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All graphs with at most seven vertices are Pairwise Compatibility Graphs
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aDepartment of Computer Science, “Sapienza” University of Rome, Via Salaria 113, 00198 Roma, Italy

Abstract

A graphG is called a pairwise compatibility graph (PCG) if there exists an edge-weighted treeT and two

non-negative real numbersdmin anddmax such that each leaflu of T corresponds to a vertexu ∈ V and there

is an edge (u, v) ∈ E if and only if dmin ≤ dT,w(lu, lv) ≤ dmax wheredT,w(lu, lv) is the sum of the weights of the

edges on the unique path fromlu to lv in T.

In this note, we show that all the graphs with at most seven vertices are PCGs. In particular all these

graphs exept for the wheel on 7 verticesW7 are PCGs of a particular structure of a tree: a centipede.
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1. Introduction

A graphG = (V,E) is a pairwise compatibility graph(PCG) if there exists a treeT, an edge-weight

functionw that assigns positive values to the edges ofT and two non-negative real numbersdmin anddmax,

with dmin ≤ dmax, such that each vertexu ∈ V is uniquely associated to a leaflu of T and there is an edge

(u, v) ∈ E if and only if dmin ≤ dT,w(lu, lv) ≤ dmax wheredT,w(lu, lv) is the sum of the weights of the edges on

the unique path fromlu to lv in T. In such a case, we say thatG is a PCG ofT for dmin anddmax; in symbols,

G = PCG(T,w, dmin, dmax).

It is clear that if a treeT, an edge-weight functionw and two valuesdmin and dmax are given, the

construction of a PCG is a trivial problem. We focus on the reverse of this problem, i.e., given a graph

G we have to find out a treeT, an edge-weight functionw and suitable values,dmin and dmax, such that

G = PCG(T,w, dmin, dmax). Such a problem is called thepairwise compatibility tree construction problem.

The concept of pairwise compatibility was introduced in [7]in a computational biology context and the

weight functionw has positive values, as it represents a not null distance. There are several known specific
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graph classes of pairwise compatibility graphs, e.g., cliques and disjoint union of cliques [1], chordless cycles

and single chord cycles [11], some particular subclasses ofbipartite graphs [10], some particular subclasses of

split matrogenic graphs [4]. Furthermore a lot of work has been done concerning some particular subclasses

of PCG as leaf power graphs [1], exact leaf power graphs [2] and lately a new subclass has been introduced,

namly the min-leaf power graphs [4].

Initially, the authors of [7] conjectured that every graph is a PCG, but this conjecture has been confuted

in [10], where a particular bipartite graph with 15 nodes hasbeen proved not to be a PCG. This latter result

has given rise to this research as it is natural to ask for the smallest graph that is not a PCG.

A caterpillar Γn is an n-leaf tree for which any leaf is at a distance exactly one froma central path

calledspine. A centipedeis ann-leaf caterpillar, in which the edges incident to the leavesproduce a perfect

matching. Deleting from ann-leaf centipede the degree two vertices and merging the two edges incident to

each of these vertices into a unique edge, results in a new caterpillar that we will callreduced centipedeand

denote byΠn (as an example,Π5 is depicted at the top left of Fig. 1).

Caterpillars are interesting trees in the context of PCGs, as in most of the cases, the pairwise compatibility

tree construction problem admits as solution a tree that is in fact a caterpillar. For this reason, we focus on

this special kind of tree. In this note, we prove that all the graphs with at most seven vertices are PCGs. More

precisely, we demonstrate the following results:

• If G = PCG(Γn,w, dmin, dmax), then there always exist a new edge-weight functionw′, and a new value

d′max such that it also holds:G = PCG(Πn,w′, dmin, d′max).

• It is well known that graphs with five vertices or less are all PCGs and the witness trees – not all

caterpillars – are shown in [9]. For each one of these graphs we prove that it is PCG of a reduced

centipede, providing accordingly, an edge-weight function w and the two valuesdmin anddmax.

• All the graphs with six and seven vertices, except for the wheelW7 (i.e. the graph formed by connecting

a single vertex to all vertices of a cycle of length six – see Figure 2.a), are PCGs of a reduced centipede

and, for each of them, we provide the edge-weight functionw and the two valuesdmin anddmax such

that it isPCG(Πn,w, dmin, dmax), n = 6, 7.

• For what concerns the wheelW7, it is known [3] thatW7 is not PCG of the reduced centipedeΠ7 (and

hence it is not PCG of a caterpillar). We show thatW7 is PCG of a tree different from a caterpillar.

2



2. Preliminaries

In this section we list some results that will turn out to be useful in the rest of the paper.

Let T be a tree such that there exist an edge-weight functionw and two non-negative valuesdmin anddmax

such thatG = PCG(T,w, dmin, dmax). Observe that ifT has at least 4 vertices and contains a vertexv of degree

2, then we can construct a new treeT′ in which v is eliminated, the two edges (x, v) and (v, y) incident tov

are merged into a unique edge (x, y) and a new functionw′ is defined fromw only modifying the weight of

the new edge, that is set equal to the sum of the weights of the old edges:w′((x, y)) = w((x, v)) + w((v, y)).

It is easy to see thatG = PCG(T′,w′, dmin, dmax). For this reason, from now on, we will assume that all the

trees we handle do not contain vertices of degree two.

Proposition 1. [5] Let G = PCG(T,w, dmin, dmax), where dmin, dmax and the weight w(e) of each edge e of

T are positive real numbers. Then it is possible to chooseŵ, d̂min, d̂max such that for any e, the quantities

d̂min, d̂max andŵ(e) are natural numbers and G= PCG(T, ŵ, d̂min, d̂max).

We prove here the following useful lemma:

Lemma 1. Let G= PCG(T,w, dmin, dmax). It is possible to choosêw, d̂min, d̂maxsuch thatminŵ(e) = 1, where

the minimum is computed on all the edges of T , and G= PCG(T, ŵ, d̂min, d̂max).

Proof. According to Proposition 1, we can assume that the edge weight w and the two valuesdmin, dmax are

integers. Lete1, . . . , en be the edges ofT incident to the leaves. Without loss of generality, we can assume

w(e1) = mini w(ei).

We defineŵ as follows:ŵ(e1) = 1 and for eachi = 2, . . . , n defineŵ(ei) = w(ei) − w(e1) + 1. Clearly, the

functionŵ is well defined as all its values are positive.

As the weight of any edge incident to a leaf has been decreasedby exactlyw1−1 and the rest of the weights

remained unchanged, then for of any two leavesl i , l j it holds thatdT,ŵ(l i , l j) = dT,w(l i , l j) − 2w(e1) + 2. Let

d̂min = max{dmin−2w(e1)+2, 0} andd̂max= dmax−2w(e1)+2. It is easy to see thatG = PCG(T, ŵ, d̂min, d̂max)

indeed, ifd̂min = 0 then it means that there was no path weight belowdmin, with respect tow. �

The previous results imply that it is not restrictive to assume that the weights anddmin anddmaxare integers

and that the smallest weight is 1. Thus, in the rest of the paper we will use these assumptions.
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3. PCGs of Caterpillars

In this section we will prove that we can get rid of different kinds of caterpillar structures and restrict to

consider only reduced centipedes.

Theorem 1. Let G be an n vertex graph,Γn andΠn be an n-leaf caterpillar without degree 2 vertices and an

n-leaf reduced centipede, respectively.

Let G= PCG(Γn,w, dmin, dmax). It is possible to choose w′ and d′maxsuch that G= PCG(Πn,w′, dmin, d′max).

Proof. In order not to overburden the exposition, letΓ = Γn andΠ = Πn.

If Γ is a reduced centipede, the claim is trivially proved, so assume it is not. We lead the proof into two

steps. First we define a non-negative edge-weight functionw′′ proving thatΓ weighted byw andΠ weighted

by w′′ generate the same PCGG for the same valuesdmin anddmax. Then we modifyw′′ into a positive weight

functionw′ and introduce two new valuesd′min andd′max proving thatG is alsoPCG(Π,w′, d′min, d
′
max).

Draw Γ so that: i) the spine lies on a horizontal line, ii) all the leaves lie on a parallel line and iii) the

edges between the spine and the leaves are represented as non-crossing line segments; number the leaves

and the vertices of the spine from left to rightl1, . . . , ln and s1, . . . sk, k < n, respectively. By drawing the

reduced centipedeΠ in a similar way, we number the leaves and the vertices of the spine from left to right by

m1, . . . ,mn andt2, . . . tn−1.

We define the edge-weight functionw′′ as follows:

• let p(l i) the unique adjacent vertex ofl i in Γ; for each 1< i < n, definew′′((mi , ti)) = w((l i , p(l i)));

• definew′′((m1, t2)) = w((l1, p(l1))) andw′′((mn, tn−1)) = w((ln, p(ln)));

• for each 2≤ i ≤ n− 2, definew′′((ti , ti+1)) = 0 if and only if p(l i) = p(l i+1) in Γ;

• for each 2≤ i ≤ n− 2, definew′′((ti , ti+1)) = w((p(ti), p(ti+1))) if and only if p(l i) , p(l i+1) in Γ.

Observe thatw′′ is well defined, asΓ has no degree 2 vertices.

It is quite easy to convince oneself that for each pair of leaves inΓ, l i andl j , dΓ,w(l i , l j) is exactly the same

asdΠ,w′′(mi ,mj) and thatdmin anddmax remain unchanged, soG = PCG(Γ,w′′, dmin, dmax).

It remains to show that we can reassign the edge-weights ofΠ in a way that any edge gets a positive

weight andΠ is the pairwise compatibility tree ofG. To this purpose, we denote byE(H) the edge set of any
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graphH, and we introduce the following two quantities:

L = min
(u,v)<E(G)

{

|dmin− dΠ,w′′(lu, lv)|, |dmax− dΠ,w′′(lu, lv)|
}

, N = | {e : e ∈ E(Π),w(e) = 0} |,

L is the smallest distance between the quantitiesdmin, dmax and the weighted distances on the tree of the

paths corresponding to non-edges ofG; N is the number of edges ofΠ of weight 0.

Observe that, unlessG coincides with the cliqueKn (which trivially is PCG of the reduced centipede),

there always exists a pair of leaves such that their distanceonΠ falls out of the interval [dmin, dmax] and hence

L > 0. Furthermore, as any edge incident to a leaf inΠ is strictly greater than 0 and in view of the hypothesis

that the caterpillarΓ is not a reduced caterpillar, it holds 1≤ N ≤ n− 3 (the boundn− 3 is reached whenΓ is

a star). So, the valueǫ = L
N+1 is well defined.

Now define a new weight functionw′ on Π by assigning the weightǫ to any edge of weight 0. More

formally, w′(e) = w′′(e) if w′′(e) , 0 andw′(e) = ǫ otherwise. In this way the distance between any two

leaves inΠ can result increased by a value upper bounded byǫN < L.

Set the new valued′max= dmax+ ǫN.

The following three observations conclude the proof:

• any distance between leaves inΠ that was strictly smaller thandmin with respect to the weight function

w′′ remains so after this transformation in view of the fact thatǫN < L;

• any distance that was strictly greater thandmax with respect to the weight functionw′′ is strictly greater

thand′max due to the definition ofL;

• any distance that was in the interval [dmin, dmax] with respect to the weight functionw′′ is now in the

interval [dmin, d′max]. �

Observe that the previous statement suggests not to consider all kinds of caterpillars, but to restrict to

reduced centipedes, only. In the next section we exploit this result.

4. Graphs on at most seven vertices

In this section we show that all graphs with at most seven vertices, except for the wheelW7, are PCGs of

a reduced centipede.

Analogously to what we did in the proof of Theorem 1, name the leaves ofΠn from left to right with

l1, . . . , ln and the vertices of the spine from left to right withs2, . . . sn−1. As, for anyn, there exists a unique
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Figure 1: All the non isomorphic connected cyclic graphs with 5 vertices with their representation as PCGs

of the reduced centipede (top left).

unlabeled reduced centipede withn leavesΠn, in the following we consider the edges ofΠn as ordered in the

following way: e1 = (l1, s2); ei = (l i , si) for each 2≤ i ≤ n− 1; en = (ln, sn−1); finally, en+i−1 = (si , si+1) for

each 2≤ i ≤ n− 2.
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Now, the edge-weight functionw can be expressed as a (2n− 3) long vector~w, where the componentwi

is a positive integer representing the weight assigned to edgeei .

In Figure 1 all the 18 connected non isomorphic cyclic graphswith 5 vertices are depicted, together with

the vector~w and the values ofdmin anddmax that witness that all of them are PCGs ofΠ5. Observe that the

connected non isomorphic graphs on 5 vertices are 21, we haveomitted the 3 graphs that are trees, which are

trivially PCGs. We remind that it is already proved in [9] that all the graphs with at most five vertices are

PCG, but the provided trees were all different and not all caterpillars.

For what concerns graphs with 6 and 7 vertices, except for thewheelW7, we get a similar result. For

the sake of brevity we do not depict all these graphs (there are 112 connected non isomorphic graphs with 6

vertices and 853 with 7 vertices), but the values of~w, dmin anddmax we got with the help of an enumerative C

program can be found at the web pagehttps://sites.google.com/site/pcg6and7vertices/ .

Thus, we obtain the following result:

Lemma 2. All graphs with at most 7 vertices except for the wheel W7 are PCGs of a reduced centipede.

Lemma 3. The graph W7 is a PCG.

Proof. Consider the edge-weighted treeT depicted in Figure 2.b and the two valuesdmin = 5 anddmax = 7.

It is immediate to see thatW7 = PCG(T,w, dmin, dmax). �
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Figure 2: (a.) The wheelW7 and (b.) the edge-weighted treeT such thatW7 = PCG(T,w, 5, 7).

This result is in agreement with the negative result in [3], stating that it is not possible to find any edge-

weight functionw and any two valuesdmin anddmax such thatW7 = PCG(Π7,w, dmin, dmax).

From Lemmas 2 and 3 it immediately derives the main result of this note:

Theorem 2. All graphs with at most 7 vertices are PCGs.
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