
Learning in unknown reward games:
Application to sensor networks

ARCHIE C. CHAPMAN1, DAVID S. LESLIE2, ALEX ROGERS3 & NICHOLAS
R. JENNINGS3

1School of Electrical and Information Engineering, University of Sydney, NSW 2006, Australia
2School of Mathematics, University of Bristol, University Walk, Bristol, BS8 1TW, UK

3School of Electronics and Computer Science, University of Southampton, SO17 1BJ, UK
Email: archie.chapman@sydney.edu.au, david.leslie@bristol.ac.uk, {acr,nrj}@ecs.soton.ac.uk

This paper demonstrates a decentralised method for optimisation using game-theoretic multi-agent
techniques, applied to a sensor network management problem. Our first major contribution is to
show how the marginal contribution utility design is used to construct a unknown-reward potential
game formulation of the problem. This formulation exploits the sparse structure of sensor network
problems, and allows us to apply a bound to the price of anarchy of the Nash equilibria of the
induced game. Furthermore, since the game is a potential game, solutions can be found using multi-
agent learning techniques. The techniques we derive use Q-learning to estimate an agent’s rewards,
while an action adaptation process responds to an agent’s opponents’ behaviour. However, there are
many different algorithmic configurations that could be used to solve these games. Thus, our second
major contribution is an extensive evaluation of several action adaptation processes. Specifically,
we compare six algorithms across a variety of parameter settings to ascertain the quality of the
solutions they produce, their speed of convergence, and their robustness to pre-specified parameter
choices. Our results show that they each perform similarly across a wide range of parameters.
There is, however, a significant effect from moving to a learning policy with sampling probabilities

that go to zero too quickly for rewards to be accurately estimated.
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1. INTRODUCTION

Designing and deploying a large, distributed system poses
many engineering challenges. In particular, in many
scenarios, centralised control is not possible, because
limits on the system’s communication and computational
resources prevent a central authority from having sufficient
knowledge of the environment and direct communication
with all of the components of the system. In response to
these constraints, researchers have focused on decentralised
control mechanisms for such systems. This paper
demonstrates a decentralised method for optimisation
using game–theoretic multi–agent techniques, applied to
a distributed sensor network management problem. In
doing so, it brings together several strands of work,
on reinforcement learning, compact game representations,
equilibrium efficiency analysis and learning in games.

Given this context, consider a wide–area surveillance
problem given by an ad hoc wireless sensor network
management problem, such as the one described in [1]. The
problem is to maximise the efficiency of a sensor network
deployed for wide–area surveillance, in which each sensor’s
daily available battery charge is constrained, so they can
only be actively sensing for a limited time each day. For
example, if this period is one third of the day, then the

agent has to make a decision on when it chooses to actively
sense, and when it should sleep. In order to cover the
entire field of observation, the sensors’ observation ranges
overlap, which means that the usefulness of each sensor’s
observations is coupled with that of its neighbours’. Hence,
the first part of the problem is to coordinate sense/sleep
cycles of the sensors so to maximise the expected number
of events observed each day. However, these events occur
at random, and, at the outset, the mean frequency of events
is unknown to the sensors. Thus, the sensors have to
search the joint action space in order to learn the mean
frequencies of events occurring, while also coordinating
their sense/sleep cycles to reduce the likelihood to redundant
event observations. In this setting, resource constraints
make centralised computation of a policy impossible, due to
the extra energy costs of centrally collecting and returning
a solution, and because the computation of a solution
may require more energy or memory than any one node
possesses.

In this paper, we use this example domain to demonstrate
the efficacy of several game–theoretic learning algorithms
we derive for problems with unknown noisy rewards.
Specifically, we cast the sensor network management
problem as a potential game [2], which is a class
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of noncooperative games that have gained prominence
as a design template for decentralised control in the
distributed optimisation and multi–agent systems research
communities, and for which there are many distributed
iterative algorithms that are guaranteed to converge.

In general, given a global reward function, a potential
game is constructed by distributing the system’s control
variables among a set of agents (or players), and each agent’s
reward function is derived so that it is aligned with the
system–wide goals. That is, an agent’s reward increases
only if the global reward increases (as in [3] or, more
recently, [4]). If the agents’ rewards are aligned with the
global reward function, then the global reward function is a
potential for the game, and the game is a potential game.
This, in turn, implies that the (pure) Nash equilibria of
the constructed game correspond to the local optima of the
potential function and the global reward function. This is
a very useful property of potential games, because a Nash
equilibrium is an action profile that is robust to unilateral
changes in agents’ strategies; and as a consequence, the local
optima of the potential function are stable in these games.
Furthermore, under the common assumption that the global
reward function is submodular in the agents’ contributions
(i.e. each agent has a decreasing marginal contribution), then
the ratio of the worst–case Nash equilibrium to the optimum
can be bounded. This ratio is known as the price of anarchy,
and [5] show that in submodular marginal contribution
games it is at most 1/2, or in other words, the value of the
worst Nash equilibrium solution (local maximum) is within
1/2 of that of the global optimum. This is effectively a bound
on the cost of distributing the control of the problem among
multiple autonomous agents.

Given this framework for distributing an optimisation
problem, we then specify several distributed algorithms for
finding a Nash equilibrium. This problem is addressed by
the literature on learning in games; the dynamics of learning
processes in repeated games is a well investigated branch of
game theory (see [6], for example). In particular, the results
that are relevant to this work are the guaranteed convergence
to Nash equilibrium in potential games of a variety of action
adaptation processes, including finite–memory better reply
processes [8], adaptive play [9], joint–strategy fictitious
play [10], fading–memory regret monitoring [11], and
generalised weakened fictitious play [7]; we also include
in our investigation regret-matching [23], which converges
to the set of correlated equilibria. Thus, a decentralised
solution to an optimisation problem can be found by,
first, constructing a potential game from the optimisation
problem, and then using one of these algorithms to compute
an equilibrium.

There is, however, one major shortcoming to these
algorithms. As is standard in game theory, there is an
assumption that the value of each configuration of variables,
or the agents’ rewards for different joint strategy profiles, is
known from the outset. Although this is a sound assumption
in some domains, in the sensor network domain that we are
tackling, it is not realistic to assume that the rewards for
different variable configurations can be pre–specified. This

is because the system’s task is to learn about the phenomena
under observation, but the rewards earned by the agents in
the system are a function of the phenomena detected, so their
rewards cannot be known before they are deployed.

In this paper, we take several algorithms that are
known to converge in potential games, use Q –learning to
estimate joint action rewards [12], and interleave their action
selection with an appropriately defined learning policy that
ensures that rewards are accurately learnt. In more detail,
we cast the sensor network management problem as a
potential game with unknown noisy rewards. These are
games in which an agent’s payoff for each outcome is
assumed to be drawn from a distribution with bounded
variance whose mean is consistent with a potential function.
The adaptive processes we consider simultaneously perform
recursive estimation of reward function means using Q–
learning and adaptation to the strategies of others in the
game. Our approach to these types of problems gives agents
the ability to effectively learn their reward functions, while
coordinating on a pure strategy Nash equilibrium.

Furthermore, since the number of joint actions in a
game is exponential in the number of agents, estimating a
reward for each joint action quickly becomes an intractable
problem. For example, in the application described above, if
a network of n sensors each have three periods in which to
collect observations, the resulting game has 3n joint actions.
A typical technique for avoiding such computational
difficulties is to find compact representations of the problem
at hand, and in this vein, we consider a commonly
used compact graphical representation of games known as
graphical normal form [13, 14]. This representation uses
a graph to summarise reward dependencies, and can be
exponentially more compact than the standard normal form
if the agents’ interaction structure is sufficiently sparse, as is
typically the case in problems with geographic spread, such
as sensor networks. This allows us to use efficient learning
policies for Q–learning, such that the learning problem
facing the agents is significantly reduced.

We draw three main conclusions from our experiments:

• Our results show a surprising uniformity in the
performance of the game–theoretic algorithms, with
the execption of the regret-matching algorithm, which
performs relatively poorly. Thus, any of the remaining
algorithms seem to be suitable for use as distributed
optimisation routines for problems formulated as
potential games with unknown rewards.

• We also find that the algorithms are quite robust to
choices in their free parameters, although the effect of
overly-large amount of inertia or belief discounting can
be detrimental to algorithms using those effects.

• There is, however, a significant effect from moving to
a learning policy with sampling probabilities that go to
zero too quickly for rewards to be accurately estimated,
and we conjecture that this is a direct effect of relying
incorrect reward estimates.

We also test the algorithm’ sensitivity to changes in the
sparsity of the problem, and we see a significant effect from
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increasing the averge number of neighbours that a node has,
but this effect is small and reasonable given the local search
nature of the algorithms investigated here.

1.1. Related work

This paper is an empirical accompaniment to [15], which
provides theoretical convergence results for the finite
memory algorithms evaluated here in games with unknown
noisy rewards. As such, several results from [15] and other
works are stated here without proof.

There are alternative frameworks which could be used to
model the problem addressed in this paper. One is to adopt
the distributed constraint optimisation (DCOP) framework
by representing the problem with in a factor graph, in
which each overlapping region of sensing is treated as a
separate factor (e.g. [1]). Such problems can be solved
using Max–Sum or a related algorithm. However, when
using the graphical normal form game representation, we
do not need to explicitly model each factor (as it is, our
model has an agent’s utility function implicitly composed
of marginal contributions to factors). Moreover, in general,
it may not be always possible to identify factors separately,
as the agents might not be able identify the phenomena (and
do not have localisation capacities) in order to associate one
sensor’s observation with another. In this case, the problem
cannot be formulated as a factor graph, and if it cannot
admit this representation, the Max–Sum algorithm cannot
be applied. On the other hand, if two observations of any
phenomena can be associated with a region, then a factor
can be estimated. However, this may require additional
computational resources.

Another point of difference is that our game-theoretic
approaches are guaranteed to converge to a bounded
approximate solution. In contrast, Max–Sum has no
such convergence guarantees on loopy topologies, such
as the factor–graphs typically encountered in sensor
network problems. Nonetheless, we also include a Max–
Sum implementation based on Q –learned rewards as a
benchmark algorithm in Section5.2.

The paper progresses as follows: In the next section
we cover the necessary background on non–cooperative
games, games with unknown rewards, the graphical normal
form representation and potential games derived using the
marginal contribution utility design. Section 3 covers
the sensor network problem that we are addressing, and
shows how to formulate it as a marginal contribution
potential game. In Section 4, we describe the algorithms
investigated in this paper, beginning with a multi–agent
version of Q –learning using the ε–greedy policy, and
then considering each of the action adaptation processes
listed above, before combining the two. Our experimental
evaluation is covered in Section 5, which begins with the
design of the experiments and the algorithm configurations
examined, considering both the quality of the solutions
produced by the algorithms as well as their robustness to
different choices of values for their free parameters, and then
reports and analyses the results of our simulations. Section 6

summarises the contributions of this paper, and discusses
how our results may be extended.

2. PRELIMINARIES

This section covers noncooperative games, defines games
with unknown and noisy rewards and games in graphical
normal form, and discusses potential games derived via
marginal contribution utilities. Throughout, we use P(·) to
denote the probability of an event occurring.

2.1. Noncooperative games

We consider repeated play of a finite noncooperative game
Γ = 〈N,{Ai,ri}i∈N〉, where N = {1, . . . ,n} is a set of agents,
Ai is the set of actions of agent i, and ri : ×i∈NAi → R is
i’s reward function. Let A = ×i∈NAi be the set of all joint
actions (also called outcomes), and a ∈ A be a particular
joint action. Agents can choose to play according to a
distribution over pure actions, σi ∈ ∆(Ai), known as a mixed
strategy, where each element σi(ai) is the probability i plays
ai. The rewards of the mixed extension of the game are given
by the expected value of ri under the joint mixed strategy
σ ∈ ×i∈N∆(Ai) over outcomes:

ri(σ) = ∑
a∈A

(
∏
j∈N

σ j(a j)

)
ri(a). (1)

We use the notation a = (ai,a−i), where a−i is the joint
action chosen by all agents other than i and, similarly, σ =
(σi,σ−i) where σ−i is the joint independent lottery. In this
paper, we are interested two solutions, namely Nash and
correlated equilibrium.

DEFINITION 2.1. A joint strategy, σ∗ ∈ ×i∈N∆(Ai), is a
Nash equilibrium if it satisfies:

ri(σ∗)− ri(σi,σ∗−i)≥ 0 ∀ σi ∈ ∆(Ai), ∀ i ∈ N.

If there is no player, i, that is indifferent between σ∗i and
another strategy (i.e. the inequality above is strict ∀ σi 6=
σ∗i ), then σ∗ is a strict Nash equilibrium. All strict Nash
equilibria are pure.

DEFINITION 2.2. A distribution ψ ∈ ∆(A) is a correlated
equilibrium if it satisfies:

∑
a∈A : ai 6=k

ψ(a)(ri(a)− ri(k,a−i))≥ 0 ∀ k ∈ Ai, ∀ i ∈ N.

Note that every Nash equilibrium is a correlated
equilibrium with ψ a product distribution. Approximate δ–
Nash and correlated equilibria are defined by replacing the
right hand side of the two expressions above with δ > 0.
A final technical definition is generic games: Γ is generic
if a small change to any single reward does not change
the number or location of the Nash equilibria of Γ. A
sufficient condition for Γ to be generic is that a player is
never indifferent between its pure actions. An important
implication is that all pure Nash equilibria in generic games
are strict.
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2.2. Games with unknown noisy rewards

We now introduce the model of rewards received in a
repeated learning situation such as the one in our sensor
network application. This models the realistic scenario that
the observed rewards are noisy, and comprise of an expected
value equal to the unknown underlying reward function ri(a)
and a zero–mean random perturbation. We call this scenario
unknown noisy rewards. This situation therefore requires
the individuals to estimate their underlying reward functions,
while also adapting their strategies in response to the actions
of other agents.

DEFINITION 2.3. A game with unknown noisy rewards is
a game in which, when the joint action a∈ A is played, agent
i receives the reward

Ri = ri(a)+ ei (2)

where ri(a) is the true expected reward to agent i from joint
action a∈A, and ei is a random variable with expected value
0 and bounded variance.

To avoid unnecessary over–complication in this article,
we assume that each realisation of each ei is independent of
all other random variables. Note that a game with unknown
noisy rewards is a generalisation of the bandit problem
discussed by [12], and we shall use similar reinforcement
learning strategies to estimate the values of ri(·).

2.3. Games in graphical normal form representation

The game representation above is known as standard normal
form. One drawback of this representation is that the
joint action space A grows exponentially with the number
of agents. Moreover, in games with noisy rewards,
the estimation problem becomes impractical because the
number of joint actions to sample is so large. However,
in systems with an inherent structure, such as those with a
natural spatial structure in which interaction only directly
occurs between geographically close individuals, agents
should only need to consider the actions of their neighbours.
We now introduce a compact representation for games,
which we will later show can be exploited to improve the
agents’ learning rates.

The representation is called graphical normal form
(GNF), and it is used to represent games in which some
agents’ rewards are independent of others’ strategies [13].
In this form, the nodes of a graph correspond to the set
of agents, while edges connect an agent to the others with
which it shares a reward dependency, called its neighbours.
The neighbourhood of i is the smallest set νi of players
such that agent i’s reward is entirely determined by ai and
{a j : j ∈ νi}. We say an undirected reward dependency
exists between i and j(6= i) if either j ∈ νi or i ∈ ν j.

DEFINITION 2.4. A game in GNF comprises a set of
agents located on the nodes of a graph. An agent is
connected to those with which it shares an undirected reward
dependency, which includes its set of neighbours νi ⊆ N.
Its reward function, ri(ai,νi), is then given by an array

indexed by tuples from the set × j∈{i,νi}|A j|. Games in GNF
with unknown noisy rewards are defined similarly, with the
difference being that when the joint action a ∈ A is played,
agent i receives the reward

Ri = ri(ai,aνi)+ ei, (3)

where ri(ai,aνi) is the true expected reward to agent i for the
joint action (ai,aνi), and ei is a random variable with zero
mean and bounded variance.

Note that in GNF, ri(a) depends only on ai and aνi , where
aνi is the joint action of all the neighbours of i. Subsequently,
we write ri as a function of the joint actions of i and its
neighbours; that is, ri(ai,νi). Also, note that GNF is fully
expressive, as any game in standard normal form can be
represented in GNF with a complete graph.

2.4. Potential games and marginal contribution utilities

We wish to use game–theoretic techniques to solve a
distributed optimisation problem, and in this section we
introduce a class of games that make this possible.

Assume that φ(a) is a function that represents the systems’
global objectives. If an increase in a player’s reward
improves φ(a) by the same amount, then we say that is
aligned with φ(a). This condition is formalised by the
following class of games [2]:

DEFINITION 2.5. A function φ : A→ R is a potential for
a game if ∀ i ∈ N, ∀ ai, ãi ∈ Ai, and ∀ a−i ∈ A−i:

φ(ai,a−i)−φ(ãi,a−i) = ri(ai,a−i)− ri(ãi,a−i), (4)

and a game that admits such a function is a potential game.

We say utility functions are aligned with a global reward
if the reward function is a potential for the game induced by
the utility design.

LEMMA 2.1. All games that admit a potential φ(a)
possess a pure Nash equilibrium; all local maxima of φ(a)
are pure Nash equilibria.

The existence and characterisation of pure Nash equilibria
are a consequence of Lemma 2.1 of [2].

The most straightforward way to align the agents’ rewards
with the global reward function is to set them all equal to this
function, resulting in a team game (a.k.a. common interest
game). A second, more sophisticated, way to do this is to
set each agent’s reward equal to the marginal contribution it
makes to the global reward. This often reduces the coupling
between different agents’ reward functions when the agents’
interactions are sparse, as is the case for games compactly
represented in GNF, which facilitates significant reductions
in the communication and computation requirements facing
each agent.

In more detail, the sensor network management problem
that we address here is an example of an allocation problem,
which is characterised by a global reward that is a set
function, φ : 2|N| → R. Computing an agent’s marginal
contribution to φ involves computing φ( /0,a−i), which is the
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global reward, sans i, earned by the team of agents. Agent
i’s marginal contribution to φ(a) is then computed by taking
the difference of the reward if i contributes its component ai
of a and the reward if i adopts a null action /0 (i.e. as if i was
removed from the system):

ri(ai,a−i) = φ(ai,a−i)−φ( /0,a−i). (5)

Any change in i’s reward due to a unilateral change in its
action now results in a equal change in the global reward:

ri(ai,a−i)− ri(ãi,a−i)

= φ(ai,a−i)−φ( /0,a−i)− (φ(ãi,a−i)−φ( /0,a−i))

= φ(ai,a−i)−φ(ãi,a−i).

Now, although the computation and communication benefits
of the marginal contribution utility design may not be
apparent in the general case above, they will become clear
once we introduce our sensor network model (in Section 3).

Furthermore, using marginal contributions to a set
function allows us to apply a bound to the game’s price of
anarchy, which is the ratio of the worst Nash equilibrium
to the global optimum [5]. In order to do this, however,
we must assume some additional conditions on the problem.
Specifically, if the potential function is a set function that is
non–decreasing and submodular, then the price of anarchy of
the locally optimal Nash equilibrium solutions can be bound.

DEFINITION 2.6. A set function f : 2|Z| → R in
submodular if f (X)+ f (Y )≥ f (X∪Y )+ f (X∩Y ), ∀ X ,Y ⊆
Z, and is non–decreasing if f (X)≤ f (Y ), ∀ X ⊆ Y ⊆ Z.

A simple class of submodular functions are the linear
functions: f (X) = ∑i∈I wi, for some set of weights wi ∈
R (n.b. if all wi ≥ 0 then f (·) is also non-decreasing).
Monotone submodular functions also arise in many
combinatorial settings, such as coverage functions and cut
functions in graphs and hypergraphs, and other setting where
returns to resource allocations are naturally decreasing, such
as entropy functions in estimation and monitoring problems
and in many typical economic scenarios with decreasing
marginal returns to effort or investment. In the next section
we show that our sensor network problem is non–deceasing
submodular.

The properties of non–deceasing submodularity lead to
the following result.

THEOREM 2.1. In marginal contribution potential games
with non–decreasing submodular task reward functions, the
ratio of the worst–case Nash equilibrium to the optimum is
bounded by 1/2.

This result is an application of the results of [16], as shown
for marginal contribution potential games by [5].

3. SENSOR NETWORK MANAGEMENT MODEL

The problem we consider in this paper is that of maximising
the efficiency of a sensor network deployed for wide–
area surveillance by coordinating the sense/sleep schedules
of power constrained energy-harvesting sensor nodes.

Specifically, acoustic sensors, which can be used to detect
foot or vehicle traffic, are deployed in an urban setting to
monitor nearby traffic. The sensors run on energy harvested
from the environment; That is, they operate in an “energy–
neutral” mode, such that their energy use is equal to their
generation [1, 17]. Since the signal–processing required to
detect events is typically the most energy intensive activity,
the sensors cannot be permanently powered. Rather, they
must adopt a duty cycle and sensing schedule that maintains
energy-neutral operation. For example, if the length of time
that a sensor operates for is one third of the day, then it has
to decide on which third of the day it senses, and in which
periods it sleeps. The sensors are assumed to be placed
randomly, so in order to cover the entire field of observation,
they are dispersed densely enough to ensure that nearby
sensors’ observation ranges overlap. As such, the usefulness
of each sensor’s observations is coupled with that of other
sensors covering a common section of road. An example
of the simulation domain is given in Figure 1, which shows
the sensors’ locations and ranges and the underlying road
network on which traffic flows.

This sensor network coverage optimisation problem can
be divided into two parts. The first is to coordinate
sense/sleep cycles of the sensors so as to maximise the
expected number of events observed each day. However,
these events occur at random, and, at the outset, the mean
frequency of events is unknown to the sensors — below,
we show that this makes the sensors’ rewards unknown and
noisy. The second part of the problem, then, is to estimate
the payoffs for different configurations of sensor cycles
(which are a function of the unknown mean frequencies
of events in the different regions under surveillance and
the sleep/sense cycles of the sensors). To do this, the
sensors have to learn their payoffs while also coordinating
their sense/sleep cycles to maximise the number of event
observed. The large number of sensor nodes (there may
be hundreds in the system) and the constraints on their
computation and communication rules out a centralised
optimisation method, so a distributed method must be used.

In more detail, at the system–wide level, during any
particular day, a set X of traffic events occurs. The simulator
generates several hundred potential event locations, and an
event occurs at a particular location in a particular period of
the day with a fixed probability, which varies across periods
of the day, but is fixed from day to day. These correlations
have their origins in the flow of traffic through the underlying
network. We define the value of a sensor observing an event,
x ∈ X as:

V x(a) = 1−β#x(a)

where #x(a) is the number of sensors that observe x (it
is observed if it occurs within a sensor’s sensing radius
when the sensor is on), and 0 < β < 1 is a sensor’s false–
negative detection rate. The parameter β acts to differentiate
between sensing cycle configurations that result in many
redundant observations of the same event, by imposing
diminishing contributions to the global reward for each
additional observation of an event. In other words, V x(·) is
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FIGURE 1. The ad hoc wireless sensor network with overlapping sensor regions and the underlying road network. Solid red numbered dots
are sensors, opaque red circles indicate the observation regions of active sensors, and white dots represent the vehicles causing events.

submodular. Also note that V x is 0 if x goes unobserved. The
agents time–stamp the events that they sense, and at the end
of each day, they compare the lists of time–stamped events
to evaluate their action (their choice of sensing period) for
that day. An agent’s reward for observing an event is the
difference in reward it earns for the system for observing or
not observing the event; that is, its marginal contribution to
the system’s performance:

Rx
i (ai,aνi) = β#x(ai,aνi )−1−β#x(ai,aνi ) (6)

Then, each day, its total reward from a sensing cycle is the
sum of rewards for all events it observes, x ∈ Xi:

Ri(ai,aνi) = ∑
x∈Xi

Rx
i (ai,aνi) (7)

See that i’s reward depends on the actions of only those
agents whose sensing ranges overlap with its own. In this
way, only neighbouring agents’ payoffs are coupled, and the
optimisation problem can be viewed as a game in GNF. This
utility derivation results in a marginal contribution potential
game, with a potential given by the total system value for all
events:

V (a) = ∑
x∈X

1−β#x(a), (8)

whose maxima correspond to the Nash equilibria of the
associated game. By focusing on high–reward event
observations, which are those that are observed by fewer
sensors, an agent moves the system towards observing

more events in total. Furthermore, since submodularity is
preserved under addition, Equation (8) is submodular, and
the worst–case price of anarchy bound of 1/2 applies.

Given the daily rewards described in Equation (7), an
agent estimates the reward it receives in a given time period
(e.g. third of the day) and given the actions of its neighbours.
Importantly, an agent does not know what portion of its
sensing areas overlap with its neighbours, so it cannot use
the observations they make when it is asleep to update the Q-
values from joint actions other than the one played, because
the agent does not know which events it also would have
seen. The agent then computes its expected number of
event observations for each time period in the next day, and
chooses to sense during a time period to using one of the
algorithms discussed in the next section.

A simple example is given in Figure 2. In this, two of
the three nodes, A and C, are sensing during a period when
four events occur x1, x2, x3 and x4. Note, this is one period
during a day, and although not currently on duty, node B will
be on and earning rewards during another period during the
current day. Letting, for example, β = 0.6, then the rewards
are as follows:

Event Marginal
Event Observed by reward contribution

x1 A 0.40 0.40
x2 ∼ 0 ∼
x3 A,C 0.64 0.24
x4 A,C 0.64 0.24

In more detail, the marginal contribution of A to
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FIGURE 2. Three sensors A, B and C, given by solid red dots,
with overlapping sensor regions as indicated by circles, and and
four squares representing the events. The two shaded circles are
the currently sensing nodes A and C.

sensing event x1 is 0.60 − 0.61 = 0.40, while its marginal
contribution to x3 is 0.61 − 0.62 = 0.24; thus, the reward
received by A for this cycle is the sum of its marginal
contributions, RA = 0.40+ 0.24+ 0.24 = 0.88. For node C
it is RC = 0.24+ 0.24 = 0.48, while for node B, we cannot
say what its reward is, as we have not specified what events
have occurred during its sensing cycle. Note that as more
sensors observe an event, the marginal contribution of each
decreases, as seen in the marginal contributions of A to x1
in comparison to x3 or x4. Furthermore, if B were also
sensing during this period, the task reward of x4 would be
1− 0.63 = 0.784, and the agents’ marginal contributions
would be 0.62−0.63 = 0.144. This would lower both A and
C’s reward for sensing during this period. This demonstrates
the submodularity of the reward function, which is justified
because the additional information gathered by making
another observation of an event is less than that for making
the previous.

4. ALGORITHMS

In the previous section, we formulated the sensor network
management problem as a potential game with unknown
noisy rewards that is repeated over time. In general, the local
iterative algorithms employed to solve this type of game
operate as follows (see the pseudo code in Algorithm 1). At
the start of each day, the agents observe the actions selected
by their neighbours, a−i (line 4), and use this information
compute their received reward, Ri, as per Equation (2), or
Equation (3) for games in GNF (line 5). In our application,
this corresponds to calculating Equation (7). Based on this
information, the individuals update their estimates of the
reward functions (line 6) and update their internal states
according to their action adaptation process (line 7). A
learning parameter ε is set according to the learning policy
in use (line 8), and a new action for the day is selected
according to either the unperturbed process (lines 9-10) or
randomly sampled in order to explore the joint action space
(lines 11-12). For these games, we wish to have behaviour
converge to an equilibrium, thereby providing a distributed
method of computing (locally) optimal joint strategies with
only noisy evaluations of the global reward function.

Algorithm 1 General iterative algorithmic framework
1: a0

i ← Random choice from Ai
2: for each day do
3: t← t +1
4: Get other agents’ last actions at−1

−i
5: Compute received reward Rt−1

i
6: Update reward estimate (using Q-learning)
7: Update internal states (according to action adaptation process)
8: Set εt

i (according to learning policy)
9: if (1− εt

i)> random then
10: Follow greedy action of adaptation process
11: else
12: Randomly sample an action from Ai

13: Implement and communicate choice

The first step in defining a class of algorithms to do this is
to specify a method to accurately learn the unknown reward
functions. This is covered in the next subsection, making
use of the Q –learning algorithm. After this, we introduce
six action adaptation processes that, when interleaved with
Q –learning, converge to an equilibrium. We break these into
three broad classes of action adaptation process, namely, the
finite memory algorithms (adaptive play and finite memory
better replies, Section 4.2), infinite joint–strategy memory
algorithms (joint–strategy fictitious play, weighted regret
monitoring and regret matching, Section 4.3), and infinite
independent–strategy memory algorithms, which are also
known as the class of generalised weakened fictitious play
processes, (Section 4.4). The final subsections of this section
then addresses Q –learning variants of these six processes.

4.1. Q –learning unknown reward functions

In noisy environments, reinforcement learning is often used
to estimate the mean value of a perturbed reward function
[12]. In particular, if the agents update their estimates of
the expected rewards for joint actions using Q –learning, and
select actions using an appropriate ε–greedy learning policy,
then the reward function estimates will converge to their true
mean values. Here, we estimate rewards as functions of joint
actions, while simultaneously reasoning about the action
selection of the other agents.1 The Q –learning scheme we
derive here will be used in conjunction with all six of the
action adaptation processes considered in the remainder of
this section.

In particular, we consider a multi–agent version of Q –
learning for single–state problems, in which the agents select
a joint action and each receives an individual reward. This
algorithm operates by each individual recursively updating
an estimate of its value of a joint action a. Specifically,
after playing action at

i , observing actions at
−i, and receiving

reward Rt
i , each individual i updates estimates Qt

i using the
equation, ∀a ∈ A:

Qt+1
i (a) = Qt

i(a)+λ(t)I{at = a}
(
Rt

i−Qt
i(a)
)

(9)

where the indicator I{at = a} takes value 1 if at = a and
0 otherwise, and λ(t) ∈ (0,1) is a learning parameter. We

1This is the JAL approach suggested (without analysis) in the context of
fictitious play by [18].
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use the following form of {λ(t)}t≥1 in the remainder of the
paper:

λ(t) =
(
Cλ +#t(a)

)−ρλ (10)

where Cλ > 0 is an arbitrary constant, ρλ ∈ (1/2,1] is a
learning rate parameter, and #t(a) is the number of times
the joint action a has been selected up to time t. Given
this form of {λ(t)}t≥1, if all Qi(a) are updated infinitely
often (i.e. all joint actions are played infinitely often), then
Qt

i(a)→ E[Rt
i |at = a] with probability 1.

The condition that all actions a ∈ A are played infinitely
often can be met with probability 1 by using a randomised
learning policy, in which the probability of playing each
action is bounded below by a sequence that tends to zero
sufficiently slowly as t becomes large. Furthermore, this
learning policy can be chosen so that it is greedy in the limit,
in that the probability with which it selects maximal reward
actions tends to 1 as t → ∞. Such policies are called greedy
in the limit with infinite exploration (GLIE) [19].

In this paper, we use the commonly–applied GLIE policy
ε–greedy. Under this policy, an agent selects a “greedy”
action at time t with probability (1− εi(t)) (although note
that we have not yet defined what a greedy action should
be in this context), and chooses an action at random with
probability εi(t).

However, in contrast to single–agent settings, in multi–
player games, the choice of joint action is made by the
independent choices of more than one agent. As such, for
each Q –value to be updated infinitely often, the schedule
{εi(t)}t→∞ that each agent’s sampling sequence follows
must reflect the fact that the agents cannot explicitly
coordinate to sample specific joint actions.

LEMMA 4.1. In a game with unknown noisy rewards, if
agents select their actions using a learning policy in which,
for all i ∈ N, ai ∈ Ai and t ≥ 1,

P(at
i = ai)≥ εi(t), with εi(t) = cεt−

1/|N|,

where cε > 0 is a positive constant, then

lim
t→∞
|Qt

i(a)− ri(a)|= 0 ∀i ∈ N, ∀a ∈ A,

with probability 1.2

Directly applying this reasoning may result in a practical
learning procedure if |N| is sufficiently small. However, in
games with many agents, visiting each joint action infinitely
often is an impractical constraint; to achieve sufficiently
high exploration rates through independent sampling would
require the agents’ εi sequences to decrease so slowly that
in any practical sense the agents will never move into an
exploitation phase. To address this limitation, we consider
sparse games in GNF, in which each agent interacts directly
with only a small number of other agents (as is the case
in geographically dispersed sensor networks), such that the

2The proofs of this claim and those in Section 4.2 are presented in the
companion paper [15], which covers theoretical convergence results for
finite memory algorithms in games with unknown noisy rewards.

number of reward values each individual estimates can be
significantly reduced.

In more detail, for games in GNF, each agent needs to
learn only its rewards over it and its neighbours’ joint action
spaces, given by: Ai,νi = Ai× j∈νi A j. For large but sparse
games, this is a much more feasible task than estimating the
full reward function on A. Each individual i now updates its
estimates Qt

i for all ai,νi ∈ Ai,νi using the equation,:

Qt+1
i (ai,νi)=Qt

i(ai,νi)+λ(t)I{at
i,νi

= ai,νi}
(
Rt

i−Qt
i(ai,νi)

)
.

(11)

Now the sequence {ε(t)}t→∞ can be altered to take
advantage of the reduced size of each agent’s joint action
space. while still ensuring that each Q –value is updated
infinitely often. Specifically, let i’s neighbourhood size be
the number of neighbours of i plus 1 for i itself. Given this,
let Ji be the size of the largest of the neighbourhoods of i or
any j in νi.

LEMMA 4.2. In a game with unknown noisy rewards, if
agents select their actions using a policy in which, for all
i ∈ N, ai ∈ Ai and t ≥ 1,

P(at
i = ai)≥ εi(t), with εi(t) = cεt−

1/Ji ,

where cε > 0 is a positive constant, then ∀i∈N, ∀ai,νi ∈Ai,νi :

lim
t→∞
|Qt

i(ai,νi)− ri(ai,νi)|= 0

with probability 1.

We now consider the first of three classes of action
adaptation algorithms.

4.2. Finite memory processes

The common feature of all algorithms in the class of finite
memory strategy adaptation processes, is that each agent
possesses a memory of length m, recalling the previous m
actions taken by its opponents, or neighbours νi for games in
GNF, to which the agent responds. We consider two specific
subclasses, namely, better–reply processes with inertia and
adaptive play processes.

First, we say that a finite memory algorithm has inertia if
each agent has a strictly positive probability of repeating its
current action, P(at

i = at−1
i )> 0.

DEFINITION 4.1 (Better reply processes with inertia,
BRI). An agent has a memory of length m and recalls the
previous m actions taken by its opponents. At each time step,
with probability ξ the agents plays the same action as in the
previous time step, at

i = at−1
i , while with probability 1−ξ the

agent selects an action according to a distribution that puts
positive probability on all actions that are better responses
to its memory.

Any algorithm that selects from the set of better replies
falls into this class of algorithms, including the better
response dynamics [20] and the evolutionary–inspired
process of [21]. For any potential game with known rewards
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Γ, Theorem. 6.2 of [8] states that the better–reply processes
with inertia converges almost surely in period-by-period
behaviours to a pure Nash equilibrium in Γ.

The second class of algorithms we consider are the
adaptive play processes.3

DEFINITION 4.2 (Adaptive play, AP). An agent has a
finite memory of length m, and recalls the previous m actions
taken by its opponents. At each time step, each agent
samples k ≤ m of the elements of its memory, and plays a
best response to the actions in the sample.

For a generic potential game Γ, Theorem 1 of [9] provides
a condition that almost surely guarantees that a pure Nash
equilibrium is reached: If k ≤ m/(LΓ + 2), then for all
time steps beyond T = kLΓ + m, the probability that the
joint memories of all agents consists entirely of one pure
Nash equilibrium is strictly positive. Thus, adaptive play
converges almost surely in period-by-period behaviours to a
pure Nash equilibrium of Γ.

4.3. Infinite joint–strategy memory processes

We now consider three strategy adaptation process with
infinite memory, namely, joint–strategy fictitious play,
regret–based dynamics and regret matching.

Before defining these algorithms, we must introduce a few
terms. Let:

zt
a =

1
t

t−1

∑
τ=0

I{aτ = a}

be the empirical frequency of play of joint action a at time
t, and let zt be the vector of length |A| containing all of
the components {zt

a}a∈A. Denote by zt
a−i

the empirical
frequency of a joint action by i’s opponents, a−i, which can
be calculated recursively by:

zt
a−i

=
1
t

t−1

∑
τ=0

I{aτ
−i = a−i}=

(
1− 1

t

)
zt−1

a−i
+

1
t
I{at−1
−i = a−i}.

(12)

These values are interpreted as agent i’s belief over the joint
actions of its opponents, and i stores these values in a vector
zt
−i, of length |∏ j∈−i A j|. For a game in GNF, the same

values are stored for only an agent’s neighbours, νi, so that
zt

νi
is of length |∏ j∈νi A j|. Building on this, a variation

of the belief update in Equation (12) in which agents have
exponentially fading memory can be implemented by:

zt
a−i

= (1− γ)zt−1
a−i

+ γ I{at−1
−i = a−i}, (13)

where 0 < γ < 1 is a parameter controlling the weight placed
on recent observations.

The first infinite memory algorithm considered is joint–
strategy fictitious play, in which each agent recursively
constructs a belief from its full set of observations, and plays

3Adaptive play algorithms are also called fictitious play with finite
memory in [8].

a best response to this belief [22, 6]. Specifically, in joint–
strategy fictitious play the expected reward to i for an action
ai ∈ Ai given belief zt

−i is:

ri(ai,zt
−i) = ∑

a′−i∈A−i

zt
a′−i

ri(ai,a′−i), (14)

where each i ∈ N updates its zt
−i according to Equation (12)

or Equation (13). Although forms of joint strategy fictitious
play using each belief update have been proven to converge
to Nash equilibria in potential games [11], here we focus on
one specific variant with fading memory and inertia.

DEFINITION 4.3 (Fading–memory joint–strategy ficti-
tious play with inertia, JSFP). Each agent maintains a vec-
tor, zt

−i, containing its fading–memory beliefs over its op-
ponents’ joint actions. At each time step, zt

−i is updated
by Equation (13), with γ held constant across all t. The
agent then computes the expected reward for its actions by
Equation (14). If maxai∈Ai rt

i(ai,zt
−i) = ri(at−1

i ,zt
−i), then the

agent continues to play at
i = at−1

i ; otherwise, with probabil-
ity 1−ξ the player chooses an action with uniform probabil-
ity from the set of best responses to its beliefs, bi(zt

−i), and
with probability ξ the agent continues to play at

i = at−1
i .

For a generic potential game Γ, by Theorem 3.1 of [11],
fading memory JSFP with inertia converges almost surely to
a pure Nash equilibrium, as long as 0 < ξ < 1.

The second family of processes are known as regret–
based dynamics [10]. These use measures of regret rather
than expected utility to evaluate action choices. The regret
for an action is constructed by first computing the average
difference in reward between taking action ai at every time
step and following the actual sequence of actions employed,
and then taking only positive values:

vt
i(ai) = max{ri(ai,zt

−i)− ri(zt),0}, (15)

where each ri(·) is computed as in Equation (14). The
first term on the righthand side is the expected reward for
action ai given i’s current beliefs, while the second term is
the average reward i has earned over the actual history of
play. If zt

i is updated by Equation (12), then the difference is
that used in regret matching; if it is by Equation (13), then
we have the family of regret–based dynamics. Both regret
algorithms then select a new action from the set of actions
with (strictly) positive regret. Adding inertia to the agents’
action choice then results in the following algorithm:

DEFINITION 4.4 (Fading–memory regret–based dynamics
with inertia, FRD). Each agent maintains a vector, zt

−i,
containing its fading–memory beliefs over its opponents’
joint actions. At each time step, zt

−i is updated by
Equation (13), with γ held constant across all t, and the
agent computes the regret for its actions by Equation (15).
Then, with probability ξ the agents plays the same action as
in the previous time step, at

i = at−1
i , while with probability

1−ξ the agent selects an action according to a distribution
that puts positive probability on all actions with positive
regret.
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Theorem 4.1 of [10] proves that this algorithm converges
almost surely to a Nash equilibrium in generic potential
games, assuming 0 < ξ < 1.

The third algorithm in this class is regret matching [23],
which we include for completeness (since it is commonly
applied) and as a benchmark. Let:

ξi ≥ (|Ai|−1)max
a,a′
{|ri(a))− ri(a′)|} ∀ i ∈ N (16)

be an inertial constant. Under regret matching, action choice
probabilities are calculated as follows.

DEFINITION 4.5 (Regret matching, RM). At each time
step, zt is updated by Equation (12), and the agent computes
the regret for its actions by Equation (15). Then, the agent
chooses an action with probability:

P(at
i = a′i) =


1
ξi

vat−1
i ,a′i

(t), for all a′i 6= at−1
i ;

1− 1
ξi ∑

a′i 6=at−1
i

vai,a′i
(t) a′i = at−1

i .

Note that the choice of ξ ensures that at−1
i is repeated with

positive probability, and that any other action is chosen iff it
has positive regret. If all agents playing a generic game use
the procedure above, then sequence {zt}t≥1 “approaches”
the set of correlated equilibria (in the sense of [24]), such
that as t→∞, P(zt ∈Ψ) = 1; in other words, the distribution
of the empirical history of play converges to the set of
correlated equilibria [23].

4.4. Generalised weakened fictitious play processes

To begin, we describe the belief update used in classical
fictitious play process [25], and also in the joint action
learner of [18]. We then consider the broader class of
generalised weakened fictitious play processes analysed by
[7].

Let agent i’s historical frequency of playing ai, be defined
as:

σ̂t
i,ai

=
1
t

t−1

∑
τ=0

I{aτ
i = ai}. (17)

We write σ̂t = {σt
i,ai
}i∈N,ai∈Ai for the vector of these beliefs,

and σt
−i for the collection of beliefs about all agents

other than i. Note that, in contrast to the infinite joint–
strategy memory algorithms, each agent’s belief is stored
independently.

Building on this, [7] define the class of generalised
weakened fictitious play (GWFP) processes. These are
processes that admit a more general belief–updating process
and allow δ–best responses to be played by the agents. Let:

σ̂t
i,ai

= αt
t−1

∑
τ=0

I{aτ
i = ai}. (18)

be the generalised belief update rule, with αt → 0 as t→ ∞,
subject to the conditions that ∑t≥1 αt = ∞ and ∑∞

t=1(αt)2 <
∞.

DEFINITION 4.6 (Generalised weakened fictitious play,
GWFP). At each time step, σ̂t is updated by Equation (18),
and the agent draws an action according to a lottery that
is a δ–best response to its beliefs; that is, according to
some mixed strategy σt

i ∈ {σi ∈ ∆i : maxãi ri(ãi, σ̂−i) −
ri(σi, σ̂−i)≤ δ}.

Note that classical fictitious play is the case where αt =
1/t. If δ→ 0 as t→ ∞, then the limit set of a GWFP process
consists of a connected set of Nash equilibria in potential
games (i.e. non–strict but adjacent Nash equilibrium action
profiles) and several smaller classes of games [7].

4.5. Interleaving Q –learning with action adaptation

Q –learning variants of the algorithms defined in the
previous three subsections can be constructed using the ε–
greedy learning policy, as follows:

DEFINITION 4.7 (Q –learning variants). At each time–
step, each agent acts independently and:

• uniformly samples from Ai with probability ε(t), or
• selects an action according to the standard algorithm
definition with probability 1− ε(t) (e.g. Definition 4.2
for AP, etc.), with actions selected with respect to joint
action reward estimates that are updated according
to Equation (9) (or Equation (11) for GNF), where
{λ(t)}t≥1 follows Equation (10) with Cλ > 0 and ρλ ∈
(1/2,1].

The six algorithms listed in the preceding subsections
are all covered by the results Section 4.1. That is, if the
conditions of Lemmas 4.1 or 4.2 are met, then the reward
estimates will be accurately learnt.

The Q –learning variants of AP and BRI are proven
to converge to a strict Nash equilibrium under additional
conditions on the εi(t) schedules that ensure the processes
are strongly ergodic [15]. Specifically, assuming the
standard conditions are satisfied (i.e. on k for AP, and
ξ for BRI), if, in addition, εi(t) = ct−1/mJi , then in
generic potential games with unknown noisy rewards,
limt→∞P(at is a Nash equilibrium) = 1.

The Q –learning variant of RM converges to a correlated
equilibrium in all generic games, a result that is implicit in
[23] and made explicit in [15].

The convergence to Nash equilibrium of the Q –learning
variants of JSFP, FRD and GWFP are not yet proven.
However, if they do converge, we know that it must be to
a Nash equilibrium, as no other joint actions are stable for
these processes. Moreover, since the Q –learning results
continue to apply to their reward estimates, it is reasonable
to expect that their convergence in known–reward games
without action selection perturbations to transfer to the
unknown–reward case with vanishing perturbations.

5. EXPERIMENTAL EVALUATION

In this section we evaluate the algorithms derived earlier,
in the sensor network problem above. We begin with the
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setup of the simulations and their connection to the model
from Section 3, then compare the solution quality across
the action adaptation processes (Section 5.2) and learning
policies (Section 5.3), conduct a detailed examination
of the parameter settings for each individual processes
(Section 5.4), and finish with an investigation into the
effects of varying the problem density on the algorithms’
performance (Section 5.5). For reference, a list of the
algorithms and their abbreviations is given in Table 1.

5.1. General features of the experiments

The algorithms are tested in the scenario described in
Section 3. Specifically, 50 sensor nodes are randomly spread
throughout a surveillance area, over which vehicle activity is
simulated. Vehicles travel along roads, which means that the
events detected by the sensors are located along roads, and
these events occur in much greater numbers than the number
of sensors. Each road has a fixed probability distribution
over the number of vehicles travelling on it during a given
third of the day; learning the mean frequencies of these trips
is the goal of the sensor network.

We recorded the ratio of the value of the solution found by
an algorithm at each time step to the scenario optimum —
that is, the proportion of the optimum, V (at)/V (a∗), where
a∗ is optimal joint action for that scenario — so that we
can aggregate our simulation results across scenarios with
different payoff levels.4 For each algorithm configuration,
we average this measure over 20 runs each of 50 different
scenarios. For Sections 5.2 and 5.3, we also record the worst
performance by each algorithm in any problem instance,
in order to empirically validate the theoretical worst–case
bound of 1/2.

We use the same Q–learning parameters for all algorithms
and benchmarks throughout the experiments, with ρλ = 1
and cλ = 0. However, we use several different learning
policies, and several different action adaptation process
parameter configurations.

We next describe our results, and the different learning
policy and adaptive process parameters that we investigate.
These are divided into three sections. The first compares the
performance across the algorithms, including a comparison
to a Max–Sum based Q–learning algorithm. The second
section compares the performance of two of the algorithms
across three different learning policies, which satisfy both,
one or neither of the convergence conditions derived earlier,
respectively. In the third section, we investigate the
robustness of the algorithms to the settings of their free
parameters. The final section shows how the problem
density affects the performance of these algorithms.

5.2. Comparison across algorithm choice

In this section, we compare the performance across the
algorithms in order to ascertain if there is any great benefit
in using one over the other, or if any are worth ignoring in

4The optimum a∗ was computed using simulated annealing, which is
prohibitively slow for this setting.

future deployments. We also compare these algorithms to
a Max–sum instantiation, which selects an approximately
optimal action at each time step, and which we treat as a
upper bound on their expected performance; it is, however,
an order of magnitude more computationally intensive to run
than our game theoretic algorithms, as is discussed below.

5.2.1. Algorithm configurations
The specific parameters used by our algorithms are given in
the legends on each of the plots, and are:

• BRI with inertia using memory length m = 3 and
inertial constant ξ = 0.3;

• AP with memory length m = 5 and sample size k = 1;
• JSFP with discounting factor γ = 0.2 and inertial

constant ξ = 0.3;
• FRD with discounting factor γ = 0.2 and inertial

constant ξ = 0.3;
• GWFP with learning rate parameter ρα = 0.8.

Apart from AP, these values were chosen as they represent
the middle of regions of relatively equal performance
across the algorithms’ parameters (investigated in more
detail in the next section), and as such can be considered
reasonable a priori parameter choices. For RM, ξ is set to
satisfy Equation (16), so it has no free parameters.

The learning policy schedules used for BRI and AP is a
ε–greedy policy that satisfies all of the Nash equilibrium
convergence criteria of [15], as listed in Section 4.5.
The specific the sampling probabilities used were: ε(t) =
1/8 t−1/Jim for all i ∈ N.

For all versions of JSFP, FRD, RM and GWFP, the
sampling probabilities used were ε(t) = 1/8 t−1/Ji for all
i ∈ N, which is sufficient for the Q –learnt reward estimates
to converge. Since the proofs for these algorithms’
convergence is not based on strong ergodicity arguments, we
do not require the “slower” decay of sampling probabilities
used for BRI and AP.

5.2.2. Benchmark algorithm: Max–Sum Q–learning
As a benchmark for this first set of results, we compare the
algorithms to an implementation of the Max–Sum algorithm
that uses the Q –learnt reward estimates. This algorithm has
been applied to numerous distributed optimisation settings,
and most relevant here is the sensor network application
of [1]. In more detail, this benchmark algorithm operates
according to the pseudo code in Algorithm 1, with the
approximate optimal joint action computed using the Max–
Sum algorithm (line 6). Each agent then uses its component
of this joint action as its greedy action with the ε–
greedy learning policy (line 10). Max–Sum operates by
passing messages between variables (agents’ schedules) and
factors (reward functions for event observations), which,
in our instantiation, are each of size ∏ j∈{|νi|∩i}A j. (For
reference, the problems in this section have an average |νi| of
approximately 2.4, so a node has on average 2.4 neighbours).
Max–Sum is optimal and efficient on problems with tree–
structured representations, and is known to perform well on
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Abbreviation Algorithm description Parameters
BRI Better reply process with inertia Finite memory length m; inertial constant ξ
AP Adaptive play Finite memory length m; sample length k
JSFP Fading–memory joint–strategy fictitious play with inertia Discounting factor γ; inertial constant ξ
FRD Fading–memory regret–based dynamics with inertia Discounting factor γ; inertial constant ξ
RM Regret matching No free parameters
GWFP Generalised weakened fictitious play Learning rate parameter ρα
MS–QL Max–Sum Q –learner (benchmark) No free parameters

TABLE 1. List of algorithm evaluated in Section 5.

loopy topologies. A discussion of the data–structures used
in the operation of max-sum is beyond this paper (and can
be found in [1]), but it is important to note that the rewards
that are estimated by the agents’ Q –learning processes are
not the marginal rewards for observing an event (as in
Equation (6)), but the average reward per observing agent.
That is, an agent’s reward for observing an event is:

Rx
i,ms(ai,aνi) =

1−β#x(ai,aνi )

#x(ai,aνi)
(19)

with total reward Ri,ms(ai,aνi) = ∑x∈Xi Rx
i,ms(ai,aνi). Thus,

the agents’ rewards sum to the global value:

n

∑
i=1

Ri,ms(ai,aνi) =
n

∑
i=1

∑
x∈Xi

1−β#x(ai,aνi )

#x(ai,aνi)

= ∑
x∈X

1−β#x(a) =V (a)

which is approximately computed by the Max–Sum
algorithm.5,6 In our implementation, the duration of a
simulated run is partitioned into two portions:7 (i) During
the first portion, the agents only randomly and independently
sample, in order to learn something of their rewards for joint
actions (i.e. ε is set to 1 and the Max–Sum algorithm is
not used); (ii) In the second portion, at each time step, the
Max–Sum algorithm is used to find the greedy action for the
ε–greedy learning policy (line 6 of Algorithm 1), while ε
values themselves decrease according ε(t) = 1/8 t−1/Ji for all
i ∈ N (line 8), which is the schedule used by JSFP, etc. The
agents’ employ Q –learning to update their reward estimates
throughout the entirety of a run. This partition is done

5The key conceptual difference in the operation of the game–theoretic
algorithms discussed in this paper and Max–Sum is that Max–Sum directly
computes the optimal value and the argmax variable configuration, whereas
the game–theoretic algorithms use the gradient of rewards (i.e. marginal
rewards) to find a local optimum.

6Note that the problem representation to which Max–Sum is applied
to here differs from that of [1]: In that work, each region that is sensed
by different combinations of neighbouring agents is treated as a separate
factor, and, as such, its rewards are estimated separately. To do this requires
a pre–processing stage to identify the overlapping regions, which is not
needed by our game–theoretic algorithms. As a consequence, all of the
algorithms here estimate a reward function of the same size (i.e. the local
joint action spaces under both representations are the same). However,
this does adversely affect the operation Max–Sum algorithm, as size of the
messages it passes are often considerably larger here compared to those
in [1]; that is, the dimension of the message is always |νi|+ 1, rather
than number of sensors that can see a particular segment, which is at most
|νi|+1, and typically less.

7This technique is called ε–first in the multi–armed bandit literature.
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FIGURE 3. Results of the sensor network simulations, plotting the
average ratio of the reward earned to the global optimum for each
of the algorithms.

because the Max–Sum algorithm itself takes a considerable
amount of time and computational resources to run (c.f. the
greedy action computation of our game–theoretic algorithms
at each time step), and there is very little benefit in using it
on inaccurate reward estimates. We set the first portion equal
to the first 20 time–steps of the run, and the second portion
to the remainder.
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Algorithm Mean 2 S.E Minimum
BRI 0.9798 (0.0013) 0.7573
AP 0.9813 (0.0013) 0.7595
JSFP 0.9818 (0.0012) 0.7571
FRD 0.9825 (0.0012) 0.7545
RM 0.7005 (0.0117) 0.1228
GWFP 0.9840 (0.0012) 0.7475
MS–QL 0.9403 (0.0048) 0.6791

TABLE 2. Summary of the algorithm configurations evaluated in
Section 5.2 at T = 400.

5.2.3. Results and discussion
The results of our simulations comparing the algorithms
are given in the plots in Figure 3, for 200 iterations, with
two standard errors as shown, while Table 2 shows the
results at 400 iterations (the slow upward trajectory being
maintained for all algorithms). The results show an overall
good performance by all of the algorithms except RM. This
is not entirely unexpected, as RM converges only to the set
of correlated equilibria, and not to the pure Nash equilibria
of the game. Since the pure Nash equilibria are local optima
of the objective function, it is possible (and likely) that RM,
in not finding these points with a high probability, remains
relatively far from the local, and therefore the global, optima
of the problem.

The Max–Sum algorithm performs comparably, but not
as well as, our game–theoretic algorithms. This is somewhat
surprising, particularly given the results of [1], which show
better performance than many algorithms similar to the
ones we investigate; we had anticipated similar results
here. Since the algorithm uses the -A schedule, the reward
functions will be accurately learnt, so the problem must
be with the Max–Sum algorithm itself. Our interpretation
of these results is that our formulation of the factor–graph
induces more loops than the representation of [1]. This,
in turn, adversely affects the accuracy of the computation
performed by the Max–Sum algorithm. In other words, we
surmise that the representation used by our game–theoretic
algorithms causes a poor approximation of the optimal
variable configuration by the Max–Sum algorithm.

It should also be noted that the Max–Sum algorithm, on
each iteration, takes considerably more time to compute the
next joint action, and accordingly, more energy (processing
time itself is not a concern in this domain, where a time–step
is a day). Specifically, on the problems in this section, the
processing time per node at each time–step is approximately
8 seconds, (not including the latency for passing messages
on an ad–hoc wireless network). This compares to between
0.5 and 20 milliseconds for the game theoretic algorithms,
which pass only one message per time–step.

Finally, the minimum values recorded for each algorithm
follows the same ordering as the average values, and do not
contradict, nor even approach, the lower 1/2 bound.

5.3. Comparison across learning policy choice

In this section, we compare the performance of the
algorithms, BRI and AP, across three different learning

Algorithm Mean 2 S.E Minimum
BRI 0.9798 (0.0013) 0.7573
BRI–A 0.9852 (0.0011) 0.7563
BRI–B 0.9631 (0.0015) 0.7163
AP 0.9813 (0.0013) 0.7595
AP–A 0.9857 (0.0011) 0.7570
AP–B 0.9436 (0.0015) 0.7134

TABLE 3. Summary of the algorithm configurations evaluated in
Section 5.3 at T = 400.

policies, in order to evaluate the algorithms’ sensitivity to
their theoretical convergence conditions. Our main aim here
is to empirically test the necessity of the learning policy
derived in [15], which provides sufficient conditions for
the algorithms to converge, but may sample with a higher
probability than is required in practice. This is done by
comparing the sampling scheme derived in [15] to one
that only satisfies Lemma 4.1 (Q –value convergence). A
secondary aim is to test the effect of using a policy that does
not satisfy Lemma 4.1 so does not guarantee that the rewards
converge, to test if and how this affects the behaviour of
the algorithms. In this section, we examine only BRI and
AP, because they are the algorithms considered in [15] so
their consideration allows us to look at the effect of all three
learning policies at once, and because the effects of learning
policy choice on JSFP, FRD, RM and GWFP are almost
idential to their effect on BRI and AP.

5.3.1. Three learning policy configurations
The first learning policy schedules used is the standard ε–
greedy policy used in the section above (i.e. satisfying both
the Q –learning and strong ergodicity conditions), namely:
ε(t) = 1/8 t−1/Jim for all i ∈ N.

Under the second policy, denoted by the suffix “-A”,
the ε schedule used is ε(t) = 1/8t−1/Ji , which satisfies
Lemma 4.1 (Q –value convergence), but does not satisfy our
conditions guaranteeing BRI and APs convergence to Nash
equilibrium.

The third policy, denoted by the suffix “-B”, means that
the algorithm uses a Boltzmann learning policy:

P(at
i = a′i) =

eQ t
i (a
′
i,z−i)/η(t)

∑ai∈Ai eQ t
i (ai,z−i)/η(t)

with the temperature parameter following η(t) = 16(0.9t).
This learning policy does not satisfy Lemma 4.1, so the the
Q –values are not guaranteed to converge. This particular
policy is chosen as it is the one used by [18] in their work on
learning in games with unknown rewards.

5.3.2. Results and discussion
The BRI and AP variants plotted on Figures 4 and 5,
respectively, with Table 3 summarising the results at
T=400. First, note that the algorithms using learning
policies that follow the standard schedule and the -
A schedule (satisfying the Q –learning conditions only)
both significantly outperform the algorithms using the -B
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FIGURE 4. Results of the sensor network simulations for BRI,
across the three learning policies.
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FIGURE 5. Results of the sensor network simulations for AP,
across the three learning policies.

schedule. We propose that the reason for this is that the -B
algorithms often become stuck in low–value configurations,
because they do not sample new actions with a sufficient
frequency to learn that this is the case. In contrast, the plots
show that standard and -A schedules allow the algorithms
to improve their average performance over time, as they
can determine when they have been caught in “pseudo”
local optima under incorrect reward estimates. This matches
with the guaranteed convergence to Nash equilibrium for
the standard schedule and the Q –learning convergence for
learning policies following the -A schedule. This result is
important as it highlights the need to guarantee that accurate
estimates are made in games with rewards that are initially
unknown.

Second, observe that, although statistically insignificant,
the -A schedule algorithms perform better on average than

the those that satisfy all of the convergence conditions
of [15]. We believe that the reason for this is that
the standard schedule over–samples; that is, the sampling
probabilities given by the standard schedule are much
more than are required to ensure convergence to Nash
equilibrium. In contrast, the -A schedule, under which the
sampling probabilities go to zero much faster, but which are
still sufficient to learn the full reward structure accurately,
converges to Nash equilibrium much faster in practice (even
though it is not guaranteed to do so in theory).

Finally, in these experiments, the minimum value
recorded for each algorithm does not follow the same
ordering as the average values, in contrast to the results in
Section 5.2. This tempers our comment on over–sampling
above, as it may indicate that for some problem instances,
all of the convergence conditions enumerated in [15] are
required for the algorithms to converge. Replications of
the results on the same instances were, however, difficult
to obtain, due to the stochastic nature of the algorithms (the
problem instances were identical in their realisations), which
curtailed any further analysis of this trait, and indicated
a degree of sensitivity to initial conditions (given that the
initial actions of the agents were chosen at random). As
such, taking into account the insignificant benefit on average
of using the -A schedule, it would appear that using the the
standard learning policy, with its guaranteed convergence, is
the prudent choice for a system designer.

5.4. Algorithm robustness to parameter choice

In this section, we show that a system designer can be
confident that the algorithms’ performance is not reliant on
tuning the free parameters to the specific problem at hand.
Sensitivity to the value of free parameters is a concern that is
particularly prominent in wireless sensor networks and other
problems where it may be difficult to adjust settings once
the system is deployed. For the finite memory algorithms,
we also investigate the effects of violating their theoretical
convergence conditions.

5.4.1. Algorithm configurations
Having identified that the BRI, AP, JSFP, FRD and GWFP
algorithms all perform relatively similarly for some specific
parameter choices, we now test each algorithm’s sensitivity
to variations in their free parameters. Due to its lack of free
parameters and its poor performance, we do not consider
RM in this section.

In more detail, we run each of the algorithms across a
range of parameter configurations, in order to test whether
their performance is subject to any major variations as a
result of different choices of parameters. Specifically, we
consider:

• BRI with inertia using memory lengths from m = 1 to
12 and inertial constants from ξ = 0.1 to 0.9 (using the
standard learning policy schedule);

• AP with memory length and sample size configurations
ranging from (m,k) = (5,1) to (25,5), (using the
standard learning policy schedule);
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ξ
m 0.1 0.3 0.5 0.7 0.9
1 0.9836 0.9835 0.9805 0.9683 0.9039

(0.0011) (0.0012) (0.0013) (0.0014) (0.0018)
3 0.9803 0.9798 0.9730 0.9658 0.8936

(0.0013) (0.0013) (0.0014) (0.0014) (0.0019)
6 0.9762 0.9742 0.9689 0.9619 0.8875

(0.0013) (0.0013) (0.0014) (0.0015) (0.0021)
9 0.9701 0.9736 0.9673 0.9583 0.8846

(0.0014) (0.0014) (0.0014) (0.0016) (0.0023)
12 0.9567 0.9517 0.9504 0.9467 0.8698

(0.0017) (0.0017) (0.0017) (0.0019) (0.0028)

TABLE 4. BRI(m,ξ) across memory lengths m and inertial
constants ξ.

(m, k)
5, 1 10, 2 15, 3 20, 4 25, 5

0.9813 0.9802 0.9795 0.9768 0.9736
(0.0013) (0.0013) (0.0014) (0.0015) (0.0017)

TABLE 5. AP(m,k) across memory length m and sample size k
combinations.

• JSFP with discounting factors ranging from γ = 0.1 to
0.4 and inertial constants from ξ = 0.1 to 0.9;

• FRD with discounting factors ranging from γ = 0.1 to
0.4 and inertial constants from ξ = 0.1 to 0.9;

• GWFP with learning rate parameters ranging from
ρα = 0.5 to 1.0 (nb. The joint action learner of [18]
corresponds to ρα = 1.0).

We now consider each of the processes in turn.

5.4.2. Results and discussion
Table 4 show that, for each memory length, BRI performs
well for all inertial constants ≤ 0.5, however, beyond this
point value its performance drops off significantly. It has an
overall peak performance at the shortest memory length, but
this is in part a result of the sampling probability schedule of
the standard learning policy keeping the sampling rate high
for large values of t when the memory is long. Nonetheless,
the effect of increasing m is less dramatic than that of moving
ξ beyond 0.7.

Table 5 shows significant degradation in performance as
the memory length of AP increases. This is in the main
part due to the effect that increasing m has on the sampling
schedule: AP with a memory of 25 is much more likely to
randomly sample than AP with memory of 5, and this drives
the process to be out–of–equilibrium much more often, and
hence have a lower average solution quality.

Taking the results for BRI and AP together, in this domain
it appears using longer memories is of no benefit for these
algorithms. On one hand, longer memories lead to less
thrashing when good solutions are found; that is, once a
good solution is found, the algorithm has a greater chance
of staying near it irrespective of the level of random play.
On the other hand, if the algorithm moves away from a
good solution, it can take more time to move back to a good
configuration, as the longer memory length implies a greater

ξ
γ 0.1 0.3 0.5 0.7 0.9
0.1 0.9826 0.9824 0.9796 0.9689 0.9222

(0.0011) (0.0012) (0.0012) (0.0014) (0.0019)
0.2 0.9825 0.9818 0.9787 0.9682 0.9213

(0.0011) (0.0012) (0.0012) (0.0015) (0.0020)
0.3 0.9822 0.9811 0.9784 0.9646 0.9201

(0.0011) (0.0012) (0.0012) (0.0016) (0.0021)
0.4 0.9817 0.9803 0.9763 0.9629 0.9179

(0.0012) (0.0012) (0.0013) (0.0017) (0.0024)

TABLE 6. JSFP(γ,ξ) across discount factors γ and inertial
constants ξ.

ξ
γ 0.1 0.3 0.5 0.7 0.9
0.1 0.9832 0.9831 0.9802 0.9696 0.9229

(0.0011) (0.0011) (0.0012) (0.0014) (0.0018)
0.2 0.9826 0.9825 0.9792 0.9687 0.9208

(0.0011) (0.0012) (0.0013) (0.0014) (0.0018)
0.3 0.9818 0.9811 0.9778 0.9638 0.9184

(0.0011) (0.0012) (0.0013) (0.0015) (0.0022)
0.4 0.9810 0.9798 0.9756 0.9614 0.9149

(0.0012) (0.0012) (0.0013) (0.0018) (0.0025)

TABLE 7. FRD(γ,ξ) across discount factors γ and inertial constants
ξ.

inertia on the agents’ actions. However, our results from the
earlier section show that they actually perform better when
the -A schedule is used. Under the -A schedule, sampling
probabilities are independent of memory length, but the
convergence of the algorithms is no longer theoretically
guaranteed. This represents a trade–off between assured
asymptotic convergence and finite time quality — if average
performance is the key factor, rather than guaranteed worst–
case bounds, then a case can be made for using the -A
schedule with these algorithms.

Tables 6 and 7 show that JSFP and FRD perform similarly
across the ranges of both of their parameters. Specifically,
both have performances that are very stable across γ = 0.1
to 0.4 and ξ = 0.1 to 0.5. This indicates very robust
performance across a large space of possible parameter
settings. Additionally, both processes see a statistically
significant drop–off in the quality of the solutions that they
produce as ξ goes to 0.7 and beyond. We propose that the
reason for this is that since the processes are evaluated over
a finite duration, large values of ξ mean that the algorithms
have failed to converge relatively more often than for smaller
values of ξ, and this impacts on the average solution quality
over a finite duration.

Finally, GWFP is remarkably consistent across the range
of ρα considered, as shown in Table 8, with effectively no

ρα
0.5 0.6 0.7 0.8 0.9 1.0

0.9575 0.9569 0.9574 0.9576 0.9578 0.9579
(0.0070) (0.0070) (0.0070) (0.0071) (0.0070) (0.0070)

TABLE 8. GWFP(ρα) across learning rate ρα.
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FIGURE 6. Utility at T = 200 versus problem density, as
measured by the average neighbourhood size in a problem instance.

variation between different parameter choices.
Considering the JSFP, FRD (over their well–performing

parameter range) and GWFP processes together reveals a
great similarity in the quality of the solutions that they
return. This indicates that there are several options available
over the choice of process used, so if there is some other
domain–specific benefits to using one of these over the
others, then it can be happily applied to the problem at hand.

5.5. Comparison across problem density

In this section we test the algorithms on problems with more
and less dense interaction structure. Note that it is not
the case that overall larger networks are required to show
how the algorithms perform at scale; these algorithms are
designed to scale as long as the sparsity of the problem
is fixed. That is, in a real deployment, the computational
bottleneck will not be in the total number of agents (n)
but in the size of the largest neighbourhood (max(Ji)).
However, since we simulate the network on a single
machine, attempting to run large problems (large n) for any
size of max(Ji), without the significant parallel processing
capacity that an n–node sensor network possess, leads only
to long processing times, and doesn’t contribute any insights
to our analysis. Thus, we examine problems with varying
levels of density in the agents’ interactions.

5.5.1. Problem generation
The problems in this section are constructed by varying the
sensing radius of each node, thereby inducing more or fewer
numbers of overlapping regions with nearby sensors. The
average number of neighbours, |ν|= 1/n ∑ |νi|, was recorded
for each problem instance, and we generated scenarios with
a range of |ν| between 2 and 5.5. For each instance, BRI and
JSFP both were run 50 times, and the average proportion of
the optimum was recorded for each.

Average |νi| Computation time (ms)
< 2.5 0.5
2.5-3.5 1.8
3.5-4.5 5.4
> 4.5 13.4

TABLE 9. Summary of computation time vs problem density
(average neighbourhood size).

5.5.2. Results and discussion
Each point on Figure 6 represents the average result at
T = 200 for one problem instance solved using one of
BRI or JSFP (circles and crosses, respectively). Standard
errors for each point are similar to those in Figure 3, so
are omitted. The results show a small but statistically
significant downward linear trend in the quality of solutions
produced by the algorithms, and also a significant increase
their variability.

These results are expected, as the more dense the
problem becomes, the greater the chance that the problem
contains many local optima. Recall that the game–theoretic
algorithms are in some sense local search algorithms, in
that their convergent points are (a subset of) the set of local
optima. Thus, in problems with many local optima, it is not
surprising that sometimes the algorithms converge to points
that are a substantial distance from the global optimum, and
increasingly so with more local optima. Nonetheless, the
slide in average performance in denser problems is quite
reasonable; however, the increase in variability at higher |ν|
may not suit some applications.

The average computation time per time–step per node
was also recorded (across both BRI and JSFP), and is
displayed for four bins in Table 9. It shows an fairly rapid
increase, which is evience of the exponential growth in the
agents’ local joint action spaces as the number of neighbours
increases, but on average, computations are still completed
within 20ms for the densest problems.

6. CONCLUSION

In this article, we have demonstrated how a distributed op-
timisation problem can be formulated as a marginal con-
tribution potential game, and then shown that Q –learning
versions of the finite–memory better reply processes, adap-
tive play, joint–strategy fictitious play, fading–memory re-
gret monitoring and generalised weakened fictitious play
processes all provide effective methods for solving them.
These processes have the additional advantage over their
alternatives of having bounds on their worst–case conver-
gence points, if the optimisation problem is transformed
into a game using marginal contribution payoffs. We have
also identified a number of tradeoffs in the choice of pro-
cess and/or free parameters for these processes, which give
the designer of a large distributed system flexibility in their
choice of algorithm.

The most pressing outstanding question from this work is
ascertaining if the infinite memory algorithms can be proven
to converge to Nash equilibrium in potential games with
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noisy rewards. Some work towards this goal indicates that it
is difficult to show for generalised weakened fictitious play
processes, and may be easier for the joint–strategy memory
algorithms joint–strategy fictitious play and fading–memory
regret monitoring.

Another direction for future work is the use of similar
methods of constructing marginal contribution games in
the setting of sequential decision–making problems such
as Markov decision processes or stochastic games, which
may then be solved by local iterative algorithms like the
ones considered in this article. However, an additional
complication in these settings is the observability of the
problem, which may require significant new adaptations to
the existing distributed algorithms.
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