies component’s inter-
est on receiving a particular event. The component im-
plementation is a C-like program containing three types
of operations: i) operations implementing the compo-
nent’s services, i) operations processing events, and i)
component’s private operations.

<?xml version="1.0" encoding="UTF-8"?2>
<componentType name="COMPONENT_ NAME”>
<service name="SERVICEl NAME">
<interface.remora name="INTERFACEl NAME"/>
</service>
... other services
<reference name="REFERENCE1_ NAME">
<interface.remora name="INTERFACE2 NAME"/>
</reference> -
. other references
<property name="PROP1_NAME" type="PROP1l_TYPE">
PROP1_DEFAULT_VALUE
</property>
. other properties
<producer>
<event.remora type="EVENTl_TYPE" name="EVENT1_ VAR NAME"/>
</producer>
.. other producers
<consumer operation="CONSUMER_OPERATION">
<event.remora type="EVENT2_TYPE" name="EVENT2_ VAR _NAME"/>
</consumer>
... other consumers
</componentType>

FIGURE 2. The XML template for describing REMORA
components.

To make the specification more concrete, we
first present a simple example of a REMORA-based
application, then we discuss REMORA features carefully.
This simple application is in charge of blinking a LED
on a sensor node every three seconds. Figure 3 depicts
the components involved in this application.

Leds ILeds
3)

Timer]
E{m_ex?fvent

O Service D Produce D Property
) Reference Z| Consume

() Isensorapp
[Jtoggle

FIGURE 3. A simple REMORA-based application.

We here focus on the Blink component and describe
it according to the REMORA component model. In
Figure 4, the XML description of the Blink component
is shown. This component provides an ISensorApp
interface to start application execution and requires
an ILeds interface to switch LEDs on and off, which
is implemented by the Leds component. It also owns

a property to toggle a LED on the sensor node. As
the Blink component produces no event, the producer
tag in the component description is empty, while it
is subscribed to receive TimerEvent and process this
event in the timerExpired function. The last part of
the component description is the libraries used by the
component implementation.

<?xml version="1.0" encoding="UTF-8"?>
<componentType name="app.BlinkApp">
<service name="iSensorApp">
<interface.remora name="core.boot.api.ISensorApp"/>
</service>
<reference name="iLeds">
<interface.remora name="core.peripheral.api.ILeds">
</reference>
<property name="toggle" type="xsd:short">0</property>
<producer/>
<consumer operation="timerExpired">
<event.remora type="core.sys.TimerEvent" name="aTimeEvent"/>
</consumer>
<libraries>
<include name="stdio" type="SystemLib"/>
</libraries>
</componentType>

FIGURE 4. XML description of Blink component.

Figure 5 presents the excerpt of the Blink implemen-
tation. This C-like code implements the single function
of the ISensorApp interface (runApplication) and han-
dles TimerEvent within the timerExpired function. In the
runApplication function, we specify that the TimerEvent
generator (aTimeEvent.producer) is configured to gener-
ate periodically TimeEvent every three seconds. The last
command in this function is also to notify the TimerEvent
generator to start time measurement. When time is
expired, Timer sets the attributes of aTimeEvent (e.g.,
latency) and then the REMORA framework calls the
timerExpired function.

void runApplication () {
printf ("--- Starting Blink Application ---");
short periodic = 1;
aTimeEvent.producer.configure (3*CLOCK_SECOND, periodic);
aTimeEvent.producer.start(); B
}
void timerExpired() {
if (this.toggle == 0){
iLeds.onLeds (LEDS_RED) ;
this.toggle = 1;
telse{
iLeds.offLeds (LEDS_RED);
this.toggle = 0;
}
printf("Time elapsed after interval: %d", aTimeEvent.latency);

}

FIGURE 5. C-like implementation of Blink component.

Services and References. The first step towards
component-based programming is identifying system
services, and then identifying which component(s)
provides a service and which one(s) requires the
service (so called reference). Similar to component
descriptions in REMORA, interfaces are described in
XML. Interface description includes a name and the
associated operations. Figure 6 presents the simplified
ILeds interface used by the Blink component as a
reference. Every component providing a service should
implement all the operations specified in the interface
description with the same signatures.

THE COMPUTER JOURNAL,

Vol. 77, No. 77, 1777

Page 5 of 18

©CoO~NOUTA,WNPE

e
[Ny

U OO A DMBEBRAMDIMBAEDIAMDIMNDMOWWWWWWWWWWNDNNDNNNNNNNRPRPRERREREREPR
QOO NOUPRRWNRPOOO~NOURARWNPRPOOONOUOPRARWNRPOOONOODURAWNRPOOO~NOOOMWN

COMPONENT-BASED APPROACH FOR SENSOR SOFTWARE 5

<?xml version="1.0" encoding="UTF-8"?>
<interface.remora name="core.peripheral.api.ILeds">
<operation name="getLeds" return="xsd:unsignedByte"/>
<operation name="onLeds">
<in name="leds" type="xsd:unsignedByte"/>
</operation>
<operation name="offLeds">
<in name="leds" type="xsd:unsignedByte"/>
</operation>
</interface.remora>

FIGURE 6. A simplified description of ILeds interface.

Component Properties. In REMORA, programmers
can define properties for a component. Properties
enable reconfiguration of component behaviors and also
convert components from a dead unit of functionality
to an active entity tractable during the application
lifespan. The component reconfiguration becomes
very essential for event producer components, e.g., to
generate accurate TimerEvents in the Blink application,
we need to configure the Timer component through a
property that holds the time at which the measurement
is started. Properties also enable components to
become either stateless or stateful. A component is
stateful if and only if it defines a property—e.g., the
Blink component in our sample application is a stateful
component retaining the value of the toggle property—
whereas the Leds component is a stateless component.
The properties of a component can be accessed from the
component implementation using the keyword this.
Component Implementation. REMORA compo-
nents are implemented by using a dialect of C lan-
guage with a set of new commands. This C-like lan-
guage is mainly proposed to support the unique charac-
teristics of REMORA, namely, component instantiation,
event processing, and property manipulation. There-
fore, for pure component-based programming without
the above features, the programmer can almost rely on
C features and develop an elementary REMORA-based
application including only REMORA-based interface in-
vocations. We implicitly introduced a few of these
commands within the Blink component implementation,
while the complete description of commands is available
in [15].

Parameter-based Reconfiguration. To preserve
efficiency in resource usage, REMORA relies on compile-
time linking so that system components are linked
together statically and their memory address is also
computed at compile-time. Additionally, for multiple-
instance components, all required instances are created
in compiler-specified addresses prior to application
startup. These constraints not only reduce the size of
the final code, but also relieve the programmer from the
burden of managing memory within the source code. In
REMORA, the reconfiguration feature is also considered
from a parametric perspective: A REMORA component
can be reconfigured statically by changing the behavior
of its functions through its component properties. In
particular, for the property-dependent functions of a
component, the behavior of the component can easily be

changed by adjusting property values and thus a form
of parameter-based reconfigurability is enabled within
the component.

2.2. Component Instantiation

REMORA features a concrete mechanism to support
component instantiation. This feature is essentially
proposed to manage efficiently event producer com-
ponents. The REMORA engine greatly benefits from
component instantiation when undertaking linking of
one event producer to several consumer components.
For example, in the Blink application, the producer
(Timer) of TimerEvent should be instantiated per con-
sumer component, while the UserButtonEvent generator
is a single-instance component publishing an event to
all subscribed components when the user button on a
sensor node is pressed.

By component instantiation, we refer to two
principles: i) the component code is always single-
instance, and %) the component contezrt is replicated
per instance. By component context, we mean
the data structures required to handle the properties
independently from the component’s code. By doing
that, a REMORA component becomes a reconfigurable
and reusable entity with a strong abstraction, and more
importantly the memory overhead is kept very low by
avoiding code duplication.

REMORA proposes three multiplicity types for
the component’s context: raw-instance (stateless
component), single-instance, and multiple-instances.
The REMORA engine features an algorithm computing
the multiplicity type of a component based on three
parameters: i) whether the component owns any
property,) whether the component is an event
producer, and éiz) the number of components subscribed
to a specific event. When the multiplicity type is
determined, the REMORA engine statically allocates
memory to each component instance.

2.3. Event Management

As high-level event processing is a necessary functional-
ity in embedded systems, the REMORA design compre-
hensively supports events between components. The
main goal is to reify the concept of event as a first-
class architectural element simplifying the development
of event-oriented scenarios at a low cost. The event de-
sign principles in REMORA include:

Event Attributes. An event type in our approach can
have a set of attributes with specific types. By defining
attributes, the event producer can provide the event-
specific information to the event consumer, e.g., the
latency attribute of TimerEvent in the Blink application.
Application Events vs OS Events. Events in our
framework are categorized into two classes: application-
events and OS-events. Application-level events are
generated by the REMORA framework (like Timer in

THE COMPUTER JOURNAL,

Vol. 77, No. 77, 1777

©CoO~NOUTA,WNPE

e
[Ny

U OO A DMBEBRAMDIMBAEDIAMDIMNDMOWWWWWWWWWWNDNNDNNNNNNNRPRPRERREREREPR
QOO NOUPRRWNRPOOO~NOURARWNPRPOOONOUOPRARWNRPOOONOODURAWNRPOOO~NOOOMWN

Page 6 of 18

6 A. TAHERKORDI ET AL.

the Blink application), while the latter are generated
by the sensor operating system. In other words, the
only difference of these two types is the source of event
generation. To process OS-events at the application
level, the REMORA runtime features mechanisms to
observe OS-events, translate them to corresponding
application-level events, and publish them through OS-
event producer components.

Event Observation Interface. One of the important
aspects of event processing is the time period in which
events should be observed by the event producer.
Obviously, the length of this period varies with the type
of events, e.g., the observation period for a TCP/IP
event is the whole application lifespan (automatic
observation), while a Timer event is observed according
to the user-configured time (manual observation).
REMORA therefore proposes the event observation
interface in order to control the manual observations.
This interface includes event control operations, such as
start, pause, resume, and terminate. If an event type
is manually observable, the associated event producer
should implement the generic observation interface. By
doing that, the event consumer can handle the life cycle
of the observation process by calling the operations of
this interface without being aware of the associated
event producer.

Event Configuration Interface. The specification of
an event type in our approach contains a configuration
interface. Each component producing an event should
implement the associated configuration interface. This
feature enables the event consumer to configure
event generation before starting the event observation
process. More importantly, by introducing such an
interface within the event specification, the event
producer and the event consumer become completely
decoupled, e.g., in the Blink application, TimerEvent
generation is configured within the Blink component
without being aware of the associated event generator.

Single Event Producer per Event Type. FEach
event type in our approach is produced by one and only
one component. Instead of imposing the high overhead
of defining event channels and binding event consumers
and producers, we ease event-based programming
by assuming one-to-one association between event
types and event producers. The programmer is also
released from identifying such bindings as the REMORA
framework becomes responsible to automatically wire
producers and consumers. We believe that this
assumption does not affect event-related requirements
of embedded platforms. In case an event is produced by
two different components, the programmer can define a
new event type, extended from the original event, for
one of the producer components.

2.8.1. Fwvent Casting

Events in our proposal can be either wunicast, or
multicast. Unicast is a one-to-one connection between
an event producer and an event consumer—e.g.,
TimerEvent in the Blink application. In contrast to the
unicast model, a multicast event may be of interest
to more than one component—e.g., a UserButtonEvent
may be handled by several components. The REMORA
framework distinguishes between these two types in
order to improve the efficiency of processing and
distributing events. Event distribution should also be
considered together with component instantiation. We
need to clarify how multiplicity type of components on
the one side, and unicast events and multicast events
on the other side are related. To this end, we define
two invariants:

Invariantl: The consumer of a unicast event
should be a raw-instance or single-instance
component.

Invariant2: The producer of a multicast event
should be a raw-instance or single-instance
component.

These invariants are mainly proposed to boost
the efficiency of event processing in the REMORA
framework. We do not support other event
communication schemes since it implies to reify at
runtime the source and the destination of an event and
to maintain complex routing tables within the REMORA
framework, which will induce significant overheads in
term of memory footprints and execution time. We
rather believe that these invariants do not limit event-
related logic of embedded applications.

2.83.2. Fwvents Description

Similar to components, events have their own
descriptions, which are in accordance to the event
specification in REMORA. Figure 7 presents a
simplified events description document of the Blink
application. This document consists of two outer tags:
remora-events and os-events, corresponding to the
application level events and the OS events, respectively.
For each event type, we can specify its observation
model and casting type. The attributes of an event are
also described by the attribute tag and the operations
of event configuration interface is specified by the
configInterface tag.

2.3.3. FEvent Management Illustration

Figure 8 illustrates the event management mechanism
implemented in REMORA. We explain the mechanism
based on the steps labeled in the figure. During the
first two steps, the event consumer can configure event
generation and control event observation by calling the

THE COMPUTER JOURNAL,

Vol. 77, No. 77, 1777

Page 7 of 18

©CoO~NOUTA,WNPE

e
[Ny

U OO A DMBEBRAMDIMBAEDIAMDIMNDMOWWWWWWWWWWNDNNDNNNNNNNRPRPRERREREREPR
QOO NOUPRRWNRPOOO~NOURARWNPRPOOONOUOPRARWNRPOOONOODURAWNRPOOO~NOOOMWN

COMPONENT-BASED APPROACH FOR SENSOR SOFTWARE 7

<?xml version="1.0" encoding="UTF-8"?>
<events>
<remora-events>
<event-type name="core.sys.TimerEvent"
castType="unicast" observation="manual">
<attribute name="latency" type="xsd:int"/>
<configInterface>
<operation name="configure">
<in name="interval" type="xsd:int"/>
<in name="periodic" type="xsd:short"/>
</operation>
</configInterface>
</event-type>
</remora-events>

<!-- add other application event types here -->
<os-events>
<!-- describe OS-events here -->
</os-events>
</events>

FIGURE 7. Application events description.

associated interfaces realized by the event producer
component. These steps in our sample application are
achieved in the Blink component (event consumer) by
the code below:

aTimeEvent.producer. configure (3*CLOCK_SECOND,
periodic);

aTimeEvent.producer.start();

Note that the programmer is not aware of the
TimerEvent producer. She/he only knows that the
TimerEvent generator is expected to implement the
configure function defined in the description of
TimerEvent (cf. Figure 8). The TimerEvent producer
should also implement the observation interface as the
observation type of TimerEvent is manual.

Whereas the above steps are initiated by the
component programmer, the next two steps are
performed by the REMORA component framework. Step
3 is dedicated to polling the producer component
to observe event occurrence. The event producer is
polled by the REMORA framework through a dispatcher
function in the producer. In fact, the event observation
occurs in this function. The polling process is
started, paused, resumed, and terminated based on the
programmer’s configuration for the event observation,
performed in step 2.

For application-level events, the REMORA framework
is in charge of calling periodically this function, while
for OS-events, REMORA invokes this function whenever
an OS-event is observed by the REMORA runtime.
The REMORA runtime listens only to application-
requested OS-events, and delivers the relevant ones to
the framework. The REMORA framework then forwards
the event to the corresponding OS-event producer
component by calling its dispatcher function—e.g.,
user_button is a Contiki-level event that should be
processed by the REMORA component UserButton. This
component then generates an high-level UserButtonEvent
and publishes it to the REMORA framework.

Finally, in step 4, upon detecting an event in the
dispatcher function, the producer component creates
the associated event, fills the required attributes, and
publishes it to the REMORA framework. The framework
in turn forwards the event to the interesting components

by calling their event handler function.

Event Producer

Event
\ _realize
Attribute 1 'f)
Attribute n|) realize

dispatcher

Event

Conf. Interface Consumer

Obsrv. Interface @

®

REMORA Framework |

AAA
| || OS-events
REMORA Runtime |

FIGURE 8. Event management mechanism in REMORA.

2.4. Components Assembly and Deployment

A typical REMORA application may contain several im-
plementations of a given component type due to the
existing heterogeneity in WSN hardware and software
platforms. To configure an application according to the
target platform requirements, REMORA introduces com-
ponents assembly (equivalent to composite component
in SCA). This XML document specifies the list of ap-
plication components, as well as bindings between ref-
erences and services of components. Figure 9 shows
the configuration of Blink application in which there is
only one binding from Blink to the Leds component im-
plementing the interface ILeds for the MSP430 micro-
controller. Note that, based on the event casting in-
variants, the event-binding between Blink and Timer is
created automatically by the REMORA framework.

<?xml version="1.0" encoding="UTF-8"?>
<composite name="app.BlinkAppConfigurer">
<component name="ledControl">
<implementation.remora
implementer="cmu.telosb.peripheral.Leds"/>
</component>
<component name="blink">
<implementation.remora implementer="app.BlinkApp">
</component>
<component name="timer"/>
<implementation.remora implementer="core.sys.Timer"/>
</component>
<!—components wiring -->
<wire source="blink/ilLeds" target="ledControl/iLeds"/>
</composite>

FIGURE 9. Blink application configuration.

Figure 10 illustrates the four main phases of an
application deployment. The REMORA development
box encompasses artifacts supporting component
specification. Events description and components
configuration are used to describe system events
and components assembly, respectively. Components
and interfaces are also described in separate XML
documents, one for each. External types are a
set of C header files containing application’s type
definitions. The last group of elements in this box
are C-like implementation files of components in which
OS libraries may be called through a set of System
APIs implemented by REMORA runtime components.
Note that there is no hard-coded dependencies between
REMORA implementers and the native API of the

THE COMPUTER JOURNAL,

Vol. 77, No. 77, 1777

©CoO~NOUTA,WNPE

e
[Ny

U OO A DMBEBRAMDIMBAEDIAMDIMNDMOWWWWWWWWWWNDNNDNNNNNNNRPRPRERREREREPR
QOO NOUPRRWNRPOOO~NOURARWNPRPOOONOUOPRARWNRPOOONOODURAWNRPOOO~NOOOMWN

Page 8 of 18

8 A. TAHERKORDI ET AL.

underlying OS (e.g., Contiki) to ensure portability of
REMORA components towards different OSs.

In the next phase, the REMORA engine reads the
elements of the development box and also OS libraries
in order to generate the REMORA framework including
the source code of components and OS-support code.
Then, application object file will be created through
OS-provided facilities and finally deployed on sensor
nodes.

RemoRA Development Box

Events Interface External Types
Description | | Description Definition
xml>

Component

Description

Components
Configuration

REMORA Engine RemMORA Application

‘»J include :‘j o

Application

REMORA Runtime

Operating System

Component
Implementation

Remora-based
System APIs Sensor Hardware

Sensor Node

FIGURE 10. REMORA-based development process.

2.5. Middleware Programming

The research efforts on sensor middleware have hitherto
focused on developing services and algorithms for
routing, quality of service, energy-efficiency, resource
management, localization, synchronization, etc. These,
however, often fall short of expectation in integrating
services and algorithms into a generic middleware
system, and in helping application programmers
to compose a system that exactly matches their
requirements. This raises the need for a specific
approach for middleware programming in WSNs that
goes beyond dealing with only application-specific
logics. From the programming point of view,
middleware services are distinguished from other
components in the system by the following two main
factors.

First, despite the application-level programming,
middleware components are developed very close to
the operating system, requiring to tightly interact
with system-level components. Therefore, sensor pro-
gramming models, supporting middleware develop-
ment, should provide the primitives required to inter-
face between middleware services and system compo-
nents. REMORA addresses this concern through the OS
Abstraction Layer and the OS-Wrapper components. In
addition to enabling the portability of sensor applica-
tions, these principles make REMORA a suitable pro-
gramming model to build middleware applications.

Second, middleware solutions should be exposed as
a well-packaged, stand-alone application which can
be easy integrated to the target application with
minimum programming effort. Although this issue has
been extensively addressed in conventional resource-rich
systems, software pieces in WSNs are often assembled
together in an ad-hoc manner, without any well-
established software composition model. This problem

originates from the fact that WSN programming
abstractions do not pay enough attention to software
composition and integration approaches. With the
increasing number of intermediate software solutions
for WSNs (e.g., networking, algorithms and QoS),
programming constructs are required to compose the
application, middleware services, and the operating
system into a unified sensor software in a generic, simple
and robust manner.

The technique we have adopted in REMORA to
compile and assemble components has the potentials to
meet a higher level of assembly which is integrating a
given set of REMORA-based applications. In particular,
we enhance the REMORA engine with the capability
of processing multiple isolated REMORA applications
and integrating them into a unified system. The
main concerns, in this endeavor, include how to expose
an application’s functionality as an API and bind
applications based on the dependencies between their
APIs. REMORA addresses these concerns based on the
concept of Autonomous Composable Module (ACM).
This refers to developing REMORA applications in an
autonomous manner so that the programmer considers
an under-development application as a stand-alone
module with its own operations. It means that, based
on this approach, the dependencies of the application
to others are not declared within its description. The
REMORA engine is in charge of analyzing dependencies
among ACMs and binding them together. Figure 11
shows the overall architecture of REMORA composition
solution, consisting of a set of ACMs and the main
sensor application. The latter not only implements
the application logic, but also serves as a starting
point to execute programs. An ACM contains a set of
REMORA components implementing its logics, as well
as a component representing its API.

{ Main Application }

FIGURE 11. The overall architecture for composing the
main application and ACMs.

As a wuse case for the REMORA middleware
programming model, in [15] we demonstrate a
run-time middleware system, called REMOWARE, to
support dynamic reconfiguration of REMORA-based
applications. REMOWARE is basically an ACM which
can be easily used as a middleware solution in
any dynamic sensor application to enable run-time
reconfiguration of REMORA components.

THE COMPUTER JOURNAL,

Vol. 77, No. 77, 1777

Page 9 of 18

©CoO~NOUTA,WNPE

e
[Ny

U OO A DMBEBRAMDIMBAEDIAMDIMNDMOWWWWWWWWWWNDNNDNNNNNNNRPRPRERREREREPR
QOO NOUPRRWNRPOOO~NOURARWNPRPOOONOUOPRARWNRPOOONOODURAWNRPOOO~NOOOMWN

COMPONENT-BASED APPROACH FOR SENSOR SOFTWARE 9

2.6. Automatic Tuning

Besides the componentization of application-level
modules, REMORA can be exploited to componentize
operating system’s modules either by wrapping them in
REMORA components, or redeveloping them according
to the REMORA specification. This enables the
REMORA engine to expand its control on the
configuration of sensor software and therefore makes
it possible to automatically tune the target software
installed on nodes. In this way, the REMORA engine
can gain a meta knowledge showing which OS-level
components are involved in supporting application logic
and based on that it can trace the interactions between
application components and system components. In
this way, it can identify the orphan components—the
components that are not involved in the application
scenario execution.

Figure 12 describes an initial configuration (prior
to deploying on nodes) of sensor software in which
the application-level components gain system services
through OS-wrapper components at the runtime layer.
These components interact either directly with kernel-
level modules, or with other intermediary wrapper
components beneath the runtime. This initial setting
can be optimized by REMORA engine. When it executes
the tuning process, deduces that one of the intermediary
components is orphan, and removes it from the final
package installed on nodes.

O O

7 \\ \\, 1
Orphan ~
Component

Application

Remora Runtime

U-©@0OO0

Operating System
Kernel D D D
(- Legend)
i 0s 0s-Wrapper (-~ Application
i Module Component Component |

FIGURE 12. The REMORA engine tunes the operating
system by tracing component dependencies and finding
orphan components.

3. IMPLEMENTATION

To discuss the implementation of REMORA, we
structure this section according to the main modules
proposed for REMORA-based application development,
namely, the engine, the framework, and the runtime.
Since the platform supporting the component model is
comprehensive and includes numerous implementation
issues, we only highlight the key technologies and
design techniques used for implementing each of the
aforementioned modules. Beyond the internal design of
modules, the overall design goal is to keep the artifacts
of each module completely independent from others
in the sense that in the final system, each module
is composed of three set of source codes dedicated

to corresponding modules. The main advantage of
this separation is to minimize the required effort to
port the component model to a new operating system
by ensuring a clear isolation between the REMORA
framework and the REMORA runtime.

3.1. Remora Engine

The REMORA engine is deployed on the programmer’s
desktop machine to read all artifacts within the
development box, perform required analyses for
code generation, and generate the final C code of
components, as well as OS-support code. We adopt
Java to develop the engine because of its cross-platform
capabilities, as well as its strong support for XML
processing. Additionally, the object-oriented nature of
Java simplifies the complex process of code analyzing
and code generation. We briefly discuss the key design
principles of this Java-based engine below.

The first task of the engine is to parse the C-
like implementation of components and extract the
information concerning the specification of REMORA.
To this end, we have developed a parser module,
which is originally generated by ANTLR—a widely
used open-source parser generator [16]. Since this
generated tool only parses the source code, we have
modified the generated parser to extract REMORA-
required information, such as name, signature, and body
of implementation functions. By doing that, the engine
builds a meta-data structure containing all required
information about the implementation of a component
and the rest of the engine tasks are performed based on
that.

The other key implementation part of the REMORA
engine deals with processing events, component instan-
tiation, and component lifecycle. This unit deduces the
multiplicity type of components according to the algo-
rithm 1 and generates the necessary data structures.
This algorithm determines the multiplicity type based
on the type of events generated by the component, as
well as whether the component owns any property or
not. If the final value of variable Inst Number is 0, this
means that the component has no instance and only re-
quires the code memory, while the value of 1 shows that
only one instance of component’s data should be stored
in the data memory. Finally, for a multiple instance
component the value of Inst Number is 2.

This module also features a set of well-defined tech-
niques, such as in-component call graph analyzer and
cross-component call tracker to support stateful com-
ponent. The former concept is concerned with discov-
ering state-dependent functions of a component. Two
types of state dependency can be envisaged for a func-
tion: ¢) explicit dependency: the component’s prop-
erty(s) is(are) directly accessed within the function’s
code, i) implicit dependency: the function contains
direct/indirect invocation(s) to an explicit type. To
preserve the state of a component, we need to retain

THE COMPUTER JOURNAL,

Vol. 77, No. 77, 1777

©CoO~NOUTA,WNPE

e
[Ny

U OO A DMBEBRAMDIMBAEDIAMDIMNDMOWWWWWWWWWWNDNNDNNNNNNNRPRPRERREREREPR
QOO NOUPRRWNRPOOO~NOURARWNPRPOOONOUOPRARWNRPOOONOODURAWNRPOOO~NOOOMWN

Page 10 of 18

10 A. TAHERKORDI ET AL.

Algorithm 1 Determining the multiplicity type of
components
Input: producedEvents, events generated by the com-
ponents
Input: properties, component’s properties
Output: component’s multiplicity type
InstNumber <= —1
MultiConsumers < false
for aFvent in producedFEvents do
if aEvent is unicast then
if sizeO f(aEvent.consumers) > 1 then
MultiConsumers < true
break
end if
end if
end for
if MultiConsumers is false then
if sizeO f(producedEvents) > 0 then
InstNumber < 1
else
if sizeO f(properties) > 0 then
InstNumber < 1
else
InstNumber <= 0
end if
end if
else
InstNumber < 2
end if

a pointer to the component’s context and pass it to
the state-dependent functions of component. The in-
component call graph analyzer employs a recursive tech-
nique to navigate the function calls with the component
and identify the state-dependent functions. Likewise,
the cross-component call tracker tracks the interactions
between components in order to retain the state of com-
ponents. Finally, the major task of the engine is to sup-
port events and manage the component lifecycle by em-
bedding framework-support patches in the component
implementation.

Automatic tuning of sensor software is the other
responsibility of the REMORA engine. The data
structure supporting the tuning process is a directional
graph in which every node represents a component
of the system and edges between nodes are the
service-based interactions among the components (cf.
Figure 13). The engine first creates this graph and
then navigates the nodes based on the Depth-First
Search (DFS) algorithm to find the orphan nodes.
In particular, it initiates this process from the main
component of application, implementing the interface
ISensorApp, as the root of graph. When it accomplishes
DFS, it removes orphan nodes—all components that are
never visited by DFS.

Moreover, the REMORA engine undertakes binding
ACM modules in order to support middleware

DFS Start
Application

Q QQ
Q QO

Ranime Q. Q)
sevices @ Q-Q

O O O O visited node

O notvisited node

FIGURE 13. Using depth-first search algorithm to
discover the orphan nodes.

programming. This process is carried out in a two-
phase strategy. It first processes the components
configuration document of each ACM and creates a
disconnected, directed graph structure in which each
ACM would have directed edges to the required APIs.
In the second phase, the engine analyzes the yielded
disconnected graph from the first phase and creates
a connected graph representing dependencies among
ACMs, as well as between the main sensor application
and ACMs. Therefore, it provides a higher-level of
wiring model between co-habiting applications and this
model is further processed by the engine to implement
the execution flow graph in the system.

3.2. REMORA Framework

The REMORA framework is composed of a collection
of core C programs, supporting the event management
model of REMORA and hosting the target application’s
components. As mentioned before, the REMORA
framework is an OS-independent module. There
are two main reasons for this: i) the core of the
framework is written in the C language and also the
final code of application’s components are translated
to equivalent C programs by the REMORA engine, i)
the framework is linked to the OS via the REMORA
runtime which translates all OS-originated interactions
(e.g., OS-events) to a set of pre-defined, application-
specific instructions understandable by the framework
(cf. Section 2.3). The other possible dependency issue
is caused by the mechanism used to form the REMORA
framework as a process within the OS and schedule it to
run. This is also extensively addressed by the REMORA
runtime as explained in Section 3.3.

The main mission of the framework is to facilitate
event management tasks, including scheduling and
dispatching. To explain these tasks, we first introduce
two queue data structures supporting our event model.
The first queue is dedicated to the event producer
components (PQ), while the second one is designed to
maintain the event consumers (CQ). We discuss here
how the REMORA framework is built based on these
data structures.

Scheduling in REMORA refers to all operations
required to enqueue and dequeue event producers and

THE COMPUTER JOURNAL,

Vol. 77, No. 77, 1777

Page 11 of 18

©CoO~NOUTA,WNPE

e
[Ny

U OO A DMBEBRAMDIMBAEDIAMDIMNDMOWWWWWWWWWWNDNNDNNNNNNNRPRPRERREREREPR
QOO NOUPRRWNRPOOO~NOURARWNPRPOOONOUOPRARWNRPOOONOODURAWNRPOOO~NOOOMWN

COMPONENT-BASED APPROACH FOR SENSOR SOFTWARE 11

event consumers. In particular, the main concern
is when to enqueue/dequeue a component and who
should perform these tasks. The REMORA framework
addresses these issues based on the observation model
of events. For example, if an event is automatically
observable, the associated producer component and
all the subscribed consumers are enqueued by the
framework core during the application startup, while
in a manual observation, producer and consumer are
placed respectively in PQ and CQ when the consumer
component calls the start function of observation
interface. A question may arise is that prior to initiating
the scheduling mechanism, how the components
instances are created. In REMORA, memory allocation
for components is done statically. Therefore, the
memory address of all instances of all components are
determined during the framework compilation and we
do not impose the high overhead of dynamic memory
allocation to such a resource-constraint platform.
At runtime, parts of the framework, embedded in
each component, are responsible for dealing with
component lifecycle—e.g., activating or deactivating
event generator components.

The other role of the REMORA framework is to
periodically poll the generator components for event
observation, and then feed event handlers with the
matched events. To achieve the former, event
generators in REMORA keep a pointer to the globally
known callback function, dispatcher, thereby, the
REMORA framework is able to poll event generators by
periodically calling this function. Similarly, the latter
is realized by invoking the callback handler function
within the event consumer component like timerExpired
in the Blink component.

Figure 14 illustrates the dispatching mechanism in
the framework including the supporting data structures.
In Polling, the REMORA framework continuously polls
the EventProducer components through dispatcher—
the globally known callback function. = Whenever
a producer dispatches an event (AbstEvent), the
framework casts this event to the actual event
type, which is either UCastEvent(unicast event) or
MCastEvent(multicast event). UCastEvent will be directly
forwarded to the subscribed consumer through the
callback function pointer stored in the UCastEvent. If
a MCastEvent is generated, the framework delivers it
to all the interesting components formerly enqueued.
For OS-events, the same procedure is followed except
the polling phase, which is performed by the operating
system.

3.3. REMORA Runtime

The REMORA framework is integrated with the
underlying operating system through the REMORA
runtime. In our current implementation, the core of
the REMORA runtime is a Contiki-compliant process
running together with all other autostart processes

Polling
J EventProducer 1 ‘ —H EventProducer 2 ‘ -I—> “es —>‘ EventProducern " U

produce v
AbstEvent UCastEvent UCastConsumer

Forwarding Unicast Event

[WeastConsumer| B -+ —»/Weastconsumer]']
|)

Distributing Multicast Event

FIGURE 14. REMORA event processing mechanism.

of Contiki (see Figure 15). This process undertakes
two tasks: i) periodically scheduling the REMORA
framework (for polling event generator components) to
run, and i) listening to the OS-events and delivering
the relevant ones to the REMORA framework. By
relevant, we mean the REMORA runtime recognizes
those OS-events that are of interest to the application.
To achieve such a filtering, the source code of this
part is generated by the REMORA engine according
to the events description (cf. Section 2.3.2) of
target application and then imported to the REMORA
runtime. By doing that, we provide a lightweight event
dissemination mechanism interpreting only application-
specific OS-events.

REMORA Runtime
Autostart Process 1 I—> aee m
REMORA Aufostgrt Process 1

—_—
Contiki Process A A A |

Contiki Event-Based Kernel 1]

FIGURE 15. Integration of Contiki and REMORA through
the runtime layer.

In addition, the application code may need to use
libraries available in the OS. In REMORA, a programmer
can develop a set of REMORA components acting as
system API providers. In fact, these components
delegate all high-level system calls to the corresponding
OS-level functions—e.g., the currentTime() function
call in the system API is delegated to the Contiki
function clock time(). We offer this API to decouple
the application components from OS modules and
ensure the portability of REMORA-based applications.
If an application is not expected to be ported to other
operating systems, programmers can directly call the
OS functions within component code and therefore
slightly improve the runtime performance.

4. EVALUATION

To evaluate the efficiency of REMORA, in this section
we first demonstrate and assess a real REMORA-based
application, then we focus on the general performance
figures of REMORA.

4.1. A Real Remora-based Deployment

Our real application scenario is a network-level
application suite consisting of a set of mini applications

THE COMPUTER JOURNAL,

Vol. 77, No. 77, 1777

©CoO~NOUTA,WNPE

e
[Ny

U OO A DMBEBRAMDIMBAEDIAMDIMNDMOWWWWWWWWWWNDNNDNNNNNNNRPRPRERREREREPR
QOO NOUPRRWNRPOOO~NOURARWNPRPOOONOUOPRARWNRPOOONOODURAWNRPOOO~NOOOMWN

Page 12 of 18

12 A. TAHERKORDI ET AL.

bundled together. This suite is basically designed
to provide services, such as code propagator and web
facilities in WSNs. We focus here on the first one and
design it based on the REMORA approach.

Code propagation becomes a very important need
in WSNs when we need to update remotely the
running application software [17]. The code propagator
application is responsible for receiving all segments of
a running application’s object code over the network
and loading the new application image afterwards. The
code propagator exploits the TCP and UDP protocols
to propagate code over the network. At first, TCP is
used to transfer new code, block by block, to the sink
node connected to the code repository machine, and
then UDP is used to broadcast wirelessly new code from
a sink node to other sensor nodes in the network. When
all blocks are received, the code propagator loads the
new application.

Figure 16 describes the components involved in the
first part of our application scenario. TCPListener is
a core component listening to TCP events. This
multiple-instances event generator is created for each
TCP event consumer component with unique listening
port number. For example, CodePropagator receives
data from port 6510 (codePropPort), while WebListener
is notified for all TCPEvents on port 80 (webPort).
CodePropagator stores all blocks of new code in the
external flash memory through the interface IFile
implemented by the FileSystem component. When
all blocks are received, CodePropagator loads the new
application by calling the interface ILoader from the
component ELFLoader. These two interfaces are system
APIs that delegate all application-level requests to the
OS-specific libraries. The interface INet, implemented
by the component Network, is also the other system
API providing the low-level network primitives to

TCPListener.
TCPEvent 'J Web Listener
webPort]|
- ELFLoader
: CodePropagator ‘IT-PPQ
E)

- FileSystem
TritemQ

() 1sensorapp

‘ TCPListener

listenPort]]

FIGURE 16. Code propagation application architecture.

As mentioned before, we adopt Contiki as our OS
platform to assess the REMORA component model.
Contiki is being increasingly used in both academia and
industrial applications in a wide range of sensor node
types. Additionally, Contiki is written in the standard
C language and hence REMORA can be easily ported to
this platform. Finally, the great support of Contiki on
event processing and process management motivate us
to design and implement the REMORA runtime on this
OS. Our hardware platform is the popular TelosB mote
equipped with a 16-bit TT MSP430 MCU with 48K B

TABLE 1. The memory requirement of code propagation
application in REMORA-based and Contiki-based implemen-
tations.

Code Data

Programming Memory | Memory
Model (bytes) (bytes)
Contiki 722 72

Code Propagation Components
CodePropagator 252 36
TCPListener 310 0
System API Components

ELFLoader 38 0

REMORA | Network 92 0
FileSystem 68 0

REMORA Core

Framework and Runtime 494 14

Total 1254 50

Remora overhead +532 -22

ROM and 10K B RAM.

The concrete separation of concerns in this applica-
tion is the first visible advantage of using REMORA. The
second improvement is the easy reuse of TCPListener for
other TCP-required applications, which is not the case
in a non-componentized implementation. In particular,
for each new application, we only need to instantiate
the context of TCPListener and configure its properties
(like port number) accordingly—e.g., WebListener in Fig-
ure 16.

Memory Footprint. Table 1 reports the memory
requirement of REMORA and Contiki programming
model (protothreads) for implementing the code
propagation application. As indicated in the table,
the REMORA-based development does not impose
additional data memory overhead, while it consumes
extra 532 bytes of code memory, which is essentially
related to the cost of framework and runtime modules.
This cost is paid once and for all, regardless of the
size and the number of applications running on the
sensor node. The code memory cost could be even
further reduced by removing system APIs (Network,
FileSystem, and ELFLoader) and calling directly the
Contiki’s libraries within CodePropagator. Note that the
overhead of TCPListener can also be decreased when this
component is shared for the use of other applications—
e.g., WeblListener. Therefore, we can conclude that the
memory overhead of REMORA is negligible compared to
the high-level features it provides to the end-user.

Processing Cost. Figure 17 reports the comparison
of CPU costs in these two approaches. The time
measurement was started when the first block of new
application’s code was received and it was stopped
when the last block of code arrived to the sensor
node. Since in-file seeking and writing is a costly
process, we removed invocations related to FileSystem
and ELFLoader and measured the execution time
afterwards. As the size of new code (ELF file)

THE COMPUTER JOURNAL,

Vol. 7?7, No. 77, 7777

Page 13 of 18

©CoO~NOUTA,WNPE

e
[Ny

U OO A DMBEBRAMDIMBAEDIAMDIMNDMOWWWWWWWWWWNDNNDNNNNNNNRPRPRERREREREPR
QOO NOUPRRWNRPOOO~NOURARWNPRPOOONOUOPRARWNRPOOONOODURAWNRPOOO~NOOOMWN

COMPONENT-BASED APPROACH FOR SENSOR SOFTWARE 13

TABLE 2. Line of code for our main components.

Line of Line of
Code Code | Reduced
Component (Remora) | (Contiki) Effort
TCP Listener 62 104 41%
Code Propagator 19 36 47%

is increased, the processing overhead of REMORA is
also slightly increased compared with the equivalent
Contiki implementation. We believe that this very
low overhead is due to the extra context-switchings
(among event processing functions within the REMORA
runtime) occurring for larger code in REMORA, which
is not the case in the Contiki-based implementation.

CPU usage vs code size
9000

Remora CPU usége VVVVVVVV '

8000 Contiki CPU usage

7000 ¢
B o000
&, 5000 e
8
3 4000 F
o)
& 3000 F

2000 -

1000 -

o
0 5 10 15 20 25 30
Code Size (KBytes)
FIGURE 17. CPU usage for receiving new code by

propagator application in REMORA and Contiki.

Programming Effort. Evaluating the programming
effort is difficult since it is affected by factors difficult
to measure—e.g., the nature of code (algorithmic or
routine), the complexity of the processing, and syntax
and semantic of programming languages. However,
WSN programming research has hitherto adopted the
number of lines of code (LOC) as a simple indication.
Table 2 reports this metric for the two main components
of code propagator application. It is interesting to
compare these measurements against the equivalent
functionality available in Contiki libraries, where it
is directly developed atop of the operating system.
The Contiki-based implementation of the TCP listener
module contains 41% more LOC than our version. This
efficiency is achieved since in our implementation event-
handling code is embedded in the run-time system and
shared for the use of different applications. We also gain
a significant improvement in LOC for code propagator
module compared with the Contiki’s implementation. It
is because the verbose code of event handling in Contiki
programming model is replaced with the shortened C-
like code of REMORA.

Tuning Result. The efficiency of the tuning technique
directly depends to the target use case and its
requirements in terms of low-level system services. In
the case of the code propagation application, we cannot
precisely measure the reduction of the final object code

TABLE 3. The minimum memory requirement of
REMORA.

Code Data
Memory | Memory
Module (bytes) (bytes)
Framework Core 374 4
Runtime Core 120 10
Total 494 14

size as it is basically an intermediate application lying
beneath the main sensor application. Therefore, we
measure the tuning performance of the code propagator
by considering it as a main sensor application. Applying
tuning technique on this application yields 5% reduction
in the final Contiki binary object file. This efficiency is
achieved by automatic removal of modules that never
involve in the code propagation process, e.g., programs
interfacing a node’s peripherals (e.g., light, button and
sensors).

The rest of this section is devoted to the assessment
of two main performance figures of REMORA, namely,
memory footprints and CPU usage.

4.2. Memory Footprint

In REMORA, we have made a great effort to maintain
memory costs as low as possible. The first step of this
effort is to avoid creating meta-data structures, which
are not beneficial in a static deployment. Distinguishing
unicast events and multicast events has also led to a
significant reduction in memory footprints as REMORA
does not need to create any supporting data structure
for unicast events.

The memory footprints in REMORA is categorized
into a minimum overhead and a dynamic overhead. The
former is paid once and for all, regardless of the amount
of memory is needed for the application components,
while the latter depends on the size of application.
Table 3 shows the minimum memory requirements of
REMORA, which turn out to be quite reasonable with
respect to both code and data memory. As mentioned
before, our sensor node, TelosB, is equipped with 48K B
of program memory and 10K B of data memory. As
Contiki consumes roughly 24K B (without pIP support)
of both these memories, REMORA has a very low
memory overhead considering the provided facilities and
the remaining space in the memory.

Table 4 shows the memory requirement of different
types of modules in the REMORA framework. The
exact memory overhead of REMORA depends on how
an application is configured, e.g., an application,
containing one single instance event producer and one
unicast event, needs extra 56 bytes (38 + 8 + 10) of
both data and code memory. Ordinary components
do not impose any memory overhead as REMORA
does not create any meta data structures for them.
For other types of modules, REMORA keeps the data

THE COMPUTER JOURNAL,

Vol. 7?7, No. 77, 7777

©CoO~NOUTA,WNPE

e
[Ny

U OO A DMBEBRAMDIMBAEDIAMDIMNDMOWWWWWWWWWWNDNNDNNNNNNNRPRPRERREREREPR
QOO NOUPRRWNRPOOO~NOURARWNPRPOOONOUOPRARWNRPOOONOODURAWNRPOOO~NOOOMWN

Page 14 of 18

14 A. TAHERKORDI ET AL.

TABLE 4. The memory requirement of different entities
in REMORA.

Code Data

Memory | Memory

Entity (bytes) (bytes)
Ordinary Component 0 0
Event Single Ins. 38 8
Producer | Multiple Ins. 42 10
Event Unicast 0 10
Multicast 0 10

Multicast Event Consumer 30 6
OS Event 28 4
System API 4 0

memory overheads very low as this memory in our
platform is really scarce. We also believe that the
code memory overhead is not significant since a typical
WSN application is small in size and it may contain
up to a few tens of components, including ordinary
components. It should be noted that componentization
itself reduces the memory usage by maximizing the
reusability degree of system functionalities like the one
discussed in the code propagation application.

4.3. CPU Usage

As energy cost of REMORA core is limited to only the
use of the processing unit, we focus on the processing
cost of our approach and show that REMORA keeps
the CPU usage at a reasonable level, and in some
configurations it even reduces CPU usage compared to
the Contiki-based application development.

To perform the evaluation, we set up a Blink
application in which a varying number of mirror
components (1 to 15) switch LEDs on and off every
second. The two implementations of this application,
Contiki-based and REMORA-based, were compared
according to a CPU measurement metric. The metric
was to measure the amount of time required by one
REMORA component and one Contiki process to switch
LEDs six times: three times on and three times
off. With the less number of switches, we cannot
extract the exact timing differences as our hardware
platform provides a timing accuracy of the order of one
millisecond.

We started our evaluation by deploying an applica-
tion similar to the one presented in Section 2.1 and mea-
suring the CPU usage based on our metric. In each
next evaluation step, we added a mirror Blink compo-
nent to the application and measured again the time.
This experiment was continued for 15 times. We made
the same measurement for a Contiki-based Blink appli-
cation and added a new Contiki Blink process in each
step. Figure 18 shows the evaluation result of our sce-
nario. When we have one Blink component /process, the
CPU overhead of both approaches is almost the same,
indicating that the REMORA runtime and framework
impose no additional processing overhead. When the

number of components/process increases towards 15,
reduction in CPU usage is achieved in two dimensions.

6000 i

,,,,,,,,,,,,,,,

5900

5800

5700

CPU Usage (ms)

5600

Remora -
. . . _ Contiki
4 6 8 10 12 14 16
Number of components

5500
2

FIGURE 18. The REMORA-based implementation does
not impose additional CPU overhead compared to the
Contiki-based implementation.

Firstly, the number of CPU cycles for REMORA
is slightly less than for the Contiki application.
This difference reaches 13 milliseconds when Contiki
undertakes running 15 Blink processes. Therefore, we
can conclude that REMORA does not impose additional
processing overhead affecting the performance of the
system. Secondly, the CPU usage of REMORA
application is reduced when the number of Blink
components is increased. This improvement is achieved
because the number of context switches between the
REMORA runtime and the REMORA framework is
significantly decreased when there are more event
producer components (Timer) in PQ.

To clarify this issue, we assume that the application
running time is 7' and Contiki periodically allocates
CPU to the REMORA runtime in this period. In
each allocation round, the runtime module invokes the
event manager in the REMORA framework to poll the
application level event producers. Given that there
are K producers in PQ, the polling process consumes
K x t; of CPU, where t; is the average processing
cost of one element. Therefore, the frequency of
event manager calling (equal to the number of context-
switches) is in the order of T/K x t;. Therefore, as
the value of K is increased the number of context-
switches is decreased accordingly. Figure 19 shows the
changes in the number of context-switches when the
number of Timer components is increased to 15. As
a result, the maximum performance in REMORA relies
on the average number of event producer components
enqueued during the application lifespan, while in the
worst case (a very few producers in the queue) REMORA
does not impose any additional processing cost.

5. EXISTING APPROACHES

In this section, we survey the existing component-based
approaches for programming on embedded system
and WSNs. As mentioned before, a number of
these component models are proposed not only to
facilitate development of application modules, but

THE COMPUTER JOURNAL,

Vol. 7?7, No. 77, 7777

Page 15 of 18

©CoO~NOUTA,WNPE

e
[Ny

U OO A DMBEBRAMDIMBAEDIAMDIMNDMOWWWWWWWWWWNDNNDNNNNNNNRPRPRERREREREPR
QOO NOUPRRWNRPOOO~NOURARWNPRPOOONOUOPRARWNRPOOONOODURAWNRPOOO~NOOOMWN

COMPONENT-BASED APPROACH FOR SENSOR SOFTWARE 15
11000 T T u T
L0000 1 conextsweh overesd TABLE 5. Overview of existing component-based
2 a0 | approaches to WSN programming.
g Cost per
£ 5000 ¢ 0oSs Core | Component
g 7000 . Approach Platform | Size(KB) (Bytes)
g o0f T LORIEN LORIEN 5.5 350
5 soop THINK OS-Indep. 2 102
4000 | FIGARO CONTIKI 2 15
30002 “‘ é é 1‘0 1‘2 1‘4 o LooClI SUNSPOT 20 587
Nurmber of components Remora OS-Indep. 0.5 8

FIGURE 19. As the number of producer components in
the queue is increased, the number of context switches is
significantly decreased.

also to build component-based operating systems for
WSNs. Furthermore, the other objective behind
component-based frameworks for WSNs has been the
provision of run-time reconfigurability in dynamic WSN
applications. There are also a few attempts devoted
to porting the existing component-based approaches to
other platforms—e.g., embedded systems, large-scale
systems, to sensor platforms with some minor changes.

NEsSC [8] is perhaps the best known component
model being designed specifically for WSNs and
used to develop TINYOS [18]. Knowing NESC
language, programming in TINYOS is quite simple
and the developed components are reusable in different
applications. As mentioned earlier, the main downside
of NESC is that it is tightly bound to the TINYOS
platform. Moreover, although NESC efficiently
supports event-driven programming, events in NESC
are not considered as independent entities with their
own attributes and specifications. Therefore, the
binding model of event-related components is not
well-described as it is not essentially described based
on the specification of events. Additionally, the
unique features of REMORA, such as multiplicity in
component instance and property-based reconfiguration
of components bring significant improvements to
component-based programming in WSNs compared to
NEsC.

Coulson et al. in [9] propose OPENCOM as
a generic component-based programming model for
building system applications without dependency on
any target-specific platform environment. The authors
express that they have tried to build OPENCOM with
negligible overhead for supporting features specific to
a development area, however it is a generic model
and basically developed for platforms without resource
constraints and tends to be complex for embedded
systems.

To evaluate OPENCOM, we deployed a sample beacon
application [19], including Radio, Timer and Beacon com-
ponents, on a TelosB node with Contiki. Based on our
measurements, the memory footprint of this application
is significantly high, so that it consumes 4, 618 bytes of

code memory and 28 bytes of data memory. As a real
application, GRIDKIT [20] is an OPENCOM-based mid-
dleware for sensor networks, realizing co-ordinated dis-
tributed reconfigurations based on policies and context
information provided by a context engine. This middle-
ware was deployed on GUMSTIX-based [21] sensor plat-
forms (a resource-rich node type) for a flood-monitoring
scenario, where the minimum memory requirement of
GRIDKIT core middleware and OPENCOM run-time is
about 104 KB of memory. LORIEN [22] is an OPENCOM-
driven approach that was recently proposed to provide
a fully reconfigurable OS platform in WSNs, however
this work is still at an initial stage of development.

F1GARo [23] is a WSN-specific dynamic component
model, focusing on what and where should be
reconfigured. Specifically, Figaro proposes a set
of C macros representing a new component model
exploitable over any operating system written in the C
language. However, the dynamic aspect of FIGARO—
its main feature—is only exploitable on the Contiki
operating system. Apart from that, FIGARO fails to
consider event management issues at the component
design level and mostly relies on the operating system’s
event handling features.

LooCI [24] is a component-based approach, provid-
ing a loosely-coupled component infrastructure focusing
on an event-based binding model for WSNs, while the
Java-based implementation of LOOCI limits its usage
to the SUNSPOT sensor node.

The THINK framework [10] is an implementation
of the FRACTAL [25] component model applied to
operating systems. The choice of the THINK
framework is motivated by the fact that it allows
fine-grained reconfiguration of components. Although
the experiments on deploying THINK components on
WSNs have been quite promising in terms of memory
usage [26], the lack of application-level event support is
the main hurdle for using THINK in WSNs.

Table 5 shows a summarized comparison of REMORA
with other works proposed in this category in terms of
minimum memory required for the core and additional
memory overhead per component.

The OSGi model [27] is a framework targeting
powerful embedded devices, such as mobile phones
and network gateways along with enterprise computers.

THE COMPUTER JOURNAL,

Vol. 7?7, No. 77, 7777

©CoO~NOUTA,WNPE

e
[Ny

U OO A DMBEBRAMDIMBAEDIAMDIMNDMOWWWWWWWWWWNDNNDNNNNNNNRPRPRERREREREPR
QOO NOUPRRWNRPOOO~NOURARWNPRPOOONOUOPRARWNRPOOONOODURAWNRPOOO~NOOOMWN

Page 16 of 18

16 A. TAHERKORDI ET AL.

OSGi features a secure execution environment, support
for runtime reconfiguration, lifecycle management,
and various system services. While OSGi is
suitable for powerful embedded devices, the smallest
implementation, Concierge [28] consumes more than
80K B of memory, making it inappropriate for resource-
constrained platforms.

OSKIT [29] is a set of off-the-shelf components for
building operating systems. OSKIT is developed with
a programming anguage called KNIT [30]. However,
in contrast to NESC, KNIT is not limited to OSKIT.
Nevertheless, OSKIT has adapted the Microsoft COM
model and is not primarily focused on embedded
systems.

6. DISCUSSION: EXTENSION OPPORTU-
NITIES

We believe that the current specification of REMORA
along with its low resource requirements can tackle the
concerns we mentioned at the beginning of this paper.
However, there are a number issues—to further support
advanced programming in WSNs—that has not been
considered by the current REMORA yet. In this section,
we focus on these issues and identify potential solutions.
Dynamic Reprogramming. Enabling dynamic
reprogramming in WSNs becomes a vital feature when
the target application is subject to changes—e.g., fixing
bugs, upgrading operating system and applications,
and adapting applications behavior according to the
physical environment [31, 32, 17]. Although the
component-based nature of REMORA can simplify the
support for dynamic replacement of system modules,
the restrictions on the REMORA component model,
including the lack of dynamic memory allocation
and the absence of a meta-data to dynamically
handle the interactions between components, make the
reconfiguration of REMORA components a challenging
issue. In fact, the main problem is that how to
efficiently provide such a feature in such a way that
the overhead of dynamic memory allocation is carefully
minimized. Reducing the additional memory required
to store the meta-data is another issue in the way of
upgrading REMORA to a dynamically reconfigurable
module.

Componentization of an OS using Remora. As
mentioned earlier, the current goal of REMORA is to
be exploited only in application-level programming.
However, we believe that the efficient support of
event processing in REMORA potentially enables it to
componentize system level functionalities. This can also
increase the customization of an operating system for a
particular WSN application. In the Blink application,
we implicitly demonstrated this capability by wrapping
the Timer component, which is essentially developed at
the OS level. To address precisely this issue, we need
to enhance the current REMORA implementation with
features like concurrency support, task scheduling, and

interrupts handling.

Supporting Preemption. In our current implemen-
tation, a REMORA process cannot be preempted by
any other process in the operating system. This issue
becomes critical when a component execution takes a
long time to complete and it causes large average wait-
ing times for other processes waiting for the processor.
The event handling model of REMORA can be used to
provide preemption by defining a new event type per
preemption-required point of application, while in this
case the component implementation and the event man-
agement become quite complicated. This concern will
also be considered in the future extensions for REMORA.
In particular, we intend to promote the native Contiki
macros, handling process lifecycle, to the REMORA ap-
plication level. In this way, the REMORA component
becomes preemptable by explicitly yielding the running
process.

Distribution Support. Beside the fact that
REMORA provides a strong abstraction for single
node programming, the same level of programming
abstraction is expected to occur at the network
level. This challenge opens up another key area
for future work: how to make REMORA components
distributed by the provision of a well-defined remote
invocation mechanism. In particular, this refers to
rather programming with low-level APIs to provide
distribution; we can automatically generate the code
which is required for sending data over the network
or invoking methods. As a result, the communication
strategy could be reified at the architecture level and
therefore relieve the programmer from dealing with the
specificities of the protocol she/he will need to use for
exposing her/his services across the network.

7. CONCLUSION

From a high-level programming point of view, WSNs
are still difficult to program. Most of the state-
of-the-art programming approaches address this issue
by slightly extending low-level system programming
languages and promoting them as a solution for
application development in WSNs. In this article, we
considered WSN high-level programming as a challenge
independent from low-level programming paradigms
and presented REMORA as a novel programming
abstraction for resource-constrained embedded systems.

REMORA simplifies high-level event-driven program-
ming in WSNs by a component-based approach
portable to different operating system platforms. In-
volving PC-based developers in WSN programming and
conforming REMORA to the state-of-the-art technolo-
gies for component development are two other chal-
lenges addressed in this article. The special con-
sideration paid to the event abstraction in REMORA
makes it a practical and efficient approach for WSN
applications development. The other key features of
REMORA include: simplifying middleware services de-

THE COMPUTER JOURNAL,

Vol. 7?7, No. 77, 7777

Page 17 of 18

©CoO~NOUTA,WNPE

e
[Ny

U OO A DMBEBRAMDIMBAEDIAMDIMNDMOWWWWWWWWWWNDNNDNNNNNNNRPRPRERREREREPR
QOO NOUPRRWNRPOOO~NOURARWNPRPOOONOUOPRARWNRPOOONOODURAWNRPOOO~NOOOMWN

COMPONENT-BASED APPROACH FOR SENSOR SOFTWARE 17

velopment, enabling tunability of operating system soft-
ware by wrapper components, rich support of compo-
nent reusability and instantiation, and reduced effort
and resource usage in WSN programming.

Careful restrictions on the REMORA component
model, including the lack of dynamic memory allocation
and avoiding M-to-N communications between event
producers and event consumers bring significant
improvements to the static deployments in WSNs;,
where the main improvement happens in sensor memory
usage. The main additional memory overhead is
induced by the REMORA runtime, occupying only 1% of
the total code memory on our sensor platform, which is
a very low overhead considering the provided facilities
and the remaining space in the memory.

The remora future work targets all issues discussed
in the previous section. In particular, we are currently
considering the first issue and investigating how the
REMORA specification should be modified to support
dynamic programming in WSNs with a reasonable
cost.

ACKNOWLEDGEMENTS

This work was partly funded by the Research Council of
Norway through the project SWISNET, grant number
176151.

REFERENCES

[1] Sugihara, R. and Gupta, R. K. (2008) Programming
models for sensor networks: A survey. ACM
Transactions on Sensor Networks (TOSN), 4, 1-29.

[2] Szyperski, C. (2002) Component Software: Beyond
Object-Oriented Programming, 2nd edition. Addison-
Wesley, Boston, MA, USA.

[3] Bachmann, F., Bass, L., Buhman, C., Comella-Dorda,
S., Long, F., Robert, J., Seacord, R., and Wallnau,
K. (2000) Technical Concepts of Component-Based
Software Engineering. Technical Report CMU/SEI-
2000-TR-008. Carnegie Mellon Software Engineering
Institute, Pittsburgh, PA, USA.

[4] Van Ommering, R., Van der Linden, F., Kramer, J.,
and Magee, J. (2000) The Koala Component Model for
Consumer Electronics Software. Computer, 33, 78-85.

[5] Genssler, T., Christoph, A., Winter, M., Nierstrasz, O.,
Ducasse, S., Wuyts, R., Arévalo, G., Schonhage, B.,
Miiller, P. O., and Stich, C. (2002) Components for em-
bedded software: the PECOS approach. Proceedings of
the International Conference on Compilers, Architec-
tures and Synthesis for Embedded Systems (CASES),
Grenoble, France, pp. 19-26. ACM.

[6] Hansson, H., Akerholm, M., Crnkovic, I., and Torngren,
M. (2004) Saveccm - a component model for safety-
critical real-time systems. Proceedings of the 30th
EUROMICRO Conference, Washington, DC, USA, pp.
627-635. IEEE Computer Society.

[7] Plsek, A., Loiret, F., Merle, P., and Seinturier,
L. (2008) A component framework for java-based
real-time embedded systems. Proceedings of the
9th ACM/IFIP/USENIX International Conference on

Middleware (Middleware), Leuven, Belgium, pp. 124—
143. Springer-Verlag.

[8] Gay, D., Levis, P., von Behren, R., Welsh, M., Brewer,
E., and Culler, D. (2003) The nesC language: A
holistic approach to networked embedded systems.
Proceedings of the ACM SIGPLAN 2003 conference
on Programming language design and implementation
(PLDI), San Diego, California, USA, pp. 1-11. ACM.

[9] Coulson, G., Blair, G., Grace, P., Taiani, F., Joolia,
A, Lee, K., Ueyama, J., and Sivaharan, T. (2008) A
generic component model for building systems software.
ACM Transactions on Computer Systems (TOCS), 26,
1-42.

[10] Fassino, J.-P., Stefani, J.-B., Lawall, J. L., and
Muller, G. (2002) Think: A Software Framework
for Component-based Operating System Kernels.
Proceedings of the General Track of the annual
conference on USENIX Annual Technical Conference
(ATEC), Berkeley, CA, USA, pp. 73-86. USENIX
Association.

[11] Taherkordi, A., Loiret, F., Abdolrazaghi, A., Rouvoy,
R., Trung, Q. L., and Eliassen, F. (2010) Programming
Sensor Networks Using REMORA Component Model.
DCOSS’10: Proceedings of the 6th International
Conference on Distributed Computing in Sensor
Systems, Santa Barbara, CA, USA, pp. 45-62. Springer.

[12] OSOA. The service component architecture. http:
//www.oasis-opencsa.org/sca.

[13] Dunkels, A., Gronvall, B., and Voigt, T. (2004) Contiki
- A Lightweight and Flexible Operating System for Tiny
Networked Sensors. Proceedings of the 29th Annual
IEEE International Conference on Local Computer
Networks (LCN), Tampa, Florida, USA, pp. 455-462.
IEEE Computer Society.

[14] Dunkels, A., Schmidt, O., Voigt, T., and Ali, M. (2006)
Protothreads: simplifying event-driven programming of
memory-constrained embedded systems. Proceedings
of the /4th international conference on Embedded
networked sensor systems (SenSys), Boulder, Colorado,
USA, pp. 29-42. ACM.

[15] University of Oslo (2010). The REMORA Component
Model. http://folk.uio.no/amirhost/remora.

[16] ANTLR. Parser Generator. http://www.antlr.org.

[17] Pésztor, B., Mottola, L., Mascolo, C., Picco, G. P.,
Ellwood, S. A., and Macdonald, D. W. (2010) Selective
Reprogramming of Mobile Sensor Networks through
Social Community Detection. Proceedings of 7Tth
FEuropean Conference on the Wireless Sensor Networks
(EWSN), Coimbra, Portugal, pp. 178-193. Springer-
Verlag.

[18] Levis, P., Madden, S., Polastre, J., Szewczyk, R., Woo,
A., Gay, D., Hill, J., Welsh, M., Brewer, E., and Culler,
D. TinyOS: An operating system for sensor networks.
Ambient Intelligence, pp. 15—148.

[19] Chatzigiannakis, I., Fischer, S., Koninis, C., Mylonas,
G., and Pfisterer, D. (2009) WISEBED: an Open
Large-Scale Wireless Sensor Network Testbed. 1st In-
ternational Conference on Sensor Networks Applica-
tions, Experimentation and Logistics (SENSAPPEAL),
Athens, Greece Lecture Notes of the Institute for Com-
puter Sciences, Social-Inf, pp. 68—87. Springer-Verlag.

THE COMPUTER JOURNAL,

Vol. 77, No. 77, 1777

©CoO~NOUTA,WNPE

e
[Ny

U OO A DMBEBRAMDIMBAEDIAMDIMNDMOWWWWWWWWWWNDNNDNNNNNNNRPRPRERREREREPR
QOO NOUPRRWNRPOOO~NOURARWNPRPOOONOUOPRARWNRPOOONOODURAWNRPOOO~NOOOMWN

18

A. TAHERKORDI ET AL.

20]

23]

24]

(25]

[26]

(31]

32]

Grace, P., Coulson, G., Blair, G., Porter, B., and
Hughes, D. (2006) Dynamic reconfiguration in sensor
middleware. Proceedings of the international workshop
on Middleware for sensor networks (MidSens), pp. 1-6.
Gumstix. http://www.gumstix.com.

Porter, B. and Coulson, G. (2009) Lorien: a
pure dynamic component-based operating system for
wireless sensor networks. Proceedings of the 4th
International Workshop on Middleware Tools, Services
and Run-Time Support for Sensor Networks, Urbana
Champaign, Illinois MidSens '09, pp. 7-12. ACM.
Mottola, L., Picco, G. P., and Sheikh, A. A.
(2008) Figaro: fine-grained software reconfiguration
for wireless sensor networks. Proceedings of the
5th European conference on Wireless sensor networks
(EWSN), Bologna, Italy, pp. 286-304. Springer-Verlag.
Hughes, D., Thoelen, K., Horré, W., Matthys, N.,
del Cid Garcia, P. J., Michiels, S., Huygens, C.,
and Joosen, W. (2009) LooCI: A loosely-coupled
component infrastructure for networked embedded
systems. Proceedings of the 7th International
Conference on Advances in Mobile Computing &
Multimedia, Kuala Lumpur, Malaysia, December, pp.
195-203. ACM.

Bruneton, E., Coupaye, T., Leclercq, M., Quéma, V.,
and Stefani, J.-B. (2006) The FRACTAL component
model and its support in Java. Software Practice and
Ezxperience, special issue on FExperiences with Auto-
adaptive and Reconfigurable Systems, 36, 1257-1284.
Lobry, O., Navas, J., and Babau, J.-P. (2009) Opti-
mizing Component-Based Embedded Software. Pro-
ceedings of the 33rd Annual IEEE International Com-
puter Software and Applications Conference (COMP-
SAC), Washington, DC, USA, pp. 491-496. IEEE Com-
puter Society.

OSGi Alliance (1999). The OSGi framework. http:
//www.osgi.org.

Rellermeyer, J. S. and Alonso, G. (2007) Concierge: a
service platform for resource-constrained devices. ACM
SIGOPS Operating Systems Review, 41, 245-258.
Ford, B., Back, G., Benson, G., Lepreau, J., Lin, A.,
and Shivers, O. (1997) The Flux OSKit: a substrate
for kernel and language research. Proceedings of the
16th ACM symposium on Operating systems principles
(SOSP), Saint Malo, France, pp. 38-51. ACM.

Reid, A., Flatt, M., Stoller, L., Lepreau, J.,
and Eide, E. (2000) Knit: component composition
for systems software. Proceedings of the 4th
conference on Symposium on Operating System Design
& Implementation - Volume 4, San Diego, California
OSDI’00, pp. 24-24. USENIX Association.
Taherkordi, A., Le-Trung, Q., Rouvoy, R., and Eliassen,
F. (2009) WISEKIT: A Distributed Middleware
to Support Application-Level Adaptation in Sensor
Networks. Proceedings of the 9th IFIP WG 6.1
International Conference on Distributed Applications
and Interoperable Systems (DAIS), Lisbon, Portugal,
pp- 44-58. Springer-Verlag.

Taherkordi, A., Rouvoy, R., Le-Trung, Q., and Eliassen,
F. (2008) A self-adaptive context processing framework
for wireless sensor networks. Proceedings of the
3rd international workshop on Middleware for sensor
networks (MidSens), Leuven, Belgium, pp. 7-12. ACM.

THE COMPUTER JOURNAL,

Vol. 72,

No. 77,

7777

Page 18 of 18

