
© The Author 2011. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved.
For Permissions, please email: journals.permissions@oup.com

doi:10.1093/comjnl/bxr076

Minimizing the Range for k-Covered
Paths on Sensor Networks

Manuel Abellanas
1
, Antonio Leslie Bajuelos

2
and Inês Matos

2,3,∗

1Departamento de Matemática Aplicada (UPM), Campus de Montegancedo, 28660 Boadilla del Monte,
Madrid, Spain

2Departamento de Matemática (UA), Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
3Departament de Matemàtica Aplicada II (UPC), Edifici Omega. C. Jordi Girona, 1-3, 08034

Barcelona, Spain
∗Corresponding author: ipmatos@ua.pt

Coverage problems are a flourishing topic in optimization, thanks to the recent advances in the field
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regarding which this article presents new results. Namely, it shows how to minimize the sensing range
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1. INTRODUCTION

Let S be a set of n points on the plane that represent the location
of n sensors. This discussion follows the widely adopted disc
model for sensing—that is, each sensor is only capable of
detecting points within distance r ∈ R

+ (common to all
sensors). All distances are considered to be Euclidean. Further,
assume that the communication range of each sensor is at least
twice its sensing range so that two sensors can communicate
when they are able to detect each other [1, 2]. Formally, the
distance between a point q on the plane and a set S is defined
as the minimum distance between q and any one point of
S. Point q is said to be covered by a set S of sensors with
sensing range r if the distance between q and S is less than
or equal to r . Therefore, q is said to be k-covered by S if it is
covered by at least k sensors of S (see Fig. 1). The first articles
that mention multiple coverage were introduced as Art Gallery
problems: Pesant [3] and Belleville et al. [4] studied how to find
a collection of guards to k-guard a simple polygon, k ∈ N. A
geometric structure that is invariably associated with this topic
is the Voronoi diagram of S [5, 6]. Such diagram divides the
plane into several regions by grouping points that have the same
closest sensor. Accordingly, the kth order Voronoi diagram of
S, VDk(S), groups points on the plane that share the same k

closest sensors, k ∈ {1, . . . , n − 1} (see Fig. 1). This type of
diagram is called the higher-order Voronoi diagram (note that
‘higher’ is not the space dimension, but the number of points
defining each Voronoi region). Higher-order Voronoi diagrams
are naturally associated with multiple coverage since a point is
k-covered if it is at least within range of its k closest sensors.

One way to evaluate the quality of the coverage provided by
a particular sensor network is to find minimal- and maximal-
exposure paths. The minimal-exposure path can be seen as
the worst covered path. Since sensor networks are designed
to monitor sensor fields, the minimal-exposure path is a way
to measure the ability to move inside the sensor field without
being detected. Therefore, it is important to have a sensor
network that maximizes such minimum. Anirvan et al. [7]
further explored minimal-exposure paths and proposed two
asymptotically efficient algorithms to compute them. Moreover,
they also showed that this path does not necessarily lie along the
edges of the Voronoi diagram. On the other hand, the maximal-
exposure path corresponds to the most covered path and it was
proved to be NP-hard to find byVeltri et al. [8]. Fang and Low [9]
generalized the problem of finding maximal- and minimal-
exposure paths to k-coverage, when k is known. By adopting
the method of growing discs, they transformed their problem
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2 M. Abellanas et al.

FIGURE 1. VD2(S) is shown in a black dashed trace. Since the
sensors have sensing range r , point q1 is 1-covered, point q2 is 3-
covered and point q3 is 4-covered.

into finding a series of adjacent discs’ borders and proposed a
polynomial time algorithm to solve it (unfortunately no explicit
complexities were presented).

Given any wireless sensor network, it is clear that larger
sensing ranges provide better coverage. However, larger ranges
also result in higher costs and shorten the sensors’ battery life.
Therefore, it is appropriate to develop strategies that optimize
the coverage of a given region without compromising the
network’s lifespan. For example, sensors’ battery life can be
extended by reducing the devices’ sensing and transmission
range as much as optimum, thus enhancing the overall user
experience [10–12]. There are several techniques that have been
developed and tested to tackle this problem. The first work that
brought together ad hoc sensor networks and computational
geometry was solely focused on simple coverage [13, 14],
but it was built on by several other authors in the years that
followed. Based on the work of Wang et al. [1], Zhou et
al. [15] proposed a centralized greedy algorithm to compute
a minimum energy-cost k-coverage, which is within a factor
O(log n) of optimal. Efrat et al. [16] also studied the problem
of minimizing the number of sensors required to ‘well cover’
a given region. According to their definition, a point is ‘well
covered’ if it is detected by three sensors that form a triangle
containing the point or if it is detected by two sensors that are
separated by an angle of at least α. The first definition is clearly
a variation of 3-coverage. As sensor networks are expected
to outlast individual sensors, the technique sleep-wakeup was
introduced as a means to extend the lifetime of sensor networks.
To this end, a set of sensors is chosen to be activated while the
rest are turned off (asleep). If one of the active sensors stops
working, then one or more of the sleeping sensors has to be
brought up to replace it and maintain the desired coverage.
Kumar et al. [17] considered the problem of determining the
number of sensors needed to k-cover a region when sensors were
allowed to sleep for most of their lifetime. This idea was then
translated to k-barrier coverage [18, 19], where sleep-wakeup

schedules were proposed to maximize the network’s lifespan.
Their algorithms work for sensing regions that are not modelled
as discs and even allow a different sensing region for each
sensor. Moreover, the authors solved the same problem when
sensors have a distinct lifespan. Interestingly, for this type of
coverage, sensors that have the same lifespan reduce the sensor
network’s lifetime by two-thirds. Zhou et al. [15] focused on
selecting a minimum number of sensors to k-cover a region,
provided that the communication graph induced by such set of
sensors was connected. To this end, they presented a greedy
algorithm that delivers a near-optimal solution, as well as a
distributed version. Huang et al. [20] combined coverage and
connectivity as a generalization of their previous work. They
proposed theorems to determine the levels of coverage and
connectivity of a sensor network, and so made it possible to
extend the network’s lifetime by setting the required coverage
while turning off some sensors or by adjusting their ranges.

Gupta et al. [21] took a different approach to reduce sensor
networks’ costs. They used the ability of the network to provide
multiple coverage to choose a small subset of sensors sufficient
to process queries and then re-organized the network using
this set. For this, they introduced the concept of connected
sensor cover and proposed a centralized algorithm to construct
a topology involving a near-optimal connected sensor cover.
This algorithm is approximated because the problem is NP-
hard, which is then reflected in the problem of finding a k-
connected sensor cover. We further explored how to extend a
sensor network’s lifetime by minimizing the sensors’range to 2-
cover a path on the plane [22] or within a polygonal region [23].
In the latter it is also shown how to calculate the sensors’
minimum range in order to fully 2-cover a polygonal region.
Both results will be extended to k-coverage in the following.
Working in the same direction but also combining uncertainty
in sensor positions, Vu and Zheng [24] addressed the problem
of minimizing the sensors’ range while ensuring the k-coverage
of a point or a polygonal region. This article will be further
discussed in Section 2.3.

Our contribution is also an attempt at extending the life of
a sensor network. In this way, the objective is to minimize the
sensors’ range in order to assure the existence of a k-covered
path between two points on a given region. The quality of the
path’s coverage depends on k ≥ 2, which is known. The present
research is focused on maximal-exposure paths within three
types of regions: a planar graph, the whole plane and a polygonal
region. Each of these regions will be analysed in detail in the
following section. This paper concludes with Section 3, which
discusses some results and possible further research.

2. MINIMIZING THE SENSING RANGE FOR
K-COVERAGE

As previously explained, the minimum sensing range that covers
q is the shortest distance between q and set S of sensors. Let
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Minimizing the Range for k-Covered Paths on Sensor Networks 3

MRk
S(x) denote the minimum sensing range of S that assures

that an object x is k-covered. In the following discussion, object
x is often a path between two points and its desired coverage is
given by k ≥ 2, which is a known value.A path that is k-covered
by S is called a k-covered path, or a k-path. The main goal of
this section is to find the minimum sensing range of S such that
a k-path exists on a planar graph in Section 2.1, on the plane
in Section 2.2 and finally on a polygonal region in Section 2.4.
This last subsection will be preceded by Section 2.3, where it is
explained how to calculate the minimum sensing range to fully
k-cover a polygonal region.

2.1. Minimizing the sensing range for k-coverage: path
on a planar graph

Let G be a connected planar geometric graph. Suppose the
edges of G represent streets/roads and its nodes represent
reachable locations using those streets. Consequently, G can
be regarded as a model of a street network and a path on such
graph may be seen as journey from one location to another.
Let a path between two nodes ni and nj of G be denoted
by P(ni, nj ). Using the notation previously introduced and
knowing the value of k ≥ 2, the objective of this section is
to calculate MRk

S(P (ni, nj ))—that is, the minimum sensing
range of S that assures the existence of a k-path between ni

and nj on G. The solution to this problem is presented in
the following and is divided into two phases: preprocess and
solution.

In the preprocess, graph G is transformed into edge-weighted
graph Gw. In so doing, the weight of the edges must be properly
chosen to suit the problem. Therefore, if e is an edge of G,
then an appropriate weight for e is the range MRk

S(e)—that
is, the minimum sensing range of S that k-covers e. Thus,
the weight of e is calculated as the distance between a point
of e and its kth closest sensor. To find this particular point,
assume that the sensors’ range is large enough to k-cover the
whole edge. Now suppose that this range is slowly reduced
until there is one point i on e that is no longer k-covered. As
a result, the edge is no longer k-covered for such range nor
will it be unless the sensors’ range increases. Consequently, the
minimum range that k-covers i is exactly the minimum range
that k-covers the whole edge e. Note that point i is either a
point interior to e or an endpoint (see Fig. 2). Furthermore, if
i is not an endpoint of e then it has to be an intersection point
between e and the kth order Voronoi diagram of S, VDk(S).
Consequently, MRk

S(e) = max{MRk
S(i) : i ∈ I }, where I is the

set of both endpoints of e plus the intersection points between
e and VDk(S).

If w(e) is the weight of edge e, then G can be converted
into edge-weighted graph Gw by assigning w(e) = MRk

S(e) to
each edge e of G. Observe that MRk

S(Gw) = max{w(e) : e ∈
Gw}. The following proposition states the complexity of this
preprocess.

FIGURE 2. Edge ninj is 2-covered by S with minimum range r and
VD2(S) is represented by a dashed line. (a) MR2

S(ninj ) = d(i, s3) =
d(i, s4) = r . (b) MR2

S(ninj ) = d(ni, s3) = r .

Proposition 2.1. Let S be a set of n sensors and G a
connected geometric planar graph with m edges. Given k ≥ 2,

the weight of every edge of G can be calculated in O(k2n log n+
mk(n − k)) time and O(k2(n − k) + mk(n − k)) space. This is
also the complexity of finding MRk

S(G).

Proof. Computing VDk(S) takes O(k2n log n) time since S

is a set of n sensors on the plane, and the resulting diagram
has O(k(n − k)) regions, edges and vertices [25]. Therefore,
set Ie = {e} ∩ VDk(S) plus the endpoints of e is found in
O(k(n − k)) time for each edge e ∈ G. Calculating MRk

S(e) =
max{MRk

S(i) : i ∈ Ie} for every edge of G takes O(mk(n− k))

time since G has m edges. Consequently, the minimum range
of S to k-cover G can be found in O(k2n log n + mk(n − k))

time. Regarding the space complexity, this procedure takes
O(k2(n − k) + mk(n − k)) space [25].
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4 M. Abellanas et al.

It is apparent that the minimum range of S that assures the
existence of a k-path between two nodes of Gw is given by
the weight of the heaviest edge of such path. The following
proposition shows that it is only necessary to consider the edges
of a minimum spanning tree (MST) of Gw.

Proposition 2.2. Let Gw be an edge-weighted connected
graph. For each path on Gw, assume that the path’s weight
is given by the weight of its heaviest edge. Then the path on an
MST of Gw connecting any pair of nodes of Gw is a minimum-
weight path between such pair.

Proof. Let Gw be an edge-weighted connected graph, ni and nj

two of its nodes and Tw an MST of Gw. Suppose that P(ni, nj )

is the only path on Tw connecting nodes ni and nj and e is its
heaviest edge. Consequently, P(ni, nj ) has weight w(e). Now
suppose that path P ∗(ni, nj ) on Gw is a minimum-weight path
connecting ni and nj . Its weight is given by e∗, its heaviest
edge, and so w(e∗) < w(e). Since P(ni, nj ) is heavier than
P ∗(ni, nj ), the edge e is not an edge of P ∗(ni, nj ). If the two
paths are united, then a cycle is created. Such cycle contains
e, which clearly is its heaviest edge. But this contradicts the
hypothesis, since the heaviest edge of a cycle in Gw cannot be
on an MST of Gw. Therefore, the path connecting two nodes on
an MST of Gw is a minimum-weight path between those nodes
of Gw.

The result given earlier suggests an algorithm to calculate
MRk

S(P (ni, nj )) since paths are unique between two nodes of
an MST (see Fig. 3a). It suffices to build Tw, an MST of Gw,
and find a path there between nodes ni and nj . Such a path is a
minimum-weight path and therefore MRk

S(P (ni, nj )) is given
by the weight of its heaviest edge.

In Fig. 3b, there is an example of a path on an MST connecting
nodes n1 and n2. Note that path P(n1, n2) traverses nodes

n10, n6 and n7. If the sensors’ sensing range is larger than
38 = max{33, 32, 28, 38}, thenP(n1, n2) is a path 2-covered by
S. If this range is exactly 38, then P(n1, n2) is 2-covered with
minimum sensing range, and so MR2

S(P (n1, n2)) = 38. The
following result states the temporal complexity of the algorithm
discussed earlier.

Theorem 2.1. Let S be a set of n sensors, Gw an edge-
weighted planar graph with m edges and Tw an MST of Gw.
Given two nodes ni and nj of Gw, a path between ni and nj

and MRk
S(P (ni, nj )) can be found on Tw in O(m) time.

Proof. An MST of Gw, Tw = (N, B), can be found in O(m)

time since Gw is a planar graph [26].A path P(ni, nj ) on Tw can
be found using the DFS algorithm [27], which runs in O(|B|)
time. According to Proposition 2.2, P(ni, nj ) is a minimum-
weight path between ni and nj on Gw. Since MRk

S(P (ni, nj ))

is given by the weight of P(ni, nj ), then it can be calculated in
time proportional to the number of edges of P(ni, nj ). Overall,
this procedure takes O(m) time.

Note that the previous algorithm works for any connected
geometric graph, but the temporal and space complexities
require the appropriate adjustments if the graph is not planar.
Furthermore, once the requested path is found, it is clear how to
choose the sensors of S that contribute to k-cover such portion
of the graph and turn off the rest to save power.

2.2. Minimizing the sensing range for k-coverage: path
on the plane

Given k ≥ 2 and two points p and q on the plane, the objective
of the following discussion is to calculate the minimum sensing
range of S that allows the existence of a k-path between p and q.
As mentioned before, such a range is denoted by MRk

S(P (p, q)).

FIGURE 3. (a) An MST of the edge-weighted graph is shown in a darker line. (b) The dashed path connecting n1 to n2 on the tree only is 2-covered
if the sensors’ range is at least max{33, 32, 28, 38} = 38.
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Minimizing the Range for k-Covered Paths on Sensor Networks 5

FIGURE 4. A set of five sensors with range r . (a) The path represented
by a dashed line is a 2-path connecting p toq, whilst the one represented
by a solid line is not. (b) Two connected components of the union of
3-blobs are shown in darker grey. Only 1-covered paths between p and
q are possible if S has range r .

In the example in Fig. 4a, the black path connecting p and q

is not a 2-path since some of its points are only covered by
one sensor. On the other hand, the dashed path represents a 2-
covered path between p and q. As in the previous section, the
solution to this problem is divided into two phases. The first
is focused on the decision problem: decide if a given sensing
range r ∈ R

+ of S is enough to k-cover a path between p and
q. The solution to this problem is the basis of the algorithm to
calculate MRk

S(P (p, q)).
Let DS = {D(si, r) : si ∈ S} be the set of discs centred at

sensors of S of radius r . Set DS is the union of the points on
the plane that are at least 1-covered by S. The points that are at
least 2-covered exist on the intersections between each pair of
discs.Accordingly, the set of k-covered points is the union of the
intersections between each set of k discs. If each intersection
between k discs of DS is a k-blob, then the set of k-covered
points is the union of these k-blobs. Therefore, a k-covered path

between p and q only exists if p and q are on the same connected
component of k-blobs (see Fig. 4b). Hence the overlapping of
discs of DS is the key to finding a k-path between p and q.
Consider the intersection graph of the set of k-blobs, that is,
the graph where each node represents a k-blob and two nodes
are connected if the respective k-blobs intersect each other. If
r is large enough, then the intersection of any k discs of DS

is not empty and therefore the intersection graph is a complete
graph. If point p is assigned to node np that corresponds to the
k-blob containing p and q to the node nq , then the existence
of a k-path between p and q depends on whether np and nq

lie in the same connected component of this graph. However,
this is a highly complex graph and so a subgraph G will be
used instead. Graph G plays the same role as the intersection
graph, but is at most quadratic in size and can be constructed by
means of the higher-order Voronoi diagram of S. Each Voronoi
region of VDk(S) is defined by a set of k sensors, so if the
sensing range r is enough for them to create a non-empty k-
blob, add a node to graph G on such k-blob (see Fig. 5). Two
nodes of G are connected if the corresponding Voronoi regions
are neighbours and the two k-blobs they define intersect each
other. Once G is built, the decision problem can be solved. First,
it is important to check if both p and q are inside the k-blob
formed by their closest k sensors, because otherwise there is not
a k-path between them. If both points are k-covered, then assign
them to the nodes that correspond to the Voronoi regions of
VDk(S) they belong to. Starting at one of these nodes, traverse
G using the DFS algorithm [27]. If the other node is found,
then both points belong to the same connected component of
k-blobs and there is a k-path between them. In Fig. 5, there is an
example of graph G and a path between p and q. For that set of
sensors with sensing range r , a 2-covered path connecting p to
q exists since both points lie in the same connected component
of 2-blobs. The following result proves the temporal and space
complexities of this decision algorithm.

FIGURE 5. Set S is represented by dots, graph G by a solid line and
VD2(S) by a dashed line. The darker edges of G form a path between
p and q.
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6 M. Abellanas et al.

Theorem 2.2. Given a set S of n sensors with sensing range
r ∈ R

+, k ≥ 2 and two points p and q on the plane, deciding if
there is a k-covered path between p and q takes O(k2n log n)

time and O(k2(n − k)) space.

Proof. Constructing VDk(S) takes O(k2n log n) time since S is
a set of n sensors on the plane [25]. Graph G is a subgraph of the
dual graph of VDk(S) and therefore has size O(k(n − k)) [25].
The construction of G takes O(k(n − k)) time because the
algorithm performs a constant number of operations per edge of
the Voronoi diagram. In the worst case, the DFS algorithm has
to visit every node of G twice, and so its complexity depends
on the number of edges and nodes of G. Consequently, the DFS
algorithm runs in O(k(n− k)) time as well [27]. In conclusion,
the decision algorithm runs in O(k2n log n) time. Regarding
the space complexity, VDk(S) can be stored in O(k2(n − k))

space [25].

This decision algorithm is a key method to solve several
problems associated with k-coverage. As a result, it will be
often applied in the remainder of this paper. It is left to
explain how to calculate MRk

S(P (p, q)). Note that for |S| ≥ k,
this problem always has a solution because, if r is large
enough, all discs of DS contain p and q. If p or q is a
sensor, then it is considered that the sensor covers itself. As
previously noted, both points have to be k-covered in order
for a k-path to exist between them. Consequently, if sp is the
kth closest sensor to p and sq the kth closest sensor to q,
then MRk

S(P (p, q)) ≥ max{d(sp, p), d(sq, q)}. Furthermore,
if a k-path exists between p and q when the sensing range is
r = max{d(p, sp), d(q, sq)}, then clearly MRk

S(P (p, q)) = r .
Let us concentrate in the case MRk

S(P (p, q)) > max
{d(sp, p), d(sq, q)}. If the sensing range is r = max
{d(sp, p), d(sq, q)}, then p and q lie in different connected
components of the union of k-blobs. As range increases, the
discs of DS expand accordingly and will eventually unite
p and q under the same connected component of k-blobs.
The moment these two connected components intersect each
other defines MRk

S(P (p, q)). The intersection points between
the components at this specific range are called bottleneck-
points for k-paths between p and q (see Fig. 6). Note that in
degenerated cases, there might be more than one bottleneck-
point for k-paths between p and q. For the purposes of this
paper, degenerate input data will not be considered. Let bk

S(p, q)

denote the bottleneck-point for k-paths between p and q. If
the sensing range is precisely MRk

S(P (p, q)) then every k-path
connecting p and q crosses bk

S(p, q), since bk
S(p, q) is the only

point connecting the component of k-blobs that contains p to
the one containing q. Bottleneck-points may be classified into
two categories according to the following definition.

Definition 1. Let p and q be two points on the plane, k ≥ 2
and S a set of sensors with range r = MRk

S(P (p, q)). Point
b = bk

S(p, q) is said to be a type I bottleneck-point if there
are exactly k − 1 sensors such that b lies inside each disc

FIGURE 6. The sensing range is r = MR2
S(P (p, q)). The connected

component of 2-blobs that contains p meets the component containing
q at point b. Two possible 2-paths connecting p to q are represented
by a solid trace.

of {D(si, r) : si ∈ {sj1 , . . . , sjk−1}}, and two more so that
D(sj1 , r) ∩ · · · ∩ D(sjk+1 , r) = {b}. Otherwise b is a type II
bottleneck-point if there are exactly k − 2 sensors such that
b lies inside each disc of {D(si, r) : si ∈ {sj1 , . . . , sjk−2}}, and
three more so that D(sj1 , r) ∩ · · · ∩ D(sjk+1 , r) = {b}.

Proposition 2.3. Let p and q be two points on the plane,
k ≥ 2 and S a set of sensors. Then the bottleneck-point for
k-paths between p and q can only be of type I or II.

Proof. As the sensors’ range increases, the two connected
components of the union of k-blobs (one containing p and
the other containing q) eventually unite at bk

S(p, q). If this
union is made through the intersection of two k-blobs, then
the intersection point is a type I bottleneck-point. Otherwise,
the union is made through the intersection of three k-blobs at
a time and that intersection point is a type II bottleneck-point.
Recall that no degenerate cases are considered.

Both types of bottleneck-points can be seen in Fig. 7.
According to Definition 1, a type I bottleneck-point for k-paths
between p and q lies on an edge of VDk(S). Suppose such
an edge is part of the perpendicular bisector between sensors
sj and sk, denoted by PB(sj , sk). Then the bottleneck-point is
the midpoint of the segment sj sk (see Fig. 7a). The following
proposition establishes a connection between bottleneck-points
and higher-order Voronoi diagrams.

Proposition 2.4. Let p and q be two points on the plane,
k ≥ 2 and S a set of sensors with range r = MRk

S(P (p, q)). If
b = bk

S(p, q) is a type I bottleneck-point, suppose sj1 and sj2

are the two sensors that cover b but D(sj1 , r) and D(sj2 , r) do
not contain b. Then b is on the edge of VDk(S) that is part of
PB(sj1 , sj2). If b is a type II bottleneck-point, suppose sj1 , sj2

and sj3 are the three sensors whose discs of radius r do not
contain b. Then b is the vertex of VDk(S) defined by sj1 , sj2

and sj3 .
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Minimizing the Range for k-Covered Paths on Sensor Networks 7

FIGURE 7. The sensing range is r = MR2
S(P (p, q)) and a 2-path

connecting p to q is represented by a solid line. (a) Point b is a type I
bottleneck-point. (b) Point b is a type II bottleneck-point.

Proof. According to the definition of type I bottleneck-points,
b is interior to a set of k − 1 discs centred at S of radius
r but there are two other sensors, sj1 and sj2 , whose range
is exactly the distance between them and b. Therefore, discs
D(sj1 , r) and D(sj2 , r) meet at b and so b ∈ PB(sj1 , sj2).
In fact, this perpendicular bisector is an edge of VDk(S)

because b is exclusively covered by its closest k + 1 sensors,
{sj1 , sj2 , . . . , sjk+1}. Since two of them are at the same distance
from b, b lies on the edge that separates the kth order Voronoi
region of {sj1 , sj3 , . . . , sjk+1} from the kth order Voronoi region
of {sj2 , sj3 , . . . , sjk+1}. Moreover, b is the closest point that
is simultaneously covered by sj1 and sj2 , which makes it
the midpoint of sj1sj2 . That is, b is the intersection point
between PB(sj1 , sj2) and sj1sj2 . The proof is similar for type II
bottleneck-points. According to its definition, b is exclusively
covered by its closest k + 1 sensors, but three of them,
{sj1 , sj2 , sj3}, are at the same distance from b. Consequently,
the three discs centred at these three sensors of radius r meet
simultaneously at b. That is, b is the intersection point between
PB(sj1 , sj2 ), PB(sj1 , sj3 ) and PB(sj2 , sj3 ). Hence b is a vertex
of VDk(S).

This proposition proposes to focus the search for candidates
to bottleneck-points on edges and vertices of VDk(S)—more
precisely, on the vertices of VDk(S) and the points on edges
of VDk(S) that are crossed by the line segment connecting the
two sensors responsible for that edge. For every such candidate,
calculate the minimum range needed to k-cover it. Then sort
these ranges into a list in ascending order.Afterwards, determine
sp and sq , the kth closest sensor of S to p and q, respectively, to
calculate r0 = max{d(sp, p), d(sq, q)}. Range r0 is the starting
point for the list of ranges since MRk

S(P (p, q)) ≥ r0. Note that
if r0 is the largest element of said list, then MRk

S(P (p, q)) = r0.

Otherwise, perform a binary search on the list of ranges to
calculate MRk

S(P (p, q)). In every step of the binary search,
decide whether the corresponding range is large enough to allow
a k-covered path connecting p to q using the decision algorithm
previously described.

Once the binary search is over, the final range is
MRk

S(P (p, q)) and it is left to compute a k-path between p

and q. Consider graph G built by the decision algorithm for the
range MRk

S(P (p, q)) (see Fig. 8a). A polygonal k-path between
p and q can be constructed from the path on G that connects
nodes p and q. For every edge of the path from node p to q

on G find a point on its dual Voronoi edge such that it lies in
the intersection of the two k-blobs associated with this edge. As
k-blobs are convex sets, the straight line segment connecting
two consecutive such points is entirely contained in one k-blob.
If needed, this path is completed by adding the line segments
connecting p to the first node and q to the last node of the
k-path. This ensures that these line segments form a k-covered
path from p to q (see Fig. 8b). As before, we can turn on only
the subset of sensors that are effectively covering this k-path
and shut down the rest. The description of this optimization
algorithm concludes with the following theorem.

FIGURE 8. The sensing range is r = MRk
S(P (p, q)) and VD2(S) is

represented by a dashed line. (a) Path between nodes p and q on graph
G. (b) A 2-path between points p and q on the plane.
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8 M. Abellanas et al.

Theorem 2.3. Let S be a set of n sensors, k ≥ 2 and p

and q two points on the plane. Calculating MRk
S(P (p, q))

and a k-covered path between p and q can be determined in
O(k2n log n) time and O(k2(n − k)) space.

Proof. Computing VDk(S) takes O(k2n log n) time since S

is a set of n sensors on the plane and the resulting diagram
has O(k(n − k)) regions, edges and vertices [25]. Given the
diagram’s size, searching for possible candidates to bottleneck-
points takes O(k(n − k)) time. According to Theorem 2.2, and
having constructed VDk(S), building graph G and finding a
k-path (if it exists) takes O(k(n − k)) time. Since each step
of the binary search is performed in O(k(n − k)) time (the
median of the list of ranges can be found in O(k(n − k)) time
as well [28]), the overall time to run the binary search and
find a k-path between p and q is O(k(n − k) log(k(n − k))).
Consequently, the whole algorithm runs in O(k2n log n) time.
Constructing VDk(S) takes O(k2(n − k)) space.

Theorem 2.4. Let S be a set of n sensors, k ≥ 2 and p

and q two points on the plane. Calculating MRk
S(P (p, q))

and a k-covered path between p and q can be determined in
�(n log n) time.

Proof. This lower bound is achieved by means of a reduction to
the Max-Gap problem: given a set of real numbers regarded as
points on the x-axis, find the maximum distance (gap) between
any two consecutive points once sorted. Lee and Wu [29] proved
that the lower bound for this problem is �(n log n) time. Let S

be a set of n real numbers for the Max-Gap problem. For each
number si , consider the point (si, 0) on the x-axis. Copy every
point k times in order to have kn points on the x-axis. Consider
p = (min{s0, . . . , sn−1}, 0) and q = (max{s0, . . . , sn−1}, 0)—
that is,p is the leftmost point on thex-axis andq is the rightmost.
If r = MRk

S(P (p, q)), then the maximum gap for S is 2r . As a
result, the previous algorithm solves the Max-Gap problem.

This last theorem shows that the complexity of the algorithm
to calculate MRk

S(P (p, q)) (presented in Theorem 2.3) is quite
close to the lower bound. As already mentioned, the sensors’
distribution might result in degenerate cases, which means
that there can be more than one bottleneck-point for k-paths
between two points. Notwithstanding the fact that bottleneck-
points are not unique, they can still be found using the previously
described technique and remain classified into two categories.
The major difference is that k-covered paths between two points
do not have to cross every single bottleneck-point, although
they must cross at least one of them. Observe that even though
the classification of bottleneck-points does not change in the
presence of degenerate cases, type II bottleneck-points can
correspond to Voronoi vertices with degree higher than three
(in cases where more than three k-blobs meet at once).

To conclude, it is also possible to find the shortest k-covered
path between two points on the plane. If the sensors’ range
is MRk

S(P (p, q)), then it suffices to convert the connected
component of the union of k-blobs into a polygon (that might

have holes) using a technique similar to the one used in [30].
Afterwards, the shortest path between p and q within such a
polygon can be found by applying an algorithm by Kapoor
et al. [31].

2.3. Minimizing the sensing range for k-coverage:
polygonal region

Let R be a polygonal region (with or without holes) formed by
its interior and boundary. Given k ≥ 2, a region is said to be
k-covered by S if every point on such a region is k-covered. The
algorithm introduced in the following calculates the minimum
sensing range to k-cover R, MRk

S(R). Such a range is the largest
distance between a particular point on R and its kth closest
sensor. To find this point, assume that the sensors’ range is
sufficiently large to fully k-cover R. Now suppose this range is
slowly reduced until there is one point q on R that no longer is k-
covered. As a result, R is not k-covered until point q is, which
means that the minimum range to k-cover q is precisely the
minimum range to fully k-cover R. The following proposition
characterizes the location of such point on the polygonal region.
Let B(R) denote the boundary of R.

Proposition 2.5. Let R be a polygonal region, k ≥ 2, q a
point on R and S a set of sensors. If MRk

S(R) = d(q, si), for
some sensor si ∈ S, then q is a vertex of R or q is an intersection
point between B(R) and VDk(S) or q is a vertex of VDk(S) that
lies inside R.

Proof. Let q be a point on R be such that MRk
S(R) =

d(q, si) for some sensor si ∈ S. Given an edge e of R, it
was seen in Section 2.1 that MRk

S(e) is calculated using the
intersection points between e and VDk(S) plus the endpoints of
e. Consequently, if q ∈ B(R) then q must be a vertex of R or an
intersection point between B(R) and VDk(S). If q is inside R,
then the situation gets trickier since it does not depend on the
shape of R but on the way k-blobs interact with each other. As
the sensing range increases, k-blobs expand accordingly and
fill the interior of R. The last interior point to be 2-covered
must be a point lying in the last ‘hole’ (meaning a region of R

not yet k-covered). These holes are filled when three k-blobs
intersect at a time, since not only the intersection point has to
be k-covered but also its neighbourhood (see Fig. 9). According
to Proposition 2.4, q is a type II bottleneck-point and therefore
a vertex of VDk(S).

According to this proposition, there are several candidates
on R for the point that defines MRk

S(R). Since every point on
R has to be at least k-covered, MRk

S(R) can be calculated as
the minimum range to k-cover every such candidate. Therefore,
every vertex of R has to be studied, as well as intersection points
between B(R) and VDk(S) and vertices of VDk(S) that fall
inside R. The following theorem is a direct consequence of the
method employed to calculate MRk

S(R).
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Minimizing the Range for k-Covered Paths on Sensor Networks 9

FIGURE 9. Region R is shown in dark trace and VD2(S) is represented by a dashed line. Point q is the vertex of VD2(S) defined by s2, s3, s4
and s6, MR2

S(R) = MR2
S(q).

Theorem 2.5. Given a set S of n sensors, k ≥ 2 and a
polygonal region R with m vertices, MRk

S(R) can be calculated
in O(mk(n − k) + k2n log n) time and O(mk(n − k)) space.

Proof. Computing VDk(S) takes O(k2n log n) time since S is
a set of n sensors on the plane and the resulting diagram has
O(k(n − k)) regions, edges and vertices [25]. The cardinality
of set I = B(R)∩ VDk(S) is at most mk(n− k). Adding all the
vertices of VDk(S) that lie inside R to set I takes O(mk(n−k))

time. The region’s vertices can be added to I in O(m) time. For
each intersection point q ∈ I , MRk

S(q) is calculated in constant
time using VDk(S) since it is given by the distance between
q and its kth closest sensor. The largest of these distances is
MRk

S(R). Overall, the time complexity of this last procedure is
O(mk(n−k)). Regarding the space complexity, there is the need
to store at most mk(n−k) intersection points while VDk(S) can
be stored in O(k2(n − k)) space [25].

Corollary 2.1. If R is a convex polygonal region with m

vertices, then MRk
S(R) can be calculated in O(k2n log n) time

and O(m + k2(n − k)) space.

Observe that if VDk(S) was previously constructed, MRk
S(R)

can be calculated in O(m + k(n − k)) time for a convex
polygonal region R. The work of Vu and Zheng [24]
was previously mentioned as it addressed the problem of
minimizing the sensors’ range while ensuring the k-coverage
of a point or a polygonal region. In order to work with
sensors whose exact location is unknown, they introduced the

order-k maximum-Voronoi diagram. This diagram is in fact
the additively weighted Voronoi diagram of order k [32]. They
calculated the minimum sensing range to k-cover a polygonal
region with m vertices in O(k2(n log n + n�rmax/dmin�) +
mNNQ(n, k)+mkn) time, where dmin is the minimum distance
between two sensors with uncertain locations, rmax is the
maximum radius of the uncertainty discs and NNQ(n, k) is
the cost of a nearest neighbour query. The time complexity
presented in their paper is missing the factor O(mkn), which
is the number of intersection points between the additively
weighted Voronoi diagram of order k and the polygonal region.
Although both are valid solutions to the same problem, our result
is less complex than that presented by Vu and Zheng [24].

2.4. Minimizing the sensing range for k-coverage: path
on a polygonal region

The objective of this final section is to calculate the minimum
sensors’ range such that there is a k-covered path within R

connecting two given points p and q, k ≥ 2. Note that it is
always assumed that p and q are points inside R. This problem
is more restrictive than the previous ones since the space where
this path lies is enclosed by R. The dashed path in Fig. 10a is a
2-path between p and q; not only it has the desired coverage as
it exists within R, which makes it the interesting type of path for
this section. In the following, whenever k-path is mentioned, it is
understood as a k-path within R. Similarly to what happened in
Sections 2.1 and 2.2, the solution to this problem is achieved by
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10 M. Abellanas et al.

employing the associated decision problem, which is discussed
shortly.

Given a set S of n sensors with range r ∈ R
+ and two points

p and q on R, the first problem to tackle is to decide if there is
a k-path connecting p and q, k ≥ 2. As previously mentioned,
a k-path from p to q exists if and only if p and q lie in the
same connected component of the union of k-blobs enclosed
by R (see Fig. 10b). If it exists, such k-path only crosses the
regions of R that are k-covered. With this in mind, let A be
the arrangement of the union of k-blobs enclosed by R and
intersected by VDk(S). If there is a k-path between p and q on
R, then it exists within A. Observe that if R is not convex, then
there can be more than one face of A per Voronoi region. For
example, there are two non-connected faces of A defined by
the spikes of R on the lower leftmost Voronoi region in Fig. 11.
Consequently, and according to Corollary 2.1, it is easier to work
with convex regions since the number of intersection points
decreases sharply. Moreover, there is only one face of A per
Voronoi region. Therefore, the first step to solve this problem

FIGURE 10. Region R is shown in a dark trace. (a) The dashed path
is a 2-path within R connecting p to q, whilst the solid black is not. (b)
It is not possible to find a 2-path within R between p and q because
they lie in different connected components of the union of 2-blobs.

FIGURE 11. Polygonal region divided into three convex pieces and
the respective arrangements are shown in three different shades of grey.

is to divide R into convex pieces. This is easily obtained using
Steiner points: for each reflex vertex vr ∈ R extend a ray from
vr , which bisects the internal angle of R at vr , until it reaches
B(R) or a previous ray. It can be shown that if R has j reflex
vertices, then this set of rays divides R into j +1 convex pieces.
There are some studies on the optimization of the final number of
convex pieces, either using Steiner points [33] or diagonals [34].
Notwithstanding these results, and since it does not worsen the
final complexity, the partition technique chosen in the following
does not optimize the resulting number of convex pieces. The
following procedure constructs an intersection graph Gi of
the arrangement Ai , which is in fact arrangement A restricted
to convex piece Ri ⊆ R (see Fig. 11). For each region of
VDk(S), find the k-blob formed by the k sensors defining
such a region. Then intersect this k-blob with VDk(S) and
Ri . If the resulting region is not empty, then it is a face of
arrangement Ai . To construct Gi , add a node to each face of Ai

and connect the nodes whose corresponding faces have a non-
empty intersection. The whole arrangement A, and therefore G,
is constructed by repeating this method to every convex piece
Ri of R. The temporal complexity to construct the restricted
arrangement and corresponding intersection graph is given in
the following result.

Theorem 2.6. Let S be a set of n sensors with range r ,
k ≥ 2 and Ri a convex region with mi vertices. If VDk(S)

is preprocessed, then both arrangement Ai and graph Gi can
be constructed in O(k(n − k)mi) time.

Proof. Each k-blob is intersected at most 2k times by the
associated Voronoi region of VDk(S) and the resulting region
is still convex. Consequently, the intersection between that
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Minimizing the Range for k-Covered Paths on Sensor Networks 11

FIGURE 12. (a) Each subgraph corresponds to a different convex
piece. The subgraph on the leftmost region is disconnected. (b) There
is not a 2-path between p and q because they lie in different connected
components of the graph.

resulting region and Ri also is convex and can be found in
O(mi + ni + 2k) time, ni being the complexity of a kth order
Voronoi region. As the Voronoi diagram has amortized size
O(k(n−k)) [25], arrangementAi can be found inO(k(n−k)mi)

time. Graph Gi , the intersection graph of Ai , has at most k(n−k)

nodes since it may have one node per Voronoi region that
intersects Ri (see Fig. 12a). Two nodes of Gi are connected
if their corresponding faces of Ai intersect. The vertices of
each face of Ai can be used to check if it intersects other
faces of Ai . It suffices that each vertex is identified as an
apex of a k-blob, a point on B(R) or a point on a kth order
Voronoi edge. The latter is the important type of vertex for
this procedure. Suppose face aj ∈ Ai has a vertex v that is a
point on a Voronoi edge, which means it separates two Voronoi
regions and the two corresponding k-blobs intersect each other.
Therefore, to construct Gi it suffices to connect the nodes
corresponding to the faces of Ai that share at least one vertex
on the same kth order Voronoi edge. Overall, this arrangement
and corresponding intersection graph can be constructed in
O(k(n − k)mi) time.

Note that Gi has as many edges as the kth order Voronoi
diagram and that it may not be connected (see the subgraph on
the leftmost region in Fig. 12a). The strategy to decide if there
is a k-path between p and q is based on the construction of
an intersection graph G of the whole arrangement A, which is
in fact the union of the subgraphs constructed for each convex
piece of R. It is not hard to see that a node of Gi is merged with
another node of Gj if the faces of A they correspond to intersect
each other. Once G is built, point p is assigned to node np of
G whose corresponding face of A contains p. In a similar way,
point q is assigned to node nq . Consequently, the existence of
a k-path connecting p to q depends on np and nq being on the
same connected component of G (see Fig. 12b).

Theorem 2.7. Let S be a set of n sensors with sensing range
r, k ≥ 2 and R a polygonal region divided into convex pieces

by adding j rays. Let M be the largest complexity of the convex
pieces. If VDk(S) is preprocessed, then deciding if a k-covered
path between points p and q exists takes O(jk(n − k)M)

time.

Proof. Dividing region R with m vertices into convex pieces
by adding a set L of j rays takes O(m + j 2 log(m/j))

time [33]. Consequently, R is divided into j + 1 convex pieces.
Supposing each convex piece Ri has mi vertices, assume M =
max{m1, . . . , mj+1}. According to Theorem 2.6, constructing
Gi for each convex piece takes O(k(n − k)mi) time; so
constructing a first version of G takes O(jk(n − k)M) time.
For the same reason, A is also constructed in O(jk(n − k)M)

time.Analysing the vertices of every face of A on a convex piece
takesO(k(n−k)M) time. Consequently, finding the sets of faces
that have an edge on the same ray of L takes O(jk(n − k)M)

time. Finding the k-blob that contains a face of A can be done
in constant time. Every ray of L can intersect k(n − k) Voronoi
regions and consequently k(n − k) faces of A. Therefore, each
set of faces has cardinality at most k(n − k). The vertices of
the rays of L can have degree 3 at most [33]; so the number of
nodes of G to be merged at a time is at most 3, which can be
done in constant time. Consequently, the construction of G is
concluded in O(jk(n− k)) time. Locating p and q on A can be
done in O(k(n − k)M) time. Traversing G to decide whether
there is a k-path between points p and q takes O(jk(n−k)) time.
Overall, this decision problem can be solved in O(jk(n−k)M)

time.

The strategy to solve the general problem proposed in this
section applies the decision algorithm described earlier. Said
problem is to calculate the minimum sensing range that ensures
the existence of a k-path on R between p and q. Such a range
is denoted by MRk

S,R(P (p, q)). As previously mentioned, there
is always a solution if |S| ≥ k. Following the idea presented
in Section 2.2, locate point b that is the first intersection
between the connected component of k-blobs containing p

and the one containing q. As mentioned before, this point can
either be on B(R) or inside R. The first case was discussed
in Proposition 2.5 and so b can either be a vertex of R or an
intersection point between VDk(S) and B(R). The second case
is more complicated since now there is no need to completely
cover R. In fact, all that is needed is that p and q lie in the
same connected component of k-blobs. Therefore, b has to
be a bottleneck-point for k-paths between p and q—that is,
bk

S(p, q). Without loss of generality, degenerate input data are
not considered and so bottleneck-points are regarded as unique
for every pair of points.According to Proposition 2.4, candidates
to bottleneck-points are found on the edges of VDk(S) that are
intersected by the line segment joining the two sensors defining
such edge and vertices of VDk(S) that lie inside R. Finally,
MRk

S,R(P (p, q)) is calculated, using a binary search on a list
of sorted ranges. Each range of the list is the minimum sensing
range needed to k-cover a candidate and each candidate is either
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12 M. Abellanas et al.

FIGURE 13. The 2-path between p and q on R only exists if the
sensors’ range is at least MR2

S,R(P (p, q)) = MR2
S(b) = r . The 2-

covered regions of R are shown in darker grey.

p, q, a vertex of R, a point of {B(R)∩VDk(S)} or a bottleneck-
point. In every step of the binary search, the corresponding
range is evaluated to decide whether it is large enough to allow
a k-path between p and q within R. The decision algorithm
presented earlier will be used to this end. If the range is indeed
large enough, then the search proceeds on the lowest half of the
ranges. Otherwise, the search continues on the highest half of
the ranges.

In Fig. 13, there is an example of a 2-path between p and
q within a polygonal region. Any 2-path between these points
only exists if the sensors’ range is at least MR2

S,R(P (p, q)).
This range is calculated as the minimum range to 2-cover point
b = b2

S(p, q), which is given by d(s2, b) = d(s4, b). The
following theorem concludes this subject.

Theorem 2.8. Let S be a set of n sensors, k ≥ 2 and R a
polygonal region with m vertices divided into convex pieces by
adding j rays. Let M be the largest complexity of the convex
pieces. Given two points p and q on R, MRk

S,R(P (p, q)) can
be calculated in O(jMk(n − k) log mn) time.

Proof. Computing VDk(S) takes O(k2n log n) time [25]. Set
I = {p, q}∪ {B(R)∩VDk(S)} has cardinality mk(n−k) since
VDk(S) has size O(k(n − k)) and R has m vertices. Adding m

vertices to I plus the k(n−k) candidates to bottleneck-points for
k-paths between p and q takes O(m+k(n−k)) time. Therefore,
set I can be found in O(mk(n − k)) total time. This is also the
temporal complexity of calculating MRk

S(i) for every i ∈ I .
Supposing each convex piece has mi vertices, assume that M =
max{m1, . . . , mj+1}. Then according to Theorem 2.7, each step
of the binary search runs in O(jk(n−k)M) time. Consequently,
the binary search runs in O(jk(n − k)M log mk(n − k)) =
O(jk(n−k)M log mn) time, which is the final complexity.

3. CLOSING REMARKS AND FUTURE RESEARCH

This paper was dedicated to multiple coverage and intended as a
means to present new results involving maximal-exposure paths
on different types of regions. Regarding multiple coverage of
paths, there is a paper by Mehta et al. [35] that was purposely
omitted. This paper presented an algorithm to find minimal
exposure paths regarding simple coverage and it claimed that
such an algorithm is extendable to multiple coverage by apply-
ing higher-order Voronoi diagrams. We do not believe this is the
case and Fang and Low [9] also pointed out why it does not work.

All four sections presented algorithms to calculate the
minimum sensing range to allow the existence of a maximal-
exposure path. By minimizing the sensors’ range while
providing the desired coverage, the network’s lifespan is
extended and this in turn lowers the associated costs. The most
interesting aspect of these algorithms is that they also output
the subset of sensors needed to k-cover such a path and so it is
possible to turn off the sensors that are not needed. Although the
sensors’range is optimized to ensure the existence of a k-path on
R, it is never shown how to construct it in Section 2.4. Future
research will obviously include the construction of a k-path
within R and even the construction of the shortest k-path. It
is not clear how to do this efficiently because the union of k-
blobs restricted to R is not convex and presents an uncommon
shape: some edges are arcs while others are line segments.
The key question to reduce the remaining complexities is
whether the construction of Voronoi diagrams can be avoided.
That is, find another way to directly compute the point of the
region or path that needs the largest sensing range in order to
be k-covered. Such question is this paper’s main unresolved
problem. Furthermore, since these problems are based in real-
life situations, it is reasonable to consider the generalization of
these results to higher dimensions. For example, when using
three dimensions, all these results could be directly applied to
coverage problems.
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