
Analysing web-orchestrations under
stress using uncertainty profiles

Joaquim Gabarro1, Maria Serna1 and Alan Stewart2

1 ALBCOM Research group, Universitat Politècnica de Catalunya, Jordi Girona Salgado,
1-3, Barcelona, 08034, Spain.

2 School of Computer science, The Queen’s University of Belfast, Belfast BT7 1NN,
Northern Ireland.

Email: mjserna@ lsi.upc.edu

An orchestration is a multi-threaded computation which invokes a number of
remote services. In practice the responsiveness of a web-service fluctuates
with demand; during surges in activity service responsiveness may be degraded,
perhaps even to the point of failure. An uncertainty profile formalises a user’s
perception of the effects of stress on an orchestration of web-services; it describes
a strategic situation, modelled by a zero-sum angel-daemon game. Stressed web-
service scenarios are analysed, using game theory, in a realistic way, lying between
over-optimism (services are entirely reliable) and over-pessimism (all services are
broken). The “resilience” of an uncertainty profile can be assessed using the
valuation of its associated zero-sum game. In order to demonstrate the validity
of the approach we consider two measures of resilience and a number of different
stress models. It is shown how (i) uncertainty profiles can be ordered by risk (as
measured by game valuations) and (ii) the structural properties of risk partial

orders can be analysed.

Keywords: Web orchestrations, zero-sum games, services, failures, delays, uncertainty profile,
partial order, angel-daemon games, game valuation, assessment, Nash equilibria.

1. INTRODUCTION

A service is a computational method that is made
available for general use on the Internet. The response
behaviour of a set of services which have been made
available for general use on an open network varies with
respect to demand. Demand for a particular service S
can fluctuate – if the cost and quality of service (QoS)
of S are attractive then S is likely to acquire additional
users. If demand is excessive then S may fail to deliver
its QoS (perhaps, in an extreme situation, S may fail).
The aim of this paper is to propose a way to analyse the
behaviour of service-based computations in a realistic
way that lies between over-optimism (all services satisfy
their Service Level Agreements) and over-pessimism (all
services are degraded, perhaps even broken).
Risk management is a well-establish discipline in

finance (see [1, 2]) which has also been applied to
analyse software design [3], information security [4], web
services [5, 6] and system failures [7]. The economist
Frank Knight has made a distinction between risk and
uncertainty [1] as illustrated by the following quotation
taken from Chapter 11 of [8]:

“Risk refers to something that can be
measured by mathematical probabilities. In

contrast, uncertainty refers to something that
cannot be measured (using probabilitites)
because there are no objective standards to
express these probabilities.”

Knight gives the following example of a risky but not
uncertain situation in Part III, Chapter VII of [1]:

“Thus, in the example given by von Mangoldt,
the bursting of bottles does not introduce an
uncertainty or hazard into the business of
producing champagne; since in the operations
of any producer a practically constant and
known proportion of the bottles burst, it
does not especially matter even whether the
proportion is large or small. The loss becomes
a fixed cost in the industry and is passed on
to the consumer, like the outlays for labor or
materials or any other.”

In contrast an example of an uncertain situation is given
by John Maynard Keynes in Chapter 12 of [9]:

“The outstanding fact is the extreme precar-
iousness of the basis of knowledge on which
our estimates of prospective yield have to be
made....If we speak frankly, we have to admit

2 J. Gabarro, M. Serna, A. Stewart

that our basis of knowledge for estimating the
yield ten years hence of a railway, a copper
mine, a textile factory, the goodwill of a patent
medicine, an Atlantic liner, a building in the
City of London amounts to little and some-
times to nothing; or even five years hence.”

It is debatable if probability is an appropriate
technique to use to model service reliability realistically
when unpredictable surges in demand can occur. In
this paper game theory (see Section 13.6 in [10]) is
used to analyse the uncertain behaviour of service-
based computations by measuring the robustness and
the response delays of user orchestrations when stressed
by surges in demand.
Informally, both the delay and the degree of

functionality of a stressed service-based computation
can be analysed using a two-player zero-sum game.
Consider an orchestration O which utilises a set S
of web-services. In the simplest situation one of
the players (the daemon) models over-demand stress
whereas the other player (the angel) models the
beneficial effects of elasticity. A game proceeds with
both players making “moves” in order to stress or
remove stress from a set of web-services. For example,
the daemon and angel may select the services s ∈ S and
s′ ∈ S, respectively, as their moves. This game situation
models the evaluation of O in an environment where
service s is severely stressed by overdemand whereas
service s′ employs extra servers to improve performance.
In a game the two players have different goals; the
daemon tries to damage the user’s application as much
as possible whereas the angel tries to ensure the least
harmful outcome. Both players have bounds placed on
the number of services that they can influence. Thus
stress is modelled as fluid patches which move over
the service space. Each player’s scope for stressing
services is specified using an uncertainty profile which
provides a macroscopic and qualitative description
of an orchestration under stress without recourse to
probability. Occasionally configurations of angel and
daemon moves arise in which neither player has an
incentive to move (Pure Nash Equilibria). In other
games there are randomized rather than pure “fixed
points”. A game is assessed with respect to a metric
specified in its uncertainty profile (perhaps measuring
delay or the degree of functionality). An application
may be assessed for uncertainty by “playing” a number
of games, each with a different uncertainty profile, in
order to assess the effects of either (i) different network
stress patterns or (ii) varying amounts of redundancy
within an orchestration.
An orchestration is defined as “the sequence and

conditions in which one web service invokes other web-
services in order to realize some useful function” [11].
An orchestration defines control from a one party
perspective [12]. User-defined orchestrations may
include dynamic mechanisms for altering behaviour

depending on the responsiveness of underlying web-
services. The robustness of an orchestration to
underlying service failures (or delays) is referred to
as its resilience. Orchestrations of web-services can
be specified using the language Orc [13] in which
services are called upon to perform sub-computations.
An Orc expression specifies how a set of service calls
are orchestrated to realise some overall goal. An
orchestration may consist of a number of parallel
threads each of which returns (publishes) a result.
The resilience of an orchestration can be measured

in different ways.

• strong assumption: severe stress causes services to
fail and become non-operational. Robustness is
measured by counting the number of operational
threads that remain functioning within a stressed
user orchestration.

• weak assumption: stress causes a service’s respon-
siveness to be altered (usually degraded). Orches-
tration performance is measured by assessing the
delay between an orchestration’s activation and its
completion. Several different delay stress mod-
els are considered. The basic delay model has
four forms of service responsiveness: normal (un-
stressed service behaviour), service stress due to
over-demand, service improvement due to elasticity
and service behaviour resulting from the interac-
tion between over-demand and elasticity. We also
consider an incremental stress model where delays
are modified by angelic and demonic perturbations.

Although a set of profiles may be assessed for risk by
obtaining associated angel daemon game valuations it
has been shown that computing the value of a angel-
daemon game is EXP-complete [14]. In order to avoid
the difficulties of directly computing Nash equilibria
we show how a set of uncertainty profiles forms a
partial order which is compatible with underlying game
valuations.
Two classes of monotonic (w.r.t. assessment)

mappings between uncertainty profiles are defined.
Angelic up functions are guaranteed to improve the
utility measurement whereas daemonic down functions
have the opposite effect. Particular instances of up
and down functions are used to compare different
uncertainty profiles.
In this paper we develop a new unified framework

which can be used to assess both the robustness and
performance of an orchestration using game theory.
Our work extends and generalises previous work
for orchestrations which only utilised a robustness
measure - see [15] for the initial definition of angel-
daemon games, [16] for some elementary monotonicity
properties of risk profiles and [17] for the monotonicity
properties of uncertainty profiles. In this paper the
following significant innovations have been introduced:

• the moves of both players can now coincide
(this gives rise to a richer class of more realistic

Web-orchestrations under stress 3

orchestration games in which a service can be
severely stressed by overdemand while at the same
time employing elasticity to improve performance);

• a set of new metrics for assessing orchestration
delay has been devised;

• new theoretical work on ordering uncertainty
profiles offers a means of comparing different
stress scenarios without having to calculate game
valuations.

The paper is structured as follows. In Section 2
orchestrations, the language Orc, zero-sum games and
uncertainty profiles are introduced. In Section 3
two resilience measures for stressed orchestrations are
described, namely (i) the number of functioning threads
within an orchestration and (ii) the evaluation delay.
In Section 4 some examples of assessing resilience are
given and some basic properties of uncertainty profiles
are derived. In Section 5 up and down functions
are used to compare uncertainty profiles involving
different orchestrations. The same approach is used
in Section 6 to compare uncertainty profiles with the
same orchestration but with varying amounts of stress.
In Section 7 a review of related work is given. Finally
in Section 8 some conclusions are drawn.

2. ORCHESTRATION GAMES

An overview of (i) the orchestration language Orc [13,
18] and (ii) some relevant concepts from game theory
are given below.

2.1. Orc

An orchestration is a user-defined program that utilises
web services. Typical examples of services might be: an
eigensolver, a search engine or a database [19]. A service
accepts an argument and publishes a result value3. For
example, a call to a search engine, find(s), may publish
the set of sites which currently offer service s. A service
call can publish at most one response. A service s may
fail to respond (i.e. it is silent) when it is called in
an unreliable environment. Service calls may induce
side effects. The orchestration language Orc [13, 18]
contains a number of inbuilt services: 0 is always
silent whereas 1 (x) always publishes its argument x.
The service RTimer(t) returns a signal after t units
of time – RTimer is often used to program time-
outs. if (b) publishes a signal if b is true and remains
silent otherwise. More generally, an Orc expression
may compose a number of service calls into a complex
computation. The simplest kind of Orc expression is
a service call. The Orc expressions P and Q can be
combined using the following operators:

• Sequence P > x > Q(x): Orchestration P is
evaluated: for each output v, published by P ,

3The words “publishes” and “returns” are used interchange-
ably.

an instance Q(v) is invoked. If P publishes the
stream of values, v1, v2, . . . vn, then orchestration
P > x > Q(x) publishes some interleaving of the
set {Q(v1), Q(v2), . . . , Q(vn)}. The abbreviation
P � Q is used in situations where Q does not
depend on x.

• Parallelism P | Q: The independent orchestrations
P and Q are executed in parallel; P | Q publishes
some interleaving of the values published by P and
Q.

• Pruning P (x) < x < Q: Orchestrations P and Q
are evaluated in parallel; P may become blocked by
a dependency on x. The first result published by
Q is bound to x, the remainder of Q’s evaluation is
terminated and evaluation of the blocked residual
of P is resumed.

Example 1. Consider the following orchestrations
which distribute digital newspapers by email.

Two Each = (CNN | BBC) > x >

(EmailAlice(x) | EmailBob(x))

Two Each delivers digital newspapers from both CNN
and BBC to Alice and Bob. However, the orchestration

One Each = ((CNN > x > EmailAlice(x))

| (BBC > y > EmailBob(y)))

only delivers the CNN paper to Alice and the
BBC paper to Bob. These two orchestrations
are instances of classical parallel workflow patterns
(see [20]) SEQ of PAR = (P | Q) � (R | S) and
PAR of SEQ = (P � Q) | (R � S). Finally

Just One = (EmailAlice(x) | EmailBob(x))

< x < (CNN | BBC)

delivers the same journal to Alice and Bob.

All parametrised sites (services) are assumed to have
well-defined behaviours:

Definition 2.1 (non-blocking service). A
parametrised service s is non-blocking if s(v1, . . . , vn)
must publish a result for all well-defined arguments
v1, . . . , vn; otherwise s is potentially blocking.

For example, Rtimer(t) is non-blocking while if (b)
is potentially blocking4. Hereafter we assume that all
services used in orchestrations are non-blocking.

Parameter independent blocking. An orchestra-
tion has parameter independent blocking if all
its underlying parametrised services are non-
blocking. Such an orchestration can utilise the
null service 0.

4It is possible to define a non-blocking variant form of if (b) –
when if (b) fails to publish the variant site returns an error signal.

4 J. Gabarro, M. Serna, A. Stewart

2.2. Zero-sum games

Zero-sum games, Nash equilibria and the value of a
game (as defined by von Neumann and Morgenstern)
are introduced below. Zero-sum games are a particular
instance of two player strategic games. Games are
described using conventional notation – see [21].

Definition 2.2 (zero-sum game). A zero-sum game
is a strategic game, described by a tuple Γ = 〈A1, A2, u〉,
with two players. For i ∈ {1, 2}, Ai is the finite set of
actions that can be selected by player i. The mapping u
from A1 ×A2 to the rational numbers is the utility (or
pay-off) of player 1. Player 2 has utility −u.

It is assumed that both players are rational and wish
to maximize their personal utility (for games with a
cost function c player 1 will wish to minimise c). In
game theory it is straightforward to move from a utility
situation to a cost situation (and vice-versa).
The set of combined actions A = A1 × A2 is called

the set of strategy profiles. Given a strategic game
Γ, player i can “make a move” by selecting an action
ai ∈ Ai (ai is called a strategy). If each player i selects a
strategy ai independently then the joint strategy profile
is a = (a1, a2). Players 1 and 2 have utilities u(a)
and −u(a), respectively. The game is zero-sum because
u(a) − u(a) = 0 (when player 1 benefits from a move
then player 2 incurs an equi-sized penalty).
A player’s choice of action can be defined probabilis-

tically. Mixed strategies for players 1 and 2 are proba-
bility distributions α : A1 → [0, 1] and β : A2 → [0, 1],
respectively. A mixed strategy profile is a tuple (α, β)
such that

u(α, β) =
∑

(a1,a2)∈A1×A2

α(a1)u(a1, a2)β(a2)

Let Δ1 and Δ2 denote the set of mixed strategies for
players 1 and 2, respectively. A (pure) strategy profile
(a1, a2) is a special case of a mixed strategy profile (α, β)
where α(a1) = 1 and β(a2) = 1.

Definition 2.3. A mixed strategy profile (α, β) is a
Nash equilibrium if for any α′ ∈ Δ1 we have u(α, β) ≥
u(α′, β2) and for any β′ ∈ Δ2 we have u(α, β) ≤
u(α, β′).

A pure Nash equilibrium, pne, is a Nash equilibrium
(a1, a2) where a1 and a2 a pure strategies. It is well
known that any strategic game has a mixed Nash
equilibrium [22]. For zero sum games the following
stronger result holds:

Theorem 2.1 ([23]). Let Γ = (A1, A2, u) be a zero
sum game. Then:

• The value maxα′∈Δ1
minβ′∈Δ2

u(α′, β′) coincides
with minβ′∈Δ2 maxα′∈Δ1 u(α

′, β′), and

• (α, β) is a Nash equilibrium iff

u(α, β) = max
α′∈Δ1

min
β′∈Δ2

u(α′, β′) (1)

= min
β′∈Δ2

max
α′∈Δ1

u(α′, β′) (2)

Consequently:

Definition 2.4. The value ν(Γ) of a zero sum game
with a utility is ν(Γ) = maxα′∈Δ1

minβ′∈Δ2
u(α′, β′).

The value of a zero sum game with a cost function is:

ν(Γ) = min
α′∈Δ1

max
β′∈Δ2

c(α′, β′) (3)

= max
β′∈Δ2

min
α′∈Δ1

c(α′, β′) (4)

Nash equilibria can also be characterised as follows
(see Proposition 116.2 in [21]):

Proposition 2.1. A mixed strategy profile (α, β) is
a mixed Nash equilibrium iff:

• for any a1 ∈ A1 such that α(a1) > 0 it follows
that u(a1, β) = maxα′ u(α′, β), and
• for any a2 ∈ A2 such that β(a2) > 0 it follows
that u(α, a2) = minβ′ u(α, β′).

Example 2. Consider the zero sum game Γ where
player 1 can choose one of two actions, top (t) or bottom
(b), and player 2 can choose one of two actions, left (l)
or right (r). The utility u of the game is:

Player 1

Player 2
l r

t u(t, l) = 0 1
b 1 0

Γ has no pure Nash equilibrium because, for any pure
strategy profile, one player will always want to change
strategy. If (t, l) is the current strategy then player 1
will change t to b (to increase the utility by 1). This

move is schematised as (t, l)
u=1−→ (b, l). But profile

(b, l) is not stable because player 2 will wish to change l
to r (thereby increasing his utility by 1). The evolution
in strategies is schematised below:

(t, l)
u=1−→ (b, l)

u=0−→ (b, r)
u=1−→ (t, r)

u=0−→ (t, l)
u=1−→ · · ·

Proposition 2.1 can be used to compute a mixed
strategy profile (α, β) for this game. Let α(t) = p where
p > 0 and α(b) = 1− p. Then u(t, β) = u(b, β) and so
p = 1/2. Likewise if β(l) = q > 0 then β(r) = 1 − q.
In a similar way u(α, l) = u(α, r) and so q = 1/2.
Consequently, ν(Γ) = u(α, β) = 1/2.

2.3. Uncertainty profiles

An a priori (global and macroscopic) measure of
the behaviour of an orchestration E in a stressful

Web-orchestrations under stress 5

environment is modelled by an [17] uncertainty profile
U = 〈E,A,D, bA, bD, u〉. The stressed environment is
described by the parameters A,D, bA, bD and u:

• A and D denote sets of sites (services) which
may be effected by stress. The orchestrator has
the perception that when an angelic site in A
fails this is unlikely to have a serious impact
on the functionality or performance of his web-
application. In contrast the orchestrator has the
perception that when a daemonic site in D fails
this may well have catastrophic implications for the
application. Sites whose behaviour is unknown can
occur in both A and D.

• The spread of network stress is modelled bounding
the number of sites under stress5. Parameters bA
and bD specify the number of sites to suffer angelic
stress and daemonic stress, respectively.

• The effects of stress are measured by a utility
function u (or by a cost function c).

Let α(E) denote the set of sites called by orchestration
E, α+(E) denote α(E) \ {0} and #s denote the
cardinality of a set of sites s. An uncertainty profiles is
defined as:

Definition 2.5 (Uncertainty profile). An uncer-
tainty profile for an orchestration E is a tuple U =
〈E,A,D, bA, bD, u〉 where A ∪ D ⊆ α+(E), bA ≤ #A,
bD ≤ #D and u(a, d) ≥ 0 is a utility function defined
over a ⊆ α+(E), d ⊆ α+(E).

Given an uncertainty profile U = 〈E,A,D, bA, bD, u〉
a strategic situation arises when E is subjected to
combined angel and daemon actions [15].

Definition 2.6 (angel-daemon game). The uncer-
tainty profile U = 〈E,A,D, bA, bD, u〉 has an associated
zero-sum angel-daemon game Γ(U) = 〈Aa, Ad, u〉: play-
ers a (angel) and d (daemon) have the following sets of
actions,

• player a selects bA distinct stressed services from
A. The angel’s set of actions is

Aa = {a ⊆ A | #a = bA}
• player d selects bD distinct stressed services from
D. The daemon’s set of actions is

Ad = {d ⊆ D | #d = bD}
• Services in α+(E)\(a∪d) are unaffected by stress.

Given a strategy profile s = (a, d) the associated utility
is u(a, d).

In orchestration games a and d model “ambiguity or
uncertainty” (called Web Incerta Spiriti by [8]) in the
restless web [17].

5Setting a priori bounds for the number of failures in
distributed systems is conventional – see Chapter 6 in [24].

Definition 2.7 (assessment). The assessment ν(U)
of an uncertainty profile U is defined to be the value of
its associated angel-daemon Γ(U) (i.e. – see equations
(1) and (2) or (3) and (4)).

In the remainder of the paper utilities are used to
measure the robustness of orchestrations to service
failure while cost functions are used to measure how
stress effects performance.

3. MEASURING RESILIENCE

We wish to measure the a priori resilience of an
orchestration in various stress scenarios. Two resilience
measures are used:

• An extreme form of analysis concerns the
robustness of orchestrations to service failures.
From an observational point of view a broken
service is identical to site 0. The effect of broken
services on the evaluation of an orchestration E can
be assessed by counting the number of functioning
threads within E. This corresponds to counting
the number of results, out(E), published by E.

• A more moderate form of analysis measures the
delay caused by stress on the evaluation of
an orchestration. Over-demand causes service
performance to degrade (increased delays). In
order to counteract stress a service may employ
elasticity to bring extra servers into operation –
in such a situation the performance of a service
under stress could even conceivably improve. The
delay associated with evaluating E in a stressed
environment is denoted by δ(E).

The measures above provide complementary viewpoints
of orchestration resilience in unreliable environments.

3.1. Robustness to failure

Web environments are unreliable. Sites evolve and
a user has little (or no) control over the execution
environment. When a complex orchestration E is
evaluated it may be unrealistic to assume that all
underlying services will be operational.

Reliability assumption. Service performance is
variable and services can fail. A broken service
does not respond when called. A working
service always conforms to its specification.

Let F denote the set of broken sites in a particular
environment. The effect of evaluating an orchestration
E in such an environment is found by replacing all
occurrences of services s, s ∈ F , by 0. Let failF (E)
denote the effect of evaluating E in an environment
where services in F are broken. A measure of the
resilience of E in this environment is out(failF (E)) (i.e.
the number of outputs, out, published by failF (E))
where 0 ≤ out(failF (E)) ≤ out(E).

6 J. Gabarro, M. Serna, A. Stewart

Example 3. Consider the orchestration

Robust =
(
(Worker1 (x)|Worker2 (x))

< x < (Data|ProxyData)
)

where Data and ProxyData are data publishing services
with the same functionality and Worker1 and Worker2
are worker services. Robust is resilient to the failure of
a single data service. For s ∈ {Data,ProxyData}:

out(fail{s}(Robust)) = out(fail{}(Robust))

However, Robust is not resilient to the failure of a
worker service.

The notion of parameter independent blocking is used
to analyse orchestrations with broken services:

Lemma 3.1. If orchestration E has parameter
independent blocking and F ⊆ α+(E) then failF (E) has
parameter independent blocking.

Consequently:

Lemma 3.2. Given a well formed expression E and
a failure set F ⊆ α+(E), the values out(E) and
out(failF (E)) can be computed in polynomial time with
respect to the length of the expression E.

Proof. By definition out(0) = 0, out(1) = 1. For a non-
blocking service s it follows that

out(s(v1, . . . , vk)) =

{
1 if all parameters are defined
0 otherwise

Let E1, E2 be parameter independent blocking, well
formed Orc expressions. Then

out(E1|E2) = out(E1) + out(E2)

out(E1 > z > E2(z)) = out(E1) ∗ out(E2(z))

Finally

out(E1(z) < z < E2) =

{
out(E1(z)) if out(E2) > 0
out(E1(⊥)) otherwise

Here E(⊥) denotes the behaviour of E when z is
undefined; E(⊥) is found by replacing all service calls
with a z-dependency by 0. Therefore if E has parameter
independent blocking then out(E) can be computed
in polynomial time with respect to the length of the
expression E.

Example 4. Reconsider the digital newspaper
example. If no failures arise then out(Two Each) =
4 and out(One Each) = 2. If F = {CNN } then
out(failF (Two Each)) = 2. If F = {CNN ,EmailAlice}
then out(failF (Two Each)) = 1.

From Lemma 3.2 it follows that

Lemma 3.3 (monotonicity). Given a parameter
independent blocking, well formed expression E and
failure sets F ,F ′ in α+(E) where F ⊆ F ′, it follows
that out(failF ′(E)) ≤ out(failF (E)).

3.2. Performance (delay costs)

Services may provide “performance guarantees” using
service level agreements (SLAs). Given a notion of
universal time it is possible to provide response time
bounds for services. Service s has a maximal delay δ(s),
(or δ(s, x) if the delay is input dependent) if it publishes
no later than time δ(s) after being called, δ(s) ≥ 0. It
is possible to give guarantees about the performance of
an orchestration defined over a set of services provided
that each underlying service has a response SLA [25].

Reliability assumption. Given an orchestration
E we assume that every site s ∈ α(E) has a
non-negative finite response delay 0 ≤ δ(s) <
∞. Delay δ(s) may be perturbed (by a finite
amount) when s is placed under stress.

Orchestrations also have performance delays. An
evaluation of an orchestration E may publish multiple
results; μ(E) and δ(E) denote the minimum and
maximum delays necessary for publication of at least
one evaluation result of E and all evaluation results
of E, respectively. Delays can be lifted from sites
to orchestrations in various ways, depending on the
underlying computation model. In the following we
assume that evaluations utilise the maximum degree of
parallelism.

3.2.1. Call-and-Delay environments
In [26] an operational and a traced-based semantics of
Orc are presented. These definitions include all of the
transitions that arise in an orchestration evaluation.
For example if expressions P and Q have traces (t, !m)
and (t′, !m′), t < t′, respectively, where t and t′ are
times and m and m′ are publication events then the
trace of P |Q is (t, !m)(t′, !m′). However, all that is
needed to assess the performance of an orchestration
O is the time of its final publication (ie we are only
interested in the value t′ above) 6. Below call-and-delay
environments are used to calculate directly the times of
the (first and) last publications of an orchestration. For
parameterless expressions E1 and E2 and service s(x)
we have

δ(E1 | E2) = max{δ(E1), δ(E2)}
δ(E1 � E2) = δ(E1) + δ(E2)

δ(s(x) < x < E1) = μ(E1) + δ(s(x))

Assessing publication time is more complex when
parameterised expressions arise and, in particular, when
involved terms appear within prunning expressions.
During an orchestration evaluation it is possible that
multiple (i) invocations of sub-expressions and (ii)
instantiations of variables occur. For example, in an
evaluation of (s | s′) > x > E1 the variable x
is instantiated twice and the expression E is called

6For pruning it is also necessary to define the time at which
the first publication occurs.

Web-orchestrations under stress 7

twice. In the following call-and-delay environments are
used to record the times of variable and sub-expression
instantiations, thus enabling the direct calculation of
the delay associated with an orchestration evaluation.
Our approach adopts time intervals [27, 28] for the
special case of Orc.

Definition 3.1 (call-and-delay environment). Given
a sub-orchestration E(x1, . . . , xn), a call-and-delay
environment for E is a pair C = (D,T) where

D = {[xi, μi, δi] | 1 ≤ i ≤ n}, T = [t1, t2]

Here μi ≤ δi, for 1 ≤ i ≤ n, and t1 ≤ t2.

A call-and-delay environment associates each variable
x with a tuple [x, μ, δ] where μ and δ are, respectively,
the starting and finishing times for the stream values
used to instantiate x. In a complementary way t1 and
t2 denote, respectively, the times of the first and last
calls to E.

A call-and-delay environment C is used to calculate
the delays μC(E) and δC(E) of orchestration E. In the
following we assume that each thread has its own local
delay environment and that the time taken to spawn a
thread is negligible.
In order to analyse the expression E(x1, . . . , xn)

parameters having the same dependencies are grouped
together; in this way E is written as E(X,Y, Z) where
X etc. denotes a set of parameters with the same
dependencies. D[X,Y] and D[Y, Z] etc. denoting
different delay environments.
Delays are defined by structural induction over Orc

expressions:

Site call E = s(x1, . . . , xn). Then

μC(s(x1, . . . , xn)) = max{μ1, . . . , μn, t1}+ δ(s)

δC(s(x1, . . . , xn)) = max{δ1, . . . , δn, t2}+ δ(s)

This models a situation where site s is first called
at time t1, all variables must be instantiated before
evaluation of s can begin and execution of s takes time
δ(s).

In the case of a parameterless site s:

μC(s) = t1 + δ(s) δC(s) = t2 + δ(s)

Parallel Composition.

E(X,Y, Z) = E1(X,Y) | E2(Y, Z)

The delay associated with E is defined using the call-
and-delay environments for E1 and E2:

C1 = (D[X,Y],T), C2 = (D[Y, Z],T)

Then:

μC(E(X,Y, Z)) = max{μC1
(E1(X,Y)), μC2

(E2(Y, Z))}
δC(E(X,Y, Z)) = max{δC1

(E1(X,Y)), δC2
(E2(Y, Z))}

Sequential Composition.

E(X,Y, Z) = E1(X,Y) > u > E2(u, Y, Z)

Here E1 has the call-and-delay environment

C1 = (D[X,Y],T)

The values μ = μC1
(E1(X,Y)) and δ = δC1

(E1(X,Y))
denote the first and last times at which u is instantiated.
An environment for E2 is:

C2 = (D[Y, Z] ∪ {[u, μ, δ]},T2)

where T2 = [μ, δ]. The delays associated with E are:

μC(E(X,Y, Z)) = μC2
(E2(u, Y, Z))

δC(E(X,Y, Z)) = δC2
(E2(u, Y, Z))

Pruning.

E(X,Y, Z) = E1(X,Y, u) < u < E2(Y, Z)

Here the delay of E2 is calculated using the environment

C2 = (D[Y, Z],T)

Variable u is only instantiated once - in order to model
this part of the evaluation we use the call-and-delay
environment

C1 = (D[X,Y] ∪ {[u, μ, μ]},T)
where μ = μC2(E2(Y, Z)). The delays associated with
E are:

μC(E(X,Y, Z)) = μC1(E1(X,Y, u))

δC(E(X,Y, Z)) = δC1(E1(X,Y, u))

The initial orchestration E has no variables and is only
called once; consequently C = (∅, [0, 0]). In this setting
δ(E) = δC(E) and μ(E) = μC(E).

Example 5. Consider the orchestration

Two Each = Newspapers > x > Emails(x)

from Example 1 where

Newspapers = (CNN | BBC)

Emails(x) = (EmailAlice(x) | EmailBob(x))

The delays associated with Newspapers are calculated
using the call-and-delay environment C1 = (∅, [0, 0]):

μC1(Newspapers) = μN = min{δCNN , δBBC}
δC1(Newspapers) = δN = max{δCNN , δBBC}

The delays associated with Emails are calcu-
lated using the call-and-delay environment C2 =
({[x, μN , δN]}, [μN , δN]). Thus,

μ(Two Each) = μN + μE , δ(Two Each) = δN + δE

8 J. Gabarro, M. Serna, A. Stewart

where

μE = min{δ(EmailAlice), δ(EmailBob)}
δE = max{δ(EmailAlice), δ(EmailBob)}

Consider the delays associated with the orchestration

Just One = Emails(x) < x < Newspapers

The delay of Emails is calculated using the environment
({[x, μN , μN]}, [0, 0]) and so

μ(Just One) = μN + μE , δ(Just One) = μN + δE

A more complete example of calculating delays
is given in Appendix A. Orchestration delays are
monotonic in the sense that:

Lemma 3.4. If δ′(s) ≥ δ(s) for all s ∈ α(E) then
δ′(E) ≥ δ(E) and μ′(E) ≥ μ(E).

3.2.2. Stress Models
The behaviour of an orchestration E under stress can
be modelled by using a modified delay function, δ(s),
for each site s, s ∈ α(E). Stress delay can be modelled
in different ways. Initially we consider a model with
three sources of stress: over-demand which causes
service degradation; elasticity which deploys servers
to meet demand and so maintain (or even improve)
performance; and stress resulting from the combined
effects of over-demand and elasticity. Specific delays
are defined for each of these cases:

Definition 3.2 (stress model). A stress model for a
service s is a tuple (δ(s), δo(s), δe(s), δo+e(s)) modelling
the performance delays associated with the stress level
of service s:

• δ(s) is the delay when s is unstressed;
• δo(s) is the delay associated with over-demand;
• δe(s) is the delay associated with elasticity;
• δo+e(s) is the delay when over-demand and
elasticity interact.

We assume the following constraints:

δe(s) < δ(s) < δo(s), δe(s) < δo+e(s) < δo(s)

A stress model for an orchestration E is a set S of
underlying service stress models:

S = {(δ(s), δo(s), δe(s), δo+e(s)) | s ∈ α(E)}

The delay associated with an evaluation of E, acting
under stress model S, is denoted by delayS(E) (or
delay(E) when S is clear form the context).

Example 6. Consider the orchestration

RobustData = Worker(x) < x < (Data | ProxyData)

under a uniform stress model S:

δ(Worker) = δ(Data) = δ(ProxyData) = 0.2

δo(Worker) = δo(Data) = δo(ProxyData) = 50

δe(Worker) = δe(Data) = δe(ProxyData) = 0.1

δo+e(Worker) = δo+e(Data) = δo+e(ProxyData) = 5

In an unstressed network:

delay(RobustData) = δ(Worker)

+min{δ(Data), δ(ProxyData)} = 0.4

When the services Data and ProxyData are both
severely stressed by over-demand then

delay(RobustData) = δ(Worker)

+min{δo(Data), δo(ProxyData)} = 50.2

If Data employs elasticity to combat over-demand stress
then

delay(RobustData) = δ(Worker)

+min{δo+e(Data), δo(ProxyData)} = 5.2

Stress models are monotonic in the sense that:

Lemma 3.5. Let S and S′ be two stress models for an
orchestration E:

S = {(δ(s), δo(s), δe(s), δo+e(s)) | e ∈ α(E)}
S ′ = {(δ′(s), δ′o(s), δ′e(s), δ′o+e(s)) | e ∈ α(E)}

If for all s ∈ α(E) it follows that

δ(s) ≤ δ′(s), δo(s) ≤ δ′o(s),
δe(s) ≤ δ′e(s), δo+e(s) ≤ δ′o+e(s)

then delayS(E) ≤ delayS′(E).

Alternative models of stress are considered in §4.

4. ORCHESTRATIONS UNDER STRESS

The behaviour of orchestrations under mobile network
stress (i.e. demand for services fluctuates) is modelled
and analysed below using game theory. Assumptions
about the underlying web environment are specified
by uncertainty profiles. The associated games are
assessed using game valuations. Example orchestrations
and uncertainty profiles are used to illustrate how the
resilience measures out and delay can be used to quantify
the effects of stress. In addition some properties about
the assessment of uncertainty profiles are established.

4.1. Robustness uncertainty profiles

A robustness profile is a special kind of uncertainty
profile where the utility out counts the number of
outputs published by an orchestration.

Web-orchestrations under stress 9

Definition 4.1 (robustness profile). A robustness
profile is a uncertainty profile U = 〈E,A,D, bA, bD, out〉
with utility out(a, d) = out(faila∪d(E)), for failure sets
a ⊆ A and b ⊆ B
Using out as a utility gives rise to assessments that are

non-intuitive to interpret because the assessment range
varies with the number of threads in an orchestration.
Alternatively, assessments in the range 0–1 can be
derived by using a normalised version of out

ratio outF (E) =

{
1

out(E)out(failF (E)) if out(E) > 0

0 otherwise

which satisfies 0 ≤ ratio outF (E) ≤ 1. For any
failures pair F ⊆ F ′ ⊆ α+(E) it follows that
ratio out(failF ′(E)) ≤ ratio out(failF (E)).

Lemma 4.1. Given uncertainty pro-
files U = 〈E,A,D, bA, bD, out〉 and U ′ =
〈E,A,D, bA, bD, ratio out〉 then ν(U ′) = ν(U)/out(E).

The term resilience factor is used to refer to
normalised assessments.

Example 7. Reconsider the workflow pattern
SEQ of PAR = (P | Q) � (R | S) from Example 1.
The profile

U1 = 〈SEQ of PAR, {P,Q}, {P,Q}, 1, 1, out〉

models a scenario in which an orchestrator is uncertain
about the consequences of either P or Q failing but in
which he has complete confidence in the operation of
both R and S (i.e. A = D = {P,Q}). The resulting
game Γ(U1) is

a

d
{P} {Q}

{P} 2 0
{Q} 0 2

Γ(U1) has no pure Nash equilibrium – the inherent
instability of the game is illustrated by the following
schema:

({Q}, {Q}) d−→ ({Q}, {P}) a−→ ({P}, {P})
d−→ ({P}, {Q}) a−→ ({Q}, {Q}) d−→ · · ·

There is a mixed Nash equilibrium with α = β =
(1/2, 1/2) and game assessment ν(U1) = 1 (resilience
factor = 0.25).
Given that SEQ of PAR is vulnerable to stress it

may be desirable to add some failure recovery capacity
to the system. Suppose that calls to the vulnerable
services P and Q are replaced by the more robust calls:

1(x) < x < (P | Mirror P)

1(z) < y < (Q | Mirror Q)

The modified orchestration

Robust SEQ of PAR =(
1(x) < x < (P | Mirror P)

| 1(z) < y < (Q | Mirror Q)
) � (R | S)

now incorporates the back-up services Mirror P and
Mirror R to provide recovery mechanisms in case
either P or R fail. Suppose that the orchestrator
is unsure of the consequences of failure of either the
original or the mirror services. This situation is
modelled by the profile

U2 = 〈Robust SEQ of PAR,F ,F , 1, 1, out〉

where F = {P,Q,Mirror P ,Mirror Q}. The game
Γ(U2) is schematised as:

{P} {Q} {Mirror P} Mirror Q
{P} 4 4 2 4
{Q} 4 4 4 2

{Mirror P} 2 4 4 4
{Mirror Q} 4 2 4 4

There is no pure Nash equilibria. Consider a mixed
equilibria α = (α1, . . . , α4), β = (β1, . . . , β4) where
0 < αi and 0 < βi for 1 ≤ i ≤ 4. It follows that

out({P}, β) = 4(α1 + α2 + α4) + 2α3 = 4− 2α3

and similarly out({Q}, β) = 4−2α4. By Proposition 2.1,
out({P}, β) = out({Q}, β) and α3 = α4. By similar
arguments αi = αj and βi = βj for i �= j. Therefore
βi = αi = 1/4 for 1 ≤ i ≤ 4 and ν(U2) = 7/2 (resilience
factor 0.875). It can be seen from this example
that uncertainty profiles and game assessments can be
used to quantify the benefits of adding redundancy to
orchestrations.

Uncertainty profiles and a/d-games offer a means
of modelling and analysing a wide variety of risky
scenarios. Some assessment bounds are given below:

Lemma 4.2. The assessment of the profile U =
〈E,A,D, bA, bD, out〉 satisfies 0 ≤ ν(U) ≤ out(E).

Proof. Let (α, β) a Nash equilibrium such that
u(α, β) = ν(U). For any (a, d) it follows that
out(faila∪d(E)) ≤ out(E). By Lemma 3.3:

u(α, β) =
∑

(a,d)∈Aa×Ad

α(a)β(d)out(faila∪d)(E)

≤
∑

(a,d)∈Aa×Ad

α(a)β(d)out(E)

= out(E)
∑

(a,d)∈Aa×Ad

α(a)β(d) = out(E)

10 J. Gabarro, M. Serna, A. Stewart

Let E and F be expressions. Then

ν(〈E,A,D, 0, 0, out〉) = out(E)

ν(〈E,A,D,#A,#D, out〉) = out(failA∪D(E))

ν(〈E,A,D, bA, 0, out〉) = max
a∈Aa

out(faila(E))

ν(〈E,A,D, 0, bD, out〉) = min
d∈Ad

out(faild(E))

For some restricted cases assessment satisfies:

Lemma 4.3. Consider E and F where α+(E) ∩
α+(F) = ∅ and A ⊆ α+(E), D ⊆ α+(F). Then

ν(〈E | F,A,D, bA, bD, out〉)
= max

a∈Aa

out(faila(E)) + min
d∈Ad

out(faild(F))

ν(〈E � F,A,D, bA, bD, out〉)
= max

a∈Aa

out(faila(E)) ∗ min
d∈Ad

out(faild(F))

Finally we consider an analysis of the Gabrmn 7

information system (adapted from [29]).

Example 8. The Gabrmn IT system is used to
manage a number of databases containing clinical data
for brain tumour research. The data contains magnetic
resonance spectra for both mice and people. New data
is constantly being generated; the system must generate
backups and provide sufficient storage capacity. The
Gabrmn system comprises a number of independents
servers.

• Relevant clinical information is stored in a number
of Databases (eg MySql and Oracle).
• A number of clinical applications (eg IDL,
LcModel and SpectraClassifier) are stored on a
designated server, Apps.
• A master server (Proxy) maintains overall system
behaviour.
• Email capability is a fundamental component of
the system. The mail service is provided using
two servers, Mail and Mirror . The Mirror server
is activated when the Mail server is down. We
approximate the mail system by the Orc expression

1(x) < x < (Mail | Mirror)

By using a coarse grained approach the components of
the system are treated as fundamental units in an Orc
expression (i.e. components take the place of sites):

IT System

= Proxy � (
(1(x) < x < (Mail | Mirror))

| Apps | Backups | Databases
)

The number of outputs (out) of IT System provides
a measure of the “well-being” of the system (the

7Aplicacions Biomèdiques de la Ressonància Magnètica
Nuclear (Gabrmn),of the Autonomous University of Barcelona
(UAB) – see http://gabrmn.uab.es.

maximum number of outputs of the system is 4).
The system manager should be able to determine the
behaviour of IT System under different levels of stress.
The system manager may use tentative heuristic rules
(see [30]) to assign system components to either A or
D (or both), or to determine the values bA and bD:

• When there is a realistic external threat which
may cause the failure of a subsystem S and when
recovery may be difficult (ie time consuming or
expensive or both) then S is assigned to D.
• When D comprises a number of components then
the magnitude of the global threat may be tuned by
using a number of different values for bD. Note that
when #D = bD we have a version of “Murphy’s
Law”: if anything can go wrong, it will.
• If the threat to a component S is unrealistic or S’s
recovery capability is high then it may be assigned
to A. In the following we assume that Proxy has
a very high recovery capability.
• If A contains both critical and non-critical
subsystems then bA is chosen in such a way that
some critical subsystem will be chosen by the angel
in the corresponding game.
• When the threat to a subsystem S is unknown
then S ∈ A ∩ D.
• When there is no threat to S then S �∈ A ∪ D.
• In general the values #A − bA and #D − bD
quantify the assessor’s degree of optimism.

To analyse the system’s behaviour in Example 8 a
number of scenarios are proposed and an uncertainty
profile is constructed for each situation.

First Scenario. The system is poorly maintained and so
A∪D = α(IT System). The systems Apps, Databases,
and Mail are considered to be very vulnerable to
stress: D = {Apps,Databases,Mail}. Assume that
it is unlikely that more than one simultaneous serious
failure will occur – ie fD = 1. Failure of any of the
subsystems {Backups,Proxy ,Mirror} only gives rise to
minor problems – ie A = {Backups,Proxy ,Mirror}.
Again simultaneous failure of components is considered
unlikely (ie fA = 1). Let U denote the corresponding
uncertainty profile; the corresponding a-d game Γ(U) is:

{Apps} {Databases} {Mail}
{Backups} 2 2 3
{Proxy} 0 0 0
{Mirror} 3 3 3

The game has pne ({Mirror},Apps}),
({Mirror}, {Databases}) and ({Mirror},Mail}) and as-
sessment 3. The resilience factor ν(U)/out(IT System)
is 0.75).

Second Scenario. Now consider a situation where the
mail system can fail and the consequences of such a
failure are uncertain (ie {Mail ,Mirror} ∈ A ∩ D). The
system Apps is considered to have a high recovery
capability, whereas the threat level to Databases is

Web-orchestrations under stress 11

considered to be high. The other subsystems are
assumed to be robust to stress. Thus:

A = {Apps,Mail ,Mirror}
D = {Databases,Mail ,Mirror}

As before bA = bD = 1. The a-d game is

{Databases} {Mail} {Mirror}
{Apps} 2 3 3
{Mail} 3 4 3
{Mirror} 3 3 4

The game has pne (Mail ,Databases) and
(Mirror ,Databases) with assessment 3.

Third scenario. Suppose that the level of stress applied
to Scenario Two is increased so that bA = 2. Then we
have the game:

{Databases} {Mail} {Mirror}
{Apps,Mail} 2 3 2
{Apps,Mirror} 2 2 3
{Mail ,Mirror} 2 3 4

The game has pne {(a, {Databases}) | a ∈ Aa}
with valuation 2 (resilience factor 0.5). As expected
increased stress causes functionality to decrease.

4.2. Delay uncertainty profiles

A delay profile is a special kind of uncertainty profile
where the cost function delay measures responsiveness.
delay is parametrised to account for player actions:

Definition 4.2 (delay profile). A delay profile is an
uncertainty profile U = 〈E,A,D, bA, bD, delayS〉 where
S is a stress model for E and delayS(s) is:

delayS(s)[a, d] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
δ(s) if s /∈ a ∪ d.

δo(s) if s ∈ d \ a.
δe(s) if s ∈ a \ d.
δo+e(s) if s ∈ a ∩ d.

delayS can be lifted from sites to Orc expressions using
call-and-delay environments.

Lemma 4.4. For an orchestration E and stress model
S the function delayS satisfies:

• delayS(E)[∅, ∅] = δ(E),
• for any pair (a, d), a ⊆ α(E), d ⊆ α(E) we have

delayS(E)[α(E), ∅]
≤ delayS(E)[a, d] ≤ delayS(E)[∅, α(E)]).

• the assessment of U = 〈E,A,D, bA, bD, delayS〉
satisfies

delayS(E)[α(E), ∅] ≤ ν(U) ≤ delayS(E)[∅, α(E)]).

When appropriate delayS(E)[a, d] is abbreviated to
delayS(a, d) or delay(a, d). In a delay game player
a wishes to minimize delay whereas player d has the
opposite intent.

Example 9. Consider the (abbreviated) workflow
RobustData from Example 6.

RD = W (x) < x < (D | P)

The profile U = 〈RD , α(RD), α(RD), 1, 1, delayS〉 has
over-demand and elasticity in balance. If both players
stress site W then the responsiveness of RD is

delayS(RD)[{W}, {W}]
= δo+e(W) + min{δ(D), δ(P)} = 5.2

The complete game Γ(U) is

a

d
{W} {D} {P}

{W} 5.2 0.3 0.3
{D} 50.1 0.4 0.3
{P} 50.1 0.3 0.4

with a pne ({W}, {W}) and an assessment ν(U) =
5.2. The assessment quantifies (in seconds) the
expected delay associated with orchestration RD in this
stressed environment. In the unbalanced profile U ′ =
〈RD , α(RD), α(RD), 1, 2, delayS〉 over-demand exceeds
the capacity of the system to employ elasticity. The
resulting game is

a

d
{W,D} {W,P} {D,P}

{W} 5.2 5.2 50.1
{D} 50.2 50.1 5.2
{P} 50.1 50.2 5.2

There is no pne. An approximation to the value of this
game is 27.66 (see the Appendix B for details). The
example illustrates that uncertainty profiles and game
theory can be used to quantify the effects of increasing
network stress on orchestration responses (delays).

Bounds for a number of boundary case delay profiles
are:

Lemma 4.5.

ν(〈E,A,D, 0, 0, delayS〉) = δ(E)

ν(〈E,A,D,#A,#D, delayS〉) = delayS(A,D)

ν(〈E,A,D, bA, 0, delayS〉) = min
a∈Aa

delayS(a, ∅)
ν(〈E,A,D, 0, bD, delayS〉) = max

d∈Ad

delayS(∅, d)

12 J. Gabarro, M. Serna, A. Stewart

Lemma 4.6. Given E and F where α(E)∩α(F) = ∅,
A ⊆ α(E) and D ⊆ α(F) then

ν(〈E | F,A,D, bA, bD, delayS〉)
= max{ν(〈E,A, ∅, bA, 0, delayS〉),

ν(〈F, ∅,D, 0, bD, delayS〉)}
ν(〈E � F,A,D, bA, bD, delayS〉) =

= ν(〈E,A, ∅, bA, 0, delayS〉)
+ν(〈F, ∅,D, 0, bD, delayS〉)

4.3. Delay games with incremental stress
perturbations

In the previous delay games the angel player controlled
elasticity while the daemon player controlled over-
demand. We now consider other control possibilities.
Suppose that over-demand and elasticity affect the

base performance level of a service s in a prespecified
way; over-demand increases the response delay by a
fixed amount, δD(s) where δD(s) ≥ 0, and elasticity
decreases the delay by a fixed amount δA(s), δ(s) ≥
δA(s) ≥ 0. Consequently, the base level delay
can be increased or decreased delay(s) = δ(s) ± · · ·
by prespecified delay variations. The net effect of
combining both forms of delay simultaneously is found
by additively combining the delay modifiers.

Definition 4.3 (incremental stress model). An
incremental stress model for an orchestration E is a
tuple S = {(δ(s), δA(s), δD(s)) | s ∈ α(E)} which
specifies how sites’ response delays vary with stress.

For each site s, δA(s) and δD(s) denote the potential
delay variations that can be applied by the players.
Types can be used to model situations where the angel
and daemon players can control either over-demand or
elasticity. A stress type is a pair t = (tA, tD) where
tA ∈ {−1, 1} and tD ∈ {−1, 1}. Type 1 is used to denote
a delay increase whereas type −1 is used to denote a
reduced delay.

Definition 4.4 (incremental delay profile). The
incremental delay profile

U = 〈E,A,D, bA, bD, delayS,t〉.

specifies the stress conditions for orchestration E using
the incremental stress model

S = {(δ(s), δA(s), δD(s)) | s ∈ α(E)}

and the stress type t = (tA, tD).

Γ(U) is a class of type-dependent games – constraints
are necessary to ensure that all site delays remain
positive. In stress type (−1, 1) the angel controls
elasticity and the daemon controls over-demand. To
ensure that all delays are positive it is necessary that
δ(s) ≥ δA(s). In stress type (1,−1) the angel controls
over-demand while the daemon controls elasticity; the

constraint δ(s) ≥ δD(s) ensures that delays must remain
positive. In stress type (−1,−1) both players control
elasticity and it is necessary that δ(s) ≥ δA(s) + δD(s)
For type (1, 1) both players control over-demand and no
constraints are necessary. A summary of the situation
is:

type mnemonic abbrv a d

(−1,+1) standard s provides
most
help

applies
most
damage

(−1,−1) pangloss p provides
most
help

provides
least
help

(+1,+1) faust f applies
least
damage

applies
most
damage

(+1,−1) machiavelli m applies
least
damage

provides
least
help

Stress pair (tA, tD) can be abbreviated to the initial
letter of its type mnemonic; t = (−1, 1) is shortened to
t = s.
In a delay framework S with stress type t the

definition of site delays is parametrised:

delayS,t(s)[a, d]

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
δ(s) s /∈ a ∪ d

δ(s) + tAδA(s) s ∈ a \ d
δ(s) + tDδA(s) s ∈ d \ a
δ(s) + tAδA(s) + tDδD(s) s ∈ a ∩ d

Delays can be lifted from sites to orchestrations. A
bound for incremental delay games is:

Lemma 4.7. The game associated with the profile
U = 〈E,A,D, bA, bD, delayS,t〉 with stress model

S = {(δ(e), δA(e), δD(e)) | e ∈ α(E)}
has assessment bounds

delayS,p(E)[α(E), α(E)]

≤ ν(U) ≤ delayS,f (E)[α(E), α(E)]

The types pangloss and faust are used in the bound.

4.4. Uniform delay uncertainty profiles

In a uniform stress model all sites have identical delays.

Definition 4.5 (uniform stress model). The uniform
stress model S = 〈δ, δA, δD〉 has delays δ(e) = δ,
δA(e) = δA and δD(e) = δD for all sites e ∈ α+(E).

delayS,t is abbreviated to delayS or delayt or even just
delay when the context allows.

Example 10. Consider the orchestration

eNews = CNN > x > (EmailAlice(x) | EmailBob(x))

Web-orchestrations under stress 13

in a uniform stress model S = 〈δ, δA, δD〉. Suppose that
the angel has the stress set a = {CNN ,EmailAlice} and
the daemon has an empty stress set (d = ∅). Then

delayS,m(a, d) = 2δ + 2δA

delayS,s(a, d) = 2δ − 2δA

A uniform delay profile may have type dependent
assessments:

type assessment
standard ν(Us) = 2δ − δA + δD
pangloss ν(Up) = 2δ − δA − δD
faust ν(Uf) = 2δ + δD
machiavelli if δA ≥ δD

ν(Um) = 2δ − 1
2δD

otherwise
ν(Um) = 2δ − δD + 1

2δA.

FIGURE 1. Analysis of the orchestration RD =
W (x) < x <(D | P) under the uncertainty profile Ut =
〈RD , {W,D,P}, {W,D,P}, 1, 1, delayS,t〉, with a uniform
stress type S = {δ, δA, δD} and a type-dependent delay
function. For each type t the assessment ν(Ut) of the
corresponding game Γ(Ut) is shown.

Example 11. Consider again the abbreviated
RobustData workflow:

RD = W (x) < x <(D | P)

An analysis of the workflow when both players apply
stress to underlying services can be carried out using
the profile

Ut = 〈RD , {W,D,P}, {W,D,P}, 1, 1, delayS,t〉,

where the stress type S = {δ, δA, δD} is uniform. The
resulting analysis is type-dependent.
Type standard. Type s = (tA, tD) = (−1,+1). Let

vS = 2δ − δA + δD . The game Γ(Us) correspond to

a

d
{W } {D} {P}

{W } vS 2δ − δA 2δ − δA
{D} vS min{2δ, vS} 2δ − δA
{P} vS 2δ − δA min{2δ, vS}

This case models a classic situation in which
over-demand and elasticity interact and influence
performance. The strategies ({W}, {W}), ({D}, {W})
and ({P}, {W}) are all pne and ν(Us) = vS = 2δ−δA+
δD .

Type pangloss. Type p = (tA, tD) = (−1,−1) let
vP = 2δ − δA − δD and δM = max{δA, δD} The game
Γ(Up) corresponds to

a

d
{W } {D} {P}

{W } vP vP vP
{D} vP vP 2δ − δM
{P} vP 2δ − δM vP

This case provides an analysis of the beneficial effects
of elasticity on orchestration delay. In the model
application of elasticity is split between the angel and
the daemon so as to achieve an ”averaging” effect. The
strategies ({W}, {W}), ({W}, {P}) and {W}, {D}) are
all pne and ν(Up) = vp = 2δ − δA − δD .
Type faust. Type f = (tA, tD) = (+1,+1). Let

vF = 2δ + δD and δm = min{δAδD}. The game Γ(Uf)
is

a

d
{W } {D} {P}

{W } vF + δA 2δ + δA 2δ + δA
{D} vF 2δ 2δ + δm
{P} vF 2δ + δm 2δ

This case provides an analysis of the detrimental effects
of over-demand on orchestration delay. Application of
over-demand is split between the angel and the daemon
so as to achieve an ”averaging” effect. The failure
games used earlier to assess orchestration robustness
have similarities with this category (albeit using a
utility rather than a cost function). The pure Nash
equilibria of this type are ({D}, {W}), ({P}, {W}) and
ν(Uf) = vF = 2δ + δD.
Type machiavelli. Type m = (tA, tD) = (+1,−1).

Let vM = 2δ− δD and δ0 = min{0, δA− δD}. The game
Γ(Um) is

a

d
{W } {D} {P}

{W } vM + δA vM + δA vM + δA
{D} vM 2δ + δ0 vM
{P} vM vM 2δ + δ0

This case provides an alternative model of the interplay
between over-demand and elasticity. Here the daemon
is used to limit the beneficial effects of elasticity while
the angel restricts the damage caused by over-demand.
Case analysis is carried out below:
Case δA ≥ δD. Here δ0 = min{0, δA − δD} = 0 and it

is easy to show that there is no pne. We show that α =
β = (0, 1/2, 1/2) is a mixed Nash equilibrium. Recall
that Proposition 2.1 (for costs) means that (α, β) is a
mixed equilibrium if the constraint delayS,m({W}, β) ≥
delayS,m({D}, β) holds. When a chooses a pure strategy
the delays are:

delayS,m({W}, β) = vM + δA

delayS,m({D}, β) = delayS,m({P}, β) = vM +
1

2
δD

14 J. Gabarro, M. Serna, A. Stewart

As δA > δD, delayS,m({W}, β) ≥ delayS,m({D}, β).
When d chooses a pure strategy the delays are.

delayS,m(α, {W}) = vM

delayS,m(α, {D}) = delayS,m(α, {P}) = vM +
1

2
δD,

and delayS,m(α, {W}) ≤ delayS,m(α, {D}) showing that
α = β = (0, 1/2, 1/2) is a Nash Equilibrium. Therefore,
when δA ≥ δD the value of the game is ν(Um) =
2δ − 1

2δD.
Case δA < δD. Here δ0 = min{0, δA − δD} = δA −

δD > 0 and 2δ+ δ0 = vM + δA. Using Proposition 2.1 it
is straightforward to show that α = β = (0, 1/2, 1/2) is
a mixed Nash equilibrium. Thus the value of the game
is ν(Um) = vM + 1

2δA = 2δ − δD + 1
2δA.

As expected the elasticity game (pangloss) has the
least delay, the over-demand game (faust) the greatest
delay while the mixed situation games, with both
over-demand and elasticity in balance, (standard and
machiavelli) have intermediate delays. The intent of
this example is to show the flexibility of uncertainty
profiles and game theory in modelling a variety of
commonplace situations in service-based computing.

5. COMPARING UNCERTAINTY PRO-
FILES

The value of an uncertainty profile may be used to
generate a complete ordering on the set of uncertainty
profiles. Unfortunately, the calculation of game
valuations can be computationally expensive. In [14]
it is shown that computing the value of a robustness
profile is EXP-complete. We are interested in deriving
conditions for ordering profiles in a way that is
consistent with a game assessment ordering. To do this
we initially consider a family of transformations over
mixed strategies.

5.1. Up and Down functions

Game assessments provide a basis for ordering
uncertainty profiles according to their resilience – the
bottom element in an ordering is the least resilient
profile. We consider a class of transformations between
two uncertainty profiles in which either the angelic or
daemonic choices are identical.

Definition 5.1 (up and down functions). Let

U = 〈E,A,B, bA, bD, u〉
U ′ = 〈E′,A′,B, b′A, bD, u′〉
U ′′ = 〈E′′,A,B′, bA, b′D, u

′′〉

Consider the pairs of profiles (U ,U ′) and (U ,U ′′)
which have the same daemonic and angelic choices,
respectively. Let Δa be the set of mixed angelic
strategies in Γ(U) and Γ(U ′′) and Δ′

a be the set of mixed
strategies for a in Γ(U ′). Analogously, let Δd be the set

of mixed strategies for d in Γ(U) and Γ(U ′) and let Δ′
d

be the set of mixed strategy for d in Γ(U ′′).

• An angelic up function f from U to U ′ denoted by

U a:f−→ U ′ is any function f : Δa → Δ′
a satisfying

u(α, β) ≤ u′(f(α), β) for any (α, β) ∈ Δa ×Δd.
• A daemonic down function f from U to U ′′

denoted by U d:f−→ U ′′ is any function f : Δd → Δ′
d

satisfying u(α, β) ≥ u′′(α, f(β)) for any (α, β) ∈
Δa ×Δd.

For profiles with cost functions:

• An up function f verifies c(α, β) ≥ c′(f(α), β).
• A down function f verifies c(α, β) ≤ c′′(α, f(β)).

Example 12. Consider the orchestrations

E = (T | M | B) � (L | R)

E′ = (T | B) � (L | R)

and the associated incremental delay profiles

U = 〈E, {T,M,B}, {L,R}, 1, 1, delayS,f 〉,
U ′ = 〈E′, {T,B}, {L,R}, 1, 1, delayS′,f 〉,

where S and S ′ are incremental stress models of type
faust. In S stressed delays always exceed unstressed
delays: δ(s) + δA(s) > δ(s′) and δ(s) + δD(s) > δ(s′), ∀
sites s, s′. In S ′ the delays associated with site T are:

δ′(T) = min{δ(T), δ(M)}
δ′A(T) = min{δA(T), δA(M)}
δ′D(T) = δD(T)

All other delays in S ′ are in same as their counterparts
in S. Even though U and U ′ have different
orchestrations and stress models it is still possible to
construct an angelic up function from mixed strategies
in Γ(U) to mixed strategies in Γ(U ′). Given two mixed
strategies α ∈ Δa (in Γ(U)) and α′ ∈ Δ′

a (in Γ(U ′)) the
function f(α) = α′ where

α′({T}) = α({T})+α({M}) and α′({B}) = α({B})

is an angelic up function if delayS,f (α, β) ≥
delayS′,f (f(α), β). Now

delayS,f ({T}, {L})
= δ(T) + δA(T) + δ(L) + δD(L)

delayS′,f ({T}, {L})
= min{δ(T), δ(M)}+min{δA(T), δA(M)}
+δ(L) + δD(L)

and so

delayS′,f ({T}, {L}) ≤ delayS,f ({T}, {L})
delayS′,f ({T}, {L}) ≤ delayS,f ({M}, {L})

Web-orchestrations under stress 15

Abbreviating delayS,f to delay and delayS′,f to delay′ we
have:

delay(α, β) =

α({T})β({L})delay({T}, {L})
+ α({M})β({L})delay({M}, {L}) + · · ·
+ α({B})β({L})delay({B}, {L})
+ α({B})β({R})delay({B}, {R})

≥(α({T}) + α({M}))β({L})delay′({T}, {L}) + · · ·
+ α({B})β({L})delay′({B}, {L})
+ α({B})β({R})delay′({B}, {R})

=delay′(α′, β).

Up and down functions are monotonic in the sense
that:

Lemma 5.1. If there is an angelic up function from
U to U ′ then ν(U) ≤ ν(U ′). If there is a daemonic down
function from U ′′ to U then ν(U) ≤ ν(U ′′).

Proof. Consider the profiles U = 〈E,A,B, bA, bD, u〉,
U ′ = 〈E′,A′,B, b′A, bD, u′〉 and U ′′ =
〈E′′,A,B′, bA, b′D, u

′′〉. Given an up function up from
U and U ′ it follows that u(α, β) ≤ u′(up(α), β) for all
α ∈ Δa and β ∈ Δd. For any α ∈ Δa choose β

∗(α) ∈ Δd

so that u′(up(α), β∗(α)) = minβ u
′(up(α), β). This is

the case for any α ∈ Δa and so

min
β

u′(up(α), β) ≤ max
α′

min
β

u′(α′, β) = ν(U ′)

Therefore u(α, β∗(α)) ≤ u′(up(α), β∗(α)) ≤ ν(Γ′) for
any α. In particular maxα u(α, β∗(α)) ≤ ν(U ′). For
any α ∈ Δa we have β∗(α) ∈ Δd, and so minβ u(α, β) ≤
u(α, β∗(α)). Therefore ν(U) = maxα minβ u(α, β) ≤
maxα u(α, β∗(α)) ≤ ν(U ′).
Given a down function down from U ′′ to U it follows that
u′′(α, β′) ≥ u(α, down(β′)) for any α, β′. Using similar
arguments (but replacing the angel by the daemon and
reversing the roles of min and max) we have ν(U ′′) ≥
ν(U).

A simple example of an angelic up function arises
when two profiles differ only in their utility functions:

Lemma 5.2. Consider U = 〈E,A,D, bA, bD, u〉 and
U ′ = 〈E,A,D, bA, bD, u′〉 such that for all (a, d) ∈
P(A) × P(D) it holds u(a, d) ≤ u′(a, d), then ν(U) ≤
ν(U ′).

Proof. Let Aa = {a ⊆ A | #a = bA} and Ad =
{d ⊆ D | #d = bD}. Then Γ(U) = 〈Aa, Ad, u〉,
Γ(U ′) = 〈Aa, Ad, u

′〉 and both games have the same
mixed strategies Δa and Δd. The identity function

id : Δa → Δa is an up function U a:id−→ U ′ because

u(α, β) =
∑

(a,d)∈Aa×Ad

α(a)β(d)u(a, d)

≤
∑

(a,d)∈Aa×Ad

α(a)β(d)u′(a, d)

= u′(id(α), β)

Therefore, by Lemma 5.1, ν(U) ≤ ν(U ′).

This lemma can be used to compare profiles having
different types.

Lemma 5.3. Given an orchestration E and a stress
model S = {(δ(s), δA(s), δD(s)) | s ∈ α(E)} then, for
any (a, d), it is the case that

delayS,p(a, d) ≤ delayS,s(a, d) ≤ delayS,f (a, d)

delayS,p(a, d) ≤ delayS,m(a, d) ≤ delayS,f (a, d)

Proof. It suffices to prove that for any site s and (a, d):

delayS,p(s)[a, d]

≤ delayS,s(s)[a, d] ≤ delayS,f (s)[a, d]

delayS,p(s)[a, d]

≤ delayS,m(s)[a, d] ≤ delayS,f (s)[a, d]

There are four cases to consider.
Case 1: e /∈ a ∪ d:
delayt(e)[a, d] = δ(e) for each t ∈ {s, p, f,m}.
Case 2: e ∈ a ∩ d:
By definition:

delayS,p(s)[a, d] = δ(s)− δA(s)− δD(s)
delayS,s(s)[a, d] = δ(s)− δA(s) + δD(s)
delayS,m(s)[a, d] = δ(s) + δA(s)− δD(s)
delayS,f (s)[a, d] = δ(s) + δA(s) + δD(s)

Consequently the required inequalities hold.
Case 3: e ∈ a \ d and Case 4 e ∈ d \ a: These cases
follow by similar case analysis. Lifting delays from sites
to strategy profiles gives the required result.

From Lemmas 5.3 and 5.2 we have:

Theorem 5.1. The family of delay profiles Ut =
〈E,A,D, bA, bD, delayS,t〉, where t ∈ {s, p, f,m}, satisfy
ν(Up) ≤ ν(Us) ≤ ν(Uf) and ν(Up) ≤ ν(Um) ≤ ν(Uf).

Two different uncertainty profiles can be compared
using up and down functions and an intermediate
profile:

Theorem 5.2. If U a:f−→ U ′ d:f ′
←− U ′′ then ν(U) ≤

ν(U ′′).

5.2. Useful up functions

Consider two uncertainty profiles over orchestration
E and utility u: U = 〈E,A,D, bA, bD, u〉 and U ′ =

16 J. Gabarro, M. Serna, A. Stewart

〈E,A′,D′, b′A, b
′
D, u〉. Assume that A ⊆ A′. By

Definition 5.1 an (angelic) up function f : Δa → Δ′
a has

the property that u(α, β) ≤ u(f(α), β). We develop two
different instances of up functions (which have different
bound conditions).

5.2.1. Joint map
If A ⊆ A′ and bA ≤ b′A then the sets of angelic actions
for U and U ′ are, respectively: Aa = {a ⊆ A | #a =
bA}, A′

a = {a′ ⊆ A′ | #a = b′A}.
Definition 5.2 (joint strategy). Given α ∈ Δa

define joint(α) ∈ Δ′
a, for any a ∈ Δa, as:

joint(α)(a′) =
1(

#A′−bA
b′A−bA

) ∑
{a∈Aa|a⊆a′}

α(a)

The set a can be extended to a′ by the addition

of b′A − bA services from A′ \ a. There are
(
#A′−bA
b′A−bA

)
different ways to do this. The probability of a particular
a′ is found by adding the probabilities of all a, a ⊆ a′.

Example 13. Let A = {1, 2, 3, 4} and A′ = A ∪
{5, 6, 7} with bA = 2 and b′A = 3. Then

(
#A′−bA
b′A−bA

)
= 5.

The sets of available actions are:

Aa = {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}
A′

a = {{1, 2, 3}, {1, 2, 4}, {1, 2, 5}, . . . , {5, 6, 7}}

Consider the set {1, 2, 3} in A′
a. The set {a ∈ Aa | a ⊆

{1, 2, 3}} is {{1, 2}, {1, 3}, {2, 3}} and so

joint(α)({1, 2, 3}) = 1/5(α({1, 2})+α({1, 3})+α({2, 3}))

Similarly

joint(α)({1, 2, 5}) = 1

5
α({1, 2})

joint(α)({5, 6, 7}) = 0

joint is an angelic up function from U to U ′ when the
daemonic choice sets are the same in U and U ′.

Lemma 5.4. Let U = 〈E,A,D, bA, bD, u〉 and U ′ =
〈E,A′,D, b′A, bD, u〉 be two uncertainty profiles in which
A ⊆ A′ and bA ≤ b′A. For any α ∈ Δa, joint(α) ∈ Δ′

a

and β ∈ Δd, u(α, β) ≤ u(joint(α), β)).

Proof. Let #A′ = n, b′A = p′, bA = p with p ≤ p′. Any
a ∈ A′

a contains p′ services. Consider a a ∈ Aa where
a ⊆ a′. Strategy a′ can be realised from a by adding
p′ − p services from the set A′ \ a. As this set contains
n− p elements there are

(
n−p
p′−p

)
ways to choose d. Since

u(a, d) ≤ u(a′, d) we have

u(a, d) ≤ 1(
n−p
p′−p

) ∑
{a′∈A′

a|a⊆a′}
u(a′, d)

To prove that joint(α) ∈ Δ′
a consider the construction

of joint(α)(a′). By definition joint(α)(a′) ≥ 0 The

summation
∑

a∈Aa

∑
{a′∈A′

a|a⊆a′} can be rewritten as∑
a′∈A′

a

∑
{a∈Aa|a⊆a′} (in both cases there is a sum over

the set of pairs {(a′, a) ∈ A′
a ×Aa | a ⊆ a′}). Thus,∑

a′∈A′
a

joint(α)(a′) =
∑

a′∈A′
a

(1(
n−p
p′−p

) ∑
{a∈Aa|a⊆a′}

α(a)
)

=
1(

n−p
p′−p

) ∑
{(a′,a)∈A′

a×Aa | a⊆a′}
α(a)

=
1(

n−p
p′−p

) ∑
a∈Aa

∑
{a′∈A′

a|a⊆a′}
α(a)

=
∑
a∈Aa

α(a)
(1(

n−p
p′−p

) ∑
{a′∈A′

a|a⊆a′}
1
)
=

∑
a∈Aa

α(a) = 1

The inequality between utilities is derived as follows:

u(α, β) =
∑
a∈Aa

∑
d∈Ad

α(a)u(a, d)β(d)

≤
∑
a

∑
d

α(a)

(
1(

n−p
p′−p

) ∑
{a′∈A′

a|a⊆a′}
u(a′, d)

)
β(d)

=
∑
a′

∑
d

(
1(

n−p
p′−p

) ∑
{a∈A′

a|a⊆a′}
α(a)

)
u(a′, d)β(d)

=
∑
a′,d

joint(α)(a′)u(a′, d)β(d) = u(joint(α), β)

Therefore if A ⊆ A′ and bA ≤ b′A then joint is an up
function from U to U ′,

Γ(U)
a:joint

−−−−−→ Γ(U ′)

and so ν(U) ≤ ν(U ′).

5.2.2. Split map
Consider again the profiles U and U ′ where A ⊆ A′ but
now where b′A ≤ bA. We construct a mapping split [17]
which is an up function:

Definition 5.3 (split the strategy). Given profiles
U and U ′ (from above) where A ⊆ A′ and b′A ≤ bA the
mapping split(α) is defined, for any α ∈ Δa, as:

split(α)(a′) =
1(
bA
b′A

) ∑
{a∈Aa|a′⊆a}

α(a)

Note that #{a′ | a′ ⊆ a} =
(
bA
b′A

)
.

Example 14. Consider the situation where A =
{1, 2, 3, 4} and A′ = A ∪ {5, 6, 7} with b′A = 2 and
bA = 3. The sets of angelic actions in U and U ′ are:

Aa = {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}}
A′

a = {{1, 2}, {1, 3}, {1, 4}, {1, 5},
{1, 6}, {1, 7}, {2, 3}, . . . }

Then split(α)({1, 2}) = 1/3(α({1, 2, 3}) + α({1, 2, 4}))
and split(α)({1, 5}) = 0.

Web-orchestrations under stress 17

Lemma 5.5. Let U = 〈E,A,D, bA, bD, u〉 and U ′ =
〈E,A′,D, b′A, bD, u〉 be two uncertainty profiles with
A ⊆ A′, b′A ≤ bA. For any α ∈ Δa, split(α) ∈ Δ′

a,
α ∈ Δa and β ∈ Δd it is the case that u(α, β) ≤
u(split(α), β).

Proof. The first part of the proof is similar to the first
part of the proof given in Lemma 5.4. Let bA = p and
b′A = p′. Given a ∈ Aa, there are #{a′ | a′ ⊆ a} =

(
p
p′
)

ways to choose a′ such that a′ ⊆ a. For any a′ ∈ A′
a,

a′ ⊆ a, and d ∈ Ad it holds (by hypothesis) that
u(a, d) ≤ u(a′, d). Applying this inequality to each a′

where a′ ⊆ a we get

ua(a, d) ≤ 1(
p
p′
) ∑

{a′ | a′⊆a}
u(a′, d).

To prove that split(α) is a mixed strategy
the term

∑
a′∈A′

a

∑
{a∈Aa|a′⊆a} is rewritten as∑

a∈Aa

∑
{a′∈A′

a|a′⊆a}. The inequality between utilities
is derived as follows:

u(α, β) =
∑
a∈Aa

∑
d∈Ad

α(a)u(a, d)β(d)

≤
∑
a∈Aa

∑
d∈Ad

1(
p
p′
) ∑

{a′∈A′
a | a′⊆a}

α(a)u(a′, d)β(d)

=
∑

a′∈A′
a

∑
d∈Ad

(
1(
p
p′
) ∑

{a∈Aa | a′⊆a}
α(a)

)
u(a′, d)β(d)

=
∑

a′∈A′
a

∑
d∈Ad

split(α)(a′)u(a′, d)β(d)

= u(split(α), β)

Thus split is an up function from U to U ′

Γ(U)
a:split

−−−−−→ Γ(U ′)

and so ν(U ′) ≤ ν(U).
Similar results hold for uncertainty profiles over cost

functions with the proviso that the directions of the
inequalities are reversed to give ν(U) ≥ ν(U ′).

5.3. Down functions for d

Now we give examples of (demonic) down functions
from U ′ to U .

5.3.1. Joint map
Let U = 〈E,A,D, bA, bD, u〉 and U ′ =
〈E,A,D′, bA, b′D, u〉 such that D′ ⊆ D, b′D ≤ bD. The
joint mapping given in Definition 5.2 can be adapted
to give a daemon down mapping joint(β′) : Ad → R:

joint(β′)(d) =
1(#D−b′D

bD−b′D

) ∑
{d′∈A′

d|d′⊆d}
β′(d′)

Lemma 5.6. Let U = 〈E,A,D, bA, bD, u〉 and U ′ =
〈E,A,D′, bA, b′D, u〉 be two uncertainty profiles such
that D′ ⊆ D and b′D ≤ bD. Then, for any β′ ∈ Δ′

d,
joint(β′) ∈ Δd, α ∈ Δa and β′ ∈ Δ′

d it follows that
u(α, β′) ≥ u(α, joint(β′)).

Proof. By averaging over all such d, d′ ⊆ d, we get

u(a, d′) ≥ 1(
n−q′
q−q′

) ∑
{d∈Ad|d′⊆d}

u(a, d)

The inequality between utilities is derived as follows:

u(α, β′) =
∑
a∈Aa

∑
d′∈A′

d

α(a)u(a, d′)β(d′)

≥
∑
a,d′

α(a)

(
1(

n−q′
q−q′

) ∑
{d∈Ad|d′⊆d}

u(a, d)

)
β(d′)

=
∑
a,d

α(a)u(a, d)joint(β′)(d) = u(α, joint(β′))

Thus joint is a down function from U ′ to U

U
d:joint

←−−−−− U ′

and so ν(U) ≤ ν(U ′).

5.3.2. Split map
Consider U and U ′ again where D′ ⊆ D and bD ≤ b′D.
The definition of split is adapted to give a function
split : A′

d → R:

split(β′)(d) =
1(b′D
bD

) ∑
{d′∈A′

d|d⊆d′}
β′(d′)

Using similar techniques we obtain:

Lemma 5.7. Let U = 〈E,A,D, bA, bD, u〉 and U ′ =
〈E,A,D′, bA, b′D, u〉 be two uncertainty profiles such
that D′ ⊆ D, bD ≤ b′D. Then, for any β′ ∈ Δ′

d,
split(β′) ∈ Δd and, for any α ∈ Δa and β′ ∈ Δ′

d,
u(α, β′) ≥ u(α, split(β′)).

Again the mapping split is a down function from U ′

to U and

U
d:split

←−−−−− U ′

and the assessments verify ν(U) ≤ ν(U ′).

6. MONOTONIC PROPERTIES OF RE-
SILIENCE MEASURES

The goal of this section is to show how uncertainty
profiles can be ordered according to risk. Partial
orders over pairs of stressed sets (denoting the control
options for the angel and daemon players) are derived
for all stress types; these partial orders are monotonic
with respect to the delay function. We keep the

18 J. Gabarro, M. Serna, A. Stewart

same names for types and for the associated preorders.
Subsequently preorders over a fixed orchestration are
defined for each type of incremental delay profile.
The profile orderings are shown to compatible with
game assessment. Similarly, an ordering for robustness
profiles is derived which is again monotonic with respect
to game assessment.

Definition 6.1. Consider the following partial
orders on P(α(E))× P(α(E)). For a, d, a′, d′ ⊆ α(E):

• Standard: (a, d) �s (a
′, d′) iff a ⊆ a′, d′ ⊆ d.

• Pangloss: (a, d) �p (a′, d′) iff a ⊆ a′, d ⊆ d′.
• Faust: (a, d) �f (a′, d′) iff a′ ⊆ a, d′ ⊆ d.
• Machiavelli: (a, d) �m (a′, d′) iff a′ ⊆ a, d ⊆ d′.

The orderings are related by:

(a, d) �s (a
′, d′) iff (a′, d′) �m (a, d)

(a, d) �p (a′, d′) iff (a′, d′) �f (a, d)

Lemma 6.1. Let E be an Orc expression and S be
an incremental stress model for E. For any type t ∈
{s, p, f,m} and any a, d, a′, d′ ⊆ α(E) it follows that
(a, d) �t (a

′, d′) implies delayS,t(a, d) ≥ delayS,t(a
′, d′).

Proof. Consider the standard stress type, t = s, and
an arbitrary site e, e ∈ α+(E). Assume that (a, d) �s

(a′, d′). Case analysis is used to show that, for any
e ∈ α+(E), delayS,s(e)[a, d] ≥ delayS,s(e)[a

′, d′]. In
the standard partial order (a, d) �s (a

′, d′) implies that
a ⊆ a′ and d′ ⊆ d. There 8 separate cases to consider:

a d′

a′ d

7 85 62 31

4

The condition delayS,s(e)[a, d] ≥ delayS,s(e)[a
′, d′] is

shown to hold in each case:
Case 1: e ∈ a ∩ d′. Then e ∈ a ∩ d and e ∈ a′ ∩ d′;
therefore:

delayS,s(e)[a, d] = δ(e)− δA(e) + δD(e)
= delayS,s(e)[a

′, d′]

Case 2: e ∈ a and e ∈ d \ d′. The inequality holds
because a′ ⊆ a, δD ≥ 0 and so:

delayS,s(e)[a, d] = δ(e)− δA(e) + δD(e)
delayS,s(e)[a

′, d′] = δ(e)− δA(e)

Case 3: e ∈ a′ \ a and e ∈ d′. As e ∈ d we have:

delayS,s(e)[a, d] = δ(e) + δD(e)
delayS,s(e)[a

′, d′] = δ(e)− δA(e) + δD(e)

and so the required inequality holds.
Case 4: e ∈ a′ \ a and e ∈ d \ d′. Here:

delayS,s(e)[a, d] = δ(e) + δD(e)
delayS,s(e)[a

′, d′] = δ(e)− δA(e)

and the required inequality holds.
Case 5: e ∈ a \ d. In both cases the delay is

delayS,s(e)[a, d] = δ(e)− δA(e) = delayS,s(e)[a
′, d′]

Case 6: e ∈ d′ \ a′ and e �∈ a′. In both cases the delay is

delayS,s(e)[a, d] = δ(e) + δD(e) = delayS,s(e)[a
′, d′]

Case 7: e ∈ a′ \ a and e /∈ d.

delays(e)[a, d] = δ(e)

delays(e)[a
′, d′] = δ(e)− δA(e)

Case 8: e ∈ d \ d′, e /∈ a′.

delayS,s(e)[a, d] = δ(e) + δD(e)
delayS,s(e)[a

′, d′] = δ(e)

Similar proofs for t ∈ {p, f,m} can be done using the
matching partial orders.

It is also possible to construct a partial order for pairs
of stress sets which is monotonic with respect to the
utility out. Such a partial order should contain the
relations u(α+(E), α+(E)) ≤ u(a, d) ≤ u(∅, ∅). The
faust partial order �f has the required properties:

Lemma 6.2. Let E be an Orc expression. For all
stress sets a, d, a′, d′ ⊆ α+(E) it holds that (a, d) �f

(a′, d′) implies out(a, d) ≤ out(a′, d′).

Proof. When (a, d) �f (a′, d′) the corresponding failure
sets are F = a ∪ d and F ′ = a′ ∪ d′. Using the
properties of the faust partial order it follows that
F ′ ⊆ F . Therefore, by Lemma 3.3, it follows that
out(failF (E)) ≤ out(failF ′(E)).

Now we extend the notion of a partial order
from stress sets to uncertainty profiles (over a fixed
orchestration and resilience measure).

Definition 6.2. The uncertainty profiles U =
〈E,A,D, bA, bD, u〉 and U ′ = 〈E,A′,D′, b′A, b

′
D, u〉, can

be partially ordered, for each stress type t ∈ {s, p, f,m},
as follows:

• U �s U ′ if A ⊆ A′, D′ ⊆ D, bA ≤ b′A and
b′D ≤ bD.
• U �p U ′ if A ⊆ A′, D′ ⊆ D, bA ≤ b′A, bA ≤ b′A
and bD ≤ b′D.
• U �f U ′ if A ⊆ A′, D′ ⊆ D, b′A ≤ bA and
b′D ≤ bD.
• U �m U ′ if A ⊆ A′, D′ ⊆ D, b′A ≤ bA and
bD ≤ b′D.

Web-orchestrations under stress 19

Informally when U � U ′ then U ′ is less risky than U
– U ′ is said to be an (optimistic) refinement of U .

Theorem 6.1. Let U = 〈E,A,D, bA, bD, delayS,t〉
and U ′ = 〈E,A′,D′, b′A, b

′
D, delayS,t〉 be uncertainty

profiles over an incremental stress model S and a stress
type t, t ∈ {s, p, f,m}. If U �t U ′ then ν(U) ≥ ν(U ′).

Proof. We use the proof technique from Theorem 5.2
and define an intermediate uncertainty profile U ′′ =
〈E,A′,D, b′A, bD, delayS,t〉. For each t ∈ {s, p, f,m}
define an up function f from U to U ′′ and a down
function f ′ from U ′ to U ′′. The situation is schematised
as:

U
a:f

−−−−−→ U ′′ d:f ′

←−−−−− U ′

Since the delay function is a cost then Lemma 5.1 and
Theorem 5.2 give ν(U) ≥ ν(U ′′) ≥ ν(U ′). Consider the
partial orders associated with different types of stress:
Case 1: standard (t = s). U �s U ′ implies that bA ≤ b′A
and b′D ≤ bD. As bA ≤ b′A the function joint : Δa → Δ′

a

(Definition 5.2) is an angelic up function (Lemma 5.4).
As b′D ≤ bD the function joint : Δ′

d → Δd is a
daemonic down function (Lemma 5.6). The situation
is summarized by:

U
a:joint

−−−−−→ U ′′ d:joint

←−−−−− U ′.

Case 2: pangloss (t = p). In this case Lemmas 5.4 and
5.7 are used to generate the schema above.
Case 3: faust (t = f). In this case Lemmas 5.5 and 5.6
give the schema above.
Case 4: machiavelli (t = m). In this case Lemmas 5.5
and 5.7 give the schema above.

In a similar way it can be shown that robustness
profiles, ordered by �f (faust), are monotonic with
respect to assessment.

Theorem 6.2. Let U = 〈E,A,D, bA, bD, out〉 and
U ′ = 〈E,A′,D′, b′A, b

′
D, out〉 be robustness profiles. If

U �f U ′ then ν(U) ≤ ν(U ′).

Some example situations are used to illustrate
Theorems 6.1, 6.2. The first example deals with
robustness profiles (with the partial order �f).

Example 15. For k ≥ 1 consider the following
orchestration

E = A | B | ((C1 | C2 | · · · | Ck) � (D | F))

Orchestration E is analysed for robustness (using the
utility out) using two different profiles. First consider
the profile U = 〈E, {A}, {B,D}, 1, 1, out〉. In Γ(U), the
utility for out({A}, {B}) is

out((0 | 0 | (C1 | C2 | · · · | Ck) � (D | F))) = k

The game Γ(U) is shown fully below:

a

d
{B} {D}

{A} k k + 1

Γ(U)
a

d
{B} {D}

{A} k k + 1
{F} k + 1 2

Γ(U ′)

In Γ(U) player d tries to minimize out and so the profile
({A}, {B}) is a pne with ν(U) = k.
Now consider the profile

U ′ = 〈E, {A,F}, {B,D}, 1, 1, out〉

Since U �d U ′ the inequality Γ(U) ≤ Γ(U ′) should hold.
The game Γ(U ′) (shown above) has no pne; Proposition
2.1 is used to compute the game value ν(U ′). Consider a
mixed Nash equilibrium (α, β) where α = (p, 1−p) and
β = (q, 1− q) with 0 < p, q < 1. As p > 0 and 1− p > 0
it follows that out({A}, β) = out({F}, β) = out(α, β).
As out({A}, β) = k+1− q and out({F}, β) = qk+2− q
we obtain q = (k − 1)/k. Therefore out({A}, β) =
out({F}, β) = k + 1− (k − 1)/k.
As q > 0 and 1 − q > 0 it also follows

that out(α, {B}) = out(α, {D}) = out(α, β). As
out(α, {B}) = k + 1 − p and out(α, β) = pk − p + 2
we get p = (k − 1)/k. Thus Γ(U ′) = out(α, β) =
k + 1− (k − 1)/k (> k) (as predicted).
The same stressed orchestration E can also be

analysed for delay using uniform uncertainty profiles
(we assume that 0 < δ, δA, δD < ∞). Let

U = 〈E, {A}, {B,D}, 1, 1, delayf 〉
U ′ = 〈E, {A,F}, {B,D}, 1, 1, delayf 〉

be the two profiles to be used for analysis. Assume that
th profiles are ordered using �f . As U �f U ′ the cost
delayf of the first profile should be less than or equal to
that of the second profile. We have

a

d
{B} {D}

{A} 2δ 2δ

Γ(U)

a

d
{B} {D}

{A} 2δ 2δ
{F} 2δ 2δ +min{δA, δD}

Γ(U ′)

Clearly ν(U) = ν(U ′) = 2δ (which is consistent with
Theorem 6.1).

7. RELATED WORK

An overview of related work encompassing the areas of
orchestration, fault tolerance, risk analysis, uncertainty
and quality of service (QoS) is given below. We focus
on those concerning Web services and/or Game theory.
The language Orc has been used to describe workflows

[31] over internal and remote services - see [32]. In [26]

20 J. Gabarro, M. Serna, A. Stewart

a timed operational semantics of Orc is given; there are
similarities between call-and-delay environments (used
here to estimate response delays) and the execution
sequences and traces defined in [26]. The elements of
a trace are pairs (t,m), where t is a response time and
m is a publication result. A handle specifies the times
at which particular values could be potentially returned
(including the possibility of perpetual non-response, ω).
In [26], the term Σ(S, x) denotes the set of handles
corresponding to a call to service S with argument x.
In order to study delays directly we have adopted a time
interval approach where every site has a maximal delay
δ(s) and is executed in a call-and-delay environment.

Game theory has been used to study other problems
in service-oriented computing. The problem of
assigning infrastructures to applications is treated as
a strategic game in [33]. Web services negotiation (1-
to-1) is modelled using bargaining game theory in [34].
Cooperative game theory has also been used to model
(i) cloud provider cooperation [35], (ii) community-
based cooperation using autonomous Web services
[36], and cooperative packet delivery with uncertainty
(cooperative Bayesian games) [37].
Uncertainty in the Semantic Web has been modelled

using Bayesian frameworks. A Bayesian framework for
probabilistic service composition is given in [38] where
plausible reasoning services are developed by using
historical QoS data, recorded by brokers; uncertainty is
represented using Bayesian networks. Bayesian games
have also been used to analyse security risks. In [39]
risk is modelled by an unknown probability distribution.
A Bayesian game is defined under the assumption
that there is some probability distribution describing
players’ beliefs about the relevant risk parameters. The
goal of the paper is to determine equilibrium conditions
for a corresponding Bayesian game and compare these
with those of a game in which the players have full risk
distribution information.
A number of proposals have been made for

service evaluation and selection in situations where
a high quality of service (QoS) is required. Often
QoS parameters have multi-dimensionality and are
volatile. In [40, 41] a QoS-driven web-service selection
approach is proposed, based on assessments of linear
combinations of scaled QoS parameters. A probabilistic
approach to QoS in web systems is proposed in [42]
using soft contracts. A risk-driven approach to the
quality of web-services, based on payments, is developed
in [6].
The problems of analysing failures and realising fault

tolerance in distributed computing [43] is of great
significance. Robustness under malicious attack is an
active field of research – see for example [44, 45, 46,
47]; there are numerous results for a wide variety of
problems involving malicious faults [48, 49, 50, 51].
Game has been applied to the analysis of fault tolerant
systems – for example games can be constructed
with both malicious and rational players (similar to

the approach used in this paper), and the resulting
situations analysed [52, 53, 7, 54, 55, 56]. This approach
has resulted in the definition of a so-called price of
malice [7]. Another game-theoretic approach to faulty
systems is [57] where an attempt is made to improve
system behaviour by imposing a centralized control over
a subset of players.
Finally, it would be interesting to relate the unified

model with two earlier generalisations of the angel-
daemon framework. In [58] strategic behaviour is
extended to allow multi-player games. In addition
to the angel and the daemon, each site or service
can strategically decide their behaviour; the system
is modelled as a unit resource allocation game. This
model gives rise to a more complex multi-player game
in which only some Nash equilibria properties have
been analysed. In addition in [59] strategic behaviour
was extended to allow Bayesian games; a comparison
between uncertainty profiles and probabilistic profiles
was also made. It is an open question as to whether
the new framework proposed here can be further
generalized to study the robustness and performance
of multi-player games and allow a comparison with
Bayesian games to be made.

8. DISCUSSION

A distinction has been made between business risk (as
viewed by economists) and the uncertainty associated
with the outcome of business decisions [1, 8]. This
same distinction can also be applied to the analysis of
service-based computation; while some details of the
expected performance of services may be given (e.g.
QoS, SLAs) there remains a fundamental uncertainty
about the response behaviour of web-services in stressed
environments. In this paper we propose the use of
uncertainty profiles and game theory as a means of
analysing stressed service-based computations.
The performance of an orchestration of web-services

fluctuates as parts of the web suffer stress. Stress
can have several different forms, from simple over-
demand to elasticity and even the possible beneficial
effects of brokering. In this paper we have shown that
uncertainty profiles can be used to model different types
of stress that can arise in practical situations; the types
standard, pangloss, faust and machiavelli are used to
characterise different aspects of stress.
Superficially there would appear to be a contradiction

between having on the one hand an uncertain
environment and on the other a very concrete
assessment of the same situation. There is however
no contradiction: in the process of construcing an
uncertainty profile an assessor imposes his own personal
beliefs, perceptions and past experiences onto an
uncertain environment8. In constructing a profile

8To quote from J. Maynard Keynes [60], “But in the actual
exercise of reason we do not wait on certainty, or deem it irrational
to depend on a doubtful argument”

Web-orchestrations under stress 21

an assessor moves from a more general uncertain
environment to a more concrete (and more measurable)
world.
One benefit of our approach is that different

aspects of an uncertain situation can be analysed
by employing different uncertainty profiles, with each
profile capturing a different aspect of the uncertainty.
Consider a situation in which an assessor constructs
a number of different profiles of the form U =
〈E,A,D, bA, bD, u〉 to model an uncertain situation. In
the process of constructing these profile variations the
assessor can:

• use heuristic rules to assign designated services to
the sets A and D (see Example 8);

• set the values of bA and bD to reflect different stress
levels (see Example 8);

• use different game types to model different stress
scenarios (see Section 4.3); and

• utilise profile partial orders and up and down
mappings (see Section 5) in order to navigate
through different levels of uncertainty.

Uncertainty profiles provide a general and powerful
framework which can be tuned to focus on particular
aspects of an uncertain situation. The general approach
adopted here is fundamentally different from other
proposed applications of game theory for analysing
service behaviour [33, 34, 35, 36, 37] where the decision
process is intrinsic to the semantics of the model. In
this paper the role of a-d games is much more open in
that different games can be devised to assess different
aspects of uncertainty. As far as we are aware, our open
approach to modelling uncertainty is new.
Angel daemon games have the potential to be tuned

to model other characteristics of web-service stress.
For example a cost-based scenario is developed below.
Suppose that an orchestrator prefers a cheap service
C with monetary cost mC to an expensive service E
with identical functionality and monetary cost mE ,
mC < mE . In situations where the QoS of C
is poor and C fails to respond after a time Δ the
orchestrator additionally calls on service E to try to
improve performance:

Try Cheap First

= 1(x) < x <
(
C | (Rtimer(Δ) � E)

)
Assume that all services incur a charge at the point of
call.
Orchestration Try Cheap First can be analysed with

respect to delay or monetary cost or by using a hybrid
function. For example, given an orchestration O with
a delay δ(O) and a monetary cost m(O), a hybrid cost
function could be defined, using Benjamin Franklin’s
maxim [61] that time is money:

time money(O) = δ(O) +m(O)

In order to provide a concrete cost example consider
a uniform situation where the unstressed delays of C

and E are both δ. Assume that Δ > δ so that in
favourable environments the service E is not called
and the cost of using Try Cheap First is just mC (and
time money(Try Cheap First) = δ +mC).
The behaviour of Try Cheap First is analysed using a
uniform incremental stress model S = 〈δ, δA, δD〉 and a
standard stress type. Assume that δA = 1

4δ, δD = 3
4δ.

An analysis is carried out using the uncertainty profile
U where

A = D = {c, e}, and bA = bD = 1

Consider the delay that arises for strategy ({C}, {C}):

delay(C)[{C}, {C}] =
(
1− 1

4
+

3

4

)
δ =

3

2
δ

In a similar way delay(E)[{C}, {C}] = Δ + δ. Thus

delay(Try Cheap First)[{C}, {C}]
= min

{3

2
δ,Δ+ δ

}
=

3

2
δ

A monetary threshold function with a boolean
argument B is used below to specify monetary costs:

threshold(B) =

{
mC if B
mC +mE otherwise

For example the monetary cost of the strategy
({C}, {C}) is:

m({C}, {C}) = threshold(Δ >
3

2
)

Other delay and monetary cases can be calculated in a
similar way. The resultant delay game is:

a

d

{C} {E}
{C} 3

2δ
3
4δ

{E} 7
4δ δ

This delay game has pne ({C}, {C}). The correspond-
ing monetary game is:

a

d

{C} {E}
{C} threshold(Δ > 3

2) mC

{E} threshold(Δ > 7
4) mC

Here ({C}, {C}) is always a pne while the other
strategies maybe pne, depending on the value of Δ.
The hybrid time is money game is shown below for the
situation where 3

2δ < Δ < 7
4δ:

22 J. Gabarro, M. Serna, A. Stewart

a

d

{C} {E}
{C} 3

2δ +mc
3
4δ +mc

{E} 7
4δ +mc +me δ +mc

Again ({C}, {C}) is a pne. This example illustrates
that uncertainty profiles have the potential to be used
to analyse cost scenarios; we hope to develop these ideas
in future work.
Other possible future topics for investigation include:

• testing the a-d approach using a wider range of
practical examples;

• developing richer models where both the perfor-
mance and the price of a service can vary with
stress;

• and extending uncertainty profiles to deal with
recursive orchestrations. One way to do this might
be to develop the theory of repeated games (see
2.3.B in [62]) to the special case of a-d games.

FUNDING

J. Gabarro and M. Serna were partially supported
by ”Ministerio de Ciencia e Innovación y el Fondo
Europeo de Desarrollo Regional” project TIN-2007-
66523 (FORMALISM) and ”Generalitat de Catalunya”
project 2009SGR 1137 (ALBCOM). Alan Stewart
is partially supported by Engineering and Physical
Sciences Research Council project EP/I03405X/1
(ECHO).

ACKNOWLEDGEMENTS

The authors are very grateful to the referees for their
constructive comments on two earlier drafts of this
paper. The authors are also grateful to A. Garćıa, M.
Clint and P. Kilpatrick for helpful discussions about
service-based computation and game theory.

REFERENCES

[1] Knight, F. (1921) Risk, uncertainty and Profit.
Houghton Mifflin, Boston and New York.
Free electronic access in:
http://www.econlib.org/library/Knight/knRUP.html.

[2] Hull, J. (2009) Risk Management and Finantial Institutions,
2 edition. Pearson.

[3] Verdon, D. and McGraw, G. (2004) Risk analysis in software
design. IEEE Security & Privacy, 2, 79–84.

[4] Wheeler, E. (2011) Security Risk Management. Elsevier,
Amsterdam.

[5] Kokash, N. (2007) Risk management for service-oriented
systems. In Baresi, L., Fraternali, P., and Houben, G.-
J. (eds.), Web Engineering, 7th International Conference,
ICWE 2007, Como, Italy, July 16-20, LNCS, 4607, pp.
563–568. Springer-Verlag, Berlin.

[6] Kokash, N. and D’Andrea, V. (2007) Evaluating quality
of web services: A risk-driven approach. In Abramowicz,

W. (ed.), Business Information Systems, 10th International
Conference, BIS 2007, Poznan, Poland, April 25-27, LNCS,
4439, pp. 180–194. Springer-Verlag, Berlin.

[7] Moscibroda, T., Schmid, S., and Wattenhofer, R. (2009) The
price of malice: A game theoretic framework for malicious
behaviour in distributed systems. Internet Economics, 6,
125 – 155.

[8] Akerlof, G. and Schiller, R. (2009) Animal Spirits. Princeton
University Press, Princeton and Oxford.

[9] Keynes, J. (1936) The General Theory of Employment,
Interest and Money. Macmillan and Co. Re-edition,
Palgrave-Macmillan for the Royal Economic Society, 2007.

[10] Luce, D. and Raiffa, H. (1989) Games and Decisions. Dover.

[11] W3c, web services glossary.
http://www.w3.org/TR/ws-gloss/.

[12] Peltz, C. (2003) Web services orchestration and choreogra-
phy. IEEE Computer, 36, 46–52.

[13] Misra, J. and Cook, W. (2007) Computation orchestration:
A basis for wide-area computing. Software and Systems
Modeling, 6, 83–110.

[14] Gabarro, J., Garcia, A., and Serna, M. (2013) Compu-
tational aspects of uncertainty profiles and angel-daemon
games. , ? Theory of Computing Systems, in press.

[15] Gabarro, J., Garcia, A., Clint, M., Kilpatrick, P., and
Stewart, A. (2008) Bounded site failures: an approach
to unreliable grid environments. In Danelutto, M.,
Fragopoulou, P., and Getov, V. (eds.), Making Grids Work,
pp. 175–187. Springer-Verlag, Berlin.

[16] Gabarro, J., Garcia, A., Serna, M., Kilpatrick, P., and
Stewart, A. (2008) Analysing orchestrations with risk
profiles and angel-daemon games. In Gorlatch, S.,
Fragopoulou, P., and Priol, T. (eds.), Grid Computing
Achievements and Propects, pp. 121–132. Springer-Verlag,
Berlin.

[17] Gabarro, J., Serna, M., and Stewart, A. (2011) Web
services and incerta spiriti: A game theoretic approach to
uncertainty. In Liu, W. (ed.), Symbolic and Quantitative
Approaches to Reasoning with Uncertainty - 11th European
Conference, ECSQARU 2011, Belfast, UK, June 29-July 1,
Berlin, LNCS, 6717, pp. 651–662. Springer-Verlag.

[18] Kitchin, D., Quark, A., Cook, W., and Misra, J. (2009)
The Orc programming language. In Lee, D., Lopes, A.,
and Poetzsch-Heffter, A. (eds.), Formal Techniques for
Distributed Systems, Joint 11th IFIP WG 6.1 International
Conference FMOODS 2009 and 29th IFIP WG 6.1
International Conference FORTE 2009, Lisboa, Portugal,
June 9-12, LNCS, 5522, pp. 1–25. Springer-Verlag, Berlin.

[19] Stewart, A., Gabarro, J., Clint, M., Harmer, T., Kilpatrick,
P., and Perrott, R. (2006) Managing grid computations: An
orc-based approach. In Guo, M., Yang, L. T., Martino,
B. D., Zima, H. P., Dongarra, J., and Tang, F. (eds.),
Parallel and Distributed Processing and Applications, 4th
International Symposium, ISPA 2006, Sorrento, Italy,
December 4-6, LNCS, 4330, pp. 278–291. Springer-Verlag,
Berlin.

[20] Bougé, L. (1993) Le mòdele de programmation à parallélisme
de données: une perspective sémantique. Techniques et
Sciences Informatiques, 12, 541–562.

[21] Osborne, M. and Rubinstein, A. (1994) A Course on Game
Theory. MIT Press, New York and Oxford.

[22] Nash, J. (1950) Equilibrium points in n-person games.
Proceedings of the National Academy of Sciences of the
United States of America, 36, 48–49.

[23] von Neumann, J. and Morgenstern, O. (1944) Theory of
Games and Economic Behavior. Princeton University Press,
Princeton and Oxford.

[24] Lynch, N. (1996) Distributed algorithms. Morgan Kauf-
mann, San Francisco, California.

[25] Stewart, A., Gabarro, J., and Keenan, A. (2012).
Reasoning about orchestrations of web services using partial
correctness. Formal Aspects of Computing, in press.

Web-orchestrations under stress 23

[26] Wehrman, I., Kitchin, D., Cook, W., and Misra, J. (2008)
A timed semantics of Orc. Theoretical Computer Science,
402, 234–248.

[27] Allen, J. (1983) Maintaining knowledge about temporal
intervals. Communications of the ACM, 26, 832–843.

[28] Römer, K. (2001) Time synchronization in ad hoc networks.
2nd ACM International Symposium on Mobile Ad Hoc
Networking and Computing, MobiHoc 2001, October 4-5,
Long Beach, CA, USA, Proceedings, pp. 173–182. ACM.

[29] Garcia, A. (2012) The Complexity of Angel-Daemons and
Game Isomorphism. PhD thesis Universitat Politècnica de
Catalunya (Barcelona Tech).

[30] Stoneburner, G., Goguen, A., and Feringa, A. (2002)
Risk management guide for information technology systems
recommendations of the National Institute of Standards and
Technology. Technical Report NIST Special publication 800-
30.

[31] van der Aalst, W. M. P., ter Hofstede, A. H. M.,
Kiepuszewski, B., and Barros, A. P. (2003) Workflow
patterns. Distributed and Parallel Databases, 14, 5–51.

[32] Cook, W. R., Patwardhan, S., and Misra, J. (2006) Workflow
patterns in Orc. In Ciancarini, P. and Wiklicky, H. (eds.),
Coordination Models and Languages, 8th International
Conference, COORDINATION 2006, Bologna, Italy, June
14-16, Proceedings, LNCS, 4038, pp. 82–96. Springer,
Berlin.

[33] Ardagna, D., Panicucci, B., and Passacantando, M. (2011)
A game theoretic formulation of the service provisioning
problem in cloud systems. Proceedings of the 20th
international conference on World wide web, New York, NY,
USA WWW ’11, pp. 177–186. ACM.

[34] Zheng, X., Martin, P., Powley, W., and Brohman, K.
(2010) Applying bargaining game theory to web services
negotiation. 2010 IEEE International Conference on
Services Computing (SCC), Los Alamitos, CA, USA, july,
pp. 218 –225. IEEE Computer Society.

[35] Niyato, D., Vasilakos, A. V., and Zhu, K. (2011) Resource
and revenue sharing with coalition formation of cloud
providers: Game theoretic approach. 11th IEEE/ACM
International Symposium on Cluster, Cloud and Grid
Computing, CCGrid 2011, Newport Beach, CA, USA,
May 23-26, Los Alamitos, CA, USA, pp. 215–224. IEEE
Computer Society.

[36] Liu, A., Li, Q., Huang, L., Ying, S., and Xiao, M.
(2012). Coalitional game for community-based autonomous
web services cooperation. IEEE Transactions on Services
Computing, in press.

[37] Akkarajitsakul, K., Hossain, E., and Niyato, D. (2013)
Coalition-based cooperative packet delivery under uncer-
tainty: A Dynamic Bayesian Coalitional game. IEEE
Transaction on Mobile Computing, 12, 371–385.

[38] Yang, X., Cui, W., Liu, Z., and Ouyang, F. (2008) Study on
uncertainty of geospatial semantic web services composition
based on broker approach and Bayesian networks. Proc.
SPIE 7143, Geoinformatics 2008 and Joint Conference on
GIS and Built Environment: Geo-Simulation and Virtual
GIS Environments. Electronic access.

[39] Johnson, B., Grossklags, J., Christin, N., and Chuang, J.
(2010) Uncertainty in interdependent security games. In
Alpcan, T., Buttyán, L., and Baras, J. S. (eds.), Decision
and Game Theory for Security - First International
Conference, GameSec 2010, Berlin, Germany, November
22-23, 2010, LNCS, 6442, pp. 234–244. Springer, Berlin.

[40] Gao, A., Yang, D., Tang, S., and Zhang, M. (2006)
QoS-driven web service composition with inter service
conflicts. In Zhou, X., Li, J., Shen, H. T., Kitsuregawa,
M., and Zhang, Y. (eds.), Frontiers of WWW Research
and Development - APWeb 2006, 8th Asia-Pacific Web
Conference, Harbin, China, January 16-18, LNCS, 3841,
pp. 121–132. Springer, Berlin.

[41] Wang, X., Vitvar, T., Kerrigan, M., and Toma, I. (2006)
A QoS-aware selection model for semantic web services.

In Dan, A. and Lamersdorf, W. (eds.), Service-Oriented
Computing - ICSOC 2006, 4th International Conference,
Chicago, IL, USA, December 4-7, LNCS, 4294, pp. 390–
401. Springer, Berlin.

[42] Rosario, S., Benveniste, A., and Jard, C. (2010)
Flexible probabilistic QoS management of orchestrations.
International Journal of Web Services Research, 7, 21–42.

[43] Gärtner, F. C. (1999) Fundamentals of fault-tolerant
distributed computing in asynchronous environments. ACM
Computing Surveys, 31, 1–26.

[44] Dolev, D. (1982) The Byzantine generals strike again.
Journal of Algorithms, 3, 14–30.

[45] Castro, M. and Liskov, B. (1999) Practical Byzantine fault
tolerance. In Seltzer, M. I. and Leach, P. J. (eds.),
Proceedings of the Third USENIX Symposium on Operating
Systems Design and Implementation (OSDI), New Orleans,
Louisiana, USA, February 22-25, pp. 173–186. USENIX
Association.

[46] Lamport, L., Shostak, R. E., and Pease, M. C. (1982)
The Byzantine generals problem. ACM Transactions on
Programming Languages and Systems, 4, 382–401.

[47] Pease, M. C., Shostak, R. E., and Lamport, L. (1980)
Reaching agreement in the presence of faults. Journal of
the ACM, 27, 228–234.

[48] Welch, J. L. and Lynch, N. A. (1988) A new fault-tolerance
algorithm for clock synchronization. Information and
Computation, 77, 1–36.

[49] Malkhi, D. and Reiter, M. K. (1998) Byzantine quorum
systems. Distributed Computing, 11, 203–213.

[50] Koo, C.-Y. (2004) Broadcast in radio networks tolerating
Byzantine adversarial behavior. In Chaudhuri, S. and
Kutten, S. (eds.), Proceedings of the Twenty-Third Annual
ACM Symposium on Principles of Distributed Computing,
PODC 2004, St. John’s, Newfoundland, Canada, July 25-
28, pp. 275–282. ACM.

[51] Srikanth, T. K. and Toueg, S. (1987) Simulating
authenticated broadcasts to derive simple fault-tolerant
algorithms. Distributed Computing, 2, 80–94.

[52] Karakostas, G. and Viglas, A. (2007) Equilibria for networks
with malicious users. Mathematical Programming, 110,
591–613.

[53] Roth, A. (2008) The price of malice in linear congestion
games. In Papadimitriou, C. H. and Zhang, S.
(eds.), Internet and Network Economics, 4th International
Workshop, WINE 2008, Shanghai, China, December 17-20,
LNCS, 5385, pp. 118–125. Springer, Berlin.

[54] Babaioff, M., Kleinberg, R., and Papadimitriou, C. H.
(2009) Congestion games with malicious players. Games
and Economic Behavior, 67, 22–35.

[55] Chakrabarty, D., Karande, C., and Sangwan, A. (2009)
The effect of malice on the social optimum in linear load
balancing games. CoRR, abs/0910.2655.

[56] Dı́az, J., Mitsche, D., Rustagi, N., and Saia, J. (2009) On
the power of mediators. In Leonardi, S. (ed.), Internet and
Network Economics, 5th International Workshop, WINE
2009, Rome, Italy, December 14-18, LNCS, 5929, pp. 455–
462. Springer, Berlin.

[57] Roughgarden, T. (2001) Stackelberg scheduling strategies.
Proceedings on 33rd Annual ACM Symposium on Theory
of Computing, July 6-8, Heraklion, Crete, Greece, pp. 104–
113. ACM.

[58] Gabarro, J., Kilpatrick, P., Serna, M., and Stewart,
A. (2010) Stressed web environments as strategic games:
Risk profiles and weltanschauung. In Wirsing, M.,
Hofmann, M., and Rauschmayer, A. (eds.), Trustworthly
Global Computing - 5th International Symposium, TGC
2010, Munich, Germany, February 24-26, Revised Selected
Papers, LNCS, 6084, pp. 189–204. Springer-Verlag, Berlin.

[59] Gabarro, J., Serna, M., and Stewart, A. (2012) Orches-
trating unreliable services: strategic and probabilistic ap-
proaches to reliability. In Bruni, R. and Sassone, V. (eds.),

24 J. Gabarro, M. Serna, A. Stewart

Trustworthy Global Computing - 6th International Sympo-
sium, TGC 2011, Aachen, Germany, June 9-10, Revised
Selected Papers, LNCS, 7173, pp. 197–211. Springer-Verlag,
Berlin.

[60] Keynes, J. (1921) A Treatise on Probability. Macmillan and
Co. Re-edition, Dover Publications, New-York, 2004.

[61] Franklin, B. (1748) Advice to a Young Tradesmen, Written
by an Old One. Re-edition, Franklin: The Autobiography
and Other Writings on Politics, Economics and Virtue,
Cambridge University Press, 2004.

[62] Gibbons, R. (1992) A Primer in Game Theory. Prentice
Hall, London.

[63] Zweigmedia.
http://www.zweigmedia.com/RealWorld/simplex.html.

APPENDIX A.

A Call-and-delay example: Consider the orchestration
RareEmails

RareEmails

=
(
(Hello | Bye) > x1 > TwoEmails(x1, x2)

)
< x2 < (CNN | BBC)

which contains the sub-orchestration

TwoEmails(x1, x2) = (EmailAlice(x1) | EmailBob(x2))

Services TwoEmails, EmailAlice and EmailBob are
abbreviated to TE , EA and EB , respectively. The
bounds for x1 are determined by the call-and-
delay environment for sequential composition while
the bounds for x2 are given by the call-and-delay
environment for pruning. The delay of RareEmails is
calculated using the environment C = (∅, [0, 0]). Let

μ1 = min{δ(Hello), δ(Bye)}
δ1 = max{δ(Hello), δ(Bye)}
μ2 = min{δ(CNN), δ(BBC)}

The call-and-delay environment for TE is C1 = (D,T)
with D = {[x1, μ1, δ1], [x2, μ2, μ2]} and T = [μ1, δ1].
EA and EB are evaluated using the environments
C2 = (D[{x1}],T) and C3 = (D[{x2}],T), respectively.
Then

μC2
(EA(x1)) = μ1 + δ(EA)

δC2
(EA(x1)) = δ1 + δ(EA)

μC3
(EB(x2)) = max{μ1, μ2}+ δ(EB)

δC3
(EB(x2)) = max{δ1, μ2}+ δ(EB)

μC1
(TE(x1, x2)) = min{μC2

(EA(x1)), μC3
(EB(x2))}

δC1
(TE(x1, x2)) = max{δC2

(EA(x1)), δC3
(EB(x2))}

Abbreviating μC to μ and δC to δ we have:

μ(RareEmails) = μ(TE)

= min{μ1 + δ(EA),max{μ1, μ2}+ δ(EB)}
δ(RareEmails) = δ(TE)

= max{δ1 + δ(EA),max{δ1, μ2}+ δ(EB)}

Web-orchestrations under stress 25

APPENDIX B.

Approximation of the value of the game in Example 10:
To compute the value of the game in example 10 we
reduce this problem to an optimization problem [10].
As d tries to increase the cost by randomization the
constraint c(α, d) ≤ ν holds for (α, d) ∈ Δa × Ad.
Defining x(a) = 1/ν ≥ 0 we get

∑
a∈Aa

x(a)c(a, d) ≤ 1.
It also holds

∑
a∈Aa

x(a) = 1/ν. a is interested in
minimizing ν (because it is a cost); consequently, a
wishes to maximize

∑
a∈Aa

x(a). Summarizing we have
the following optimization problem

Optimization problem. For all a ∈ Aa, find
x(a) ≥ 0 verifying∑

a∈Aa

x(a)c(a, d) ≤ 1 for d ∈ Ad

such that
∑

a∈Aa
x(a) is maximised. The

value of the game is ν = 1/(
∑

a∈Aa
x(a)).

Let ν be the value of the game. Defining

x = α({W})/ν, y = α({D})/ν z = α({P})/ν

the constraint
∑

x(a)c(a, {W,D}) ≤ 1 is

5.2x+ 50.2y + 50.1z ≤ 1

Constraints corresponding to {W,P} and {D,P} are:

5.2x+ 50.1y + 5.2z ≤ 1

50.1x+ 5.2y + 5.2z ≤ 1

Maximizing x+ y + z with a Simplex method tool [63]
we obtain x+ y + z = 0.03615 and ν ≈ 27, 66.

