
http://wrap.warwick.ac.uk/

Original citation:
Saginbekov, Sain and Jhumka, Arshad. (2014) Towards efficient stabilizing code
dissemination in wireless sensor networks. The Computer Journal, Volume 57 (Number
12). pp. 1790-1816.
Permanent WRAP url:
http://wrap.warwick.ac.uk/64377

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work of researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.
Publisher statement:
This is a pre-copyedited, author-produced PDF of an article accepted for publication in
The Computer Journal following peer review. The version of record Saginbekov, Sain
and Jhumka, Arshad. (2014) Towards efficient stabilizing code dissemination in wireless
sensor networks. The Computer Journal, Volume 57 (Number 12). pp. 1790-1816. is
available online at http://dx.doi.org/10.1093/comjnl/bxt110
A note on versions:
The version presented here may differ from the published version or, version of record, if
you wish to cite this item you are advised to consult the publisher’s version. Please see
the ‘permanent WRAP url’ above for details on accessing the published version and note
that access may require a subscription.

For more information, please contact the WRAP Team at: publications@warwick.ac.uk

http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/64377
http://dx.doi.org/10.1093/comjnl/bxt110
mailto:publications@warwick.ac.uk

Towards Efficient Stabilizing Code
Dissemination in Wireless Sensor

Networks
Sain Saginbekov and Arshad Jhumka

Department of Computer Science
University of Warwick

Coventry, CV4 7AL, UK

Email: {sain,arshad}@dcs.warwick.ac.uk

One important component of network reprogramming is code dissemination, when
the updated program code is distributed to the relevant nodes. Very few code
dissemination protocols tolerate transient faults that corrupt the state and these
faults can cause the old code to disseminate in the network. We propose two
protocols called BestEffort-Repair and Consistent-Repair that transform fault-
intolerant code dissemination protocols into non-masking fault-tolerant protocols
where, eventually, all nodes obtain the new code. We conduct experiments with
both protocols on TelosB-like motes and over TOSSIM simulations to show their
correctness and also their performance. We conduct a case study whereby both
protocols are added to a state-of-the-art code dissemination protocol, viz. Varuna
to evaluate their impact on Varuna. Our results show that (i) Varuna, which
is fault-intolerant, is transformed into a stabilizing code dissemination protocol
(ii) they induce low overhead on Varuna, and causes all nodes to eventually
receive the new code. BestEffort-Repair is biased towards fast recovery whereas
Consistent-Repair attempts to reduce the number of erroneous downloads in the
network. Our main contribution is the first corrector protocols that correct code

dissemination in the presence of transient faults.
Keywords: Code dissemination; Transient faults; Non-masking fault tolerance;

Wireless sensor networks; Error Detection

Received July 16, 2013

1. INTRODUCTION

Wireless sensor networks (WSNs) have enabled the
deployment of several novel classes of applications, such
as monitoring and tracking. However, to be useful, they
need to operate unattended for long periods of time.
This operational mode places several requirements
on the network applications, but mainly that the
applications are able to adapt to changing conditions.
Given that WSNs are often deployed in hostile
or treacherous environments, human intervention is
impossible. Thus, over-the-air reprogramming becomes
a fundamental activity.

A network reprogramming protocol consists of several
specific components: (i) a component that decides
whether a complete code needs to be sent or only an
update, (ii) code dissemination component, and (iii)
reliability components [1]. The reliability component
is to ensure that nodes receive all the parts of the code
update that may be lost due to collisions. In this paper,
we focus on the code dissemination aspect of network

reprogramming.
Several code dissemination protocols have been pro-

posed as part of network reprogramming protocols [2,
3, 4, 5]. However, to the best of our knowledge, none
of them tolerates transient data faults, i.e., data faults
that corrupt the state of the code dissemination pro-
tocol. Transient data faults, which are also known as
soft errors, are known to occur in WSNs [6, 7, 8, 9].
Given that several code dissemination protocols work
by advertising the metadata, viz. version number1, of
the new code, e.g., [3, 4, 10, 11], any corruption of the
version number in the advertisement messages or those
stored at the nodes can, in the worst case, lead to the
network nodes having stale code, thereby reducing the
ability of the network to perform properly. Similarly,
any state corruption can lead, in the worst case, to
nodes downloading stale code (we will show this later).
Thus, it is important to make these code dissemination

1In this paper, whenever we say metadata, we mean version
number.

The Computer Journal, Vol. ??, No. ??, ????

2 S. Saginbekov, A. Jhumka

protocols tolerate these transient data faults.
When a node decides that another node has an

updated code fragment, generally, it makes a request
to the updated node which, subsequently, sends (i.e.,
broadcasts) the update to the requesting node. The
process of advertising code updates, sending code
requests and downloads is energy consuming. As the
communication part consumes a large portion of energy
and the significant amount of energy per transmitted bit
used [12], and given the size of codes, which may vary
from 20 bytes up to tens of kilobytes [2, 10, 13, 14, 15,
16], code dissemination consumes a significant amount
of energy. This is exacerbated when transient faults
occur, as nodes may mistakenly request and download
stale code. In the worst case, the whole network may
download the stale code, at great energy expense.

There exists a hierarchy of fault tolerance properties
namely fail-safe fault tolerance (which ensures that a
program always satisfies its safety specification), non-
masking fault tolerance (which ensures that a program
always satisfy its liveness specification) and masking
fault tolerance (which ensures that both safety and
liveness are satisfied, even in the presence of transient
faults) [17]. In the context of code dissemination, fail-
safe fault tolerance amounts to a node not downloading
any code if it believes the code to be old. Masking
fault tolerance means that all nodes will only download
the new code (as if no fault has occurred), and only
once. On the other hand, non-masking fault tolerance
allows some erroneous downloads (i.e., downloads of old
code) before eventually all nodes download the updated
code. Such erroneous downloads are only allowed to
occur finitely, though.

Given that code update dissemination is energy
consuming, it is thus preferable to reduce the number
of erroneous downloads while ensuring that all nodes
eventually download the updated code. Fail-safe
fault tolerance is not suitable as it means that some
nodes may not update (which will impact of the
usefulness of the network). Masking fault-tolerant code
dissemination protocols would minimise the number
of erroneous downloads but, given the nature of the
WSNs and of the dissemination process, masking
fault tolerance is not practical. On the other hand,
non-masking fault tolerance means that nodes may
erroneously download old code only finitely, but they
will eventually download the updated code. However, a
small number of erroneous downloads can be tolerated if
this means that the network state is consistent, allowing
the proper dissemination of the updated code.

To design non-masking fault tolerance, it is both
necessary and sufficient for a program to contain a
specific type of fault tolerance component called a
corrector. A corrector is a class of program component
that enforces a predicate on the execution of a program.
There exists different correctors that can guarantee non
masking fault tolerance for a given program, however
they may differ in their efficiency. In this work, instead

of proposing a specific non-masking fault-tolerant code
dissemination protocol2 for WSNs, we address the
problem in a different way: we first provide an abstract
specification of the code dissemination problem, and
based on the definition, we propose (i) a definition of
a corrector protocol and (ii) two corrector protocols,
called BestEffort-Repair and Consistent-Repair. Each
can be added to any existing (fault-intolerant) code
dissemination protocol to transform it into a fault-
tolerant code dissemination protocol. Specifically,
since the corrector protocol is designed based on the
code dissemination specification, rather than on an
actual implementation, if the corrector is added to any
code dissemination implementation that satisfies the
dissemination specification, then the resulting protocol
is non-masking fault tolerant [18]. Further, to detect
state corruption, a detector component, which detects
the validity of a predicate in a given state, is designed
based on the protocol implementation.

The two corrector protocols developed has en-
abled us to observe a tradeoff during recovery:
Consistent-Repair results in a lesser number of erro-
neous downloads than BestEffort-Repair. However,
BestEffort-Repair has a shorter completion time in that
Consistent-Repair needs more time to make better up-
date decision. A shorter recovery time means that the
network state becomes consistent faster, and can per-
form useful work faster.

Overall, our approach is as follows: given a
fault-intolerant code dissemination protocol, we design
a protocol-specific detector together with a generic
corrector component to obtain a corresponding non-
masking fault-tolerant code dissemination protocol.

Contributions In this context, we make the
following contributions:

• We formalise the concept of code dissemination
in WSN, and provide three refined specifications,
viz., strong, consistent and best effort code
dissemination.

• We show that (i) there is no deterministic
algorithm that solve strong code dissemination in
presence of transient faults, and (ii) there is no
deterministic 1-local algorithm that solves strong
code dissemination in presence of a stronger class
of transient faults, called detectable faults.

• We present two novel f -local algorithms called (i)
BestEffort-Repair and (ii) Consistent-Repair that,
when added to any fault-intolerant code dissemi-
nation protocol, solves (i) BestEffort code dissemi-
nation and (ii) Consistent code dissemination, and
we prove the correctness of both protocols.

• We run experiments and simulations on our
protocol using TelosB platform-based motes and
TOSSIM [19], respectively, and show their
correctness and performance, especially the locality

2Henceforth, whenever we refer to fault tolerance in code
dissemination, we mean non-masking fault tolerance.

The Computer Journal, Vol. ??, No. ??, ????

Towards Efficient Stabilizing Code Dissemination in Wireless Sensor Networks 3

property of the protocols.
• We present a case study where we add both

protocols to an existing code dissemination
algorithm, namely Varuna [4]. We instrument
Varuna with a specific detector which triggers the
protocols upon detection of an error. We show
that both BestEffort-Repair and Consistent-Repair
induce very little overhead on Varuna in presence of
detectable transient faults. Further, Varuna, when
executed in presence of even a single transient fault,
resulted in all the nodes downloading the wrong
code. In contrast, when running Varuna with both
protocols, all the nodes eventually obtained the
new code.

The paper is structured as follows: In Section 2, we
present an overview of related work. In Section 3,
we present the system and fault models assumed in
the paper. We present a definition and specifications
for code dissemination in the context of network
reprogramming in Section 4. We present some
theoretical results in Section 5. In Section 6, we
present two f -local corrector algorithms that stabilise
the code dissemination of code updates. We present
the experimental setup and results to evaluate the
performance of the proposed algorithms in Section 7.
In Section 8, we present a case study where we add the
algorithms to an existing code dissemination protocol to
show the viability of our approach. We discuss aspects
of our approach in Section 9, and we conclude the paper
in Section 10.

2. RELATED WORK

2.1. Code Dissemination

There currently exists several dissemination protocols
which update the running code on nodes to new
ones. While some of the protocols deliver complete
binary image of the code, like [2, 10, 13, 20], some
other protocols deliver only the difference between
the new code and the old code [21, 22]. There
also exists protocols which deliver tasks [23], network
parameters [24], and queries [25].

In XNP [13], the base station broadcasts the code
image to the nodes which are in its coverage range.
The nodes outside of the range cannot receive the
code image. The protocol proposed in MOAP [20]
is a multihop dissemination protocol that can deliver
code images to nodes that are several hops away from
the base station. Each node forwards the code image
further after receiving the complete code image.

Deluge [10] allows large data transmission by
fragmenting data into fixed-size pages. It also supports
pipelined page transmission to make dissemination
faster. Unlike MOAP, the nodes in Deluge should not
wait for complete code image before forwarding it. The
authors of MNP[2] propose another protocol like Deluge
which fragments the code image and uses the pipelining

mechanism. However, unlike Deluge, MNP selects the
sender of the code such that there is only one sender
at a time in a neighbourhood. Sender selection reduces
collision and addresses the hidden terminal problem.
Also, in MNP, some of the nodes can go to the sleep
mode to save energy whenever there is no data to receive
or transmit.

Because of the features of WSNs, such as transient
link failures and node mobility, not all nodes may
update their code during dissemination phase. The
Trickle algorithm [3] addresses this problem by using
a “polite gossip” policy. In Trickle, every node
broadcasts advertisement messages about the code.
The advertisement message is basically metadata, that
includes version number3, of the code, at most once per
period given between [τ/2, τ]. If a node hears more than
k identical metadata before it transmits, it suppresses
its broadcast and doubles the value of τ up to τh, which
is upper bound for τ . If it hears different metadata τ
becomes τl, which is lower bound for τ .

Varuna [4] is another protocol which supports code
update maintenance. This protocol saves energy in
the steady phase,where no dissemination is being done.
Unlike Trickle, where there is a linear increase of
energy consumption - due to polite gossiping, energy
consumption in Varuna is constant in steady phase (i.e.,
when there is no new code update in the network). To
achieve constant energy consumption in steady phase,
nodes in Varuna send advertisement messages only
when there is a change in the neighbourhood topology
or metadata since its last advertisement transmission.
Finally, there exists code dissemination frameworks
that target the reconfigurations of a subset of nodes
in the network, rather than requiring all the nodes to
be updated [26, 27].

These protocols do not consider transient memory
faults that corrupt the state of the running code dis-
semination program, including the protocol messages,
which may lead to the dissemination protocol to work
incorrectly. For example, a node with new code may
download old code if such a fault occurs. To the best
of our knowledge, the work presented in this paper is
the first to address code dissemination in the presence
of transient faults.

2.2. Fault Tolerance

In [28], it has been shown that a class of components,
known as correctors, is sufficient to design non-masking
fault tolerance. Stabilisation, which is a special
type of non-masking fault tolerance, is achieved by
adding corrector mechanisms to a program, thereby
transforming the program into a stabilising fault-
tolerant one. Correctors are components that enforce
a given predicate on program executions, whenever
the predicate has been violated. The area of

3Henceforth, we will use the terms metadata and version
number interchangeably.

The Computer Journal, Vol. ??, No. ??, ????

4 S. Saginbekov, A. Jhumka

self-stabilization is mature, and several stabilizing
algorithms exist for several important problems [29].

2.3. Reliable Broadcast

Since we focus on code dissemination protocols, the
problem of reliable broadcast is relevant. We provide
a brief survey here.

The work proposed in [30] is one of the earliest work
that deal with the broadcast problem in multihop radio
networks. They propose fault-tolerant broadcasting
algorithms and give their asymptotic bounds on
completion time. They assume that faulty nodes are
permanent of unknown locations and do not receive and
send messages. Also they consider line and grid as an
underlying network topology.

In [31], the author shows that it is possible to obtain
reliable broadcast whenever the number of Byzantine
nodes, nodes which may behave arbitrarily, f , is no
more than some value. And this f is defined in terms
of a communcation range r. Moreover, the author
shows that it is impossibe to obtain reliable broadcast
when f is bigger than some threshold value. The
work assumes a grid network and the existence of a
prefixed schedule and everyone follows to this schedule
to avoid collisions. In [32], the authors improve on [31]
by making possibility bounds tighter. In particular, it
has been shown that it is possible to achieve reliable
broadcast when the number of faulty(Byzantine) nodes
is strictly less than the threshold value for which in [31]
it is showed that it is impossible to achieve reliable
broadcast.

In [33], unlike the previous work where there is
no address spoofing and collision, the authors relaxed
this assumption and showed that reliable broadcast is
possible even in the presence collisions and address
spoofing as long as they are bounded and the number
of faulty nodes is less than some threshold value.

In [34], the authors address the broadcast problem
in the presence of Byzantine faults with faulty nodes
having bounded number of messages mf . They
show the possibility of reliable broadcast whenever the
number of messages, m, of the correct node is lower
bounded by some value defined in terms of mf . They
assume the existence of a prefixed time-slotted schedule,
but faulty nodes may not follow the schedule thereby
making collisions.

In [35], the authors propose a protocol which is
safe, i.e., correct nodes do not download an incorrect
message. The protocol guarantees this property
whenever D ≥ H + 2, where D is the shortst distance
between two Byzantine nodes and H is a prorocol
parameter which is assumed to be known by all correct
nodes. The paper also discusses the possibility of
reliable broadcast in the torus network whenever D ≥ 5
and H = 2. The same authors generalized this result
to planar graphs in [36]. In particular, the authors
show that for D > Z, where Z is the maximal number

of edges per polygon, it is possible to achieve reliable
broadcast.

3. MODELS: SYSTEM AND FAULTS

3.1. Graphs and Networks

We define a wireless sensor node as a computing device
equipped with a wireless interface and associated with a
unique identifier. Communication in wireless networks
is typically modelled with a circular communication
range centred on the node. With this model, a node
is thought as able to exchange data with all devices
within its communication range.

A wireless sensor network is a collection of wireless
sensor nodes and is modelled as a directed graph G =
(V,A), where V is the set of wireless sensor nodes
of size |V |, and A is a set of arcs or directed links.
Each directed link is an ordered pair of distinct nodes
(m,n), meaning node m can communicate with node
n. For a directed link (m,n), we call n (respectively,
m) a downstream neighbour (respectively, a upstream
neighbour) of m (respectively, n). We denote by
Md (respectively, Mu), the set of m’s downstream
(respectively, upstream) neighbours. We also assume
that, for every node m, Md,Mu 6= ∅. Whenever we say
a node n sends (resp. receives) a message, we mean n
sends (resp. receives) the message to its downstream
(resp. from its upstream) neighbours

The d-hop neighbourhood of a node m, denoted by
Md, is a set of nodes such that the length of the shortest
path from m to a node in the set is at most d. We
say that two nodes m and n can collide at node p if
(m, p), (n, p) ∈ A4.

3.2. Distributed Programs

We model the processing on a WSN node as a
process containing non-empty sets of variables and
actions. A distributed program P is then a finite
set of communicating processes. We represent the
communication network of a distributed program by a
directed connected graph G = (V,A), where V is the
set of processes and A is a set of directed links. A link
(m,n) ∈ A means that a process m can communicate
with a process n.

A variable vi takes values from a fixed and finite
domain Di. We denote a variable vi of process n by
n.vi. Each process n has a special channel variable,
denoted by n.ch, modelling a FIFO queue of incoming
data sent by other nodes. This variable is defined over
the set of (possibly infinite) message sequences. Every
variable of every process, including the channel variable,
has a set of initial values. The state of a program
P is an assignment to variables of values from their
respective domains. The set of initial states is the set
of all possible assignments of initial values to variables

4We will say two nodes m and n can collide if such a node p
exists.

The Computer Journal, Vol. ??, No. ??, ????

Towards Efficient Stabilizing Code Dissemination in Wireless Sensor Networks 5

of the program. A state is called initial if it is in the set
of initial states. The state space of the program is the
set of all possible value assignments to variables. An
action a at process n updates one or more variables of
n atomically.

3.3. Semantics

3.3.1. Program
We model a distributed program as a transition system
P = (Σ, I,∆), where Σ is the state space, I ⊆ Σ the
set of initial states, and ∆ ⊆ Σ × Σ the set of state
transitions (or steps). A computation of P is a maximal
sequence of states s0 ·s1 . . . such that ∀i > 0, (si−1, si) ∈
∆. If the computation is finite, then it terminates in a
final state. A state s of a computation is final if there
is no state s′ such that (s, s′) ∈ ∆.

In a given state s, several processes may be ready
to execute, and a decision is needed to decide which
one(s) execute. A scheduler is a predicate over the
set of computations. In any computation, each step
(s, s′) is obtained by the fact that a non-empty subset
of enabled processes atomically execute an action. This
subset is chosen according to the scheduler. A scheduler
is said to be central [37] if it chooses only one ready
process to execute an action in any step. A scheduler
is said distributed [38] if it chooses at least one ready
process to execute an action in any execution step. A
scheduler may also have some fairness properties [29].
A scheduler is strongly fair if every process that is
ready infinitely often is chosen infinitely often to execute
an action in a step. A scheduler is weakly fair if
every continuously ready process is eventually chosen
to execute an action in a step. A synchronous scheduler
is a distributed scheduler where all ready processes are
chosen to execute an action in a step.

In this paper, we assume a synchronous scheduler,
capturing a synchronous system where an upper bound
exists on the time for a process to execute an action.
This assumption is not unreasonable as WSNs are often
time-synchronized to either correlate sensor readings
from different devices. Overall, in this paper, we assume
a synchronous system model.

3.3.2. Specification
A specification is a set of computations. A program
P satisfies a specification Φ if every computation of
P is in Φ. Alpern and Schneider [39] stated that
every computation-based specification can be described
as the conjunction of a safety and liveness property.
Intuitively, a safety specification states that something
bad should not happen, i.e., the safety specification
defines a set of computation prefixes that should not
appear in any computation. On the other hand,
a liveness specification states that something good
will eventually happen, i.e., the liveness specification
specifies a set of state sequences such that every
computation has a suffix in the set.

We assume the specification to be fusion-closed and
suffix-closed. A specification is fusion-closed if two
computations α · s · β and λ · s · γ are allowed by the
specification, then so are the computations α · s · γ
and λ · s · β. A specification is suffix-closed if, for
every computation allowed by the specification, then so
are the suffixes of the computation. The assumption
of fusion closure is, in general, reasonable given
that conventional specification and implementation
languages are fusion closed. Further, any non-
fusion closed specification can be transformed into an
equivalent fusion closed one, through the addition of
history information [40].

3.3.3. Communication
We model synchronous communication as follows:
after a process i broadcasts a message in state
si, all downstream neighbour processes execute
the corresponding receive in state si+1, i.e., the
corresponding receive is executed before any other
enabled actions of process n, such that, in some sense,
message deliveries take higher priority.

3.4. Faults

Faults typically occur in wireless sensor networks.
Due to limited resources such as computing, memory
and energy, harsh environmental conditions and buggy
programs, wireless sensors may experience a number
of different types of faults. As mentioned in [41],
these faults can be classified as node failures and
hardware faults, communication faults, and software
faults. Some of these faults lead to transient memory
corruptions [41]. There have been several works done
that are tolerant to transient memory faults or present
memory protection mechanisms from some actions that
lead to this type of faults [42, 43, 44, 45]. Recently,
as reported in [9], transient faults have occurred with
a probability of approximately 0.1% in a large scale
deployment and such transient faults severely impact
on the efficiency of the protocols. Also, there exists
a tool that is designed specifically for wireless sensors
to emulate memory faults to check the reactions of
software to these faults [46].

A fault model stipulates the way programs may
fail. We consider transient data faults that corrupt
the state of the code dissemination program by
artificially corrupting the values held by the variables
and messages. These faults are also known as soft
errors. Formally, our fault model is a set F of faulty
actions [28]. These are similar to program actions,
as they may modify the variables of programs and
thus alter the program state. We say that a fault
occurs if a fault action is executed. Fault actions can
interleave program actions and they might or might
not be executed when enabled. We say a computation
is F -affected if the computation contains program
transitions and transitions from fault model F . We also

The Computer Journal, Vol. ??, No. ??, ????

6 S. Saginbekov, A. Jhumka

assume that the sink is able to retrieve an uncorrupted
version of the code and version number (with the sink
acting as a gateway), though the sink itself can be
corrupted.

Definition 3.1 (Consistent State in Code Dissem-
ination). Given a network G = (V,A) and a code dis-
semination program Ψ for G, the state of a neighbour-
hood G′ of G is said to be consistent in s if there is at
most 2 distinct version numbers in that neighbourhood
in s, where s is a state of Ψ. A process is said to have a
consistent state in s if its code’s version number is the
same as that of at least one other neighbour process in
s. A state of Ψ is consistent in s if all neighbourhoods
of G are consistent in s.

Definition 3.2 (F -affected node and F -affected
area). Given a network G = (V,A), a fault F that
corrupts the program state, an area G′ = (V ′, A′), with
G′ being a subgraph of G, is F -affected in a state s iff
∃V ′′ ⊆ V ′.∀n ∈ V ′′, n may need to change its state to
make the state of V ′ consistent. We call such a node n
an F -affected node in s5.

When a node changes its state to make the program
state consistent, we say that the node corrects its state.

Definition 3.3 (Stabilizing algorithm). Given a
network G = (V,A), a problem specification Φ for
G, and an algorithm Ψ. Algorithm Ψ is said to be
stabilizing to Φ iff every computation of Ψ has a suffix
which is a suffix of a computation of Φ that starts in an
initial state.

Definition 3.4 (d-local stabilizing algorithm).
Given a network G = (V,A), a problem specification
Φ for G, and a stabilizing algorithm Ψ to Φ. Algorithm
Ψ is said to be d-local stabilizing to Φ iff the cost of
correcting the state of a node is bounded by functions of
d.

4. SPECIFICATIONS

In this section, we formally define the problem of
code dissemination for network reprogramming. We
then provide two refined specifications for solving the
code dissemination problem: (i) deterministic code
dissemination, and (ii) stabilising code dissemination.

4.1. Abstract Specification of Code Dissemina-
tion

Before we provide problem definitions, we introduce
some notations we use in the rest of the paper. We
denote a code fragment by (π, vπ), with π being the
code and vπ being the version number of the code. We
denote by v′π a possibly corrupted version number for
code π, i.e., if v′π = vπ, then the version number is not
corrupted, corrupted otherwise. We say that a code

5We will only say F -affected if the state s is obvious from the
context.

has code fragment (πn, v′πn) to mean that a node n
has the code fragment (π, vπ) but has version number
v′π associated with it instead. Thus, unless stated
otherwise, whenever we say a node n has code fragment
π, we mean a node n has code fragment (π, v′π).

We assume the version number to be a scalar
quantity. We also assume that the version number can
grow arbitrarily large.

Definition 4.1 (Code Update). Given two code
fragments (π, vπ) and (Π, vΠ), Π is said to be an
updated code over π if vΠ > vπ. If a node ni changes its
code from π to Π and Π is a updated code over π, then
we say that a node ni updates its code to Π. Otherwise,
if a node ni changes its code from Π to π, then we say
that a node ni outdates its code to π.

Definition 4.2 (New Code for G). Given a code
fragment (Π, vΠ) and a network G, we say that Π is
a new code for G if all nodes in G have code fragment
π and vΠ > vπ.

We will say that Π is an updated code to mean
that Π is an updated over code π, whenever π is clear
from the context. We will also say that a node n
updates/outdates its code to Π/π if Π and π is obvious
from the context.

We now provide an abstract definition of code
dissemination as part of a network reprogramming
protocol.

Definition 4.3 (Code Dissemination (CD)). Given
a network G = (V,A), with a dedicated node called
a sink S ∈ V , and an updated code (Π, vΠ) to be
disseminated. Then, a code dissemination for Π is a
sequence of sets of receivers 〈R0 ·R1 . . . RkΠ〉 such that

1. RΠ
0 = {S}

2. ∀ i, 0 ≤ i ≤ (kΠ−1) : ∀r ∈ RΠ
i+1,∃s ∈ RΠ

i ·(s, r) ∈
A

3.
⋃

0≤i≤kΠ R
Π
i = V

Given a network G and an updated code Π, the code
dissemination process starts with the sink (condition
1). Then, the code update process propagates forward
(condition 2), one hop at a time, until all the nodes
have received the updated code (condition 3). The
sequence represents the sequence in which the nodes
updates their code.

In the above definition, we have made three
assumptions: (i) when a code dissemination process
starts, all the nodes have the same code base, i.e.,
they all have the same code, (ii) all nodes need to
get the updated code (however, we can easily adapt
the definition to the case where only a subset of
nodes require the code update), and (iii) only one
code dissemination can take place at a time, i.e., a
code update can only occur once a previous one has
completed. We call kΠ, the dissemination latency for
Π. Observe that condition 2 does not warrant that
all the downstream neighbours of an updated node to

The Computer Journal, Vol. ??, No. ??, ????

Towards Efficient Stabilizing Code Dissemination in Wireless Sensor Networks 7

receive the code update in the next round. Due to
issues such as message collisions and duty cycling, a
downstream neighbour node may not receive the update
in the next round, but sometime later from, possibly,
another upstream neighbour.

4.2. Local Specifications for Code Dissemina-
tion

The specification given in 4.4 is a global specification
in the sense that it specifies the expected behaviour
at the network level. In a distributed system,
the verification that a program satisfies the global
specification is challenging, given that global state is
not instantaneously available. Thus, it is preferable
to develop node-level specifications, which we call local
specifications, which are more amenable to verification.
The combination of local specifications (one for each
process) result in the global specification.

We now present three increasingly weaker local
specifications through which code dissemination could
be achieved, which we call (i) strong code dissemination
(CD), (ii) consistent CD and (iii) best effort CD.
The first specification, strong CD, represents a gold
standard and is satisfied by current dissemination
protocols, such as [2, 3, 4]. The weaker specifications
become important especially when transient faults
occur in the network. We will define both specifications
in terms of safety and liveness [39].

4.2.1. Strong Code Dissemination
Intuition In the fault-free case, a node n, having code
π, will only download a code from a neighbor node,
having code Π, if Π is an updated code. Further, n
will not download Π again. Current code dissemination
protocols also guarantee that, eventually, every node
will download the updated code (even if some nodes
are temporarily disconnected from the network, due to
duty-cycling, link failures etc).

Thus, we define strong CD as follows (Definition 4.5):

Definition 4.4 (Strong CD). Given a network G =
(V,A), a node n ∈ V having a code fragment π, and a
new code fragment (Π, vΠ) for G. Then,

• Accuracy: Node n will only change its code to an
updated one.
• Update: Eventually node n will permanently
update its code to Π.

The liveness part of the specification, i.e., the update
property, for strong code dissemination ensures that⋃

0≤i≤kΠ R
Π
i = V (see Definition 4.4). On the other

hand, Definition 4.5, through the accuracy property,
puts an additional constraint on code dissemination in
that nodes only change their code with an updated
one. In other words,

⋂
0≤i≤kΠ R

Π
i = ∅, i.e., no node

updates more than once. In general, in the absence of
faults, it can be expected that the system will satisfy

the strong CD specification, e.g., [3, 4]. However, due
to external factors, such as transient faults, nodes may
wrongly outdate their codes and, if they do so, they will
eventually have to correct these mistakes.

These wrong code changes (i.e., code outdates) give
rise to various possible weaker specifications, namely (i)
consistent CD and (ii) best effort CD.

4.2.2. Consistent Code Dissemination
Intuition When transients fault occur, it may be the
case that a node n cannot distinguish between updated
and outdated code. Specifically, a node n that has
already updated may download the old code from a
neighbour, i.e., n becomes outdated, if it believes that
the neighbour has the code update. This is not an
ideal situation. However, a node m that has yet to
be updated may believe that another node m′, with the
same code as m, has the code update and may wrongly
download the same (old) code. This specification
forbids a node to outdates itself.

The specification

Definition 4.5 (Consistent CD). Given a network
G = (V,A), a node n ∈ V having a code fragment π,
and a new code fragment (Π, vΠ) for G. Then,

• No outdate: Node n will never change its code to
an outdated one.
• Update: Eventually node n will permanently
update its code to Π.

4.2.3. Best Effort Code Dissemination
Intuition The best effort CD specification allows for
an updated node n to outdate itself as n may wrongly
believe some node m to have the new code while n has
the old code.

Definition 4.6 (Best Effort CD). Given a network
G = (V,A), a node n ∈ V having a code fragment π,
and new code fragment (Π, vΠ) for G. Then,

• Eventual accuracy: Eventually, node n will only
change its code to an updated one..
• Liveness: Eventually node n will permanently
update its code from π to Π.

An example is used to help better understand and
differentiate between the three different specifications
proposed. At the start of the dissemination of the new
code Π, the old code π resides at every node in the
network. Assume that the old code has version 0 and
the new code has version 1. Hence, for any node n in
the network, there are four possible code transitions in
the presence of transient faults:

1. 0 → 0 : Node n has the old code and changes to
the old code again - Redundant

2. 0 → 1 : Node n has the old code and changes to
the new code - Code update

3. 1 → 0 : Node n has the new code and changes to
the old code - Code outdate

The Computer Journal, Vol. ??, No. ??, ????

8 S. Saginbekov, A. Jhumka

4. 1 → 1 : Node n has the new code and changes to
the new code again - Redundant

The strong CD specification only allows the second
type of code transition. The consistent CD specification
allows the 1, 2 and 4 types of code transitions while the
best effort CD specification allows all of them. It can
be observed then that BestEffort specification allows
more redundant downloads than either of the other two
specifications.

4.3. Fault Tolerance Issues: An Overview

It can happen that a code dissemination protocol
that has been proved correct (i.e., satisfies its strong
specification in the absence of faults), violates its
specification in the presence of faults due to it not being
able to handle faults [28], i.e., the code dissemination
protocol is fault-intolerant. As such, there is a variety
of fault tolerance properties that the program can
satisfy, viz. fail-safe fault tolerance, non-masking fault
tolerance and masking fault tolerance [28]. A fail-
safe fault-tolerant program guarantees that safety will
always be satisfied, while a non-masking fault-tolerant
program guarantees that liveness will eventually be
satisfied, even if safety can be temporarily violated.
On the other hand, a masking fault-tolerant program
(the gold standard) guarantees that the program
will satisfy its specification even in the presence of
faults. To transform a fault-intolerant program into
a fail-safe fault-tolerant (resp. non-masking fault-
tolerant) program, addition of program components
called detectors (resp. correctors) to the fault-intolerant
program are both necessary and sufficient. Thus, to
make a program masking fault-tolerant, it is necessary
and sufficient to add both detectors and correctors [28].
A detector component is one that asserts the validity
of a predicate in a running program, while a corrector
component enforces a predicate on a running program.

In networking, a non-masking fault-tolerant program
is generally suitable as it guarantees that, eventually
(i.e., when faults stop), the program will satisfy
its specification again. Though non-masking fault
tolerance entails the erroneous downloads of codes,
it is the one more suited to code dissemination as
masking fault tolerance is very expensive, both spatially
and temporally, to guarantee. Given the existence
of several code dissemination algorithms, it is not
intended, in this work, to develop another (non-
masking) fault-tolerant code dissemination protocol for
network reprogramming. The thrust is to develop a
generic corrector protocol that, when added to a fault-
intolerant code dissemination protocol, will enable the
resulting protocol to satisfy the liveness specification
(i.e., eventually all nodes will permanently update with
the updated code). We also require that the corrector
protocol is only executed when an erroneous state is
detected.

At this point, we need to define the properties

of such a corrector protocol that will capture its
correctness. Since we wish this corrector protocol to
be generic, and work as a wrapper (i.e., it can plug in
with various code dissemination protocols), it cannot
be based on any specific code dissemination protocol
implementation. Rather, the working of the corrector
protocol should only be based on the specification of
the code dissemination protocol, more specifically its
interface and specification. Such an approach is what
has been termed as graybox stabilization [18].

Definition 4.7 (Corrector Component for Code
Dissemination). Given a strong code dissemination
specification σs (Definition 4.5) and a weaker version
σw (Definitions 4.6 or 4.7), some transient fault model
F , a protocol Σ that satisfies σs in the absence of F
but violates σs in the presence of F , and a program φ.
Then, φ is a σw-corrector program for σs iff

• Transparency: In the absence of F , (Σ ◦ φ)
satisfies σs.
• Stabilizing: In the presence of F , (Σ ◦ φ) satisfies
σw.

If σw is consistent CD (resp. best effort CD), then
φ is a consistent (resp. best effort) corrector for strong
CD.

Here, A ◦ B represents the addition of program A
with program B [18]. The set of computations of the
composite system (A ◦ B) is the smallest fusion-closed
set that contains computations of A and B, with the
initial states being the set of common initial states of A
and B. Definition 4.8 stipulates that, when there is no
transient fault in the network, the corrector program is
transparent, i.e., it does not interfere with the working
of the code dissemination protocol and satisfies the
strong code dissemination. However, when transient
faults are occurring, then the corrector program will
help the code dissemination protocol to eventually
guarantee that a node will permanently download the
updated code, after possibly having downloaded stale
code.

5. THEORETICAL RESULTS

In this section, we show that (i) it is impossible
to solve the strong code dissemination problem in
presence of transient faults, and (ii) there exists no 1-
local algorithm to solve the strong code dissemination
problem in the presence of a stronger class of transient
faults, which we term as detectable faults.

5.1. Strong Code Dissemination in the Pres-
ence of Transient Faults

In this section, we investigate the possibility of
developing an algorithm that solves the strong code
dissemination problem in the presence of transient
faults. Ideally, even in the presence of transient faults,
it would be beneficial if a node only updates with new

The Computer Journal, Vol. ??, No. ??, ????

Towards Efficient Stabilizing Code Dissemination in Wireless Sensor Networks 9

code to prevent redundant downloads, thereby saving
energy.
Intuition From the specification of deterministic code
dissemination (Definition 4.5), it is stated that nodes
only update their codes when they are in the presence
of a newer code fragment. However, when transient
faults occur, the version number that is advertised by
or stored at a node can be corrupted, possibly leading
to nodes downloading old code fragments. Thus, the
first main contribution of the paper is captured by
Theorem 5.1, which states that it is impossible to
solve the strong code dissemination in the presence of
transient faults.

Theorem 5.1 (Impossibility of strong CD). Given a
network G = (V,A), a fault model F that corrupts the
program state, and an updated code fragment (Π, vΠ).
Then, there exists no deterministic algorithm that solves
the strong code dissemination problem for Π in G in the
presence of F .

Proof. Consider the network G, and assume
a deterministic algorithm Ψ that solves the strong
code dissemination problem. We will construct an
appropriate state and show that, under Ψ, a node may
wrongly update, hence a contradiction.

Assumptions: Two nodes ni and nj where ni (resp.
nj) is both an upstream and downstream neighbour of
nj (resp. ni).

Consider a fault free computation C = s0 · s1 . . . of
Ψ. In a given state sk in C, two nodes ni, nj ∈ V \ {S}
have the following code fragments: ni has Π and nj has
π.

Now, nodes ni and nj interact such that ni and nj
inform each other of their respective code fragments,
i.e., about their respective version numbers. Given that
Ψ solves the strong code dissemination problem, node
nj will eventually permanently update its code with Π
in a state sl, l > k as Π is an updated code fragment.

Now, consider a faulty computation C ′ = s′0 · s′1 . . .
of Ψ, and a state s′k which is exactly the same as sk
(above) except for the following: (i) node ni has a code
fragment (Πni

, v′Πni
) and node nj has code fragment

(πnj
, v′πnj

). In a state s′l, l > k of C ′, assume that ni
has the same version view as nj in sl and nj has the
same version view as ni in sl.

Since Ψ is deterministic and solves strong CD, node
ni will permanently update its code with π in s′l, which
is a contradiction as π is an old code. Hence, no such
deterministic Ψ exists.

The impossibility is underpinned by some major
problems, the most prominent being: (i) Nodes are
not able to detect unexpected version numbers as,
for example, if nodes with the stale code have their
respective version numbers corrupted to very high
values, old code may propagate through out the
network, and (ii) nodes with the updated code may
have their respective version numbers corrupted to that

of the old code, while nodes with the old code have
their respective version numbers corrupted to the new
one, i.e., all updated nodes appear as outdated and all
outdated nodes appear as updated.

To attempt to circumvent this impossibility of
Theorem 5.1, there are different possible avenues. For
example, one may allow algorithms to make a finite
number of mistakes, thereby solving a weaker problem
specification (such as the weak code dissemination).
Another example might be to solve the strong code
dissemination problem in presence of a stronger fault
model, i.e., a fault model where the set of possible
corruptions is constrained. For the first possibility, if
the possibly few updated nodes are overwritten with the
old code, then there is no chance of the network getting
the new code. Thus, even if a finite number of mistakes
are allowed (i.e., download of old code), then there is
no guarantee of the network getting the correct code.
Thus, in this paper, we follow the second possibility,
i.e., we assume a stronger fault model.

Thus, the assumed fault model needs to be such
that the two stated problems are handled: we require
the faults to result in detectable errors. Thus, we
rule out a few fault actions: (i) we require that
the fault model does neither make outdated nodes
appear as updated and updated as outdated, (ii) nodes
in a neighbourhood need to be corrupted differently
(so nodes in a neighbourhood do not appear as
outdated/updated). We call the resulting fault model
as the detectable fault model, which we assume in the
rest of the paper. An example of a possible fault ruled
out by the first constraint can be illustrated with an
example: assume the old code version is 1 and the new
version is 2, and the version number increases by 1 for
each new update. An updated (resp. outdated) node
cannot have its version number to be corrupted to 1
(resp. 2). Also, say a node n has its version number
corrupted to 5, then a node m in n’s neighbourhood
cannot have its version number corrupted to 6, as m
will appear as updated to n.

In the presence of detectable faults, a trivial
solution to solve the strong code dissemination is to
require the sink to periodically start the dissemination
process. Whenever a node encounters a version that is
unexpected (allowed under the detectable fault model),
it does not need to download the code associated with
it. When it sees a version number that is expected
(i.e., realistic), and since the code associated with
the version number cannot be a stale one (as it is
ruled out by the fault model), the node can download
the code. Unfortunately, such a scheme is expensive
as the network will need to spend lots of energy for
dissemination, i.e., the protocol is a global one. Thus,
we seek to determine whether nodes can rely only on its
1-hop neighbourhood for code dissemination (just as in
a fault-free case) in the presence of detectable faults.
This is captured in Theorem 5.2.

The Computer Journal, Vol. ??, No. ??, ????

10 S. Saginbekov, A. Jhumka

Theorem 5.2 (Impossibility of 1-local strong CD).
Given a network G = (V,A), a detectable fault model
F , and an updated code fragment Π. Then, there
exists no 1-local algorithm that solves the strong code
dissemination problem for Π in G in the presence of F .

Proof. The proof is trivial. If the 1-hop
neighbourhood of a node is corrupted in such a way
that the version numbers are either unexpected ones or
old ones, then the node will not download any code.
Hence, a 1-local protocol is not possible.

Intuitively, if a neighbourhood is corrupted by a
detectable fault model, then nodes will need to start
downloading from uncorrupted nodes outside of the
corrupted neighbourhood. Hence, this points towards
a f -local algorithm, where f is the diameter of
the affected area, that can solve the strong code
dissemination algorithm. However, given the nature of
WSNs and of the code dissemination process, strong
code dissemination in the presence of faults is not
appropriate, due to the overhead it induces on the
network. To this end, we focus on the two other
specifications, viz. best effort CD and consistent
CD. In the next section, we present two corrector
programs that, when added to a fault-intolerant code
dissemination protocol, solve the BestEffort CD and
Consistent CD problems.

6. CODE DISSEMINATION CORRECTION:
TWO GENERIC CORRECTOR PROTO-
COLS

In this section, we present two generic corrector
programs, namely (i) BestEffort-Repair and (ii)
Consistent-Repair. Each of the two protocols can be
added to a fault-intolerant code dissemination protocol
to make the code dissemination protocol satisfy some
correctness specification.

As stated before, rather than developing a single
(non-masking) fault-tolerant code dissemination pro-
tocol, the focus in on transforming existing fault-
intolerant code dissemination protocols into non-
masking fault-tolerant ones. To enable this, we adopt
the technique for graybox stabilisation [18] whereby,
rather than developing a corrector for a particular code
dissemination protocol, a (generic) corrector protocol is
designed based on a specification. This corrector can
then be added to any implementation that satisfies the
specification, resulting in the eventual program to be
non-masking fault-tolerant. In that way, the corrector
is reusable.

Further, from the definition of a corrector component
(Definition 4.8), the corrector should be transparent
to the code dissemination protocol when there are
no faults is the network, i.e., the behaviour of the
composite corrector and dissemination protocol should
be identical to that of the dissemination protocol alone
in the absence of faults. To achieve this, we include a
detector component in the code dissemination protocol

that, when satisfied (during faulty periods), triggers
the corrector component. It would be advantageous
to then be able to develop a detector based on a
specification. However, in such a case, the efficiency
of the detector is not very high, in that it can suffer
from high false positives or false negatives, which can
then cause the corrector to violate its transparency
property. To compensate, we design the detectors based
on protocol implementations, i.e., a detector is needed
for each different code dissemination protocol. Overall,
our approach is to develop a protocol-specific detector
which, when its corresponding detection predicate
becomes true, triggers the execution of the generic
corrector program, making the code dissemination
protocol non-masking fault-tolerant.

A design methodology suggested for graybox stabili-
sation is to design a program that contains two different
components [18]: (i) a process-specific component and
(ii) an interprocess-specific component. The process-
specific component is responsible for making the state
of a single process consistent, whereas an interprocess-
specific component is responsible for correcting any in-
consistency between different processes. In a fault-
intolerant code dissemination protocol, since the only
relevant information nodes keep about the code is the
version number, then state inconsistency at the process
level is irrelevant, i.e., the state of a single process is
trivially consistent. On the other hand, state incon-
sistency can be detected when comparing the version
numbers of two different processes. Thus, interprocess-
specific component of a corrector program only needs
to correct the states of processes that are inconsistent
with each other.

In Sections 6.1 and 6.2, we present two corrector pro-
tocols that correct any state inconsistency between pro-
cesses, transforming the fault-intolerant code dissem-
ination protocols in non-masking fault-tolerant ones.
The BestEffort-Repair protocol, as the name suggests,
attempts to correct the state inconsistencies as fast
as possible, while the Consistent-Repair protocol at-
tempts to correct the state consistencies as intelli-
gently as possible. In other words, the worst case sce-
nario for BestEffort-Repair may be worse than that of
the Consistent-Repair but the best case scenario for
BestEffort-Repair is also better than that of Consistent-
Repair.

6.1. The BestEffort-Repair Protocol

Before describing the BestEffort-Repair protocol and
giving its formal description, we present the main idea
behind it, and the special packets it uses. Since 1-
local fault tolerance is not possible (Theorem 5.2), the
main idea is to correct (i.e., repair) the protocol state as
fast as possible. Correcting a state inconsistency (i.e.,
error) quickly means that the error does not propagate
through out the whole network.

BestEffort-Repair uses six special types of data

The Computer Journal, Vol. ??, No. ??, ????

Towards Efficient Stabilizing Code Dissemination in Wireless Sensor Networks 11

packets (we call them BestEffort-Repair packets), which
we describe below.

• Prob: It contains the code’s version number and
it is used to ask a neighbouring node to correct an
error.

• Check: A node sends a Check packet to request
the current version number of neighbouring nodes.

• Rep: A node sends a Rep packet in response to
a Check packet and it contains the node’s (stored)
version number.

• OK: It is used to release some nodes from the
correction process.

• Cor: A node sends a Cor packet to inform
other neighbouring nodes about the correct version
number..

• Hello: A node sends a Hello packet to inform
other neighbouring nodes about the correct version
number and also that it has the updated code.

Informally, BestEffort-Repair works as follows: When
a node n1 detects an error after communicating with a
node n2, it attempts to correct the erroneous state. A
Prob packet is sent by n1 to n2 to indicate a problem,
asking n2 to correct the problem. If the error cannot
be corrected by n2, then Check packets are broadcast,
creating a correction tree, rooted at the node (n1) that
detected the error. The leaf nodes of the tree responds
to Check packets by sending Rep packets. If n2 detects
an error with any of the leaf nodes, it will spawn a
subtree, within the main correction tree. Once a region
in the network is reached where no fault has occurred,
i.e., outside of the fault-affected area, then no more
subtree is spawned. This means that a node’s, say
nl, neighbourhood (i.e., all the children of the node
within the correction tree) have the same code version,
as the version is correct (under the detectable fault
model). In other words, nl has received Rep packets
from its children with the same version number. Then,
ultimately, the node nl responds through a Hello or
Cor packet, and its subtree “disappears”. Any node
sending a Hello or Cor packet will cause its subtree to
“disappear” since the node has ascertained the correct
version number (and in the case of Hello packet, nl also
notified its parent about the availability of the code as
well).

6.1.1. BestEffort-Repair: An Overview
When a node n1 detects an error (which is protocol-
specific) after receiving a message from a neighbouring
node n2, n1 sends a Prob packet to n2, thereby asking
n2 to check whether it is the source of the error (we
will shortly explain what happens if n2 does not receive
the Prob packet from n1). Node n1 then goes to the
Wait state, where n1 will wait for some predefined time.
In turn, n2 asks its neighbouring nodes, except n1, for
their version numbers by broadcasting a Check packet.
Node n2 then goes to the Waitrep state where it will
wait for Rep packets from its neighbours over a certain

Stable

Wait_Rep

Wait

Disseminate

Temp

Error detected

rcv(Check)

Timeout or (rcv(OK) and f1)

¬f3 or (rcv(Cor) and ¬f2)

rcv(Hello) and ¬f2

 Any dissemination protocol states

send(Rep)

rcv(Rep)

send(Check)

send(Prob)

send(Hello)

FIGURE 1. The state machine for BestEffort-Repair.
Two states in dashed area are the states of any dissemination
protocol. f1=TRUE if sender of OK packet is the node
which sent H, f2=TRUE if Sender.Vers=Receiver.Vers,
f3=TRUE if all received metadata are the same.

time interval. All nodes that receive the Check packet
from n2 send a Rep packet to n2. Now, node n2 will
compare all the received version numbers obtained from
the Rep packets. If the version numbers are equal and
match its own version number, then n2 sends a Hello
packet to n1. By sending a Hello packet, node n2 says
to node n1 that it has the correct version and it has the
associated code too.

Now, if the received version numbers from the Rep
packets are the same but differ from that of n2, node
n2 will send a Cor packet to n1 and corrects its code
fragment by downloading from one of the Rep senders.
By sending a Cor packet to n1, node n2 tells n1 about
the currently available version, which n1 can download
from another node with the associated code. If at least
one of the received Rep packets contains a different
version number i.e., the received version numbers are
not identical, then n2 goes to the Wait state and
broadcasts a Prob packet, as done by n1 earlier. This
process continues until a node that sent a Prob packet
will get a Hello or Cor packet. Nodes that were in
the Wait or Waitrep state after updating their code
fragments, go to the Temp state where they broadcast
a Hello packet a few times.

Because of reasons such as transient link failures, a
Prob packet sent by n1 may not be delivered to n2. To
overcome this issue n1 periodically sends a Prob packet
to n2 some predefined times until n1 receives an implicit
acknowledgement packet like Check, OK or Prob from
n2 or Hello or Cor from any node.

Figure 1 illustrates the state machine of BestEffort-
Repair. The variables and (pseudo) code for the
BestEffort-Repair algorithm is shown in Figures 2
and 3.

We now prove that BestEffort-Repair is a corrector
component.

The Computer Journal, Vol. ??, No. ??, ????

12 S. Saginbekov, A. Jhumka

Variables of process i:

PacketType ∈ {H, Prob, Check, Hello, OK, Rep}
% H packets are application layer(data)/ code update maintenance
packets.
% The other packets are Repair packets.

state ∈ {1, 2, 3, 4, 5} Init state ==1;
//for PS, WAIT, WAITREP, TEMP, DISSEMINATE
% See Figure 1.

h, p, version, countH, countP : N Init countH:= 0, countP:=0
firstProb ∈ {0, 1} Init firstProb == 1

TableProb, TableRep: {(id, version) : id ∈ N, version ∈ N}
% Keep track of nodes and version number they sent/receive

% Protocol Timers

PeriodProb: Timer
SendProb: Timer
Wait Time: Timer
SendRep: Timer
WaitRep Time: Timer
SendCheck: Timer
Temp Time: Timer
SendHello: Timer
t: Timer
U: Timer % Parameter from application layer for periodic traffic.

FIGURE 2. Variables of BestEffort-Repair algorithm.

Lemma 6.1 (Containment of BestEffort-Repair).
Given a network G = (V,A), detectable fault model F ,
an F -affected area G′ = (V ′, A′), then, at most O(|V ′|)
nodes will download the old code.

Proof From BestEffort-Repair, a node n, after
sending Check packets to its neighbours - due to
receiving a Prob packet from a node n′, waits for Rep
packets. If the received Rep packets are all identical
in their version numbers, then n will either broadcast a
Cor packet (stating the expected correct version number
and then download the code) or it will broadcast a Hello
packet. If the version number is the old one, then, n will
download the old code. All other nodes that receive the
Hello packet will also download the old code. Thus, at
most, all nodes in m ∈ G′ and all nodes p ∈ Mu will
receive a Hello packet with the version number being
the old one.

From Lemma 6.1, it can be observed that only a
finite number of nodes, including updated ones, will
change their code to the old one in presence of transient
faults. Since there will then be the old code and the new
code in the network, eventually, the code dissemination
protocol will ensure that all nodes get the updated code.
This is captured in Theorem 6.1

Theorem 6.1 (Correctness of BestEffort-Repair).
Given a network G = (V,A), detectable fault model
F , a strong code dissemination specification σ for G,
BestEffort CD σb, a protocol Σ that satisfies σ in the
absence of F but violates σ in the presence of F . Then,
BestEffort-Repair is a BestEffort-corrector component
for strong CD.

Proof. For the transparency property, since
BestEffort-Repair is only triggered when there is an
error in the network, then safety is satisfied by the
correctness of Σ. The stabilizing property follows
from Lemma 6.1 and the nodes will the old code with
ultimately download the correct code due to Σ.

6.2. The Consistent-Repair Protocol

6.2.1. Consistent-Repair: An Overview
Consistent-Repair works in a similar way to BestEffort-
Repair, with differences when a node changes its code.

When a node n1 detects an error (which is protocol-
specific) after receiving a message from a neighbouring
node n2, n1 sends a Prob packet to n2, thereby asking
n2 to check whether it is the source of the error (we
will shortly explain what happens if n2 does not receive
the Prob packet from n1). Node n1 then goes to the
Wait state, where n1 will wait for some predefined time.
In turn, n2 asks its neighbouring nodes, except n1, for
their version numbers by broadcasting a Check packet.
Node n2 then goes to the Waitrep state, where it will
wait for Rep packets from its neighbours over a certain
time interval. All nodes that receive the Check packet
from n2 send a Rep packet to n2. Now, node n2 will
compare all the received version numbers obtained from
the Rep packets.

If all the received version numbers are equal and
match its own version number, then n2 sends a Hello
packet to n1, stating that the correct version number is
that held by n2 and that it has the updated code too.
If the received version numbers from the Rep packets
are the same but differ from that of n2, n2 downloads
the available code fragment by downloading from one of
the Rep senders. After downloading the code, n2 will
eventually send Hello messages. Further, if there are
only two different version numbers received, then n2

chooses the higher one (as there are only two versions
in the network during the dissemination process).

On the other hand, if n2 obtains more than 2 version
numbers, then this indicate an error in the network. For
any node n3 that sent Rep packets to n2 with version
numbers that violate the consistency predicate, n2 send
Prob packets to n3. These nodes, in turn, send check
packets to their neighbours and the process is repeated.

Once the recovery process reaches a region outside of
the fault-affected area, nodes on the border of the fault-
affected area will receive Rep packets with at most two
different version numbers (this is the case when only
part of a neighbourhood has been updated). Once a

The Computer Journal, Vol. ??, No. ??, ????

Towards Efficient Stabilizing Code Dissemination in Wireless Sensor Networks 13

state==1
case(upon〈rcv (H, n, i)〉 and detect())

state:=2
setTimer(Prob, SendProb, n)
setTimer(WAIT, Wait Time)

case(upon〈rcv (Check, n, i)〉)
setTimer(Rep, SendRep, n)

case(upon〈rcv (Prob, n, i)〉)
if(firstProb==1)

firstProb:=0
setTimer(Timer, SendProb+t)

else
TableProb ∪ (n, n.version)

endif
case(upon〈rcv (Prob, n, ALL)〉)

if(i.version!=n.version)
state:=3

setTimer(WAITREP, WaitRep Time)
setTimer(Check, SendCheck, ALL)

endif
endcase

if(timeout(Timer))
compare all nj .versions ∈ TableProb
if(all are equal)
bCast(OK, i, ALL)
state:=4
setTimer(TEMP, Temp Time)

else
state:=3
setTimer(WAITREP, WaitRep Time)
setTimer(Check, SendCheck, ALL)

endif
endif

state==2
repeat every PeriodProb
send(Prob, i, n)
countP:=countP+1

until (rcv.type!=H or countP > p)
case(upon〈rcv (OK, n, i)〉)

state:=1
stopAllTimers()
TableProb:=∅
TableRep:=∅

case(upon〈rcv (Cor, n, i)〉)
if(i.version==n.version)

state:=4
setTimer(TEMP,Temp Time)

else
bCast(Cor, i, ALL)

endif
case(upon〈rcv (Hello, n, i)〉)
if(i.version==n.version)

state:=4
setTimer(TEMP,Temp Time)

else
state:=5

endif
endcase

if(timeout(WAIT))
state:=1
stopAllTimers()
TableProb:=∅; TableRep:=∅

endif

state==3
case(upon〈rcv (Cor, n, i)〉)
if(i.version==n.version)

state:=4
setTimer(TEMP, Temp Time)

else
bCast(Cor, i, ALL)
state:=2
setTimer(WAIT, Wait Time)

endif
case(upon〈rcv (Hello, n, i)〉)
if(i.version==n.version)

state:=4
setTimer(TEMP, Temp Time)

else
state:=5

endif
case(upon〈rcv (Rep, n, i)〉)
TableRep:= TableRep ∪ {(n, n.version)}
endcase

if(timeout(WAITREP))
compare all nj .versions ∈ TableRep
if(all and i.version are equal)
send(Hello, i, n)
state:=4
setTimer(TEMP, Temp Time)
elsif(all are equal and i.version is not

equal)
state:=5

else
bCast(Prob, i, ALL)
state:=2
setTimer(WAIT, Wait Time)

endif

state==4
repeat every SendHello
bCast(Hello, i, ALL)
countH:=countH+1

until count>h
if(countH>h)

state:=1
stopAllTimers()
TableProb:=∅
TableRep:=∅

endif
case(upon〈rcv (Code Request, n, i)〉)

state:=5
countH:=0

endcase
if(timeout(TEMP))

state:=1
stopAllTimers()
TableProb:=∅; TableRep:=∅

endif

state==5
send/download the code.
state:=4
setTimer(TEMP,Temp Time)

endcase

if(timeout(PacketType, j))
if(j==ALL)
bCast(PacketType, i, ALL)

else
send(PacketType, i, j)

endif
endif

FIGURE 3. BestEffort-Repair Algorithm.

node receiving these Rep packets decides on the correct
version number, it broadcasts a Hello message (after
possibly downloading the associated code, if it does
not already have it) a few times to ensure that its
neighborhood learns about the correct version.

Because of reasons such as transient link failures, a
Prob packet sent by n1 may not be received by n2.
To overcome this issue, n1 periodically sends a Prob
packet to n2 for some predefined times until n1 receives
an implicit acknowledgement packet, such as Hello or

Check.
The Consistent-Repair protocol, when added to a

fault-intolerant code dissemination protocols, trans-
forms the protocol into a non-masking fault-tolerant one
that satisfies the Consistent CD specification. It lever-
ages the fact that, at any time during the new code dis-
semination, there will be at most two codes in the net-
work: (i) the old one and (ii) the new one. This means
that any node only need to know about two different
version numbers. Once a node knows about these, it

The Computer Journal, Vol. ??, No. ??, ????

14 S. Saginbekov, A. Jhumka

Variables of process i :
firstHello:{(id,version):id∈ N,version∈ N}

state==2

case(upon〈rcv (Hello, n, i)〉)
if(firstHello.version==∅)

firstHello.version:=n.version
firstHello.source:=n

elseif(firstHello.version > n.version)
if(i.version==firstHello.version)

state:=4
setTimer(TEMP,Temp Time)

else
state:=5

endif
elseif(firstHello.version < n.version)
if(i.version==n.version)

state:=4
setTimer(TEMP,Temp Time)

else
state:=5

endif
endif

endcase

if(timeout(WAIT))
if(firstHello.version==∅)

state:=1
stopAllTimers()
TableProb:=∅; TableRep:=∅

else
if(i.version > firstHello.version)

state:=4
setTimer(TEMP, Temp Time)

else
state:=5

endif
endif

endif

state==3

case(upon〈rcv (Rep, n, i)〉)
TableRep:= TableRep ∪ {(n, n.version)}
endcase

if(timeout(WAITREP))
if(detect())
bCast(Prob, i, ALL)
state:=2
setTimer(WAIT, Wait Time)

elseif(i.version < Table.version))
state:=5

else
state:=4
setTimer(TEMP, Temp Time)

endif
endif

FIGURE 4. Consistent-Repair Algorithm.

Stable
Wait_Rep

Wait Disseminate

Temp

rcv(Prob)

rcv(Check)

(Timeout or rcv(2nd Hello)) and ¬f2

 Any dissemination protocol states

rcv(Rep)

Timeout and
Error detected

¬f2

send(Rep)

send(Check)

send(Prob)

Timeout

send(Hello)

FIGURE 5. The state machine for Consistent-Repair.
The two states in dashed circle are the states of any code
dissemination protocol. f1=TRUE if the sender of an OK
packet is the node which sent an H packet, f2=TRUE if a
node is updated, FALSE otherwise.

can choose the higher one, which is associated with the
updated code.

The Consistent-Repair protocol is shown in Figure 4,
which shows the code for when the process is in state
2 (Wait) and state 3 (Wait-Rep) is shown (the code for
when the process is in state 1, 4 and 5 is the same as
for BestEffort-Repair (Figure 3)). On the other hand,
Figure 5 illustrates the state machine of the Consistent-
Repair protocol.

An example of a fault-affected area is depicted in
Figure 6, and the corresponding correction tree for
the fault-affected area, as constructed by Consistent-
Repair, is depicted in Figure 7.

We prove an important property of Consistent-

F-affected area

0n

fn0

FIGURE 6. An example of a fault-affected area.

Repair, in that Consistent-Repair generates a correction
tree of depth at most f + 2, where f is the diameter of
the F -affected area.

Lemma 6.2 (Correction Tree). Given a network G =
(V,A), a detectable fault model F , and an F -affected
area G′, with the diameter of the area being f . Then,
Consistent-Repair constructs a tree of depth at most
f + 2 rooted at the node that first detects an error.

Proof:
Assumptions: We denote a node that first detects

an error by n0, and we denote a node a distance d from
n0 by nd0. We assume that node n0 detects an error
after receiving a packet from some node n1

0, and that
n0 is on the boundary of the F -affected area (some of
its neighbours are F -affected, some are not), and f > 1.

According to Consistent-Repair, n0 will send a Prob
packet to n1

0 and then goes to the Wait state. This starts

The Computer Journal, Vol. ??, No. ??, ????

Towards Efficient Stabilizing Code Dissemination in Wireless Sensor Networks 15

n
0

n
0

1

0n

0n

n
0

n
0

n
0

n
0

n
0

n
0

n
0

n
0

n
0

n
0

n
0

n
0

n
0

n
0

n
0

fn0

1

0

fn1

0

fn1

0

fn

2

0n …

…
 .
 .
.
1

0

fn

2

0n

F-affected area

…

depth=0

depth=1

depth=2

depth=f-1

depth=f

depth=f+1

.

.

.

2

0

fn2

0

fn2

0

fndepth=f+2

FIGURE 7. Correction Tree Constructed by Consistent-
Repair

a graph with n0 as the root at depth=0 (see Figure 7).
Node n1

0, the child of n0, has depth = 1. Node n1
0,

in turn, broadcasts Check packets to its neighbours.
Node n1

0 then goes to the WaitRep state to wait for
Rep packets from the informed neighbours, which are
at depth=2.

Now, for node n1
0, since the diameter of the F -affected

area is f , this means that n1
0 will eventually send Prob

packets to all senders of faulty Rep packets. We focus
on one such node, which we denote by n2

0. This process
spawns a (sub)tree, with n1

0 as the root of the subtree,
and node n2

0 will send Check packets to its neighbours
(see Figure 7). When the node nf0 (at the other end of
the F -affected area is reached), in the worst case, it will
detect faulty Rep packet from at least one node, which
we denote by nf+1

0 (at a distance of f + 1 from n0). It
will then send a Prob packet to nf+1

0 , which, in turn,
sends Check packets to its neighbours at a distance of
f + 2. Since the F -affected area is of diameter f , all
of the Rep packets to node nf+1

0 will hold at most two
version numbers (and the tree does not grow anymore).
At this point, node nf+1

0 can decide on an appropriate
version number. Hence, the tree is of a depth of at most
f + 2.

In effect, when a node sends a Prob or Check
packet, new subtrees are created, and the depth of the
tree increases by 1. When a node receives identical
information from its children, it sends a Hello packet to
its parent, indicating that it has the associated code. At
this point, the dependency of its children ends, reducing
the depth of the tree by 1. It should be further noted
that a tree is constructed for every node that detects
an error. So, at any point in time, there may be several
correction trees in the network.

We now prove the correctness of Consistent-Repair.

Theorem 6.2 (f -local correction). Given a network
G = (V,A), a detectable fault model F , and an F -
affected area G′ of diameter f . Then, Consistent-Repair
guarantees that, eventually, all nodes in G′ will have a

F Other nodes

FIGURE 8. Second scenario: Topology where a faulty
node has only one neighbour.

state consistent with their neighbourhood.

Proof.
We will prove by induction on the correction tree (see

Lemma 6.2) that node n0, and all nodes in G′, will
eventually download the correct code.

Assumptions: (i) We assume a node n0 has
downloaded the stale code, (ii) node n0 has detected
an error (state inconsistency) (i.e., node n0 is the root
of the correction tree). We will denote a node at a
distance d from another node n0 by nd0.
Base case:

We prove for the case of a node, which we denote by
nf+1

0 at depth = f + 1 (i.e., the last rooted subtree).
Node nf+1

0 will eventually receive a set of Rep packets
with identical version numbers. Node nf+1

0 will then
eventually download the correct code from one of the
Rep packets senders.
Inductive hypothesis:

Assume that a node ni0, where 0 < i ≤ f , eventually
receives a Hello packet from a node ni+1

0 and then
updates its code.
Inductive Step:

We need to prove that a node ni−1
0 , a neighbour node

of ni0, eventually receives a Hello packet and updates
its code.

In Consistent-Repair, node ni0 will broadcast Hello
packets periodically up to h times after receiving a
Hello packet or having updated its code. If node
ni−1

0 receives a Hello packet from ni0, ni−1
0 will update

its code from one of the ni0 nodes, which proves the
inductive step. Else, if due to message losses, ni−1

0 does
not receive a Hello packet from ni0, then, node ni−1

0

waits Wait Time and goes to PS state and operates
normally. Eventually, node ni−1

0 or a neighbour node
of ni−1

0 will detect the error, and executes Consistent-
Repair again. Assuming that the number of message
losses is finite, eventually, node ni−1

0 will eventually get
a Hello packet, when ni−1

0 can download the code from
the node it receives the Hello packet from.

7. EXPERIMENTAL SETUP AND RESULTS

In this section, we present the deployment and
simulation setup used to evaluate the working and

The Computer Journal, Vol. ??, No. ??, ????

16 S. Saginbekov, A. Jhumka

performance of both BestEffort-Repair and Consistent-
Repair. We subsequently present the results of each
experiment for both protocols. The setup was identical
for both protocols.

7.1. Deployment and Simulation Setup

Deployment To assess the proper working of
both protocols, we conducted both a deployment
and simulation experiments. For the deployment
experiments, we implemented both protocols on
TinyOS-2.1 [47] and performed indoor experiments
using CM5000 sensor motes, which are based on
the TelosB platform design. We used 10 motes in
our deployment experiments, setting the transmission
power of each node to a very low level 2.
Simulation To evaluate the overhead of both protocols
in large scale networks, we conducted simulation
experiments using TOSSIM [19] as simulator. The
network topology used is a 20*20 grid, with the distance
between two nodes set at around 10 ft, with nodes
having a communication radius of 30 ft. The network
topology with asymmetric links is constructed by a
tool given on tinyos.net. Each node is given a noise
model from the heavy-meyer noise trace file located in
Tossim/noise folder.

The parameter values for the various timers of
both protocols used in our deployment and simulation
experiments are given in Table 1. Some of the
parameter values depend on other parameters. For
example, WaitRep Time is the time for waiting for
Rep packets after broadcasting a Check packet. So,
WaitRep Time ≥ SendCheck+SendRep. Wait Time
should be set according to the code size and the size
of the network. If the network and code size is large,
this time should be large enough to allow neighbouring
nodes to correct their code and forward it. Usually
nodes enter the Temp state from the Wait state where
it waits for a shorter time. The only case when a node
waits for Wait Time is when there is a packet loss.
Temp Time time is independent of other parameters.
The value of t should be small because a node waits a
maximum of SendProb time units to receive all possible
Prob packets. The values of h and p can be set to any
value.

In our experiments, each node periodically broadcasts
an application packet (or any other traffic that drives
the dissemination) H, with the period randomly
selected between [0, U] at the start.

7.2. Scenarios: Simulation and Experiments

7.2.1. Simulation Scenarios
In our simulations, we simulated two scenarios: (i)
Scenario 1: we varied the number of corrupted nodes
per circular area, which has diameter of 60 feet (varying
the fault density), and (ii) Scenario 2: we kept the
number of corrupted nodes to 5 and increased the size

Wait Time 50 (30) sec SendRep 2 sec

SendCheck 2 sec WaitRep Time 4 sec

SendHello 1.5 sec Temp Time 30 (20) sec

SendProb 1 sec t 0.2 sec

PeriodProb 7 sec p 5

U 60 (1) sec h 2

TABLE 1. Parameter values used in simulation and
deployment experiments (deployment values are within
brackets).

of a given (square) area, i.e., decrease the fault density.
In both scenarios, the nodes to be corrupted were
selected randomly in the given area. We then counted
(i) the number of Repair packets (BestEffort-Repair
or Consistent-Repair) sent, (ii) the number of involved
nodes, i.e., nodes that sent at least one Repair packet,
and (iii) the number of nodes which changed their states
to Wait and/or WaitRep states. For each given number
of corrupted nodes in the first scenario and for each
length of square area in the second scenario, we ran the
simulations 5 times and computed the min, average and
max values over the 5 runs.

7.2.2. Experimental Scenarios
Our implementation of BestEffort-Repair takes 222
bytes of memory, which includes two tables (TableProb
and TableRep - see Figure 2), each of size 50 entries
of 2 bytes each, and other algorithm related variables.
Depending on the size of the network, the size of
the tables can be varied. On the other hand, our
implementation of Consistent-Repair takes 144 bytes,
which includes 3 arrays of size 3*2, with each entry of
size 2 bytes.

Our claim is that both BestEffort-Repair and
Consistent-Repair can help any code dissemination
protocol that has enough state to enable the detection
of an erroneous state to eventually guarantee that
every node has the updated code. As a result, we
tested both BestEffort-Repair and Consistent-Repair
by adding them to Varuna [4], one of the latest code
dissemination protocols, on three different network
topologies under four different scenarios. In the first
scenario, the network was complete where all nodes
could communicate with each other. In the second
scenario, the network topology was formed by placing
a faulty node at one end of the network in such a
way that it has only one neighbour, with the network
remaining connected and multi-hop (See Figure 8).
In the third scenario, the topology was formed by
randomly deploying the nodes such that the network
is connected and multi-hop. In these three scenarios,
only one node is used as a faulty node with a corrupted
version number or corrupted neighbourhood table, since
Varuna’s state consists of a neighbourhood table and a
variable holding the version number. Finally, in the
fourth scenario, the network topology that is used is
the same as that used in scenario three, but with two

The Computer Journal, Vol. ??, No. ??, ????

Towards Efficient Stabilizing Code Dissemination in Wireless Sensor Networks 17

faulty nodes: one with the version number corrupted
and the other with the neighbourhood table corrupted.

Faults were artificially injected in Varuna by changing
the version number and/or neighbourhood table entries
of the faulty nodes. Recall that both BestEffort-Repair
and Consistent-Repair is executed only when an error
(i.e., erroneous state) is detected, so the faults injected
were such that variables were modified in such a way to
trigger an error that will be detected, leading to the
execution of Repair. In all tests, the faulty node(s)
were booted after all correct nodes were successfully
booted so as to assess the impact of faulty nodes on a
dissemination process that is already in progress.

7.3. BestEffort-Repair

7.3.1. Simulation Results
Number of nodes: From Figure 9(a), we observe
that, on average, the number of nodes executing the
protocol varies linearly with the number of corrupted
nodes. Given that the number of nodes involved is
much less than the size of the network, it indicates
that the number of nodes involved in the stabilisation
process is proportional to the size of the corrupted area.
Further, in Figure 9(b), we observe that, as the size
of the area is increased (i.e., fault density decreases),
the number of nodes executing the protocol becomes
almost constant, on the average. This is because, with
decreasing fault density, most faults tend to appear as
a single independent fault, with each of them involving
a similar number of nodes, and may only involve at
most their 2-hop neighbourhood. This implies that,
in general, BestEffort-Repair tends to access only a
bounded neighbourhood (similar to Consistent-Repair).
Number of packets: We notice a similar trend
in Figure 10 that supports the observation that, in
general, BestEffort-Repair tends to access a bounded
neighbourhood. In Figure 10(a), we observe that the
number of Repair packets sent varies linearly with the
number of corrupted nodes. Since the number of Repair
messages sent is much less than the size of the network,
it implies that only part of the network was involved in
the stabilisation process.

The discrepancy between the maximum number
and minimum number of nodes or Repair packets is
often due to the link quality, making retransmissions
necessary.

7.3.2. Experimental Results
In our experiments, we measured (i) the number of
transmitted Repair packets and (ii) the latency required
to correct the error. For each scenario, we ran Repair 20
times and computed the average of the Repair packets
and latency.

As expected, in all of our experiments, adding
BestEffort-Repair to Varuna ultimately corrected the
errors. The results obtained for scenarios 1 . . . 4 are
shown in Tables 2, 3, 4, and 5 respectively. In all

cases, the average number of Repair packets and the
latency are reasonably low. For example, focusing on
Table 2, the minimum number of Repair packets is
proportional to the size of the neighbourhood of the
faulty node. This is as expected since most nodes
are expected to send Rep packets due to the network
being complete. The difference between minimum and
maximum values is due to the loss characteristics of the
wireless medium. For example, in the case (see Table 5)
where the highest latency among all experiments was
218, 218 milliseconds and the largest number of packet
transmissions was 82 can show this property. In that
particular case, Prob packets sent by a node that
detected the error was not received by a receiver.
Therefore, the node had to retransmit Prob packets and
the number of Prob packet retransmissions was 29 and
the time taken for that was about 155, 000 milliseconds.

7.4. Consistent-Repair

7.4.1. Simulation Results
We now present the result of simulation experiments of
Consistent-Repair.
Number of nodes: From Figure 11(a), we observe
that, on average, the number of nodes executing the
Consistent-Repair varies linearly with the number of
corrupted nodes. Given that the number of nodes
involved is much less than the size of the network,
it implies that the number of nodes involved in the
stabilisation process is proportional to the size of the
corrupted area. We also observe, in Figure 11(b), that,
as the size of the area within which faults occur is
increased (i.e., fault density decreases), the number of
nodes executing the protocol becomes almost constant,
on the average. This is because, with the decreasing
fault density, most faults tend to appear as single
independent faults, i.e., the fault-affected area is of
size 1. Each corrupted node may only involve at most
their 2-hop neighbourhood during recovery. These two
observations support the fact that Consistent-Repair in
f -local, with f being the diameter of the fault-affected
region.
Number of packets: We observe a similar trend
in Figure 12 that supports the f -locality property of
Consistent-Repair. In Figure 12(a), we observe that
the number of Repair packets sent varies linearly with
the number of corrupted nodes. Since the number of
Repair messages sent is much less than the size of the
network, it implies that only part of the network was
involved in the stabilisation process.

As in the case with BestEffort-Repair, the discrep-
ancy between the maximum number and minimum

The Computer Journal, Vol. ??, No. ??, ????

18 S. Saginbekov, A. Jhumka

7 9 11 13 15 17 19 21 23 25 27 29

0

10

20

30

40

50

60

Number of corrupted nodes

N
u

m
 o

f
n

o
d

e
s

w
h

ic
h

 c
h

an
ge

d
 s

ta
te

s

Min

Max

Avg

(a) Scenario 1: Num. of nodes executing
BestEffort-Repair vs Num. of Corrupted Nodes,
Area diameter = 60ft

3 5 7 9 11 13 15 17 19

0

5

10

15

20

25

30

35

40

Square side length

N
u

m
 o

f
n

o
d

e
s

w
h

ic
h

 c
h

an
ge

d
 s

ta
te

s

Min

Max

Avg

(b) Scenario 2: Num. of nodes executing
BestEffort-Repair for 5 corrupted nodes per sq.
area.

FIGURE 9. Maximum, minimum and average number of nodes executing BestEffort-Repair

7 9 11 13 15 17 19 21 23 25 27 29

0

50

100

150

200

250

300

350

Number of corrupted nodes

N
u

m
b

e
r

o
f

p
ac

ke
ts

Min

Max

Avg

(a) Scenario 1: Num. of packets vs Num. of
corrupted nodes, Area diameter = 60ft

3 5 7 9 11 13 15 17 19

0

20

40

60

80

100

120

140

160

180

200

Square side length

N
u

m
b

e
r

o
f

p
ac

ke
ts

Min
Max
Avg

(b) Scenario 2: Num. of packets for 5 corrupted
nodes per sq. area.

FIGURE 10. Maximum, minimum and average number of transmitted BestEffort-Repair packets

number of nodes for Consistent-Repair packets is often
due to the link quality, making retransmissions neces-
sary.

7.4.2. Experimental Results

In our experiments, we measured (i) the number of
transmitted Repair packets and (ii) the latency required
to correct the error. For each scenario, we ran Repair 20
times and computed the average of the Repair packets
and latency.

As expected, in all of our experiments, adding
Consistent-Repair to Varuna ultimately corrected the
errors. The results obtained for scenarios 1 . . . 4 are
shown in Tables 6, 7, 8, and 9 respectively. In all
cases, the average number of Repair packets and the
latency are reasonably low. For example, focusing on
Table 6, the minimum number of Repair packets is

proportional to the size of the neighbourhood of the
faulty node (as in the case for BestEffort-Repair). This
is as expected since most nodes are expected to send
Rep packets due to the network being complete. The
difference between minimum and maximum values is
due to the loss characteristics of the wireless.

7.5. Differences Between BestEffort-Repair
and Consistent-Repair

From Figures 9 to 10 (for BestEffort-Repair) and
Figures 11 to 12 (for Consistent-Repair), it can be
observed that, in general, Consistent-Repair involves
more messages and nodes. This is due to the fact that,
given that Consistent-Repair makes more informed
decisions to prevent any erroneous downloads, more
nodes are involved and, thus, they send more messages.
On the other hand, given that BestEffort-Repair is
biased towards fast recovery, it attempts to make
the network state consistent again, even if erroneous
downloads are involved.

It can also be noted from Tables 2 to 5 (for BestEffort-
Repair) and Tables 6 to 9 (for Consistent-Repair) that
(i) the best case for BestEffort-Repair (i.e., minimum

The Computer Journal, Vol. ??, No. ??, ????

Towards Efficient Stabilizing Code Dissemination in Wireless Sensor Networks 19

Scenario 1 Version corrupted Table corrupted
Min Max Avg Min Max Avg

Number of packets 8 23 12.6 7 14 12.4
Time(millisec) 6962 17544 8070 6011 14449 8791

TABLE 2. Scenario 1, BestEffort-Repair: Complete network

Scenario 2 Version corrupted Table corrupted
Min Max Avg Min Max Avg

Number of packets 10 39 19 9 39 18
Time(millisec) 5497 111142 31518 4719 83760 15013

TABLE 3. Scenario 2, BestEffort-Repair: Faulty node at one end of the network

values) is, in general, better than that of Consistent-
Repair and (ii) the worst case for BestEffort-Repair
(i.e., maximum values) is, in general, worse than that
of Consistent-Repair. As mentioned earlier, BestEffort-
Repair can, in the worst case, involve the whole network
during recovery, as opposed to Consistent-Repair which
will only involve its f + 2 hop neighbourhood. In the
best case, BestEffort-Repair may receive the proper
Hello message first and helps the affected area to
receiver quickly, whereas Consistent-Repair will wait for
several messages to arrive before reaching the decision.

8. CASE STUDY: ADDING BESTEFFORT-
REPAIR AND CONSISTENT-REPAIR
TO VARUNA

In this section, we discuss the addition of BestEffort-
Repair and Consistent-Repair to Varuna [4]. The reason
for choosing Varuna is that it is one of the latest code
dissemination protocols that have been proposed. The
code that was used in the deployment was reused for
the simulation experiments described in this section.

As mentioned before, both protocols are triggered
by the detection of an error in the state of the
code dissemination protocol, in this case Varuna. In
Varuna, such a detection is enabled by one of the
following conditions: (i) two nodes’ version numbers are
corrupted in such a way that the difference in versions
is strictly greater than 1, and (ii) the receiver of an
advertisement message finds that its version is bigger
than the advertised one and, at the same time, the
sender of the message exists in its neighbourhood table.
Also, we disallow faults, under the detectable fault
model, that cause old code to appear as new and new
as old (i.e., all updated nodes have old version numbers
and non-updated nodes have the new version number).
Also, this disallows nodes to be corrupted in identical
ways.

We simulated the composite protocol of Varuna and
BestEffort-Repair and Consistent-Repair in TOSSIM.
All nodes, except faulty nodes, are booted in the first
minute. Faulty nodes are located at the center of a grid
network of 20*20. A packet with new version number
is injected after 2 minutes. We simulated three faulty
scenarios: (i) with 1 fault, (ii) with 4 faults and (iii)
with 7 faults. For each faulty scenario, we booted
the faulty nodes (i) 30 seconds, (ii) 45 seconds, and

(iii) 60 seconds. This is so that only a proportion of
nodes has the updated code version. The reason for
booting faulty nodes some time after the updated code
is injected is to ensure that nodes that have the stale
code are chosen to have faults injected into them. We
are specifically interested in (i) the overhead induced
by Repair on the performance of Varuna and (ii) the
number of nodes with correct code at a given time. We
simulated Varuna in conditions similar to those detailed
in Section 7. Further, the values for Varuna-specific
parameters are: DISS-RAND=2 sec, ADV-RAND=2
sec, τ=8 sec, TMOODY =1 min.

8.1. Performance of Best-Effort Repair

Special Case

0

50

100

150

200

250

300

350

400

450

0 30 60 90 120 150 180 210 240

N
u

m
b

er
 o

f
n

o
d

es

Time(seconds)

WithRepair

WithoutRepair

FIGURE 13. 4 faulty nodes booted 180 seconds after
updated code injection.

We first start with a special case where simulated
the situation where, due to situations such as duty
cycling, some nodes may have been sleeping, missing
the code update. In Figure 13, 4 such nodes are booted
180 seconds after the code update has been injected
into the network. Further, these 4 nodes are faulty
as well. We observe that, in Varuna, all nodes in
the network eventually end up downloading the stale
code, while the composite protocol of Varuna and either
Repair protocol ensures that the whole network has the
updated code.

From Figures 14, 15 and 16, we make two important

The Computer Journal, Vol. ??, No. ??, ????

20 S. Saginbekov, A. Jhumka

Scenario 3 Version corrupted Table corrupted
Min Max Avg Min Max Avg

Number of packets 16 45 24 10 26 24
Time(millisec) 15745 124786 50472 10705 144214 37097

TABLE 4. Scenario 3, BestEffort-Repair: Connected Random graph, 1 fault

Scenario 4. Version and table corrupted
Min Max Avg

Number of packets 15 82 27
Time(millisec) 14134 218218 59231

TABLE 5. Scenario 4, BestEffort-Repair: Connected Random graph, two faults

observations: (i) In all cases, injecting transient faults in
the network during Varuna execution causes the whole
network to disseminate stale code. This shows that
Varuna cannot handle transient faults. On the other
hand, when BestEffort-Repair is added to Varuna, every
node eventually downloads the correct code.

8.1.1. Packet Overhead
In Figure 17(a), it can be seen that the packets overhead
induced by Repair on Varuna is low. Specifically, with 4
faulty nodes, the packet overhead is 0.4% while, with 7
faulty nodes, the packet overhead is less than 3%. From
Figure 10, it can be observed that the number of Repair
packets will increase linearly with increasing number of
corrupted nodes. The reason for the linear increase (as
opposed to a constant value) is that the fault density
increases when more corrupted appear at the centre of
the network (condition under which we simulated the
composite protocol).

8.1.2. Temporal Overhead
In Figure 17(b), it can be observed that the whole
network receives the new code in approximately 80
seconds, after the new code has been injected into the
network. Further, it can be observed that, when there
are faulty nodes in the network, the time for the whole
network to receive the correct code is approximately 80
seconds. Thus, there is almost no temporal overhead
induced by BestEffort-Repair on Varuna, highlighting
the fact that BestEffort-Repair is biased towards fast
recovery.

8.2. Performance of Consistent-Repair

From Figures 18, 19 and 20, we make one important
observation: When Consistent-Repair is added to
Varuna, every node eventually downloads the correct
code.

8.2.1. Packet Overhead
In Figure 21, it can be seen that the packets overhead
induced by Consistent-Repair on Varuna is very low.
Specifically, with 4 faulty nodes, the packet overhead
is less than 0.8% (see Figure 21). From Figure 12, it
can be observed that the number of Repair packets will
increase linearly with increasing number of corrupted

nodes. The reason for the linear increase (as opposed
to a constant value) is that the fault density increases
when more corrupted appear at the centre of the
network (condition under which we simulated the
composite protocol).

8.2.2. Temporal Overhead
In Figure 17(b), the whole network receives the new
code in approximately 80 seconds after the new code
has been injected into the network. Further, it can
be observed that, when there are faulty nodes in the
network, the time for the whole network to receive the
correct code is approximately 90-100 seconds. Thus,
there temporal overhead induced by Consistent-Repair
on Varuna is approximately 10%–20%. This supports
the fact that Consistent-Repair needs more time for
informed decisions (as opposed to BestEffort-Repair).

8.3. Difference Between BestEffort-Repair and
Consistent-Repair

Up to now, we have observed that when adding
BestEffort-Repair and Consistent-Repair to Varuna, all
nodes eventually download the updated code, meaning
that both of them are correctors for strong CD. It
has been shown that the temporal overhead induced
by BestEffort-Repair on Varuna is lower than that of
Consistent-Repair as well as the packet overhead of
BestEffort-Repair (0.4%) on Varuna is roughly 2 times
as low as Consistent-Repair (0.75%). This is due to
the fact that BestEffort-Repair is biased towards fast
recovery, requiring less packets. On the the other

11600

11800

12000

12200

12400

12600

12800

13000

1 2 3 4

N
u

m
b

e
r

o
f

p
ac

ke
ts

Number of faulty nodes

Consistent-Repair packets
ADV and H packets

FIGURE 21. Number of (ConsistentRepair + ADV)
packets sent vs number of corrupted nodes

The Computer Journal, Vol. ??, No. ??, ????

Towards Efficient Stabilizing Code Dissemination in Wireless Sensor Networks 21

0

20

40

60

80

100

120

140

160

7 9 11 13 15 17 19 21 23 25 27 29

N
u

m
b

e
r

o
f

n
o

d
e

s
w

h
ic

h
 c

h
an

ge
d

 s
ta

te
s

Number of faulty nodes

Min
Avg
Max

(a) Scenario 1: Num. of nodes executing
Consistent-Repair vs Num. of Corrupted Nodes,
Area diameter = 60ft

0

2

4

6

8

10

12

14

16

18

20

3 5 7 9 11 13 15 17 19

N
u

m
 o

f
n

o
d

e
s

w
h

ic
h

 c
h

an
ge

d
 s

ta
te

s

Square side length

Min

Avg

Max

(b) Scenario 2: Num. of nodes executing
Consistent-Repair for 5 corrupted nodes per sq.
area.

FIGURE 11. Maximum, minimum and average number of nodes executing Consistent-Repair

0

100

200

300

400

500

600

700

800

900

7 9 11 13 15 17 19 21 23 25 27 29

N
u

m
b

e
r

o
f

R
e

p
ai

r
p

ac
ke

ts

Number of faulty nodes

Min

Avg

Max

(a) Scenario 1: Num. of packets vs Num. of
corrupted nodes, Area diameter = 60ft

0

50

100

150

200

250

300

350

3 5 7 9 11 13 15 17 19

N
u

m
b

e
r

o
f

p
ac

ke
ts

Square side length

Min

Avg

Max

(b) Scenario 2: Num. of packets for 5 corrupted
nodes per sq. area.

FIGURE 12. Maximum, minimum and average number of transmitted Consistent-Repair packets

hand, we motivated Consistent-Repair to allow for more
informed recovery in that it reduces the number of
erroneous downloads (where an updated node ends
up downloading the old code to eventually update
again). In this respect, in our experiments, we observed
that, on average, BestEffort-Repair causes 5 erroneous
downloads - which is allowed under the BestEffort
CD specification (to eventually download the correct
code), whereas, with Consistent-Repair, there were no
erroneous downloads.

9. DISCUSSION

In this section, we discuss some issues arising from our
approach in a Q&A style.

• Was it not possible to design generic detectors,
similar to the design of generic correctors proposed
in the paper?
We have addressed the problems caused by cor-
rupted code dissemination program state induced
by transient faults. We have proposed two generic
corrector protocols that correct the inconsistency
in code dissemination protocols, and are triggered
by protocol-specific detectors. This means that, for

such detectors, an in-depth understanding of the
protocol involved is needed. It may be argued that
a generic detector can be used. For example, it may
be suggested that a hash of the code and version
number is piggybacked onto messages. A receiver
node can then compute its own hash and version
number and then compare to detect errors. How-
ever, the above scheme will not work for a number
of reasons:

1. Our fault model assumes that transient faults
will corrupt the state of the code dissemina-
tion protocol, as opposed to corrupting the
code itself.

2. As the code dissemination protocol executes,
different nodes will have different version
numbers (old or new). Then, using the hash
of the code and version number will not work.

3. Corruption of variables other than the
version numbers can still lead to the
code dissemination protocols not working
properly (e.g., in Varuna, corrupting the
neighbourhood table caused problems), and
is not captured by the above scheme.

The Computer Journal, Vol. ??, No. ??, ????

22 S. Saginbekov, A. Jhumka

Scenario 1 Version corrupted Table corrupted
Min Max Avg Min Max Avg

Number of packets 12 29 16.2 14 30 16.3
Time(millisec) 30137 30385 30351 30372 30383 30375

TABLE 6. Scenario 1, Consistent-Repair: Complete network

Scenario 2 Version corrupted Table corrupted
Min Max Avg Min Max Avg

Number of packets 13 24 15.6 11 36 16.5
Time(millisec) 30179 60937 31467 30183 112728 37304

TABLE 7. Scenario 2, Consistent-Repair: Faulty node at one end of the network

4. Further, we also believe such an approach to
be unsuitable for WSNs, given that specific
hardware is needed for encoding and decoding
the checksums, though such hardware is
cheap.

What this means is that, in general, a generic
detector would miss some errors, leading to
erroneous downloads of code or, in the worst case,
the whole network having the old code. In fact,
it was suggested in [48] that the efficiency of
generic detectors tend to be not very high [48],
meaning that these detectors can have a high false
positive, thereby triggering the corrector protocols
unnecessarily, or false negative rate, whereby codes
may download the wrong code.

• The two protocols are quite similar. Why do we
need both of them?
It can be argued that the protocols are quite
similar to each other. Though the differences
are not major, they are geared for specific
situations. Specifically, BestEffort-Repair is best
used when a corrupted node is surrounded by
neighbours with the same version number (old
or new), while Consistent-Repair is better suited
when a corrupted node has at least one updated
node nearby. As has been shown, Best-Effort
Repair completes faster than Consistent-Repair
at the expense of more redundant downloads.
For example, if a bug has been detected and
the program needs to be updated very quickly,
BestEffort-Repair is more suitable. On the other
hand, if the program needs updated (due to, say,
a change in requirements), then Consistent-Repair
will be more appropriate. Nevertheless, as future
work, we plan on investigating the design of an
adaptive code dissemination protocol based on
the position of a corrupted node in the network.
In such a case, in a fault-affected area, some
nodes will execute BestEffort-Repair and others
Consistent-Repair. Thus, since BestEffort-Repair
is geared towards fast recovery, the fact that it is
surrounded by nodes with the same version number
makes it state consistent during recovery. Further,
Consistent-Repair guarantees a f -local correction
(f being the diameter of the affected area), while
BestEffort-Repair is a global algorithm, involving,

in the worst case, the whole network. However, in
the general case, BestEffort-Repair rarely needs the
whole network for correction, requiring the O(f)-
hop neighbourhood.

• How realistic is the detectable fault model?
The detectable fault model disallows two types of
fault actions: (i) nodes in a neighbourhood to be
identically corrupted and (ii) for nodes with the
old (resp. new) code to appear as new (resp. old).
Though these faults can actually in practice, the
probability of such faults to occur is very low.
If these faults do occur, then it is impossible to
guarantee that dissemination of the new code will
terminate properly. One way to circumvent this
problem is to require the sink to query the network
after some time to determine if nodes have the
proper code, using possibly a hash of the code and
the version number.

• Are the correctors themselves resilient to transient
faults?
The theory of detectors and correctors [17] points
out that correctors are themselves non-masking
fault-tolerant to transient faults, i.e,, they can
temporarily violate their safety specification but
will satisfy their liveness. So, the two correctors
we proposed are non-masking fault-tolerant. This
means that it may cause nodes to download
erroneous code or have the wrong version numbers
but eventually, when faults stop, all the nodes will
have the correct versions.

• Will the corrector protocols developed in this paper
work for selective reprogramming dissemination
protocols?
We believe the answer to be positive. However,
there are some preprocessing to be done before they
can be applied. Specifically, in WSNs, the network
is connected but, for selective reprogramming,
the selected nodes may not form a connected
(sub)network. Thus, a logical network needs to
be built between these nodes, as a kind of network
overlay, using techniques such as [49]. Then, the
algorithms can be applied on top of the overlay.

10. CONCLUSION

In this paper, we have addressed the problem of code
dissemination in the presence of transient faults that

The Computer Journal, Vol. ??, No. ??, ????

Towards Efficient Stabilizing Code Dissemination in Wireless Sensor Networks 23

Scenario 3 Version corrupted Table corrupted
Min Max Avg Min Max Avg

Number of packets 9 32 16.2 9 28 15.5
Time(millisec) 30336 30429 30374 30100 30391 30288

TABLE 8. Scenario 3, Consistent-Repair: Connected Random graph, 1 fault

Scenario 4. Version and table corrupted
Min Max Avg

Number of packets 12 42 28
Time(millisec) 30545 61003 43498

TABLE 9. Scenario 4, Consistent-Repair: Connected Random graph, two faults

corrupt the state of the code dissemination program.
We have provided three local specifications, namely
(i) strong CD (ii) BestEffort CD and (iii) Consistent
CD. We have proved some impossibility results and
have provided two generic corrector protocols, viz.
BestEffort-Repair and Consistent-repair, that can
be added to any fault-intolerant code dissemination
protocol to transform them into non-masking fault-
tolerant code dissemination programs. We have
conducted in-depth experiments with both corrector
protocols: We have shown that BestEffort-Repair
allows for fast recovery but can induce erroneous
downloads (i.e., an updated node may download an
old code). On the other hand, Consistent-Repair only
enables consistent downloads. The packet overhead
of each protocol has also been shown to be very low.
The main contribution of our paper is the automated
transformation of a whole class of fault-intolerant code
dissemination protocols (such as Varuna, Trickle etc)
into non-masking fault-tolerant protocols.

REFERENCES

[1] Lanigan, P. E., Gandhi, R., and Narasimhan, P. (2005)
Disseminating code updates in sensor networks: Survey
of protocols and security issues. Technical Report
CMU-ISRI-05-122. Institute for Software Research,
Carnegie Mellon University.

[2] Kulkarni, S. and Wang, L. (2009) Energy-efficient
multihop reprogramming for sensor networks. ACM
Transactions on Sensor Networks, 5, 16:1–16:40.

[3] Levis, P., Patel, N., Culler, D., and Shenker, S. (2004)
Trickle: A self-regulating algorithm for code propaga-
tion and maintenance in wireless sensor networks. In
Proceedings of the First USENIX/ACM Symposium on
Networked Systems Design and Implementation (NSDI,
pp. 15–28.

[4] Panta, R. K., Vintila, M., and Bagchi, S. (2010)
Fixed cost maintenance for information dissemination
in wireless sensor networks. Proc. SRDS, pp. 54–63.

[5] Mottola, L. and G.P. Picco, A. A. S. (2008) Figaro:
Fine-grained software reconfiguration for wireless
sensor networks. Proceedings of EWSN Lecture Notes
in Computer Science, pp. 286–304. Springer-Verlag.

[6] Ni, K. and et al. (2009) Sensor networks data fault
types. Transactions on Sensor Networks, 5.

[7] Finne, N., Eriksson, J., Dunkels, A., and Voigt,
T. (2008) Experiences from two sensor network

deployments self-monitoring and self-configuration keys
to success. Proc. of Int. Conf. on Wired/Wireless
Internet Communications (WWIC).

[8] Werner-Allen, G., Lorincz, K., Johnson, J., Lees, J.,
and Welsh, M. (2006) Fidelity and yield in a volcano
monitoring sensor network. Proc. of 7th Symp. on
Operating Systems Design and Implementation (OSDI).

[9] Jhumka, A. and Mottola, L. (2013) Neighborhood mon-
itoring and view consistency enforcement in wireless
sensor networks. Technical Report TR2013.1321. Po-
litecnico di Milano.

[10] Hui, J. W. and Culler, D. (2004) The dynamic
behavior of a data dissemination protocol for network
programming at scale. Proceedings of the 2nd
international conference on Embedded networked sensor
systems, New York, NY, USA SenSys ’04, pp. 81–94.
ACM.

[11] Bapat, S. and Arora, A. (2006) Stabilizing reconfigura-
tion in wireless sensor networks. Proc. of IEEE Inter-
national Conference on Sensor Networks, Ubiquitous,
and Trustworthy Computing (SUTC) 2006), pp. 52–59.

[12] Reason, J. M. and Rabaey, J. M. (2004) A study
of energy consumption and reliability in a multi-
hop sensor network. ACM Mobile Computing and
Communications Review, 8, 84–97.

[13] Crossbow Technology, I. (2003) Mote in-network
programming user reference, www.tinyos.net/tinyos-
1.x/doc/xnp.pdf.

[14] Levis, P. and Culler, D. (2002) Mate: A tiny virtual
machine for sensor networks. Proceedings of the ACM
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS).

[15] Heidemann, J., Silva, F., Intanagonwiwat, C.,
Govindan, R., Estrin, D., and Ganesan, D. (2001)
Building efficient wireless sensor networks with low-
level naming, . New York, NY, USA, October, pp.
146–159. ACM.

[16] Madden, S., Franklin, M. J., Hellerstein, J. M., and
Hong, W. (2002) Tag: a tiny aggregation service for
ad-hoc sensor networks. SIGOPS Operating Systems
Review, 36, 131–146.

[17] Arora, A. and Kulkarni, S. (1998) Detectors and
correctors: A theory of fault-tolerance components.
Proceedings of the 18th IEEE International Conference
on Distributed Computing Systems (ICDCS98), May.

[18] Arora, A., Demirbas, M., and Kulkarni, S. (2001)
Graybox stabilization. Proceedings of the International
Conference on Dependable Systems and Networks
(DSN’2001), pp. 389–398.

The Computer Journal, Vol. ??, No. ??, ????

24 S. Saginbekov, A. Jhumka

0

50

100

150

200

250

300

350

400

450

0 10 20 30 40 50 60 70 80 90

N
u

m
b

er
 o

f
n

o
d

e
s

Time (seconds)

WithRepair

WithoutRepair

(a) Number of nodes which receive
correct code vs Time

0

50

100

150

200

250

300

350

400

450

0 20 40 60 80 100 120

N
u

m
b

er
 o

f
n

o
d

e
s

Time (seconds)

WithRepair

WithoutRepair

(b) Number of nodes which receive
correct code vs Time

0

50

100

150

200

250

300

350

400

450

0 20 40 60 80 100 120

N
u

m
b

er
 o

f
n

o
d

e
s

Time(seconds)

WithRepair

WithoutRepair

(c) Number of nodes which receive
correct code vs Time

FIGURE 14. Varuna and Varuna ◦ Best-Effort-Repair: 1 faulty node booted at (a) 30 seconds after updated code injection,
(b) 45 seconds after updated code injection, (c) 60 seconds after updated code injection.

0

50

100

150

200

250

300

350

400

450

0 10 20 30 40 50 60 70 80 90 100

N
u

m
b

er
 o

f
n

o
d

e
s

Time(seconds)

WithRepair

WithoutRepair

(a) Number of nodes which receive
correct code vs Time

0

50

100

150

200

250

300

350

400

450

0 20 40 60 80 100 120

N
u

m
b

er
 o

f
n

o
d

e
s

Time(seconds)

WithRepair

WithoutRepair

(b) Number of nodes which receive
correct code vs Time

0

50

100

150

200

250

300

350

400

450

0 20 40 60 80 100 120

N
u

m
b

er
 o

f
n

o
d

e
s

Time(seconds)

WithRepair

WithoutRepair

(c) Number of nodes which receive
correct code vs Time

FIGURE 15. Varuna and Varuna ◦ Best-Effort-Repair: 4 faulty nodes booted at (a) 30 seconds after updated code injection,
(b) 45 seconds after updated code injection, (c) 60 seconds after updated code injection.

[19] Levis, P., Lee, N., Welsh, M., and Culler, D. (2003)
Tossim: accurate and scalable simulation of entire
tinyos applications. Proceedings of the 1st international
conference on Embedded networked sensor systems,
New York, NY, USA SenSys ’03, pp. 126–137. ACM.

[20] Stathopoulos, T., Heidemann, J., and Estrin, D. (2003)
A remote code update mechanism for wireless sensor
networks. Technical Report CENS-TR-30. UCLA,
Center for Embedded Networked Computing.

[21] Reijers, N. and Langendoen, K. (2003) Efficient code
distribution in wireless sensor networks. Proceedings
of the 2nd ACM international conference on Wireless
sensor networks and applications, New York, NY, USA
WSNA ’03, pp. 60–67.

[22] Jeong, J. and Culler, D. (2004) Incremental network
programming for wireless sensors. IEEE Sensor and
Ad Hoc Communications and Networks (SECON), pp.
25–33.

[23] Gnawali, O., Jang, K., Paek, J., Vieira, M., Govindan,
R., B.Greenstein, A.Joki, D.Estrin, and Kohler,
E. (2006) The tenet architecture for tiered sensor
networks. SenSys, pp. 153–166.

[24] Tolle, G. and Culler, D. E. (2005) Design of
an application-cooperative management system for
wireless sensor networks. EWSN, pp. 121–132.

[25] Whitehouse, K., Tolle, G., Taneja, J., Sharp, C., Kim,
S., Jeong, J., Hui, J., Dutta, P., and Culler, D. (2006)
Marionette: using rpc for interactive development and
debugging of wireless embedded networks. Proceedings
of the 5th international conference on Information

processing in sensor networks, New York, NY, USA
IPSN ’06, pp. 416–423. ACM.

[26] Mottola, L., Picco, G., and Amjad, A. (2008) Figaro:
Fine-grained software reconfiguration in wireless sensor
networks. Proceedings of 5th European Conference on
Wireless Sensor Networks.

[27] Pasztor, B. and et al. (2010) Selective reprogramming
of mobile sensor networks through social community
detection. Proceedings of European Conference on
Wireless Sensor Networks, pp. 178–193.

[28] Arora, A. and Kulkarni, S. S. (1998) Detectors and
correctors: A theory of fault-tolerance components.
Proc. of the 18th Int. Conf. on Distributed Computing
Systems (ICDCS).

[29] Dolev, S. (2000) Self-Stabilization. MIT Press.
[30] Kranakis, E., Krizanc, D., and Pelc, A. (2001) Fault-

tolerant broadcasting in radio networks. Journal of
Algorithms, pp. 47–67.

[31] Koo, C.-Y. (2004) Broadcast in radio networks
tolerating byzantine adversarial behavior. Proceedings
of the twenty-third annual ACM symposium on
Principles of distributed computing PODC ’04, pp. 275–
282.

[32] Bhandari, V. and Vaidya, N. H. (2005) On reliable
broadcast in a radio network. Proceedings of the
twenty-fourth annual ACM symposium on Principles of
distributed computing, New York, NY, USA PODC ’05,
pp. 138–147. ACM.

[33] Koo, C.-Y., Bhandari, V., Katz, J., and Vaidya,
N. H. (2006) Reliable broadcast in radio networks: the

The Computer Journal, Vol. ??, No. ??, ????

Towards Efficient Stabilizing Code Dissemination in Wireless Sensor Networks 25

0

50

100

150

200

250

300

350

400

450

0 10 20 30 40 50 60 70 80 90

N
u

m
b

er
 o

f
n

o
d

e
s

Time(seconds)

WithRepair

WithoutRepair

(a) Number of nodes which receive
correct code vs Time

0

50

100

150

200

250

300

350

400

450

0 20 40 60 80 100 120

N
u

m
b

er
 o

f
n

o
d

e
s

Time(seconds)

WithRepair

WithoutRepair

(b) Number of nodes which receive
correct code vs Time

0

50

100

150

200

250

300

350

400

450

0 20 40 60 80 100 120

N
u

m
b

er
 o

f
n

o
d

e
s

Time(seconds)

WithRepair

WithoutRepair

(c) Number of nodes which receive
correct code vs Time

FIGURE 16. Varuna and Varuna ◦ Best-Effort-Repair: 7 faulty nodes booted at (a) 30 seconds after updated code injection,
(b) 45 seconds after updated code injection, (c) 60 seconds after updated code injection.

6800

6850

6900

6950

7000

7050

7100

7150

0 1 4 7

N
u

m
b

er
 o

f
p

ac
ke

ts

Number of faulty nodes

(a) Number of (Repair + ADV) packets
sent vs number of corrupted nodes

0

50

100

150

200

250

300

350

400

450

0 20 40 60 80 100 120

N
u

m
b

er
 o

f
n

o
d

e
s

Time(seconds)

Varuna

(b) Completion of Varuna (no transient
faults)

FIGURE 17. Varuna ◦ BestEffort-Repair : Network Size: 20 * 20, Nodes Corrupted at Random

bounded collision case. Proceedings of the twenty-fifth
annual ACM symposium on Principles of distributed
computing, New York, NY, USA PODC ’06, pp. 258–
264. ACM.

[34] Bertier, M., Kermarrec, A.-M., and Tan, G. (2010)
Message-efficient byzantine fault-tolerant broadcast in
a multi-hop wireless sensor network. Proceedings
of the 2010 IEEE 30th International Conference on
Distributed Computing Systems, Washington, DC, USA
ICDCS ’10, pp. 408–417. IEEE Computer Society.

[35] Maurer, A. and Tixeuil, S. (2012) On byzantine
broadcast in loosely connected networks. Proceedings
of the 26th international conference on Distributed
Computing, Berlin, Heidelberg DISC’12, pp. 253–266.
Springer-Verlag.

[36] Maurer, A. and Tixeuil, S. (2013) On byzantine
broadcast in planar graphs. CoRR, abs/1301.2875.

[37] Dijkstra, E. W. (1974) Self stabilizing systems in spite
of distributed control. Communications of the ACM,
17, 643–644.

[38] Burns, J. E., Gouda, M. G., and Miller, R. E. (1993)
Stabilization and pseudo-stabilization. Distributed
Computing, 7, 35–42.

[39] Alpern, B. and Schneider, F. B. (1985) Defining
liveness. Information Processing Letters, 21.

[40] Gärtner, F. C. and Jhumka, A. (2004) Automating
the addition of fail-safe fault-tolerance: Beyond fusion-
closed specifications. Proceedings of Formal Techniques
in Real-Time and Fault-Tolerant Systems (FTRTFT),
Grenoble, France, September.

[41] Arora, A. et al. (2004) A line in the sand: a wireless
sensor network for target detection, classification, and
tracking. Computer Networks, 46, 605–634.

[42] Cooprider, N., Archer, W., Eide, E., Gay, D., and
Regehr, J. (2007) Efficient memory safety for tinyos.
Proceedings of the 5th international conference on
Embedded networked sensor systems, New York, NY,
USA SenSys ’07, pp. 205–218. ACM.

[43] Kim, S., Kim, S., and Eom, D. S. (2012) A robust and
space-efficient stack management method for wireless
sensor network os with scarce hardware resources.
International Journal of Distributed Sensor Networks
(IJDSN), 2012.

[44] Kumar, R., Singhania, A., Castner, A., Kohler, E.,
and Srivastava, M. (2007) A system for coarse grained
memory protection in tiny embedded processors.
Proceedings of the 44th annual Design Automation
Conference, New York, NY, USA DAC ’07, pp. 218–
223. ACM.

[45] Demirbas, M. and Balachandran, S. (2007) Robcast:
A singlehop reliable broadcast protocol forwireless
sensor networks. 27th International Conference on
Distributed Computing Systems Workshops (ICDCS
2007 Workshops), pp. 54–.

[46] Cinque, M., Cotroneo, D., Martino, C. D., Russo, S.,
and Testa, A. (2009) Avr-inject: A tool for injecting
faults in wireless sensor nodes. IPDPS, pp. 1–8. IEEE.

[47] Tinyos. http://docs.tinyos.net.

[48] Jhumka, A., Hiller, M., and Suri, N. Approach
for designing and assessing detectors for dependable

The Computer Journal, Vol. ??, No. ??, ????

26 S. Saginbekov, A. Jhumka

0 20 40 60 80 100

0

50

100

150

200

250

300

350

400

450

Time(seconds)

N
u

m
b

e
r

o
f

n
o

d
e

s

WithRepair

WithoutRepair

(a) Number of nodes which receive
correct code vs Time

0 20 40 60 80 100

0

50

100

150

200

250

300

350

400

450

Time(seconds)

N
u

m
b

e
r

o
f

n
o

d
e

s

WithRepair
WithoutRepair

(b) Number of nodes which receive
correct code vs Time

0 20 40 60 80 100

0

50

100

150

200

250

300

350

400

450

Time(seconds)

N
u

m
b

e
r

o
f

n
o

d
e

s

WithRepair
WithoutRepair

(c) Number of nodes which receive
correct code vs Time

FIGURE 18. Varuna and Varuna ◦ Consistent-Repair: 1 faulty node booted at (a) 30 seconds after updated code injection,
(b) 45 seconds after updated code injection, (c) 60 seconds after updated code injection.

0 20 40 60 80 100

0

50

100

150

200

250

300

350

400

450

Time(seconds)

N
u

m
b

e
r

o
f

n
o

d
e

s

WithRepair

WithoutRepair

(a) Number of nodes which receive
correct code vs Time

0 20 40 60 80 100

0

50

100

150

200

250

300

350

400

450

Time(seconds)

N
u

m
b

e
r

o
f

n
o

d
e

s

WithRepair
WithoutRepair

(b) Number of nodes which receive
correct code vs Time

0 20 40 60 80 100 120

0

50

100

150

200

250

300

350

400

450

Time(seconds)

N
u

m
b

e
r

o
f

n
o

d
e

s

WithRepair

WithoutRepair

(c) Number of nodes which receive
correct code vs Time

FIGURE 19. Varuna and Varuna ◦ Consistent-Repair: 4 faulty nodes booted at (a) 30 seconds after updated code injection,
(b) 45 seconds after updated code injection, (c) 60 seconds after updated code injection.

component-based systems. HASE, pp. 69–78.

[49] Mottola, L. and Picco, G. (2006) Logical neighbor-
hoods: A programming abstraction for wireless sen-
sor networks. Proceedings of Distributed Computing in
Sensor Systems (DCOSS), pp. 150–168.

The Computer Journal, Vol. ??, No. ??, ????

Towards Efficient Stabilizing Code Dissemination in Wireless Sensor Networks 27

0 20 40 60 80 100 120 140

0

50

100

150

200

250

300

350

400

450

Time(seconds)

N
u

m
b

e
r

o
f

n
o

d
e

s

WithRepair
WithoutRepair

(a) Number of nodes which receive
correct code vs Time

0 20 40 60 80 100

0

50

100

150

200

250

300

350

400

450

Time(seconds)

N
u

m
b

e
r

o
f

n
o

d
e

s

WithRepair
WithoutRepair

(b) Number of nodes which receive
correct code vs Time

0 20 40 60 80 100

0

50

100

150

200

250

300

350

400

450

Time(seconds)

N
u

m
b

e
r

o
f

n
o

d
e

s

WithRepair
WithoutRepair

(c) Number of nodes which receive
correct code vs Time

FIGURE 20. Varuna and Varuna ◦ Consistent-Repair: 7 faulty nodes booted at (a) 30 seconds after updated code injection,
(b) 45 seconds after updated code injection, (c) 60 seconds after updated code injection.

The Computer Journal, Vol. ??, No. ??, ????

