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All graphs with at most seven vertices are Pairwise Comiairaphs
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Abstract

A graphG is called a pairwise compatibility graph (PCG) if there &xian edge-weighted tréle and two
non-negative real numbeds,i, anddmax such that each ledf§ of T corresponds to a vertaxe V and there
is an edgey, v) € E if and only if dmin < dr.w(lu, Iv) < dmaxWheredrw(lu, V) is the sum of the weights of the
edges on the unique path frdgto I, in T.

In this note, we show that all the graphs with at most seveticesrare PCGs. In particular all these
graphs exept for the wheel on 7 vertidd's are PCGs of a particular structure of a tree: a centipede.
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1. Introduction

A graphG = (V,E) is a pairwise compatibility grapi{PCG) if there exists a tre€, an edge-weight
functionw that assigns positive values to the edge3 @nd two non-negative real numbekg, anddmay,
with dmin < dmax Such that each vertax e V is uniquely associated to a lelgfof T and there is an edge
(u,v) € Eif and only if dmin < drw(lu, Iv) < dmaxwWheredrw(lu, Iv) is the sum of the weights of the edges on
the unique path frorh, to |, in T. In such a case, we say thatis a PCG ofT for dmin anddmay; in symbols,

G = PCH(T, W, Amin, dma).

It is clear that if a tre€lT, an edge-weight functiow and two valuedn,n and dnax are given, the
construction of a PCG is a trivial problem. We focus on thesrsg of this problem, i.e., given a graph
G we have to find out a tre€, an edge-weight functiomw and suitable valuesiyin and dmayx such that
G = PCHT, W, dmin, dmay)- Such a problem is called thpairwise compatibility tree construction problem

The concept of pairwise compatibility was introduce(H] ifvh computational biology context and the

weight functionw has positive values, as it represents a not null distancereldre several known specific
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graph classes of pairwise compatibility graphs, e.g.uelfgand disjoint union of cquueQ [1], chordless cycles
and single chord cycles [11], some particular subclasskepaftite graphs [10], some particular subclasses of
split matrogenic graphsi[4]. Furthermore a lot of work hasrbdone concerning some particular subclasses
of PCG as leaf power graplg [1], exact leaf power graHhs [@]lately a new subclass has been introduced,
namly the min-leaf power graphs [4].

Initially, the authors ofl[[7] conjectured that every graptaiPCG, but this conjecture has been confuted
in [1Q], where a particular bipartite graph with 15 nodes besn proved not to be a PCG. This latter result

has given rise to this research as it is natural to ask forrttalest graph that is not a PCG.

A caterpillar I'y is ann-leaf tree for which any leaf is at a distance exactly one fmentral path
calledspine A centipedas ann-leaf caterpillar, in which the edges incident to the legwesiuce a perfect
matching. Deleting from an-leaf centipede the degree two vertices and merging the tigesincident to
each of these vertices into a unique edge, results in a n@rpdtr that we will callreduced centipedand
denote by, (as an exampld]s is depicted at the top left of Fig] 1).

Caterpillars are interesting trees in the context of PC&8) most of the cases, the pairwise compatibility
tree construction problem admits as solution a tree that fadgt a caterpillar. For this reason, we focus on
this special kind of tree. In this note, we prove that all thepips with at most seven vertices are PCGs. More

precisely, we demonstrate the following results:

e If G =PCHI,w, dnin, dmay), then there always exist a new edge-weight functibrand a new value

d/,.xSuch that it also holds5 = PCEHIn, W', Amin, Aias)-

max

e It is well known that graphs with five vertices or less are &l and the witness trees — not all
caterpillars — are shown il[l[9]. For each one of these graghgneve that it is PCG of a reduced

centipede, providing accordingly, an edge-weight functicand the two valuednmi, anddmax.

e Allthe graphs with six and seven vertices, except for theel¥é (i.e. the graph formed by connecting
a single vertex to all vertices of a cycle of length six — sepiFd{2.a), are PCGs of a reduced centipede
and, for each of them, we provide the edge-weight functiaand the two valuedmin anddmax such
that it isPCE(I1p, W, dmin, dmax), N = 6, 7.

e For what concerns the whe@k, it is known B] thatW is not PCG of the reduced centipede (and

hence it is not PCG of a caterpillar). We show tiatis PCG of a tree dierent from a caterpillar.



2. Preliminaries

In this section we list some results that will turn out to befusin the rest of the paper.

LetT be a tree such that there exist an edge-weight funetiand two non-negative valuelg,in anddmax
such thats = PCEH(T, w, dmin, dmay). Observe that il has at least 4 vertices and contains a vevteidegree
2, then we can construct a new tréein which v is eliminated, the two edges,{) and {, y) incident tov
are merged into a unique edgey) and a new functionv is defined fromw only modifying the weight of
the new edge, that is set equal to the sum of the weights oflthedges:w’((x,y)) = w((x, V)) + W((Vv, Y)).
Itis easy to see th&@ = PCET’, W, dmin, dmay)- For this reason, from now on, we will assume that all the

trees we handle do not contain vertices of degree two.

Proposition 1. [B] Let G = PCE(T, W, dmin, dmax), Where 6hin, dmax @and the weight \ie) of each edge e of
T are positive real numbers. Then it is possible to chaiStnin, dmax SUCh that for any e, the quantities

Gmin, dmaxandw(e) are natural numbers and G PCG(T, W, Amin, Ama)-

We prove here the following useful lemma:

Lemmal. LetG= PCG(T, W, dmin, Gma). It is possible to choos#, dmin, dmaxsuch thaminw(e) = 1, where

the minimum is computed on all the edges of T, ane BCG(T, W, Amin, dmay).-

Proor. According to Proposition]1, we can assume that the edgehiveignd the two valuednin, dmax are
integers. Lety, ..., e, be the edges of incident to the leaves. Without loss of generality, we casuase
w(er) = min; w(e).

We definew'as follows:wie;) = 1 and for each = 2, ..., ndefinew(g) = w(g) — w(e;) + 1. Clearly, the
functionw is well defined as all its values are positive.

As the weight of any edge incident to a leaf has been decrégsadctlyw; —1 and the rest of the weights
remained unchanged, then for of any two leayds it holds thatdr g (li,1;) = drw(li,l;) — 2w(ey) + 2. Let
min = MaXdmin— 2W(ey) + 2, 0} anddmax = dmax— 2W(€1) + 2. Itis easy to see th@& = PCHT, W, Anmin, dmay)

indeed, ifdm, = O then it means that there was no path weight bedgy, with respect taw. O

The previous results imply that it is not restrictive to amsuthat the weights arthin anddmaxare integers

and that the smallest weight is 1. Thus, in the rest of the papeavill use these assumptions.



3. PCGsof Caterpillars

In this section we will prove that we can get rid offérent kinds of caterpillar structures and restrict to

consider only reduced centipedes.

Theorem 1. Let G be an n vertex grapl, andIl, be an n-leaf caterpillar without degree 2 vertices and an
n-leaf reduced centipede, respectively.
LetG = PCEIn, W, dmin, dmay)- Itis possible to chooseand d,,,, such that G= PCHI1n, W, Amin, Aipas)-

Proor. In order not to overburden the exposition,llet T', andIl = I1;,.

If T"is a reduced centipede, the claim is trivially proved, saassit is not. We lead the proof into two
steps. First we define a non-negative edge-weight funetioproving thatl” weighted byw andIT weighted
byw” generate the same PT&for the same valuedin anddmax Then we modifyw” into a positive weight
functionw’” and introduce two new valuet,;, andd;,,, proving thatG is alsoPCGIL, W', d/ ;.. A/ a5

DrawTI so that: i) the spine lies on a horizontal line, ii) all theves lie on a parallel line and iii) the
edges between the spine and the leaves are represented-assing line segments; number the leaves
and the vertices of the spine from left to right. .., |, ands,... s, k < n, respectively. By drawing the
reduced centipedé in a similar way, we number the leaves and the vertices ofgilreedrom left to right by
My, ...,myandty, .. .t1.

We define the edge-weight functiort as follows:

¢ let p(l;) the unique adjacent vertex bfin I'; for each 1< i < n, definew”((m;, t;)) = w((l;, p(l;)));
o definew”’((m, t2)) = w((l1, p(12))) andw” (M, tn-1)) = W((In, p(In)));

e foreach 2<i <n-2, definew”’((t;, ti+1)) = 0 if and only if p(l;) = p(li+1) In T;

e foreach 2<i <n-2, definew”’((t;, ti+1)) = w((p(t), p(ti;1))) if and only if p(l;) # p(li;1) inT.

Observe thatv’ is well defined, a§ has no degree 2 vertices.
It is quite easy to convince oneself that for each pair ofésaml’, |; andl;, drw(li, ;) is exactly the same

asd - (M, m;) and thaitnin anddmax remain unchanged, €6 = PCGI, W”, dmin, dmay)-

It remains to show that we can reassign the edge-weighis iofa way that any edge gets a positive

weight andI is the pairwise compatibility tree @. To this purpose, we denote B(H) the edge set of any



graphH, and we introduce the following two quantities:

L= min _{|dmin— drw (lu, W), [dmax— drw (Tu, W1} N = [{e: ee E(IT), w(e) = 0} |,
(u,v)2¢E(G)

L is the smallest distance between the quantdjgs dmax and the weighted distances on the tree of the
paths corresponding to non-edge$HfN is the number of edges of of weight 0.

Observe that, unless coincides with the cliqué, (which trivially is PCG of the reduced centipede),
there always exists a pair of leaves such that their distan€Efalls out of the intervaldimin, dmay] and hence
L > 0. Furthermore, as any edge incident to a ledl iis strictly greater than 0 and in view of the hypothesis
that the caterpillaF is not a reduced caterpillar, it holds<IN < n— 3 (the boundh — 3 is reached wheh is
a star). So, the value= ﬁ is well defined.

Now define a new weight functiow’ on IT by assigning the weight to any edge of weight 0. More
formally, w'(e) = w”’(€) if w’(e) # 0 andw'(e) = € otherwise. In this way the distance between any two
leaves inll can result increased by a value upper boundeelNby: L.

Set the new valudy,,, = dmax+ €N.

The following three observations conclude the proof:

e any distance between leavedlrthat was strictly smaller thagh,, with respect to the weight function

w”’ remains so after this transformation in view of the fact #iit< L;

e any distance that was strictly greater ththnx with respect to the weight functiom” is strictly greater
thand),

[ ax due to the definition ok;

e any distance that was in the intervdl|,, dmay With respect to the weight function” is now in the

interval [dmin, dimasd- O

Observe that the previous statement suggests not to coradidénds of caterpillars, but to restrict to

reduced centipedes, only. In the next section we explatrésult.

4. Graphson at most seven vertices

In this section we show that all graphs with at most sevenocestexcept for the whe#l,, are PCGs of
a reduced centipede.
Analogously to what we did in the proof of Theoréin 1, name #avés ofil, from left to right with

l1,...,1, and the vertices of the spine from left to right with . .. s,-1. As, for anyn, there exists a unique
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Figure 1: All the non isomorphic connected cyclic graphdwitvertices with their representation as PCGs
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unlabeled reduced centipede witlheavedT,, in the following we consider the edgeslaf as ordered in the

following way: e; = (I1,s); & = (li,s) foreach 2< i < n-1; e, = (In, S-1); finally, eni-1 = (s, S+1) for

each2<i<n-2.



Now, the edge-weight functiow can be expressed as an(2 3) long vectow, where the componem;
is a positive integer representing the weight assignedge ed

In Figurel1 all the 18 connected non isomorphic cyclic grapitis 5 vertices are depicted, together with
the vectow and the values od»in anddmax that witness that all of them are PCGsI®f. Observe that the
connected non isomorphic graphs on 5 vertices are 21, wedmaitted the 3 graphs that are trees, which are
trivially PCGs. We remind that it is already proved in [9] ttedl the graphs with at most five vertices are

PCG, but the provided trees were alffdrent and not all caterpillars.

For what concerns graphs with 6 and 7 vertices, except fowtneelW;, we get a similar result. For
the sake of brevity we do not depict all these graphs (thexd 42 connected non isomorphic graphs with 6
vertices and 853 with 7 vertices), but the valuesipflnin anddmax we got with the help of an enumerative C
program can be found at the web pdgeps://sites.google.com/site/pcgband7vertices/ .

Thus, we obtain the following result:
Lemma 2. All graphs with at most 7 vertices except for the wheglaré PCGs of a reduced centipede.
Lemma 3. The graph Wis a PCG.

Proor. Consider the edge-weighted tréalepicted in Figurgl2.b and the two valuhg, = 5 anddmax = 7.
It is immediate to see th&t/; = PCE(T, W, dmin, dmax)- O

V; Vs

Vs V3

Vs vy

a.

Figure 2: (a.) The whedl; and (b.) the edge-weighted tréesuch that\; = PCHT, w, 5, 7).

This result is in agreement with the negative resuIBn [B3ting that it is not possible to find any edge-

weight functionw and any two valuedmin anddmax such thawV, = PCGE(IT7, W, dmin, dmax)-

From Lemmag12 arld 3 it immediately derives the main resuhisfriote:

Theorem 2. All graphs with at most 7 vertices are PCGs.
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