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The aim of algebraic logic is to compact series of small steps of general logical
inference into larger (in)equational steps. Algebraic structures that have proved
very useful in this context are modal semirings and modal Kleene algebras. We
show that they can also model knowledge and belief logics as well as games without
additional effort; many of the standard logical properties are theorems rather than
axioms in this setting. As examples of the first area we treat the classical puzzles
of the Wise Men and the Muddy Children. Moreover, we show possibilities for
handling knowledge update and revision algebraically. For the area of games, we
generalise the well-known connection between game logic and dynamic logic to
the setting of modal semirings and link it to predicate transformer semantics,
in particular to demonic refinement algebra. We think that our study provides
evidence that modal semirings are able to handle a wide variety of (multi-)modal

logics in a uniform algebraic fashion.
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1. INTRODUCTION

The aim of algebraic logic is to compact series
of small steps of general logical inference into larger
(in)equational steps. Moreover, it attempts to replace
tedious model-theoretic argumentation, in particular,
elementwise argumentation, by more abstract and
compact reasoning.

During the recent years it has turned out that
variants of semirings (e.g. [2]) are very useful algebraic
structures for this. They may be seen as abstract
representations of (state) transition systems and
axiomatise the fundamental operations of choice and
sequential composition in such systems. Semirings
with an idempotent choice operator have a natural
approximation order that corresponds to implication
(or inclusion); hence implicational inference can be
replaced by inequational reasoning. Adding finite and
infinite iteration leads to Kleene algebras [3] and omega
algebras [4].

An essential extension of these basic structures is
provided by modal semirings, as studied extensively
in [5, 6]. They are based on the concept of tests [7]
that algebraically represent state predicates. Modal
semirings add diamond and box operators and are
more general than Kripke structures: the access between
possible worlds can be described not only by relations,
but, e.g., by sets of computation paths or even by
computation trees. Kleene and omega algebras with

This paper is a significantly extended and revised version of [1].

modal operators can be used to give algebraic semantics
of PDL, LTL and CTL; as shown in [8], the subclass of
left Boolean quantales can even handle full CTL∗ and
the propositional µ-calculus. Many further applications
have been developed.

In the present paper we show that modal semirings
can also model knowledge and belief logics (e.g. [9]) as
well as games (e.g. [10]) without additional effort; many
of the standard logical properties there are theorems
rather than axioms in this setting. As examples of the
first area we treat the classical puzzles of the Wise
Men and the Muddy Children and show possibilities for
handling knowledge update and revision algebraically.
The algebraic treatment offers a more concise way
of reasoning than classical natural deduction proofs.
Moreover, since the algebraic treatment is completely
first-order, it offers the possibility of using off-the
shelf fully automatic theorem provers without a need
for specially tailoring them towards modal/epistemic
logic. For the area of games, we generalise the well-
known connection between game logic and dynamic
logic to the setting of modal semirings and link it
to predicate transformer semantics, in particular to
demonic refinement algebra [11].

The character of this paper is that of a feasibility
study, not that of a re-development of existing
particular modal logics in a new setting. Nevertheless, a
surprising result seems to be that the relatively simple
axiomatisation of modal semirings and modal Kleene
algebras achieves many of the standard properties of
such logics in an easy and uniform way.
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Our framework is intended for defining the semantics
of new, special-purpose modal logics as they arise, e.g.,
with multi-agent systems. Using it will provide the
advantage that many standard modal properties such
as axioms M and K as well as certain induction rules
hold automatically and do not need to be reproved or
added as axioms separately for each new logic.

The paper is organised as follows. Part I deals with
an algebraisation of knowledge/belief logics. These are
briefly recapitulated in Section 2 and illustrated with
a variant of the Wise Men Puzzle. Section 3 defines
several variants of modal (left) semirings and Kleene
algebras and lists the most essential properties of the
box and diamond operators. They are applied in Section
4 to represent the usual knowledge/belief operators
for multiagent systems algebraically. The laws these
inherit from the general algebraic framework are used
in Section 5 for a concise solution of the Wise Men
Puzzle. Section 6 reuses parts of the solution to treat
the Muddy Children Puzzle. In Section 7 we show
further use of the algebra in modelling certain aspects
like knowledge/belief revision (e.g. [12]) and preference
relations between possible worlds and their upgrade
(e.g. [13]).

Part II treats games and predicate transformers.
Section 8 gives a brief recapitulation of games and
their algebra, in particular, of their representation
by predicate transformers. These are analysed in a
general fashion in Section 9, and a connection to
Parikh’s iteration operators for games is set up. Section
10 considers predicate transformers as elements of a
left i-semiring which is extended to a modal one.
It relates the box and diamond operators there to
the enabledness and termination operators of demonic
refinement algebra [14]. Section 11 provides a brief
conclusion and outlook.

PART I: KNOWLEDGE

We first model epistemic logic in modal semirings. As
our running example we use a particular version of the
Wise Men Puzzle [15]. Although, of course, epistemic
logic was not invented for the solution of such puzzles,
they provide a nice illstration of the basic concepts of
the logic.

2. THE WISE MEN PUZZLE AND EPIS-
TEMIC MODAL LOGIC

A king wants to test the wisdom of his three wise men.
They have to sit on three chairs behind each other, all
facing the same direction. The king puts a hat on each
head, either red or black, in such a way that no one can
see his own hat or the hats behind him, only the hats of
the men before him. Then the king announces that at
least one hat is red. He asks the wise man in the back if
he knows his hat colour, but that one denies. Then he

asks the middle one who denies, too. Finally he says to
the front one: “If you are really wise, you should now
know the colour of your hat.”

To treat the puzzle in epistemic logic, one uses
formulae Kjϕ (man j knows ϕ, individual knowledge),
Eϕ (everyone knows ϕ) or Cϕ (everyone knows ϕ and
everyone knows that everyone knows ϕ and everyone
knows that everyone knows that everyone knows ϕ and
. . . , i.e., ϕ is common knowledge).

Let the men be numbered in the order of questioning,
i.e., from back to front, and let ri mean that i’s hat is
red. Then the following assumptions are usually made:
the configuration of the chairs and the visibility are
common knowledge, as is everything that is being said.
None of that can be withdrawn or invalidated. This is
formalised in epistemic logic as follows.

– Every man sees exactly the hats before him, i.e.,
for j < i, C(ri → Kjri) and C(¬ri → Kj¬ri).

– At least one hat is red, i.e., C(r1 ∨ r2 ∨ r3).
– After the king’s questions, for i = 1, 2 we have

C(¬Kiri) and C(¬Ki¬ri).

Now the question is whether we can infer anything
about K3r3 from that.

One aim of Part I is to give an algebraic semantics
for the knowledge operators and to solve the puzzle by
(in)equational reasoning.

To prepare the algebraisation we recall the main
elements of Kripke semantics for modal logic (e.g. [16]).
We will use a multiagent setting (each wise man is
an agent) in which each agent has his own box and
diamond operators.

A (multimodal) Kripke frame is a pair K = (W,R),
where W is a set of possible worlds and R = (Ri)i∈I , for
some index set I, is a family of binary access relations
Ri ⊆ W×W between worlds. Relation Ri expresses the
uncertainty of agent i about the current state of affairs:
if he actually is in a world w then he considers all worlds
v with wRi v, called the epistemic Ri-neighbours of w,
as possible and has insufficient information to discern
which of the worlds is the “real” one. The epistemic
neighbours of w may or may not include w itself.

Note that, following the literature on modal logic, we
view the “inputs” to a relation on the left, its “outputs”
on the right.

The knowledge/belief of agent i in a world w consists
of the formulae that are true in all epistemic Ri-
neighbours of w. Knowledge and belief variants of the
logic are distinguished by special assumptions about the
relations Ri.

The semantics of modal formulae is modelled by the
satisfaction relation K,w |= ϕ which tells whether a
formula ϕ holds in world w in frame K. Equivalently, a
formula ϕ characterises the subset [[ϕ]] =df {w |K,w |=
ϕ} of possible worlds in which it holds.

The semantics of the modal operators 〈Ri〉 and [Ri]
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are given by

w ∈ [[〈Ri〉ϕ]] ⇔df ∃ v : Ri(w, v) ∧ v ∈ [[ϕ]] ,
w ∈ [[[Ri]ϕ]] ⇔df ∀ v : Ri(w, v) ⇒ v ∈ [[ϕ]] .

They are De Morgan duals:

[[[Ri]ϕ]] = [[¬〈Ri〉¬ϕ]] .

By these definitions [Ri] coincides with the know-
ledge/belief operator Ki, whereas 〈Ri〉 coincides with
the possibility operator Pi.

Usually, special axioms for the knowledge operators
are required:

Kiϕ→ ϕ if i knows ϕ then ϕ is indeed true
(truth, Axiom T)

Kiϕ→ KiKiϕ if i knows ϕ, he knows that
(positive introspection PI)

¬Kiϕ→ Ki¬Kiϕ analogous (negative introspec-
tion NI)

If Ki is intended to model belief rather than true
knowledge, only the introspection axioms are used. We
will see in the solution of the puzzle which of these are
actually needed.

3. ALGEBRAIC SEMANTICS: MODAL
SEMIRINGS

We will now present our algebraic formalisation of the
knowledge operators.

3.1. Semirings

There are already various algebraisations of modal
operators, e.g., Boolean algebras with operators [17]
and propositional dynamic logic PDL [18]. Moreover,
a concrete algebraic treatment of Kripke frames can
be given using relation algebra; the knowledge require-
ments above correspond to the following relational ones:

Kiϕ→ ϕ I ⊆ Ri (reflexive)
Kiϕ→ KiKiϕ Ri ;Ri ⊆ Ri (transitive)
¬Kiϕ→ Ki¬Kiϕ Rĭ ;Ri ⊆ Ri (euclidean)

Here, I is the identity relation, ; is relational com-
position and ˘ is relational converse.

Modal semirings and Kleene algebras, as studied
extensively in [5, 6], provide a very effective combination
of PDL and algebraic operations on the access elements.
Additionally, they abstract from the special case
of access relations and allow more general access
elements to connect states, such as sets of computation
paths. The subclass of omega algebras [4] allows the
incorporation of infinite iteration. A further subclass,
the Boolean quantales, admit µ-calculus-like recursive
definitions and can even realise full CTL∗, as shown
in [8].

One main aim of the present paper is to show
that this well established structure of modal semirings

also can, without effort, be re-used to model essential
aspects of knowledge and game logics and perform
corresponding algebraic proofs about them. To make
the paper largely self-contained, we repeat the essential
definitions (e.g. [2]).

Definition 3.1.

1. A left idempotent semiring, briefly a left i-semiring,
is a structure (S,+, 0, ·, 1) satisfying the following
axioms.

– The reduct (S,+, 0) is a commutative and
idempotent monoid. This induces the natural
order a ≤ b ⇔df a+ b = b.

– The reduct (S, ·, 1) is a monoid.
– Composition · is distributive and strict in its

left argument, i.e., (a+ b) · c = a · c+ b · c and
0 · a = 0.

– Composition is ≤-isotone or, equivalently,
superdistributive in its right argument, i.e.,
a · b+ a · c ≥ a · (b+ c).

2. A weak i-semiring is a left i-semiring in which
composition is also distributive in its right argu-
ment, i.e., a · (b+ c) = a · b+ a · c.

3. A weak i-semiring with right-strictness, i.e., a · 0 =
0, is called an i-semiring.

In most applications these operators are interpreted
as follows:

+ ↔ choice,
· ↔ sequential composition,
0 ↔ empty choice,
1 ↔ null action,
≤ ↔ increase in information or in choices.

The axioms entail that 0 is the least element and a+ b
is the least upper bound or join of a and b.

A prominent i-semiring is provided by the set of all
binary relations over a set, with + and · interpreted as
union and relational composition.

A left i-semiring structure is also at the core of process
algebra frameworks (e.g. [19]); for further discussion of
the connection see [20].

3.2. Tests and Validity

While general i-semiring elements can be thought of as
sets of transitions or transition paths between states,
we now describe how to model state predicates or,
isomorphically, sets of states algebraically.

Let us illustrate this in the i-semiring of binary
relations over a set Q of elements (say, states). The
subsets P ⊆ Q are in one-to-one correspondence with
subsets of the identity relation of the form IP =df

{(x, x) |x ∈ P}. Therefore these IP can represent the P s
as relations and hence model predicates characterising
them. In PDL, the role of tests is played by statements
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of the form ϕ? that test whether ϕ holds in the current
state.

The algebraic counterpart to this idea dates back at
least to [21]; terminologically we follow [7].

Definition 3.2. A test of a left i-semiring S is a
subidentity, i.e., an element p with p ≤ 1, that has a
complement ¬p relative to 1, i.e., p · ¬p = 0 = ¬p · p
and p + ¬p = 1. The set of all tests of S is denoted by
test(S).

As described above, in the relation i-semiring the
tests are the subsets of the identity relation.

We will consistently write a, b, c . . . for arbitrary i-
semiring elements and p, q, r, . . . for tests. This way,
tests may look like propositional variables, but they are
not: as described above they abstract predicates with
free variables and stand for the sets of states that fulfil
the predicates.

It is not hard to show that Definition 3.2 entails
uniqueness of the complement ¬p of a test p. Note that
¬ is required only for tests, not for general elements,
which allows a much wider class of models. In fact, the
negation operator on tests is a derived concept: in any
given i-semiring the set of tests is precisely the set of
subidentities for which ¬ exists. This set may be very
small, but it always contains at least 0 and 1.

Definition 3.3. A left test semiring is a left i-
semiring S in which all tests commute under · , i.e.,
p · q = q · p for all p, q ∈ test(S). This is equivalent to
stipulating the distributivity law p · (q+ r) = p · q+ p · r
for all p, q, r ∈ test(S).

Hence every weak i-semiring is a left test semiring.
The above notion of tests deviates slightly from

that in [7]: it does not allow an arbitrary Boolean
algebra of subidentities as test(S) but only the
maximal complemented one. The reason is that the
axiomatisation of the modal box operator to be
presented below forces this maximality anyway (see [6]).
Further ways of axiomatising tests and the associated
modal operators will be discussed in the following
section.

Straightforward calculations show that in a left test
semiring S the set test(S) is closed under + and · and
forms a Boolean algebra with + as join, · as greatest
lower bound or meet and 0 and 1 as its least and greatest
elements.

When tests are viewed as predicates over a set Q of
states, the semiring operators play the following roles:

0/1 ↔ FALSE (empty set)/TRUE (full set Q),
+/· ↔ disjunction (union)/conjunction (inter-

section),
≤ ↔ implication (subsethood),

p · a/a · p ↔ input/output restriction of a by p,
p · a · q ↔ the part of a that takes p-elements to

q-elements. (∗)

In a left test semiring S we will freely use the standard
Boolean operations on tests, like implication p→ q =df

¬p+ q and relative complement p− q =df p · ¬q, with
their usual laws, notably the Galois connection

p · q ≤ r ⇔ p ≤ q → r , (shunting)

which has contraposition as a special case. We assume
that · binds tighter than → .

In logic, a predicate is called valid if it holds for all
states, which means that it coincides with the predicate
TRUE, represented by the largest test 1. Therefore, we
can define validity algebraically as follows.

Definition 3.4. A test p is valid, in symbols |= p,
if 1 ≤ p (or, equivalently, p = 1).

By shunting,

|= q → r ⇔ q ≤ r .

Moreover,

|= p ∧ p ≤ q ⇒ |= q . (1)

3.3. Modal Operators: Box and Diamond

We now axiomatise forward box operators; a backward
version could be axiomatised symmetrically, but will
not be needed in the present paper. The box operators
we define are not (yet) epistemic operators. They are
completely independent of any particular interpretation
what the elements a of the underlying i-semiring may
mean. Most generally, one may think of such an a as
being some kind of transition system, for instance a
Kripke structure. Then the box operator [a] describes
the connection between states via a: given a set of
(post-)states, represented by a test q, the result of
[a]q (operator [a] applied to q) is a test representing
all (pre-)states for which all a-successors lie in q.
This coincides with the classical semantics of [a] in
multimodal logics (see e.g. [16]), which admit several
transition elements a. In monomodal logics, such as
linear temporal logic, there is only one transition
element which can therefore be omitted, leading to the
familiar 2 notation.

The general concept of box covers many familiar
notions, for instance, the weakest liberal precondition
and Hoare triples in program correctness. To explain
this, assume that test q represents all states that
satisfy a certain postcondition ϕ, and let a be the
transition relation of a program. Then the test [a]q
represents all states for which all a-successors satisfy the
postcondition ϕ. Hence [a] corresponds to the weakest
precondition under which a guarantees postcondition
ϕ, i.e. to the weakest liberal precondition wlp(a, q) [22].
Therefore, algebraically one can consider a Hoare triple
{p} a {q} as standing for “p implies [a]q”, in semiring
notation, p ≤ [a]q.

When the states are viewed as possible worlds and a
represents the access relation of a Kripke structure, [a]
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turns into the epistemic knowledge or belief operator: if
q represents all worlds that satisfy a certain formula ϕ
then [a]q represents all worlds for which all a-neighbours
satisfy ϕ.

Definition 3.5. A (left/weak) modal semiring is
a structure (S,+, 0, ·, 1, [ ]) such that the reduct
(S,+, 0, ·, 1) is a (left/weak) i-semiring and the box
operator [ ] : S → (test(S) → test(S)) satisfies the
axioms [23]

p ≤ [a]q ⇔ p · a · ¬q = 0 , (box1)

[a · b]p = [a][b]p . (box2)

The associated diamond operator 〈 〉 : S → (test(S) →
test(S)) is defined as the de Morgan dual of box, viz.

〈a〉p =df ¬[a]¬p .

We are well aware that there are different ways of
axiomatising tests and box; however, the treatment we
are choosing is the most adequate one for our purposes.
We will discuss some of the alternatives below.

According to (∗) above, Axiom (box1) means that
all p-worlds satisfy [a]q iff there is no a-connection
from p-worlds to ¬q-worlds. This specifies [a]q as the
weakest of all such predicates, which justifies the above
discussion of the weakest liberal precondition predicate
transformer wlp.

Axiom (box2) makes box well-behaved w.r.t. compo-
sition. An easy calculation shows that also diamond is
well-behaved w.r.t. composition:

〈a · b〉p = 〈a〉〈b〉p . (2)

Both operators are unique if they exist. They coincide
with the corresponding ones in PDL (e.g. [18]); the
difference is that in PDL the first argument a of the
box is of a purely syntactic nature without any algebraic
laws.

An equivalent purely equational axiomatisation via a
domain operator has been presented in [6] for the case of
an i-semiring. In [20] it has been shown that it carries
over to left i-semirings. It works as follows. Given a
domain operator p: S → test(S) such that pa is the test
characterising the starting states of transition element
a, diamond and box can be defined as

〈a〉p = p(a · p) , [a]p = ¬ p(a · ¬p) .

Conversely, domain can be defined by

pa = 〈a〉1 = ¬[a]0 .

Both from a mathematical and an automated
theorem proving point of view, the two-sortedness of the
box/diamond and the domain views is unsatisfactory.
A number of authors have come up with one-
sorted approaches where the sort of tests is implicitly
defined as the image set of a certain endofunction

on the i-semiring under consideration. One important,
relationally based, approach in this vein is that
of dynamic negation [24], another the antidomain
approach of [25] in general i-semirings. We forego
details of these approaches, since the present paper
is not about axiomatisation, but about application of
algebraic structures. A recent survey is given in [26].

We list some useful properties of the above box
axioms. De Morgan duality gives the swapping rule

〈a〉[b]p ≤ [c]p ⇔ 〈c〉¬p ≤ [a]〈b〉¬p . (3)

Box is anti-disjunctive and diamond is disjunctive in
the first argument:

[a+b]p = [a]p · [b]p , 〈a+b〉p = 〈a〉p+〈b〉p . (4)

Hence box is antitone and diamond is isotone in the
first argument:

a ≤ b ⇒ [a]p ≥ [b]p ∧ 〈a〉p ≤ 〈b〉p . (5)

To understand the antitony, recall that the implication
order a ≤ b expresses that b offers at least as many
transition possibilities as a. Now, if more choices are
offered, one can guarantee less, which is expressed by
[b]p ≤ [a]p.

Moreover, both box and diamond are isotone in their
second arguments:

p ≤ q ⇒ [a]p ≤ [a]q ∧ 〈a〉p ≤ 〈a〉q . (6)

This entails

|= [a]p ∧ p ≤ q ⇒ |= [a]q . (7)

Finally, for tests box and diamond can be given
explicitly:

[p]q = p→ q , 〈p〉q = p · q . (8)

This agrees with the behaviour of the test operation p?
in PDL. Moreover, we have

[1]q = q = 〈1〉q .

3.4. Modal operators in Weak Semirings

In a weak i-semiring S we have the following additional
properties:

– Box is conjunctive and diamond is disjunctive:

[a](p · q) = [a]p · [a]q ,
〈a〉(p+ q) = 〈a〉p+ 〈a〉q .

– Moreover, Box satisfies Axiom K (modal modus
ponens) and diamond its dual:

[a](p→ q) ≤ [a]p→ [a]q ,
〈a〉p− 〈a〉q ≤ 〈a〉(p− q) . (9)
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By contraposition and shunting, this is equivalent
to the following forms (modal modus tollens, given
only for box):

[a](p→ q) · ¬[a]q ≤ ¬[a]p ,
[a](p+ q) · ¬[a]p ≤ ¬[a]¬q . (10)

– Box satisfies the following propagation law:

([a]q) · a = ([a]q) · a · q , (11)

which means that starting in a world for which all
a-successors guarantee q allows indeed asserting q
as a postcondition. This law entails

|= [a]q ⇒ a = a · q . (12)

In an i-semiring also the reverse implication holds
which further entails |= [a ·q]q, since a ·q = a ·q ·q.

Finally we note that a weak i-semiring S is an i-
semiring iff box satisfies Axiom M of modal logic and
diamond its dual; algebraically they read

[a]1 = 1 , 〈a〉0 = 0 . (13)

Hence, if (13) holds then |= p ⇒ |= [a]p. A conse-
quence of (13) and (9) is

|= p→ q ⇒ |= [a]p→ [a]q . (14)

3.5. Modal Kleene Algebras

Next, we describe finite iteration. A (left/weak) Kleene
algebra [3] is a structure (S,+, 0, ·, 1, ∗) such that the
reduct (S,+, 0, ·, 1) is a (left/weak) i-semiring and the
finite iteration operator ∗ satisfies the left unfold and
induction axioms

1 + a · a∗ ≤ a∗ , b+ a · c ≤ c⇒ a∗ · b ≤ c .

In the relation i-semiring, a∗ and a+ =df a
∗ · a are the

reflexive-transitive and transitive closure of a, respec-
tively.

A (left/weak) Kleene algebra is modal when the
underlying left/weak i-semiring is. As shown in [6], in
this case the axioms entail the laws of box and diamond
star and plus induction (note that they need not be
added as separate axioms):

q ≤ p · [a]q ⇒ q ≤ [a∗]p ,
p+ 〈a〉q ≤ q ⇒ 〈a∗〉p ≤ q (15)

q ≤ [a]p · [a]q ⇒ q ≤ [a+]p ,
〈a〉p+ 〈a〉q ≤ q ⇒ 〈a+〉p ≤ q . (16)

Using Hoare triples, the box part of (15) reads (q ≤
p ∧ {q} a {q}) ⇒ {q} a∗ {p}, which is related to the
familiar Hoare rule for the while loop. For the case p = q
(16) yields the laws

q ≤ [a]q ⇒ q ≤ [a+]q ,
〈a〉q ≤ q ⇒ 〈a+〉q ≤ q . (17)

The first of these reads in terms of Hoare triples
{q} a {q} ⇒ {q} a+ {q}, i.e., an invariant of a is also
one of a+. Finally, we have the PDL induction rules
(see [23])

[a∗](p→ [a]p) ≤ p→ [a∗]p ,
〈a∗〉p− p ≤ 〈a∗〉(〈a〉p− p) . (18)

3.6. Reflexivity, Transitivity, Symmetry and
Introspection

We now want to give general algebraic variants of the
relational characterisations of reflexivity, transitivity,
symmetry and introspection. The fundamental tool for
this is the Geach formula (e.g. [16]) from standard
modal correspondence theory: for relations R,S, T, U
one has

R̆ ; S ⊆ T ; U˘ ⇔ ∀P : 〈S〉[U ]P ⊆ [R]〈T 〉P ,

where˘ is the relational converse operator and P ranges
over the relational tests, i.e., the subidentity relations.
If in addition to the forward modal operators [ ] and
〈 〉 also the backward ones [ ]- and 〈 〉- are present, the
relational form can be mimicked more directly by

R̆ ; S ⊆ T ; U˘ ⇔ ∀P : 〈R〉-〈S〉P ⊆ 〈U〉〈T 〉-P .

To obtain more compact formulas we lift the inclusion
order between test relations pointwise to the box and
diamond operators and denote composition of such
operators by juxtaposition. With this convention and
by shunting, the Geach equivalence simply becomes

R̆ ;S ⊆ T ;U˘ ⇔ 〈S〉[U ] ⊆ [R]〈T 〉 ⇔ 〈R〉[T ] ⊆ [S]〈U〉 .

The following properties of relations and their Geach
equivalents are particularly useful here: A relation R is

– reflexive ⇔df I ⊆ R ⇔ 〈I〉 ⊆ 〈R〉 ⇔ [R] ⊆ [I],
– euclidean ⇔df R̆ ;R ⊆ R ⇔ 〈R〉[R] ⊆ [R] ⇔

〈R〉 ⊆ [R]〈R〉 ,
– symmetric ⇔df R̆ ⊆ R ⇔ [I] ⊆ [R]〈R〉,
– serial or total ⇔df I ⊆ R ; R̆ ⇔ [R] ⊆ 〈R〉,
– deterministic ⇔df R̆ ;R ⊆ I ⇔ 〈R〉 ⊆ [R],
– transitive ⇔df R ;R ⊆ R ⇔ 〈R〉〈R〉 ⊆ 〈R〉 ⇔

[R] ⊆ [R][R] .
Since general semirings do not furnish a converse

operation, we use the modal Geach equivalents to
transfer these notions to the abstract setting. Again we
use the pointwise lifting of the order ≤ on tests to test
transformers and denote test transformer composition
by juxtaposition.

Definition 3.6. An element a of a left modal semi-
ring is

– m-reflexive ⇔df 〈1〉 ≤ 〈a〉 ⇔ [a] ≤ [1],
– m-euclidean ⇔df 〈a〉[a] ≤ [a] ⇔ 〈a〉 ≤ [a]〈a〉,
– m-symmetric ⇔df [1] ≤ [a]〈a〉 ⇔ 〈a〉[a] ≤ 〈1〉,
– m-serial or m-total ⇔df [a] ≤ 〈a〉,
– m-deterministic ⇔df 〈a〉 ≤ [a],
– m-transitive ⇔df 〈a〉〈a〉 ≤ 〈a〉 ⇔ [a] ≤ [a][a].
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Finally, a is called an m-equivalence if a is m-reflexive,
m-transitive and m-symmetric.

One may wonder about the qualifier “m-” (for
“modally”) in the above notions. The reason is that
reflexivity and transitivity are usually defined as 1 ≤ a
and a · a ≤ a, resp. These notions are much stronger
and coincide with the above ones only if the underlying
modal semiring is extensional, i.e., satisfies 〈a〉 ≤ 〈b〉 ⇒
a ≤ b for all a, b. An example of an extensional modal
semiring is the relational one, whereas i-semirings of
trace sets (see e.g. [8]) are not.

The m-euclidean elements correspond to knowledge
operators that satisfy negative introspection. The fol-
lowing facts are well known (and can straightforwardly
be shown from the above definitions):

– An m-reflexive and m-euclidean element is also m-
symmetric and m-transitive.

– An m-symmetric and m-transitive element is also m-
euclidean.
The case of m-symmetric elements is particularly

important, since often one uses m-equivalences as access
elements. We have the following useful properties.

Lemma 3.7. Let S be a left test semiring, a ∈ S be
m-symmetric and p ∈ test(S).

1. p · a · p is again m-symmetric.

2. 〈a〉1 ≤ p ⇔ |= [a]p.

Let now S be an i-semiring.

3. a = a · p ⇔ a = p · a.

4. a = a · p ⇔ a = p · a · p ⇔ a = p · a.

Proof.

1. We calculate

[p · a · p]〈p · a · p〉q
= {[ by Axiom (box2) and modal

operators of tests (8) ]}
[p · a](p→ (p · 〈a · p〉q))

= {[ Boolean algebra ]}
[p · a](p→ 〈a · p〉q)

= {[ by Axiom (box2) and modal
operators of tests (8) ]}

[p · a · p]〈a · p〉q)
≥ {[ antitony of box ]}

[p · a]〈a · p〉q
= {[ by Axiom (box2) and modal

operators of tests (8) ]}
p→ [a]〈a〉(p · q)

≥ {[ a m-symmetric and isotony ]}
p→ (p · q)

= {[ Boolean algebra ]}
p→ q

≥ {[ Boolean algebra ]}
q .

2. We have, by isotony (6) and m-symmetry,

〈a〉1 ≤ p ⇒ [a]〈a〉1 ≤ [a]p ⇒
1 ≤ [a]p ⇒ 〈a〉1 ≤ 〈a〉[a]p ⇒ 〈a〉1 ≤ p .

3. We calculate

a = a · p
⇔ {[ by (12) and S being an i-semiring ]}
|= [a]p

⇔ {[ Part (2) ]}
〈a〉1 ≤ p

⇔ {[ shunting ]}
¬p ≤ [a]0

⇔ {[ by Axiom (box1) ]}
¬p · a ≤ 0

⇔ {[ splitting a = p · a+ ¬p · a ]}
a = p · a .

4. Immediate from Part (3) and multiplicative
idempotence of tests.

As another application of the algebra we show that,
without any other assumption, negative introspection is
preserved by transitive closure (for positive introspec-
tion this is trivial, since that property is equivalent to
transitivity, so that transitive closure does not add any-
thing).

Lemma 3.8. If a is m-euclidean then so is a+.

Proof. We calculate

〈a+〉[a+]p ≤ [a+]p

⇐ {[ plus induction (17) ]}
〈a〉[a+]p ≤ [a+]p

⇔ {[ shunting ]}
〈a+〉¬p ≤ [a]〈a+〉¬p

⇐ {[ plus induction (16) ]}
〈a〉¬p+ 〈a〉[a]〈a+〉¬p ≤ [a]〈a+〉¬p

⇐ {[ supremum ]}
〈a〉¬p ≤ [a]〈a+〉¬p ∧
〈a〉[a]〈a+〉¬p ≤ [a]〈a+〉¬p .

The first of these conjuncts follows from the second form
of the m-euclidean property of a and a ≤ a+, together
with isotony of diamond in its first argument (5) and of
box in its second argument (6). The second conjunct
is immediate from the first form of the m-euclidean
property.
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4. KNOWLEDGE ALGEBRA

4.1. Common Knowledge

Using our modal operators we can now model common
knowledge over a modal weak semiring S as follows.
Assume a finite set of agents, represented by an index
set I = {1, . . . , n}, each with an access element ai ∈ S.

As detailed in Section 2, for the case of Kripke
structures with access relations Ri, the knowledge
operators for the agents would be [Ri]. Therefore, in
the abstract algebraic setting we define, analogously,
Ki =df [ai].

An agent group is a subset G ⊆ I. We introduce two
operators for expressing common knowledge:

– EGp : everyone in group G knows p;
– CGp : everyone in G knows that everyone in G

knows that . . . everyone in G knows p.

Using antidisjunctivity (4) of box we calculate, for
G = {k1, . . . , km},

EGp = Kk1p · · · · · Kkmp = [ak1 ]p · · · · · [akm ]p
= [ak1 +· · ·+akm ]p = [aG]p ,

where aG =df ak1 + · · ·+ akm .
Likewise, using the composition axiom (box2) and

again antidisjunctivity (4) of box, we obtain, semi-
formally,1

CGp = EGp · EGEGp · EGEGEGp · · · ·
= [aG]p · [aG][aG]p · [aG][aG][aG]p · · · ·
= [aG]p · [aG · aG]p · [aG · aG · aG]p · · · ·
= [aG + a2

G + a3
G · · · ]p .

Therefore we define CGp =df [a+
G]p if the underlying

i-semiring is a Kleene algebra.
In this way we have obtained an algebraic counterpart

of the multiagent logic KT45n (e.g. [9]) and a fragment
of Public Announcement Logic [27, 28].

4.2. Knowledge Laws

We shall now derive a number of laws for our knowledge
operators that will come in handy in solving the Wise
Men Puzzle and, later on, also the Muddy Children
Puzzle.

First, from antitony of box in its first argument we
get, since akj

≤ aG ≤ a+
G,

CGp ≤ EGp ≤ Kkj
p CGp ≤ CGKkj

p . (19)

For the remaining laws of this section we shall
consider the agent group G and its access element fixed
and just write a,E,C instead of aG,EG,CG.

By a+ · a+ ≤ a+, again antitony of box in its first
argument and Axiom (box2) we have

Cp = [a+]p ≤ [a+ · a+]p = [a+][a+]p = CCp ,

1This notation is semi-formal, since general infinite products
and sums need not exist in every left i-semiring; even if this
particular one exists, it need not coincide with a+G.

i.e., C is transitive in the sense of knowledge operators:

Cp ≤ CCp . (20)

From this we obtain two further properties that will be
useful in the solution of the wise men puzzle:

Cp · Cq ≤ C(Cp · Cq) , Cp · Cq ≤ C(Cp · q) (21)

They are shown, using conjunctivity, transitivity and
conjunctivity of C again, by

Cp · Cq = C(p · q) ≤ CC(p · q) = C(Cp · Cq)

and, using transitivity and conjunctivity of C, by

Cp · Cq ≤ CCp · Cq = C(Cp · q) .

All our properties up to here hold irrespective of the
knowledge axioms. Let us see what can be derived when
some of these axioms are assumed.

If all Ki are reflexive (i.e., satisfy Axiom (T)) then
so is E and hence C = [a+] = [a∗]. Therefore the
general induction rule (18) specialises to the knowledge
induction rule

C(p→ Ep) ≤ p→ Cp .

It means that if all agents in G know that p is invariant
under EG and p is true then all agents know they all
know p. Moreover, (box2) and a star property yield

CCp = [a∗][a∗]p = [a∗ · a∗]p = [a∗]p = Cp

and hence, by conjunctivity of C,

Cp · Cq = CCp · CCq = C(Cp · Cq) . (22)

5. SOLVING THE WISE MEN PUZZLE

Let us now solve the Wise Men Puzzle using our
encoding in the terminology of modal weak semirings.

With our algebraic definitions we can rephrase the
assumptions from Section 2 in abstract algebraic form
(the indices of C and E are suppressed, since always the
full group of all three agents is referred to):

(a) |= C(ri → Kjri) (j < i),
(b) |= C(¬ri → Kj¬ri) (j < i),
(c) |= C(r1 + r2 + r3),
(d) |= C(¬Kiri) (i = 1, 2),
(e) |= C(¬Ki¬ri) (i = 1, 2).

Now, first the formulas (c) and (d) invite an application
of modal modus tollens (10) from Section 3.4;
afterwards the contrapositive ¬Kj¬ri → ri of the
formula within (b) can be used. We just have to wrap
the corresponding inferences into applications of the
common knowledge operator C. More precisely, for
arbitrary agent number i and arbitrary tests p and q
we can reason as follows:
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C(p+ q) · C(¬Kip) · C(¬Ki¬q → q)

≤ {[ by (21) twice ]}
C(C(p+ q) · ¬Kip · (¬Ki¬q → q))

≤ {[ common knowledge (19) and
isotony of C ]}

C(Ki(p+ q) · ¬Kip · (¬Ki¬q → q))

≤ {[ by (K′) and isotony of C ]}
C(¬Ki¬q · (¬Ki¬q → q))

≤ {[ Boolean algebra (modus ponens) ]}
C(q) .

In sum, we have shown the following lemma:

Lemma 5.1 (Knowledge Strengthening). Assume a
group of agents indexed by some family I and consider
an i ∈ I and arbitrary tests p, q. Then

CI(p+ q) · CI(¬Kip) · CI(¬q → Ki¬q) ≤ CI(q) .

To make progress in the puzzle, we want to apply this
lemma first for p = r1 and q = r2 + r3 and assumption
(d) with i = 1. Therefore we have to obtain information
about CI(¬q → K1¬q). We calculate

C(¬(r2 + r3)→ K1¬(r2 + r3))

= {[ de Morgan ]}
C((¬r2 · ¬r3)→ K1(¬r2 · ¬r3))

= {[ conjunctivity of Kj ]}
C((¬r2 · ¬r3)→ (K1¬r2 · K1¬r3))

≥ {[ Boolean algebra and isotony of C ]}
C((¬r2 → K1¬r2) · (¬r3 → K1¬r3))

= {[ conjunctivity of C ]}
C(¬r2 → K1¬r2) · C(¬r3 → K1¬r3) .

Hence our assumptions and property (7) indeed entail
CI(¬q → K1¬q) and hence, by Lemma 5.1 also

C(r1 + r2 + r3) ≤ C(r2 + r3) ∧ C(r2 + r3) ≤ C(r3) .

Finally, by the common knowledge law (19) we infer
C(r3) ≤ K3(r3). Since |= C(r1 + r2 + r3) by Formula
(1), we also have, using assumption (b), that |= K3(r3),
which means that the third wise man knows his hat
is red. Hence the puzzle is solved, because the King’s
question can now be answered in the affirmative. Note
that assumption (a) was not used in this derivation.

We think that this algebraic solution is much more
concise than standard treatments in multimodal logic
with a natural deduction system (e.g. [29]). Moreover,
the algebraic axiomatisation is completely first-order.
Hence it can be treated by off-the-shelf fully automatic
provers without specialising them in any way for the
modal case.

The above derivation can be generalised to a group
G ⊆ I of agents and an index j ∈ I, which yields

Π
i∈G

C(¬ri → Kj¬ri) ≤ C(¬(Σ
i∈G

ri)→ Kj¬(Σ
i∈G

ri)) .

Similarly, the whole solution easily generalises to n
instead of three wise men. In fact, one can give a closed

form of the generalised argument. Assume an agent
group G and a subgroup H ⊆ G of agents who have
already been interrogated and have denied knowledge
of their hat colour. Then

C( Σ
j∈G

rj) · C(Π
i∈H
¬Kiri) · C(Π

i∈H
Π

j∈G−H
rj → Kirj) ≤

C( Σ
j∈G−H

rj) .

Note that we have assumed neither reflexivity
nor positive/negative introspection for the knowledge
modalities; only transitivity of C and axiom K were
used. Moreover, axiom M was not used either, which
is why the assumption of a modal weak semiring was
sufficient.

One may well argue that all this could have been done
in conventional modal logic. This is true; however, our
derivations work not only in relational Kripke models
but just the same in many other models of modal
semirings, such as algebras of traces and trajectories, to
name just the most important ones. This will be fruitful,
e.g., for combinations of temporal and epistemic logic,
such as [30, 31]. However, the details will be the subject
of further research.

6. THE MUDDY CHILDREN

The arguments of the previous section can be
reused for puzzles with a similar structure, like the
Surprise Examination Paradox [28] or the Muddy
Children Puzzle (e.g. [9]), which add several rounds of
interrogation of the above shape. Let us treat the latter
as a somewhat more complicated example.

There are n children together in a playground. They
have been told that they must not get dirty. However,
during their play k of them get mud on their foreheads.
Each can see the mud on the foreheads of others but
not on her own. After a while a passer-by says to
them “At least one of you has mud on her forehead”.
He then repeatedly asks “Does any one of you know
whether you are muddy?” What will eventually happen
if it is assumed that all the children are perceptive,
intelligent, truthful and answer simultaneously after
each repetition of the question?

For the case of n children we use the index set
I = {1, . . . , n}. Then we see immediately that we have
a quite similar set of initial assumptions as for the Wise
Men, where mi now means that child i is muddy:

(a) |= C(mi → Kjmi) (j 6= i),

(b) |= C(¬mi → Kj¬mi) (j 6= i),

(c) |= C(Σ
i∈I

mi).

Contrary to the Wise Men, the situation here is fully
symmetric.

Assume now that after the first question all
children simultaneously answer “no”. Then we have the
additional information
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(d) |= C(¬Kimi) (i ∈ I).

This is again similar to the Wise Men case.
Set now, for l ∈ [1, n],

dontknowl =df Π
G⊆I ∧ |G|=l

Π
i∈G
¬Kimi ,

seecleans =df Π
i 6=j

(¬mj → Ki¬mj) .

Hence dontknowl expresses that in every group of l
children none of them knows whether she is muddy,
while seecleans means that each child knows whether
the others are clean. Assumptions (a) and (b) together
with conjunctivity of C imply |= C(seecleans). With this
we can calculate as follows:

C(Σ
i∈I

mi) · C(dontknow1) · C(seecleans)

= {[ definition of dontknow1, index chasing ]}
C(Σ

i∈I
mi) · C(Π

i∈I
¬Kimi) · C(seecleans)

≤ {[ using conjunctivity of C and Lemma 5.1
for every i ∈ I ]}

Π
i∈I

C(Σ
j 6=i

mj)

= {[ by conjunctivity of C ]}
C(Π

i∈I
Σ
j 6=i

mj)

= {[ Boolean algebra ]}
C(Σ

j 6=i
mi ·mj)

The test Σ
j 6=i

mi · mj is valid iff at least 2 of the mi

are valid. This means that after the first round of
questioning with uniformly negative answers all children
know that at least two of them are muddy.

Define now, for G ⊆ I,

muddyG =df Π
i∈G

mi , cleanG =df Π
i∈G
¬mi

Then the group of muddy children is uniquely
characterised by

msetG =df muddyG · cleanI−G .

The fact that at least n children are muddy is
formalised, for l ∈ [1, n], by

atleastl =df Σ
G⊆I ∧ |G|=l

muddyG = Σ
G⊆I ∧ |G|≥l

muddyG .

In sum, the above derivation shows

C(atleast1) · C(dontknow1) · C(seecleans) ≤ C(atleast2) .

An easy induction using again Lemma 5.1 shows, for
1 ≤ j < n, that

C(atleastj) · C(dontknowl) · C(seecleans) ≤ C(atleastl+1) .

The remaining part of the solution uses the following
observation: if a child mi knows that there are at
least l muddy children but sees only l − 1 she must

conclude that she herself is muddy, too. This conclusion
is expressed by the following formula for i ∈ I and
l ∈ [2, n]:

concli,l =df atleastl · seesmuddyi,l−1 → mi ,

where

seesmuddyi,l =df

Σ
G⊆I ∧ |G|=l∧ i6∈G

muddyG · cleanI−(G∪{i})

expresses that child i sees at least one group of l
muddy children other than herself. Validity of concli,j
is immediate from the definitions by Boolean algebra,
so that by property (7) of C we may infer

|= C(concli,j) . (23)

Now we reason as follows, assuming that G ⊆ I is
the group of muddy children, uniquely characterised by
msetG, and k = |G|. Then we have, for every i ∈ G,
that |= seesmuddyi,k−1 and hence, again by (7), |=
C(seesmuddyi,k−1). According to the above induction we
infer |= C(atleastk). Now modal modus ponens (9) using
(23) and knowledge algebra yield the implications

C(atleastk) · C(seesmuddyi,k−1) ≤ C(mi) ≤ Kimi ,

so that indeed after k − 1 rounds of questioning all
muddy children know that they are muddy. In fact, this
is even common knowledge.

Note that the knowledge axioms of reflexivity and
introspection as well as axiom M again have not been
used, so that the whole solution goes through assuming
only transitivity of C and Property (9); these properties
come for free from the algebraic definition of C.

The approach works, because this type of puzzle has
a “purely logical” structure. Contrarily, any analytical
solution of the puzzle about Mr. S and Mr. P [15, 27, 32]
(i.e., any solution by logical deduction and not by
exhaustive checking of all pairs of numbers within the
given range) will involve a lot of domain logic about
arithmetic in addition to the logic of mutual knowledge
of the agents about each other; therefore the abstract
algebraic reasoning will cover only the overall structure
of the solution, whereas the arithmetic details will take
place within the test set of a particular semiring.

7. KNOWLEDGE PROPAGATION AND
KNOWLEDGE UPDATE

7.1. Knowledge Propagation

We will now turn to another view of puzzles of
the above type. Rather than accumulating knowledge
about one and the same fixed Kripke structure we
will increase knowledge by shrinking the initial Kripke
structure until only worlds remain that are in some
sense “interesting” for the solution. We will see that the
modal semiring setting immediately allows knowledge
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update operators as in e.g. [33] without adding any
further axioms.

To illustrate this we sketch a particular Kripke
structure for the Muddy Children Puzzle. As worlds
in this structure we use minterms as known from the
Boolean normal form of logical assertions. Again, let
I = {1, . . . , n} be the index set for the case of n children.
For G ⊆ I the minterm

mG =df (Π
i∈G

mi) · ( Π
i∈I−G

¬mi)

expresses that exactly the children in group G are
muddy. Moreover, we say that world w satisfies a test q
of the form mi or ¬mi, in symbols w |= q, iff |= w → q.

Since no child i can see herself, she cannot distinguish
between worlds that are identical except for the value
of mi. This induces as access relation the equivalence

w∼iw
′ ⇔df w

′ = w ∨ w′ = flipi(w) ,

where flipi(mG) =df mG∆{i} and the operator ∆ forms
the symmetric difference of sets, i.e., F∆G = (F −G)∪
(G− F ). As an equivalence, ∼ is reflexive and satisfies
positive and negative introspection.

To solve the puzzle in a different way, we want to end
up with a reduced Kripke structure in which for the
actually muddy children only a single accessible world
remains so that for them knowledge is complete.

Since we now have to work with knowledge in
different structures, we have to give up the convenient
operators K,E,C and to revert to the general box
notation.

Shrinking a Kripke structure can be expressed
through restricting access elements by tests. If the
original access element was a we would now, e.g. like to
consider only a · p where p is a test. This preserves only
those transitions in a that lead into worlds satisfying p.

By antitony of box in its first argument (5), restrict-
ing an access element implies knowledge preservation:
Since p ≤ 1 implies a · p ≤ a, we have

∀ q : [a]q ⇒ [a · p]q ,

i.e., in a restricted structure the knowledge of the
original structure is preserved and possibly extended.

Moreover, by Axiom (box2) and the explicit form
of the box of a test (8) there is an interplay between
restriction and implication

[a](p→ q) = [a · p]q . (24)

Let us now, conversely, see how knowledge about a
certain property q can be preserved when the relevant
accessible worlds are restricted by a test p. Assume the
underlying modal semiring to be weak. Then

[a]q

= {[ neutrality ]}
[a · 1]q

= {[ complements ]}
[a · (p+ ¬p)]q

= {[ distributivity ]}
[a · p+ a · ¬p]q

= {[ antidisjunctivity ]}
[a · p]q · [a · ¬p]q

= {[ by (24) ]}
[a · p]q · [a](¬p→ q) .

If we now can show that [a](¬p → q) = 1 then
[a]q = [a · p]q.

This is summarised by

Lemma 7.1 (Knowledge Propagation).

|= [a](¬p→ q) ⇒ [a]q = [a · p]q .

As an example, for three Muddy Children we have
for all i ∈ {1, 2, 3}, by Boolean algebra,

C(m1 +m2 +m3) = C(¬(¬m1 · ¬m2)→ m3) ≤
Ki(¬(¬m1 · ¬m2)→ m3) .

Hence [ai]m3 = [ai · ¬m1 · ¬m2]m3.

7.2. Public Announcement

In the public announcement (e.g. [27, 12, 34]) of a
property p one makes sure that all agents henceforth
know p. This can be realised in various ways.

For instance, the semantics of Pub p in [12] corre-
sponds to changing an access element a to a · p.
Therefore the knowledge propagation rule (24) applies;
it is called “atomic permanence” in [12]. In fact, the
operator [Pub p] there largely behaves like [p]. With this,
the Action-Knowledge and Partial Functionality axioms
of [12] translate into2

[p][a]q = p→ [a][p]q ,
[p]¬q = p→ ¬[p]q .

Using (8) and (box2), the first of these compacts into

[p · a]q = [p · a · p]q .

For the second one we calculate, using again (8), the
definition of → and Boolean algebra,

p→ ¬[p]q = p→ ¬(p→ q) = p→ ¬q = [p]¬q ,

so that in the modal semiring setting this is a theorem
rather than an axiom. A more detailed analysis is
beyond the scope of this paper.

Another possibility would be to use the smaller
restriction p · a · p as the definition of the public
announcement of p in access element a; this would
eliminate the need for the Action-Knowledge axiom.

Restriction is particularly well-behaved if the access
element a under consideration is m-symmetric, since we

2I am grateful to one of the referees for pointing that out.
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know from Lemma 3.7(1) that then p ·a ·p is symmetric
again. Moreover, axiom (box2) and the explicit form (8)
of box for tests imply

[p · a · p]q = p→ [a](p→ q) .

Hence, in a modal semiring we have

|= p→ q ⇒ |= [p · a · p]q

which implies
|= [p · a · p]p . (25)

Note that p here is a semantic value and not a
formula; otherwise this law would not be valid, as the
discussion on (un)successful updates in [27, 34] shows.
In fact, so far we have refrained from giving a syntax.

One can do this using a set Π of propositional atoms
and again a finite index set I = {1, . . . , n}. Then the
set Φ of propositions is defined by the grammar

Φ ::= Π | ¬Φ |Φ ∧ Φ |KiΦ |EΦ |CΦ |Φ!Φ ,

where i ranges over I. (We use the notation ϕ!ψ rather
than ϕ+ψ of [27] or [ϕ]ψ of [34] to avoid confusion with
the + and box of modal semirings.)

To define a semantics for these formulas over a modal
semiring S we choose an access element ai ∈ S for every
i ∈ I and a test π̂ ∈ test(S) for every π ∈ Π. Moreover,
we again set aI =df a1 + · · ·+an. The semantics [[ϕ]]q ∈
test(S) is parameterised by a test q that determines the
subset of possible worlds w.r.t. which ϕ is evaluated.
The semantic clauses corresponding to the approach
of [34] read as follows.

[[π]]q =df π̂ · q ,
[[¬ϕ]]q =df q − [[ϕ]]q ,
[[ϕ ∧ ψ]]q =df [[ϕ]]q · [[ψ]]q ,
[[Kiϕ]]q =df [q · ai · q][[ϕ]]q ,
[[Eϕ]]q =df [q · aI · q][[ϕ]]q ,
[[Cϕ]]q =df [(q · aI · q)+][[ϕ]]q ,
[[ϕ!ψ]]q =df u→ [[ψ]]q·u where u =df [[ϕ]]q .

Based on this relative semantics we can define the
absolute semantics [[ϕ]] as

[[ϕ]] =df [[ϕ]]1 .

From this definition it is clear that in a formula
(Kϕ)!(Kϕ) the two occurrences of Kϕ may be evaluated
in different substructures and hence yield different tests,
in which case Law (25) does not apply. This is what is
referred to as unsuccessful update in [27, 34]: a formula
may become false after publicly announcing it. The
classical example for this is the Moore sentence “π is
true and you don’t know this” [35].

A different approach to modelling public announce-
ment of a test p is to remove all links between p-worlds
and ¬p-worlds. In [13] the corresponding operator !p is
explained in two ways:

– Satisfaction of [!p]q in a frame is defined as
satisfaction of q in a modified frame.

– The semantics is again given in a PDL-like fashion,
making the new access relation explicit in the first
argument of box.

We can represent the latter approach directly in our
setting by defining the modification of access element
ai as ai!p =df p · ai · p+ ¬p · ai · ¬p.

The advantage of our approach is that in both cases
we can just use the same algebraic laws as before and
do not need to invent special inference rules for the
announcement operators.

In the literature there are many more logics dealing
with knowledge or belief revision. We are convinced that
a large portion of these can be treated uniformly in
the setting of modal semirings. For a related approach
see [36], where belief update is modelled using semiring
concepts. That paper enriches test semirings with a
special operator for belief revision (where beliefs are
represented as tests). It presents an axiomatisation
of that operator which entails the standard AGM
axioms [37]. Contrarily, our aim was to show that
already the general concept of modal semirings is
adequate.

7.3. Preferences and Their Upgrade

We now return to our general setting of modal
semirings; in particular we assume neither of the axioms
(T), (PI) or (NI). Let us briefly show how one can
reason about other aspects of knowledge and belief.
Some agent logics allow expressing preferences between
possible worlds (e.g. [13]).

Since we are completely free in choosing our access
elements, we can also include these. To this end we equip
each agent i with her own preference relation �i. The
intention is that [�i]p holds in a world w iff p holds in
all worlds w′ that agent i prefers over w under �i, i.e.,
for which w �i w

′.
Usually one requires that �i be a preorder, modally,

[�i]p ≤ p , [�i]p ≤ [�i][�i]p .

Antisymmetry is not required: if w1 �i w2 ∧ w2 �i w1

then agent i is indifferent about w1 and w2 .
Using the preference concept, one can, e.g., model

regret [13]: the formula Ki¬p ∧ 〈�i〉p expresses that
although agent i knows that p is not true, she would
still prefer a world where it would be.

A preference agent system can be updated in various
ways. In belief revision agents may discard or add
links to epistemic neighbour worlds. We model the two
possibilities presented in [13] in our agent algebra.

Another change operation is preference upgrade
by suggesting that p be observed. This affects the
preference relations, not the accessibilities:

p#�i =df p ·�i ·p+ ¬p ·�i .

Now agent i no longer prefers ¬p worlds over p ones.
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PART II: GAMES AND
PREDICATE TRANSFORMERS

In this part we return to the case of modal left
semirings.

8. GAMES AND THEIR ALGEBRA

The algebraic description of two-player games dates
back at least to [38]; for a more recent survey see [10].
The idea is to use a predicate transformer semantics
that is a variant of (a µ-calculus-like enrichment of)
PDL.

The starting point is, however, a slightly different
relational model. It does not use relations of type
P(W ×W ), where the set of worlds W consists of the
game positions and P is the power set operator, but
rather of type P(W ×P(W )). A pair (s,X) in relation
R models that the player whose turn it is has a strategy
to move from starting position s into a position in set
X. To make this well-defined, R has to be ⊆-isotone in
its second argument:

(s,X) ∈ R ∧ X ⊆ Y ⇒ (s, Y ) ∈ R .

This type of structure is similar to the so-called minimal
models used in the semantics of non-normal logics [39]
and has been rediscovered under the name of “upclosed
multirelations”. Now again, sets of worlds are identified
with predicates over worlds. As pointed out in [38], such
a relation R induces an isotone predicate transformer
ρ(R) : P(W ) → P(W ) via ρ(R)(X) =df {s | (s,X) ∈
R}. It is easy to check that the set of ⊆-isotone relations
is isomorphic to that of isotone predicate transformers
(the latter ordered by pointwise relational inclusion).

The basic operations to build up more complex games
from atomic ones (such as single moves) are choice,
sequential composition, finite iteration and tests, which
are also basic operations found in left i-semirings;
also the axioms (see [10]) are exactly those for left i-
semirings. There are no constants 0 and 1; but they
could easily be added by the standard extension of
semigroups to monoids. The only operation particular
to game construction is dualisation in which the two
players exchange their roles.

Since games can be viewed as isotone predicate
transformers, we study these from a bit more abstract
viewpoint in the next section. Based on that we
will show that they form a modal left semiring with
dualisation, i.e., an abstract algebraic model of games.
We will also show how to add finite iteration.

9. PREDICATE TRANSFORMER SEMI-
RINGS

For our purposes, all that matters about P(W ) is its
structure as a Boolean algebra. Therefore we generalise
as follows.

Definition 9.1. Given an arbitrary Boolean algebra
B, a predicate transformer (over B) is a function f :
B → B. By id we denote the identity transformer and
◦ denotes function composition.

As in Section 3 we denote the meet, join and comple-
mentation operators of B by · , + and ¬, the least and
greatest elements by 0 and 1. This makes B a modal
i-semiring with test(B) = B and 〈p〉q = p · q by (8).

Definition 9.2. Consider a predicate transformer
f : B → B over a Boolean algebra B.

1. If for all p, q ∈ B with p ≤ q we have f(p) ≤ f(q)
then f is isotone.

2. f is disjunctive if f(p + q) = f(p) + f(q) and
conjunctive if f(p · q) = f(p) · f(q).

3. f is strict if f(0) = 0 and co-strict if f(1) = 1.

Let PT(B), ISO(B), CON(B) and DIS(B) be the set
of all, of isotone, of conjunctive and of disjunctive
predicate transformers over B.

It is well known that conjunctivity and disjunctivity
imply isotony. Under the pointwise ordering f ≤ g ⇔df

∀ p . f(p) ≤ g(p), PT forms a lattice where the join f+ g
and meet f u g of f and g are the pointwise liftings of
+ and ·, respectively:

(f + g)(p) =df f(p) + g(p) , (f u g)(p) =df f(p) · g(p) .

The least and greatest elements of PT(B) (and ISO(B)
and DIS(B)) are the constant functions 0(p) =df 0 and
>(p) =df 1. Note that 0 and > both are left zeros w.r.t.
◦. The substructure (ISO,+,0, ◦, id) is a left i-semiring;
the substructure (DIS(B),+,0, ◦, id) is even a weak i-
semiring. Likewise, the structure (CON(B),u,>, ◦, id)
is a weak i-semiring isomorphic to DIS(B), but with
the mirror ordering [14]. The isomorphism is provided
by the duality operator d : PT(B) → PT(B), defined
by fd(p) =df ¬f(¬p).

In the case where B = test(S) for some weak i-
semiring S, the modal operator 〈 〉 provides a weak i-
semiring homomorphism from S into DIS(B).

If B is a complete Boolean algebra then PT(B) is a
complete lattice with ISO(B), DIS(B) and CON(B) as
complete sublattices. Hence we can extend ISO(B) and
DIS(B) by a star operator via a least fixpoint definition:

f∗ =df µ(λg . id + f ◦ g) ,

where µ is the least-fixpoint operator. It has been shown
in [20] that this satisfies the star laws. By passing to
the mirror ordering, one sees that also the subalgebra
of conjunctive predicate transformers can be made into
a left Kleene algebra; this is essentially the approach
taken in [14] (except for infinite iteration).

A useful consequence of the star induction rule is a
corresponding one for the dual of a star, generalising
(15):

h ≤ g u fd ◦ h ⇒ h ≤ (f∗)d ◦ g . (26)
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Let us now connect this to game algebra. For a
predicate transformer g we find in [38] the following
two definitions concerning iterations (we use boldface
stars and brackets here to distinguish Parikh’s notation
from ours):

<g?> p =df µ(λy . p+ g(y)) , (27)

[[g?]] p =df ν(λy . p · g(y)) , (28)

where ν is the greatest-fixpoint operator. Hence <g?> in
Parikh’s notation coincides with g∗ in ours. The defining
functions of <g?> and [[g?]] are de Morgan duals of each
other; hence we can use the standard law νf = ¬µfd
to calculate

[[g?]] p

= {[ definition (28) ]}
ν(λy . p · g(y))

= {[ above fixpoint law ]}
¬µ(λy . p · g(y))d

= {[ definition of dual ]}
¬µ(λy .¬(p · g(¬y)))

= {[ de Morgan ]}
¬µ(λy .¬p+ ¬g(¬y)))

= {[ definition of dual ]}
¬µ(λy .¬p+ gd(y))

= {[ definition (27) ]}
¬ <(gd)?>¬p

= {[ above correspondence ]}
¬ (gd)∗(¬p)

= {[ definition of dual ]}
((gd)∗)d(p) .

Thus, [[g?]] coincides with ((gd)∗)d. This shows that we
can fully represent game algebra with finite iteration in
modal left Kleene algebras; the standard star axioms for
iteration suffice. If desired, one could also axiomatise
the dual of the star using the dualised unfold axiom
(f∗)d ≤ 1 u fd ◦ (f∗)d and (26) as the induction
axiom.

Let us finally set up the connection with termination
analysis. In [38] Parikh states that for concrete access
relation R and the predicate transformer g =df [R]
the predicate <g?> false characterises the worlds from
which no infinite access paths emanate. Plugging in
the definitions for a general access element a and the
predicate transformer g =df [a] we obtain

<g?> 0 = µ(λy . [a]y) .

This coincides with the halting predicate of the
propositional µ-calculus [18]; in the i-semiring setting it
and its complement have been termed the convergence
and divergence of a and used extensively in [40, 41].
They need not exist in arbitrary modal left semirings;
rather they have to be axiomatised by the standard
unfold and induction/co-induction laws for least and
greatest fixpoints.

10. MODAL SEMIRINGS OF PREDICATE
TRANSFORMERS AND DEMONIC RE-
FINEMENT ALGEBRA

Although we have now seen a somewhat more abstract
predicate transformer model of game algebra, we will
take one step further and present a modal left Kleene
algebra of isotone predicate transformers. This will link
game semantics directly with refinement algebra.

First we want to characterise the tests in the set
ISO(B). To this end we prove an auxiliary lemma about
relative complements.

Lemma 10.1. Let p, q, r, s be elements of a Boolean
algebra.

1. If r ≤ p · q ∧ s ≤ p · ¬q ∧ r + s = p then
r = p · q ∧ s = p · ¬q.

2. If p · q = p · r then p · ¬q = p · ¬r.

Proof.

1. Observe that s·q ≤ p·¬q ·q = p·0 = 0, i.e., s·q = 0.
Hence p ·q = (r+s) ·q = r ·q+s ·q = r ·q ≤ r, which
shows r = p · q. Reasoning for s is symmetric.

2. p = p · q + p · ¬q = p · r + p · ¬q. Hence p · ¬r =
p·r·¬r+p·¬q·¬r = p·¬q·¬r ≤ p·¬q. Symmetrically
one sees p · ¬q ≤ p · ¬r.

Now we can show

Lemma 10.2. Let B be a Boolean algebra and
ISO(B) its set of isotone predicate transformers as in
Definition 9.1.

1. f ∈ test(ISO(B)) ⇔ f(p) = p · f(1).

2. If B = test(S) for some left i-semiring S then
test(ISO(B)) = {〈p〉 | p ∈ B}.

Proof.

1. (⇐) By definition, f ≤ id . A straightforward
calculation shows that g(p) =df p · ¬f(1) is the
complement of f relative to id .
(⇒) Let g ∈ ISO(B) be the complement of f ≤ id
relative to id , i.e., f + g = id and f u g = 0. First,
f ≤ id implies f(p) ≤ p. Second, f ∈ ISO(B)
means f(p) ≤ f(1). Hence f(p) ≤ p · f(1). From
f + g = id we conclude g(1) = ¬f(1) and hence,
by symmetric reasoning, g(p) ≤ p · ¬f(1). Since
f(p) + g(p) = p, Lemma 10.1 shows the claim.

2. By Equation (8) and Part (1) we have for f ∈
test(ISO(B)) that f = 〈f(1)〉, which shows (⊆).
The reverse inclusion is immediate from isotony of
〈p〉 as well as p ≤ 1 and isotony of 〈 〉.
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Part (2) means that the tests in the i-semiring
of isotone predicate transformers are precisely the
diamonds of the elements of B (see Section 9).

Because of Part (1) and (8) we will, for convenience,
denote mappings of the form λq . p · q by 〈p〉 also in
the general case of ISO(B). The proof also shows that
¬〈p〉 = 〈¬p〉.

Now we are ready to enrich ISO(B) by box and
diamond operators. To this end we work out what the
right hand side of axiom (box1) means there:

〈p〉 ◦ f ◦ ¬〈q〉 ≤ 0 ⇔ ∀ r : p · f(¬q · r) ≤ 0 ⇔
p · f(¬q · 1) ≤ 0 ⇔ p ≤ ¬f(¬q) ⇔ p ≤ fd(q) ;

the second equivalence holds by isotony of f . So the
only possible choice is

[f ]〈q〉 =df 〈fd(q)〉 , 〈f〉〈q〉 =df 〈f(q)〉 .

Let us check that this satisfies axiom (box2) as well:

[f ◦ g]〈q〉 = 〈(f ◦ g)d(q)〉 =
〈(fd(gd(q))〉 = [f ]〈gd(q)〉 = [f ][g]〈q〉 .

Hence box and diamond are well defined in ISO(B). In
sum:

Theorem 10.3. For a Boolean algebra B the set
ISO(B) with the above operations forms a modal left
Kleene algebra with dualisation.

This rounds off the picture in that now also the
test operations of game algebra and PDL have become
first-class citizens in predicate transformer algebra.
Moreover, we can enrich that algebra by a domain
operator which will provide the announced connection
with refinement algebra.

As mentioned in Section 3.3, in a modal left semiring
the domain operator [6] p : S → test(S) is given by
pa =df 〈a〉1. This characterises the set of starting worlds
of access element a. For ISO(B) this works out to
pf = 〈f(1)〉. This expression coincides with that for
the termination operator τf in the concrete model of
demonic refinement algebra (DRA) given at the end
of [14]. That algebra is an axiomatic algebraic system
for dealing with predicate transformers under a demonic
view of non-determinacy. However, τf is not a test (or
guard [42]), but an assumption (unfortunately called
“assertion” in [14]). These take the form ¬p · > + 1
where > is the greatest element (which always exists in
DRA).

Besides τ (which is characterised by the domain
axioms of [6]), DRA has an enabledness operator ε,
defined by dual axioms in terms of guards.

Let us explain the relation between tests and assump-
tions. We first introduce a test-based conditional by

if p then a else b ⇔df p · a+ ¬p · b .

Using it, assertions and assumptions can be defined as

assert p =df if p then 1 else 0
assume p =df if p then 1 else > ,

the latter provided S has a greatest element >. In an
operational view, both constructs check whether p holds
at the time of their execution. If so, they simply proceed
(remember that 1 stands for the null action). If not, the
assertion aborts while the assumption may do anything
(> means the set of all possible choices, so we have the
behaviour ex falso quodlibet).

Both expressions can be simplified. For assertions we
obtain

assert p = p · 1 + ¬p · 0 = p+ 0 = p .

Hence the construct assert p could be omitted; we have
introduced it just for symmetry. For assumptions we
get, since ¬p · 1 ≤ ¬p · >,

assume p = p · 1 + ¬p · > = p · 1 + ¬p · 1 + ¬p · >
= (p+ ¬p) · 1 + ¬p · > = 1 + ¬p · > ,

which is the expression given above for assumptions.
Let us now see which elements of a set ISO(B) of

isotone predicate transformers are assumptions in this
sense:

(〈¬p〉 ◦ >+ id)(q) = 〈¬p〉(>(q)) + q =
〈¬p〉1 + q = ¬p+ q = [p]q .

Written in point-free style, 〈¬p〉 ◦ > + id = [p]. So in
ISO(B) the assumptions are the de Morgan duals of the
tests.

For the dual of the domain operator we obtain

(pf)d = 〈f(1)〉d = [f(1)] = [f(¬0)] = [¬fd(0)] . (29)

This latter expression coincides with that for ε(fd)
in the mentioned concrete model of [14], so that by
(gd)d = g we have the equation τf = (ε(fd))d. Finally,
it should be noted that the rightmost expression in
(29) also corresponds to the guard ¬wp(a, false) of [43],
while that for τ coincides with the termination predicate
wp(a, true) there.

11. CONCLUSION AND OUTLOOK

We have shown that modal i-semirings and Kleene
algebras form a comprehensive and flexible framework
for handling various modal logics in a uniform algebraic
fashion. We therefore think that the design of new
modal systems geared toward special applications may
benefit from using this algebraic approach.

An interesting approach, close in spirit, is [44], where
modules over quantales are used to define an algebraic
semantics of modal operators. However, having separate
sorts for actions and (the equivalents of) tests makes
that framework less flexible than ours, since those
entities cannot be combined freely with the same
operators. Moreover, the restriction to (full) quantales is
less general than what the i-semiring framework offers.

One topic we have omitted from the present paper
is that of infinite iteration. This has been treated
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in [20]. However, there is a restriction. Although, over
a complete Boolean algebra B, infinite iteration can be
defined in ISO(B) as fω =df νg . f ◦ g, this does not
imply the usual omega coinduction law c ≤ a · c+ b ⇒
c ≤ aω + a∗ · b [4]. It only does so in the set DIS(B) of
disjunctive predicate transformers over B. However, as
stated in [10], disjunctivity is not a natural requirement
for games. Future work will deal with a suitably revised
axiomatisation of infinite iteration of games.

Further applications will concern the analysis of
winning and losing positions (extending [45] and [5]).

Moreover, we will improve work on the automatic ver-
ification of properties in knowledge and game semirings
using, e.g., the tools Prover9 and Mace4 [46] along
the lines of [47]. While we have succeeded in an auto-
matic verification of the Wise Men Puzzle in a simplified
version, full automation of the solution in the present
paper still faces performance problems which we hope
to overcome by a modified axiomatisation.
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Struth, G. (eds.), RelMiCS, Lecture Notes in Computer
Science, 4988, pp. 320–336. Springer.

[2] Hebisch, U. and Weinert, H. (1998) Semirings:
Algebraic Theory and Applications in Computer
Science Series in Algebra. World Scientific.

[3] Kozen, D. (1994) A completeness theorem for Kleene
algebras and the algebra of regular events. Inf.
Comput., 110, 366–390.

[4] Cohen, E. (2000) Separation and reduction. In
Backhouse, R. C. and Oliveira, J. N. (eds.), MPC,
Lecture Notes in Computer Science, 1837, pp. 45–59.
Springer.
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