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The analysis of a queue that serves batches of customers with a novel service policy is presented in
this paper, showing that a closed steady-state distribution of the number of customers in the queue
can be derived for a very general setting of its parameters. Two output processes are flowing out of
this queue depending on the fact that single customers are removed from the queue upon completion
of a service, or bulks of customers of a fixed size are departing from the queue at the completion
of the service’s. Based on the expression of the steady-state distribution which assumes a Poisson
arrival process, specific parameter configurations are identified that make the queue quasi-reversible,
depending on the output process of interest. Since quasi-reversible queues are very important in the
context of product form queueing networks, these results have relevant impacts on their own as well
as when considered as the basis for possible computationally efficient approximations. Comparisons
among the results obtained for different parameter settings are provided using both stochastic order
arguments and numerical experiments. Future research directions are proposed considering also
the many practical applications of this model ranging from flexible manufacturing, to logistics, to

transportation systems.
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1. INTRODUCTION

In this paper, we derive the closed-form solution for the steady-
state distribution of a class of queues that serve batches of
customers with different configurations of service rates. The
basic queue consists of a system in which arrivals form a Poisson
process with parameter λ, services are exponentially distributed
with rates that may depend on the load of the server, and the
queue is served with a non-standard service policy. A threshold
B is set on the queue so that when its length1 exceeds (or is equal
to) B a bulk (or batch) of B customers can be removed from the
queue upon completion of a service. If less than B customers
are in the system, the completion of a service always removes
one customer from the queue. The total rate of service in states
j ≥ B is assumed to be constant and denoted by μ. In any state

1In the rest of the paper, we will often refer to the number of customers
present in the system as the number of clients in the queue, thus considering
in the same manner those who are really queueing and those who are receiving
service.

j ≥ B, there is a positive probabilityp that customers are served
in bulks of size B. Alternatively, with probability q = (1 − p)

a single customer is served and removed from the queue upon
service completion. From state 1 to B − 1 single customers are
served with service rates η which may be state dependent (in
this last case, ηi, i = 1, . . . , B − 1). The state space of the
queue can be seen in Fig. 1. In the rest of the paper, we shall
call this queue M/MB∗

/1.
In this work, we report on a comprehensive analysis on five

different variants of the basic model depicted in Figs 1 and 2,
showing that, not only we can fully characterize the steady-state
distributions for all these queues, but we can also establish a
clear relationship among the corresponding stationary solutions.
The queues are compared via stochastic order [1], which
essentially provides a ranking on the tails of the (cumulative)
distribution functions and, consequently, on the expected values
of the corresponding queue lengths. Two of the queues that
we have studied enjoy the very important property of being
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2 G. Balbo and M.G. Vigliotti

FIGURE 1. State transition diagram of M/M/1 queue with bulk service B.

FIGURE 2. Diagram of M/M/1 queue with bulk service B.

quasi-reversible [2, 3]. Moreover, they turn out to be the upper
and lower bounds for the others.

This result is rather important. Indeed, for the queues
to be quasi-reversible, they must have very specific values
of the service rates when less than B customers are in
the system. However, the queue length distributions, which
have computationally simple closed-form expressions, do not
actually depend on these values of the service rates when less
than B are present. This implies that these formulae can be used
as approximations and bounds for a whole family of models
whose service rates, when less than B customers are in the
queue, lay within the boundaries established by the parameters
of the two quasi-reversible queues.

We believe that theM/MB∗
/1 is very relevant from a practical

point of view as it is easy to envision many applications that
can be modelled with any of its variants. In this paper, we
will often refer to a specific example which comes from the
Manufacturing/Distribution field and that we outline now.

Consider the case of a small production company whose sales
department deals with both retail and wholesale orders. Finished
parts are put into boxes and stored in the sales department.
Orders handled by the department either refer to the purchase
by clients of individual parts for personal use, or to the purchase
of whole boxes used for subsequent processing. Orders are kept
in two different stacks depending on the type of purchase they
refer to. Assuming that there is a constant backlog of orders of
the two types, when less than B parts are in stock, orders for
individual parts are considered only. When, instead, there are at
least B parts in stock, orders of the two types are considered with
probabilities p and q. The input of the sales department consists
thus of a flow of single and indistinguishable parts, while the
output is split into two separate streams consisting of different
items (the individual parts and the boxes containing multiple
parts) directed to completely different business ‘circuits’. Let
λ (parts per second) represent the production rate of new parts,
B(> 1) the size of the boxes (i.e. the number of parts that fit into

a single box), 1/μ (s) the average time required for handling an
order, and p = 1.0 − q the probability that an order refers to
the purchase of a box. With a certain level of abstraction, the
behaviour of this system can be approximately represented by
any of the five variants of the queue M/MB∗

/1 (see Fig. 2),
where customers correspond to the manufactured parts and in
which services involve either a single customer or, whenever
possible, a group of customers of a fixed size. The arrivals
to the basic queue form a Poisson process with parameter λ,
and services are exponentially distributed with rates η or μ

depending on the load of the server. The mathematical model
that corresponds to this queue is a Continuous Time Markov
Chain (CTMC) whose state transition diagram is depicted in
Fig. 1, where we use the following notation:

(i) λ is the arrival rate of new customers;
(ii) μ is the total service rate of the system when loaded

with at least B clients;
(iii) ηi is the service rate of the system when loaded with i

clients (i < B);
(iv) p is the probability that a service completion involves

a bulk of B customers;
(v) q is the probability that a service completion involves

a single customer when at least B clients are at the
server; p + q = 1.

(vi) ν = μ ∗ q is the rate at which a customer leaves the
system alone when more than B customers are present;

(vii) δ = μ ∗ p is the rate at which a bulk of B customers
leaves the system;

(viii) πn is the stationary probability of finding n customers
in the system (n ≥ 0).

In a previous work (Balbo and Vigliotti, submitted for
publication), we started the analysis of this kind of queue in the
context of product-form queueing networks. For that study, the
M/MB∗

/1 conditions were derived to ensure that the queue was
quasi-reversible [2, 3]. Quasi-reversibility is a concept defined
with respect to specific arrival and departure processes. We have
shown in Balbo andVigliotti (submitted for publication) that the
M/MB∗

/1 is quasi-reversible with respect to both, the arrival
process and the bulk’s departure process. This implies that to
obtain product-form solution, the M/MB∗

/1 is made to interact
with other queues only via this very specific bulk departure flow.

In this paper, in contrast, we focus our attention on the queue
in isolation and we study the behaviour of this queue in a
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On The Analysis of a M/M/1 Queue with Bulk Services 3

FIGURE 3. State transition diagram of M/M/1 queue with bulk service B.

more general setting (i.e. without restricting to product-form
considerations), yet with the assumption of negative exponential
service time distributions and Poisson arrival Process.

We begin our analysis by discussing the general results that
can be derived for the case in which services are provided with
a constant rate when more than B customers are in the queue,
while the service rate changes when less than B customers are
requesting service.

Subsequently, we shall make our results more specific
by considering four different versions of the M/MB∗

/1
characterized in the following manner:

(1) A queue with Poisson arrivals and a constant service rate
equal to μ (i.e. the departure process of single customers
when the length of the queue is smaller than B is the
same of the total service rate of the queue when more
than B customers are present: η1 = · · · = ηB−1 = μ);
see Fig. 4.

(2) A queue with Poisson arrivals and service rate equals to ν

for the departure process of single customers both when
the length of the queue is smaller than B and when bulk
services are possible as well (i.e. η1 = · · · = ηB−1 =
ν = μ ∗ q); see Fig. 3.

(3) A queue with Poisson arrivals that is quasi-reversible
with respect to bulk departures.

(4) A queue with Poisson arrivals that is quasi-reversible
with respect to single departures.

Finally, we prove a rather interesting and surprising result,
showing that the quasi-reversible queue with respect to bulks of
customers (number (3) in the list above) is the smallest of the
four, while the quasi-reversible queue with respect to a single
customer (number (4) in the list above) is the biggest according
to our stochastic ordering. The other two queues in the list above
are in between: the queue with service rates equal to μ (number
(1) in the list above) being smaller than that with service rates
equal to ν.

The rest of the paper is organized as follows. In Section 2,
we overview the state of the art emphasizing the differences
of our model from those already published in the literature,
and discussing Quasi-Reversibility at some length. Section 3
is the core of our paper and contains all the original results
concerning the M/MB∗

/1.This section starts with some generic
derivations which are independent of the properties that we
are identifying in the specific configurations of our model. It

then continues with some results that can be derived when
the initial service rates (those that we have previously denoted
with ηi , i = 1, . . . , B − 1) are assumed to be constant and,
subsequently, we consider sets of variable service rates that
make our output processes quasi-reversible. Section 4 uses
results from the literature on Stochastic Ordering to compare
the performances of M/MB∗

/1 in its different configurations.
Section 5 builds on the results on stochastic ordering by
quantifying the relations among the distributions derived for
the different configurations of the M/MB∗

/1. Data coming
from a specific case study allow one to draw some conclusions
about the practical differences among the configurations of the
M/MB∗

/1. Finally, Section 6 concludes the paper by proposing
the use of the quasi-reversible configurations as computationally
efficient approximations for realistic choices of the parameters
of the model. Following this idea, this concluding session
highlights some future research directions. An Appendix is also
included to provide the details of the derivations of several
expressions contained in the paper.

2. RELATED WORK

In the last 40 years, many papers appeared in the literature
on the analysis of queues with bulk services starting from the
pioneering work reported in [4, 5] to the more comprehensive
discussion reported in [6]. In our paper, we consider a very
specific case of a queue with bulk service and Poisson input
with a special attention to the conditions that must be satisfied
to make it quasi-reversible. Since we believe that the results of
our paper are original, we concentrate on reviewing the literature
on this topic to show the novelty of our analysis.

The simplest extension of the M/M/1 with batch services
consists in modifying the service policy in such a way that only
service for a fixed batch of size B is possible. Time of service
is exponentially distributed, and when a customer arrives to an
empty queue, it waits until a full batch size is reached in order
to be served. Upon the completion of a service, if the number of
customers is bigger than the batch size, then the server removes
the first B customers from the queue. In [7, 8], it is shown that
M/M/1 queues with fixed batches enjoy geometric steady state
distributions.

A variation of this model is obtained by allowing the service
of partial batches. In this case, the server starts working as
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4 G. Balbo and M.G. Vigliotti

soon as a customer joins the queue. Upon completion of the
service, a batch of B customers is removed from the queue, if
more than B customers are there; otherwise a partial batch of
size i ≤ B is served and the queue becomes empty. The rate
of service is constant in each state of the queue. Also in this
case, the steady-state distribution of the model has a geometric
shape [7, 8]. Although [7, 8] do not directly consider quasi-
reversible queues, the geometric solutions guarantee that these
queues are quasi-reversible.

More general is the model proposed by Chao et al. [3] and
Harrison [9] and studied in the context of quasi-reversibility.
Instead of considering only fixed batch sizes, as in the previous
case, it is assumed that batch sizes are integer random variables
with arbitrary distributions. Given a batch size B, in states
j < B partial batches are served and the queue is emptied. In
states j ≥ B partial batches are served according to a discrete
distribution. If, instead of considering an M/M/1 queue, we
consider a G-queue [10], modifications of the service policy
to deal with batches can be included in a similar fashion [3, 9].

All these models are different from that considered in this
paper. Outside the context of quasi-reversibility, our three queue
configurations are different from [3, 9] as we do not have
batch arrivals. In the context of quasi-reversible processes with
respect to bulk departures, we note that we derive a geometric
distribution only for a very specific configuration of the service
rates when less than B customers are in the queue. Indeed, the
peculiarity of our model is that we assume that in any state of the
queue with at least B customers present, either one customer is
served or exactly B clients are considered simultaneously and
leave the queue at the end of their service.This model is different
from both models introduced by Chao et al. [3], Kleinrock [7]
and Gross and Harris [8]. With respect to the first one, we note
that in our model the server has only two choices: either one
customer is served or a batch of a fixed size. Batches of sizes in
between 1 and B, for a fixed B, are not considered by the server.
It is rather subtle to observe that, even in the case of B = 2,
the model discussed in this paper and that presented in [7, 8]
would still be different. We differ from the second one because
our batch size is not arbitrarily distributed. Also we differ from
the work by Henderson and Taylor [11] as we do not consider
batch arrivals. In the context of quasi-reversible processes with
respect to single departures, the observations above, still stand.

2.1. Quasi-reversibility and queues with batches

Identifying the conditions that make a queueing node suitable
to be included in a product-form queueing network remains a
challenging task with important practical consequences.

As two of the configurations of the queue analysed in this
paper are quasi-reversible, we shall see why this is important.
A network of quasi-reversible queues enjoys a product-form
solution [2, 3]. In the literature, there are two equivalent
definitions of quasi-reversibility: the original one that refers
to the arrival and departure processes of a queue [2], and the

more recent one that enforces conditions on the rates of the
CTMC underlying a queueing system (see [3, p. 63]). In the
CTMC, which describes the temporal behaviour of this system,
the transition rate q(s, s ′) for any two states s, s ′ in the state
space S can be decomposed as the sum of three component
rates in the following manner:

q(s, s ′) = qA(s, s ′) + qD(s, s ′) + qI (s, s
′). (1)

Intuitively, we can interpret qA(s, s ′) as the rate of arrivals and
qD(s, s ′) as the rate of departures; qI (s, s

′) accounts for some
form of internal transitions. Within this context, the definition
of quasi-reversibility follows.

Definition 2.1 [3]. A CTMC with transition rates defined as in
Equation (1) is quasi-reversible if there exist two non-negative
real numbers α, β (i.e. α, β ∈ IR+) such that the following
holds: ∑

s′∈S

qA(s, s ′) = α s ∈ S, (2)

∑
s′∈S π(s ′)qD(s ′, s)

π(s)
= β s ∈ S, (3)

where π(s) represents the stationary (or steady-state)
distribution of the CTMC. In [3], it is shown that this definition
is equivalent to that provided by Kelly [2].

Definition 2.1 says that a CTMC is quasi-reversible if the
rate of arrivals (α) is independent of the state of the chain, and
if the rate at which the CTMC enters an arbitrary state due
to the occurrence of some departure is proportional (β) to the
steady-state probability of that same state. As far as our work is
concerned, we will show that the queue with Poisson arrivals is
quasi-reversible with respect to the bulk departure process if we
can set the service rates in a proper manner. Such a queue enjoys
a fully geometric distribution. Equally, a queue with Poisson
arrivals is quasi-reversible with respect to the departure process
of single customers if the service rates are set in a different,
but specific manner too. Such a queue enjoys a generalized
geometric distribution. We can categorically exclude that the
queue with Poisson arrivals is quasi-reversible with respect
to both departure processes, single and bulk, with the same
parameter setting.

3. ANALYSIS OF BULK SERVICE IN M/M/1 QUEUE

In this paper, we shall consider various queues that serve batches
of customers.The generic state space of such a model is depicted
in Fig. 1.

First, we derive some general results that assume a constant
service rate when more than B customers are in the queue,
while the service rate changes when less than B customers
are requesting service. Subsequently, we specialize the results
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On The Analysis of a M/M/1 Queue with Bulk Services 5

focusing on different assignments of the service rates when less
that B customers are in the queue. The contents of this section
can thus be divided into two parts which correspond to two
different analysis perspectives. The first (Sections 3.1 and 3.2)
derives a set of results under the assumption that the model is
fully specified and, in particular, that the service rates with less
than B customers in the system (η1 · · · = ηB−1) are parameters
of the model itself. Within this context we shall see that the
distribution of the number of customers in the system has a
form, that we call quasi-geometric, characterized by a geometric
tail that depends on these previous service rates only through
a multiplicative constant. The second (Section 3.3) exploits the
results of the first part to identify the (very) specific values that
must be assigned to η1 = · · · = ηB−1 to ensure the quasi-
reversibility of the queue. In this case, the desired property is
defined for the output process of interest, and the corresponding
values of these rates are determined.

3.1. Bulk service in M/MB∗
/1 queue with variable

service rates

We proceed to derive the stationary distribution for this first
general case, which involves finding the solution of the Global
Balance Equations (GBEs) in their most general setting. The
initial equations are the same for all the queue configurations
discussed in this paper. When expressed to explicitly give
evidence to the parameter representing the arbitrary bulk’s size
B, these equations assume the following form:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

π0λ = π1η1 + πBδ,
π1(λ + η1) = π0λ + π2η2 + πB+1δ,

...
...

πB−2(λ + ηB−2) = πB−3λ + πB−1ηB−1 + π2B−2δ,
πB−1(λ + ηB−1) = πB−2λ + πBν + π2B−1δ,

πB(λ + ν + δ) = πB−1λ + πB+1ν + π2Bδ,
...

...
πB+k(λ + ν + δ) = πB+k−1λ + πB+k+1ν + π2B+kδ.

A simple manipulation of this system of equations provides
a new representation that will be useful for deriving an explicit
expression of the desired distribution: [math1]⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

π1η1 = π0λ − πBδ,
π2η2 = π1λ − δ(πB + πB+1),

...
...

πB−1ηB−1 = πB−2λ − δ

B−1∑
j=1

π(B−1)+j ,

πB(ν + δ) = πB−1λ − δ

B∑
j=1

πB+j ,

...
...

πB+k(ν + δ) = πB+k−1λ − δ

B−1∑
j=1

πB+k+j .

(4)

Without any loss of generality, we can introduce the following
notation:

∑i+1
j=1 π(B−1)+j

πi

δ = φi 0 ≤ i ≤ (B − 2),∑B−1
j=1 π(n+1)+j

πn

δ = ψn n ≥ (B − 1).

(5)

Using these definitions, we can rewrite the GBEs in the
following more compact manner:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

π1 = π0
(λ − φ0)

η1
,

π2 = π1
(λ − φ1)

η2
,

π3 = π2
(λ − φ2)

η3
,

... = ...

π(B−1) = π(B−2)

(λ − φ(B−2))

η(B−1)

,

πn = π(n−1)

(λ − ψ(n−1))

(ν + δ)
n ≥ B,

(6)

which immediately yields the recursive solution of our model

πn =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

π0

[
n∏

i=1

(λ − φi−1)

ηi

]
n ≤ (B − 1),

π0

[
B−1∏
i=1

(λ − φi−1)

ηi

] ⎡
⎣ n∏

j=B

(λ − ψj−1)

ν + δ

⎤
⎦.

(7)

This simple expression of the desired distribution, which is
similar to that of the steady-state solution of a M/M/k queue,
is readable, and easy to understand on its own, but, contrary to
the solution of a M/M/k, is not explicit.

The model is fully specified once the parameters
η1, η2, . . . ηB−1, μ, δ, λ and B are known and the solution rep-
resented by Equation (7) gives the steady-state probability for
each state of the queue, provided that the system is stable,
i.e. that there is a value m ≥ B such that, for all i ≥ m,
(λ − ψi)/(ν + δ) < 1.

For the purpose of deriving an explicit expression of the
solution of the model, we make the following conjecture:

∑B−1
j=1 π(n+1)+j

πn

δ = ψn = ψ n ≥ (B − 1)

which is inspired by the structure of the last equations of
(4) (those for n ≥ B − 1), and which implies a substantial
‘regularity’ of the stationary distribution.

The Computer Journal, 2013

 at U
niversity of T

orino on February 17, 2014
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

 

http://comjnl.oxfordjournals.org/
http://comjnl.oxfordjournals.org/


6 G. Balbo and M.G. Vigliotti

Indeed, using this conjecture, the system of equations (6)
simplifies drastically⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

πn = πn−1
(λ − φn−1)

ηn

1 ≤ n ≤ (B − 1),

...
...

πn = πn−1
(λ − ψ)

ν + δ
n ≥ B,

(8)

so that the following (generalized) geometric distribution can
be easily derived:

πn =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

π0

[
n∏

i=1

σi

]
, n ≤ (B − 1),

π0

[
B−1∏
i=1

σi

]
ρn−B+1, n ≥ B,

(9)

where

σi = (λ − φi−1)

ηi

1 ≤ i ≤ (B − 1),

ρ = (λ − ψ)

ν + δ
.

(10)

It is easy to observe that the system becomes certainly unstable
when the arrival rate λ exceeds the maximum exit speed
represented by μ(q + pB) = μ + (B − 1)δ, i.e. the number
of customers arriving at the queue per unit of time exceeds the
maximum number of clients that can leave the system per unit
of time. More specifically, the stability condition for our system
requires ρ < 1.0. In these conditions, π0 assumes the following
form:

π0 =
[

1 +
B−1∑
n=1

[
n∏

i=1

σi

]
+

[
B−1∏
i=1

σi

]
ρ

(1 − ρ)

]−1

, (11)

which cannot be simplified further since, contrary to a full
geometric distribution, we cannot find a closed-form expression
in this case.

Even in this simple and elegant form our solution is not
yet directly computable since all the factors that appear in (9)
depend on the distribution itself.

We can nevertheless find the desired result proving a theorem
that relies on the following lemma.

Lemma 3.1. Consider the polynomial function of degree B+1,

fB(x) = λ − x(ν + δ + λ) + x2ν + xB+1δ, where δ, λ, ν are
positive real constants. For all B > 1, there exists a unique
root, r, such that fB(r) = 0 with r ∈ (0, 1).

Proof. We compute the value offB at the boundaries of the open
interval (0, 1): fB(0) = λ and fB(1) = 0. The first derivative
of fB , evaluated again at the boundaries of the open interval,
shows that f ′

B(x) < 0 at x = 0, while it is larger than 0 at

x = 1 as long as λ < μ + (B − 1)δ (which is obviously true in
our system as we observed before), thus implying that at least
one root exists for r ∈ (0, 1). The second derivative of fB is
f ′′

B(x) = 2ν + B(B + 1)xB−1δ. For all x ∈ (0, 1) it holds that
f ′′

B(x) > 0 showing that the function is concave. This implies
that the root r is unique in the open interval (0, 1).

An explicit value for ρ can be obtained only in the case of
B = 2. In all the other cases, the solution can be derived using
numerical methods such as Newton–Raphson’s algorithm.

With this result, we are now in the position of stating our
main theorem where (a − b)+ = max(a − b, 0).

Theorem 3.1. The steady-state distribution for the queue with
state space as depicted in Fig. 1 can be written as

πn = π0

[
min(n,B−1)∏

i=1

σi

]
ρ(n−(B−1))+ ,

where ρ is the unique root of the equation

fB(x) = λ − x(ν + δ + λ) + x2ν + xB+1δ

with ρ ∈ (0, 1),

σB−1 = λρ

λ − ρδ + ρ(ηB−1 − ν)

and σi = λ

ηi + δ[∏i
k=1 σk][ρ((1 − ρi)/(1 − ρ))]

1 ≤ i ≤ B − 2

Proof. Let us first observe that, when n ≥ (B − 1), the
expression contained in Equation (9) allows one to write

B−1∑
j=1

πn+j = π0

[
B−1∏
i=1

σi

]
B−1∑
j=1

ρn−B+1+j

= π0

[
B−1∏
i=1

σi

]
ρn−B+1

B−1∑
j=1

ρj

= πn

ρ(1 − ρB−1)

1 − ρ
. (12)

Noting also that, always in the case of n ≥ B, we have
πn−1 = πn/ρ, we can make the appropriate substitutions and
observe that the last equation of (4) can be written in the
following way:

πB+k(ν + δ) = πB+k

ρ
λ − δπB+k

ρ(1 − ρB−1)

1 − ρ
k ≥ 0,

which immediately yields

(ν + δ) = λ

ρ
− δ

ρ(1 − ρB−1)

1 − ρ
, (13)
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On The Analysis of a M/M/1 Queue with Bulk Services 7

TABLE 1. Algorithm to calculate the components, σi , of the steady-state distribution with B − 2 ≥ i ≥ 0 for a queue with arbitrary departures
size B.

1: procedure FindSigma(Rate of the arrivals is λ, rate of the single departure from state n ≥ B to state n − 1 is ν, rate of bulk departures is δ)
2: Calculate the root ρ such that 0 < ρ < 1 of the function fB(x) = λ − x(ν + δ − λ) − x2ν + xB+1δ

3: σB−1 = λρ

λ + ρ(ηB−1 − μ)
;

4: i = B − 2;
5: while i >= 1 do

6: σi = λ

ηi + δ(
∏B−1

k=i+1 σk)(ρ
1−ρi+1

1−ρ
)
;

7: i = i − 1;
8: end while
9: end procedure

where some simple manipulations produce the following
equation of degree B + 1:

λ − ρ(ν + δ + λ) + ρ2ν + ρB+1δ = 0. (14)

For the first part of the theorem to be proved, we need to show
that there exists a unique positive solution for 0 < ρ < 1, but
this is certainly true as Lemma 3.1 guarantees that such ρ can
be uniquely identified.

We can now turn our attention to prove the form of the σi

(i = 1, . . . , B − 1). Indeed, the system of equations (4), which
defines πn for 2 ≤ n ≤ (B − 1) (but which is valid also for
n = 1), allows one to obtain an explicit expression for σi . For
this purpose, let us first derive the expression of σ(B−1).

Consider the equation that defines π(B−1) among those of the
system of Equations (4)

π(B−1)η(B−1) = π(B−2)λ − δ

B−1∑
j=1

π(B−1)+j . (15)

Recalling that πn = π(n−1)σn, 1 ≤ n ≤ (B − 1), and using
the result expressed by Equation (12), we can substitute in the
previous equation to write

π(B−1)η(B−1) = π(B−1)

σ(B−1)

λ − δπ(B−1)

ρ(1 − ρB−1)

1 − ρ
(16)

from which we obtain

σ(B−1) = λ

ηB−1 + δρ[(1 − ρB−1)/(1 − ρ)] (17)

which, using Equation (13), can be rewritten as

σ(B−1) = λρ

λ − ρδ + ρ(ηB−1 − ν)
. (18)

The expression of Equation (18) proves the second item of
the theorem, but cannot be generalized to obtain the values of
σi, i = 1, 2, . . . , (B − 2). However, using the same arguments
of the previous derivation (i.e. starting from the equations of

system (4)), we can obtain a general expression valid for any
i = 1, 2, . . . , (B − 1) :

σi = λ

ηi + δ[∏B−1
k=i+1 σk][ρ((1 − ρi)/(1 − ρ))] , (19)

which completes the proof of the theorem.

Note that in Equation (19), the computation of σi requires
knowing the values of ρ and σk, k = i + 1, . . . , B − 1. Thus,
once we have computed σ(B−1), we can compute σ(B−2), and
from there on all the other values of σi, i = B − 3, . . . , 1.
Equation (19) thus gives rise to an algorithm that allows one to
derive all values of σi as shown in Table 1.

Moreover, we can observe that, for the derivation of the
generalized geometric solution for the steady-state distribution,
namely πn = π0[∏min(n,B−1)

i=1 σi]ρ(n−(B−1))+ , we conjectured
that, for all n, there exists (and it is unique) a constant ψ such
that ψn = ψ .

The reader should note that, in the proof of Theorem (3.1),
we have implicitly shown by substitution in the GBEs that such
generalized geometric solution is indeed the correct one. For
clarity, we state the following corollary.

Corollary 3.1. For CTMC with state space as depicted in
Fig. 1 the steady-state probability function can be written as

πn = π0

[
min(n,B−1)∏

i=1

σi

]
ρ(n−(B−1))+

if and only if, for the recursive solution derived in Equation (6),
it holds that, for all n, there exists a unique constant ψ such
that ψn = ψ .

Proof. (If ).
Recall the definition of ψn for any n ≥ (B − 1) :

ψn =
∑B−1

j=1 π(n+1)+j

πn

δ.

Note that, in Equation (9), the two expressions on the right-
hand side are identical for n = B − 1. We can thus rewrite
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8 G. Balbo and M.G. Vigliotti

Equation (3.1) in the following way:

ψn =
∑B−1

j=1 π0[∏B−1
j=1 σi]ρn+1+j−B+1

π0[∏B−1
j=1 σi]ρn−B+1

δ

= π0[∏B−1
j=1 σi]ρn−B+2 ∑B−1

j=1 ρj

π0[∏B−1
j=1 σi]ρn−B+1

δ

= ρ2

⎡
⎣B−2∑

j=0

ρj

⎤
⎦ δ

= ρ2δ
1 − ρB−1

1 − ρ
,

which shows that ψn is independent of n, thus proving this part
of our conjecture.

(Only if ).
If, for alln, there exists a unique constantψ such thatψn = ψ ,

then clearly Equation (9) is derived.

Theorem 3.1 shows that the tail of the distribution depends
on ρ up to a multiplicative constant that accounts for the
normalization (π0 and for the product of the σi, i = 1, . . . , B −
1). Since ρ depends on λ, μ and p, but not on the values of
ηi (i = 1, . . . , B − 1), different configurations of these service
rates will only have the effect of changing the multiplicative
constant and of scaling the tail of the distribution πn for
n ≥ B. In the next two subsections, we will now consider two
interesting configurations of the ηi (i = 1, . . . , B − 1) that will
be useful for comparison purposes, which will be discussed in
Sections 4 and 5.

3.2. Bulk service in M/MB∗
/1 queue with constant

service rates

As already observed, the derivation conducted up to
Equation (14) does not depend on the rates of single service
from state 1 to B − 1. If we suppose that the speed of the server
remains constant when the number of customers in the queue
does not reach the threshold value of B, two possibilities exist
that are worthy of being analysed.

3.2.1. Case ηi = ν

The first refers to the case in which

ηi = η = ν 1 ≤ i ≤ (B − 1) (20)

corresponding to the fact that single customers are served with
the same rate, independently of the fact that the number of
customers at the server is larger or smaller than the threshold
value B, which identifies the bulk’s size. Changes in the rate of
service of a single customer will not affect the derivation of the
recursive solution of the steady-state distribution, but it has an
impact on the definition of σi that we denote in this case in the

following manner:

σ̂i = (λ − φi−1)

ν
1 ≤ i ≤ (B − 1). (21)

We can thus state now the following result.

Lemma 3.2. Consider the queue with state space as depicted
in Fig. 3 with ηi = ν for i = 1, . . . , B−1; the recursive solution
for the steady-state distribution is

πn = π0

[
min(n,B−1)∏

i=1

σ̂i

]
ρ(n−(B−1))+ ,

where ρ is the unique root of the equation

fB(x) = λ − x(ν + δ + λ) + x2ν + xB+1δ with ρ ∈]0, 1[,
σ̂B−1 = λρ

λ − δρ

and σ̂i = λ

ν + δ[∏B−1
k=i+1 σ̂k][ρ((1 − ρi)/(1 − ρ))]

1 ≤ i ≤ B − 2.

Proof. The proof that πn = [∏B−1
i=1 σ̂i]ρ(n−(B−1))+ is the

steady-state probability for this queue is identical to that of
Theorem 3.1. It remains thus to show the analytical formulation
for σ̂i with i ≤ B − 1.

Using the simple expression represented by Equation (18)
and introducing the assumption that is specific of this case, it is
straightforward to show that

σ̂B−1 = λρ

λ − δρ
(22)

and, in general, that

σ̂i = λ

ν + δ[∏B−1
k=i+1 σ̂k][ρ((1 − ρi)/(1 − ρ))] . (23)

For this case the algorithm in Table 1 can still be used,
changing the equation of Step 3 with Equation (22) and that
in the while loop (Step 6) with Equation (23).

3.2.2. Case ηi = μ

The second possibility refers to the case in which

ηn = η = μ 1 ≤ i ≤ (B − 1). (24)

With this other definition, we assume that the (overall) server
rate is constant, independently of the number of customers
leaving the server upon the completion of a service.

Again, this assumption impacts on the definition of σ̃i that
now is expressed in the following way:

σ̃i = (λ − φi−1)

μ
1 ≤ i ≤ (B − 1). (25)

For this case, we have the following result.
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On The Analysis of a M/M/1 Queue with Bulk Services 9

FIGURE 4. State transition diagram of M/M/1 queue with bulk service B where μ = δ + ν.

Lemma 3.3. Consider the queue with state space as depicted
in Fig. 4 with ηi = μ for i = 1, . . . , B − 1; the recursive
solution for the steady-state distribution is

πn = π0

[
min(n,B−1)∏

i=1

σ̃i

]
ρ(n−(B−1))+ ,

where ρ is the unique root of the equation

fB(x) = λ − x(ν + δ + λ) + x2ν + xB+1δ with ρ ∈]0, 1[,
σ̃B−1 = ρ

and σ̃i = λ

μ + δ[∏B−1
k=i+1 σ̃k][ρ((1 − ρi)/(1 − ρ))]

1 ≤ i ≤ B − 2.

Proof. As for the previous lemma, we only have to show the
analytical formulation for σ̃i with i ≤ B − 1.

Using again the simple expression represented by Equa-
tion (18) and introducing the assumption of the lemma, it is
straightforward to show that

σ̃B−1 = λρ

λ + (μ − ν − δ)ρ
= ρ. (26)

The general expression for σ̃n, n = 1, . . . , B − 2 does not
have a close form and we can only say that

σ̃i = λ

μ + δ[∏B−1
k=i+1 σ̃k][ρ((1 − ρi)/(1 − ρ))] . (27)

Also in this case the algorithm in Table 1 can be used by
setting σB−1 = ρ in Step 3 and changing the equation in the
while loop (Step 6) with Equation (27).

3.3. Variable service rates for the quasi-reversible process

We can now analyse further the M/MB∗
/1 building upon

the results derived in Section 3, which showed that variable
service rates, when the population of the system is smaller than
the bulk size, are compatible with the generalized geometric
distribution. As we pointed out at the beginning of Section 3,
the analysis that will follow starts from the different perspective

of identifying the values that need to be assigned to the rates ηi

(i = 1, . . . , B −1) in order to make the queue quasi-reversible.
We will show that these rates are very specific and that queues
with these service rates will be very difficult to encounter
in practical applications. The results are nevertheless relevant
because they will allow one to bound the performances of more
realistic models with closed-form expressions that enjoy nice
computational properties.

For this purpose, we recall that because of the definition
of quasi-reversibility stated in Section 2.1, we need to fix the
rate for the arrival qA(s, s ′), as well as that for the departure
qD(s, s ′). In what follow, we assume that

q(n, n + 1) = qA(n, n + 1).

Since our model exhibits two different output processes, we
have to choose which of the departures corresponds to the
rate qD(s, s ′) that we are considering. Given the batch size B,
we analyse a first case in which we assume that the departure
rate is associated with the bulk-service:

q(n, n − B) = qD(n, n − B),

while in the second case we assume that the departure rate is
associated with the single-service:

q(n, n − 1) = qD(n, n − 1),

3.3.1. The bulk output process
Let us refer again for a moment to our motivating example
of the sales department. When considering the modelling of
this department within the organization of the whole production
company, it is conceivable to assume that of main importance
is the process of boxes of parts that are flowing out of the sales
department to other enterprises which will process these items
further. If the interaction with the ‘outside world’ depends on
this process, it can be interesting to know whether there are
conditions under which this process is quasi-reversible [2, 3].
Given that δ is the rate at which whole boxes are coming out
of the system (when enough parts are in stock), we have in this
case qD(n, n − B) = δ and the requirement for the process to
be quasi-reversible corresponds to ensuring that the following
relationship holds:

πn+Bδ

πn

= χ, n ≥ 0, (28)

where χ is an appropriate constant.
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10 G. Balbo and M.G. Vigliotti

Considering the generalized geometric distributions derived
in the previous sections (Equations (11) and (9)), it is easy to
see that this condition holds naturally as long as n ≥ B. Indeed,

πn+Bδ

πn

= π0[∏B−1
i=1 σi]ρn+1 δ

π0[∏B−1
i=1 σi]ρn−B+1

= δρB n ≥ B, (29)

so that we can conclude that χ = δρB .
In order for the relation to hold also for n = B − 1, we must

have σB−1 = ρ. Referring back to Equation (18), it is easy to
see that this can be achieved as long as ηB−1 = μ.

When B > 2, Equation (29) applied for any n ≤ B − 1
requires that σk = ρ for any k = 1, . . . , B−2. This implies that,
for the queue to be quasi-reversible with respect to the bulk’s
output process, the steady-state distribution must be geometric
and expressed in the following simple form:

πn = (1 − ρ)ρn n ≥ 0. (30)

Indeed, it is possible to show by induction that this
solution is achievable as long as the service rates ηi ,
i = 1, . . . , B − 2, assume specific values. If we assume that
σi = ρ, i = 1, . . . , B − 2, we identify the value of ηi by
rewriting σi in the following manner:

σi = λ

ηi + δρB−i−1[ρ((1 − ρi)/(1 − ρ))]
= λ

ηi + δρB−i ((1 − ρi)/(1 − ρ))
1 ≤ i ≤ (B − 2),

(31)

so that, for σi to be equal to ρ, ηi must assume the following
value:

ηi = λ

ρ
− δ ρB−i 1 − ρi

1 − ρ
1 ≤ i ≤ (B − 2). (32)

Note that Equation (9) is also valid for n = (B −1), but it is not
needed since we have already proved that ηB−1 must be equal
to μ. However, this observation allows one to easily show that
the following result holds:

ηB−2 = μ + δρ. (33)

This derivation can be carried over to show that, in general,

ηi = ηi+1 + δρB−(i+1) 1 ≤ i ≤ (B − 2). (34)

This last result allows one also to obtain a direct expression for
ηi that must be satisfied in order for our M/MB∗

/1 queue to be
quasi-reversible:

ηi = μ + ρδ
1 − ρ(B−1)−i

1 − ρ
1 ≤ i ≤ (B − 1). (35)

All these results can be summarized in the following lemma.

Lemma 3.4. Consider the queue with state space as depicted in
Fig. 1. The steady-state distribution of the number of customers
in the queue has the following geometric form:

πn = (1 − ρ)ρn n ≥ 0,

if and only if there exists a constant χ such that, for all n ≥ 0,

πn+Bδ

πn

= χ

and ρ is the unique root of the equation fB(x) = λ−x(ν + δ +
λ) + x2ν + xB+1δ with ρ ∈]0, 1[. Furthermore, it holds that
ηB−1 = μ and

ηi = μ + ρδ
1 − ρ(B−1)−i

1 − ρ
1 ≤ i ≤ B − 2.

In this case, the solution can be computed directly without
the help of the algorithm of Table 1 which reduces to the
computation of ρ.

3.3.2. The single customer output process
We can now turn our attention to the single-customer output
process. Referring again to our motivating example of the sales
department, we could be interested in the flow of single items. If
the interaction with the ‘outside world’depends on this process,
it can be interesting to know whether there are conditions under
which this process is quasi-reversible [2, 3]. In this case, we
observe qD(n, n − 1) cannot be written as a constant rate.
Thus, the requirement for the process to be quasi-reversible
corresponds to ensuring that the following relationship holds:

πn+1qD(n, n − 1)

πn

= C, n ≥ 0, (36)

where C is an appropriate constant.
Considering the different rates at which individual customers

are served by the system, we can make the previous condition
more explicit:

C =

⎧⎪⎨
⎪⎩

πn+1 ηn+1

πn

, n ≤ (B − 2),

πn+1 ν

πn

, n ≥ (B − 1).
(37)

Given the general expression for the solution of this model
(see Equation (9)), and considering the second of the previous
conditions, it is easy to see that C must be equal to ρν so that
we must also have

C = ρν = πn+1ηn+1

πn

n ≤ (B − 2). (38)

Using again the explicit expression of the solution (Equa-
tion (9)), we can write

ρν = σiηi 1 ≤ i ≤ (B − 1) (39)

so that, assuming that we are able to get an explicit expression
for σi , we can identify the rates that make this process reversible
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in the following manner:

ηi = ρν

σi

1 ≤ i ≤ (B − 1). (40)

Consider first the case of i = B−1 for which we have a direct
and explicit expression for σ(B−1) (Equation (18)). Substituting
in the previous equation, we obtain

ρν = σB−1ηB−1

= λρ

λ − ρδ + ρ(ηB−1 − ν)
ηB−1, (41)

which we can easily rewrite to obtain

ηB−1 = ρν(λ − ρδ − ρν)

ρ(λ − ρν)

= ν
(λ − ρμ)

(λ − ρν)
. (42)

The expression of ηB−1 allows one to derive two alternative
forms for σB−1. Indeed, recalling that σB−1ηB−1 = ρν, we
easily obtain

σB−1 = ρ
(λ − ρν)

(λ − ρμ)
. (43)

However, a simple manipulation of Equation (13) allows one to
also obtain

ηB−1
λ − ρν

ρδ

1 − ρ

(1 − ρB−1)
= ρν (44)

but recalling again that σB−1ηB−1 = ρν, we can observe that

σB−1 = (λ − ρν)(1 − ρ)

ρδ(1 − ρB−1)
. (45)

Using now the general result that we derived before for σi ,
i = 1, . . . , B − 2, we can obtain the explicit expression of
σB−2. Indeed,

σB−2 = λ

ηB−2 + δσB−1ρ((1 − ρB−2)/(1 − ρ))
(46)

yields

σB−2ηB−2 + σB−2δσB−1ρ
1 − ρB−2

1 − ρ
= λ (47)

and recalling that in this case σB−2ηB−2 = ρν, we obtain

ρν + σB−2δσB−1ρ
1 − ρB−2

1 − ρ
= λ (48)

from which, using the explicit expression of σB−1 and the result
expressed by Equation (13), we obtain

σB−2 = 1 − ρB−1

1 − ρB−2
(49)

so that

ηB−2 = ρν
1 − ρB−2

1 − ρB−1
. (50)

Following a similar approach and using an inductive
argument, it is easy to prove that

σi = 1 − ρi+1

1 − ρi
1 ≤ i ≤ B − 2 (51)

and

ηi = ρν
1 − ρi

1 − ρi+1
1 ≤ i ≤ B − 2. (52)

As in the previous case, all these results can be summarized with
the following lemma.

Lemma 3.5. Consider the queue with state space as depicted in
Fig. 1. The steady-state distribution of the number of customers
in the queue is

πn = π0

[
min(n,B−1)∏

i=1

σi

]
ρ(n−(B−1))+ ,

if and only if

C =

⎧⎪⎨
⎪⎩

πn+1 ηn+1

πn

, n ≤ (B − 2),

πn+1 ν

πn

, n ≥ (B − 1),

where ρ is the unique root of the equation fB(x) = λ − x(ν +
δ + λ) + x2ν + xB+1δ with ρ ∈]0, 1[.

Furthermore, it holds that

σB−1 = ρ
(λ − ρν)

(λ − ρμ)
ηB−1 = ν

(λ − ρν)

(λ − ρμ)

and, for all i ≤ B − 2,

σi = 1 − ρi+1

1 − ρi
ηi = ρμ

1 − ρi

1 − ρi+1
.

Again, the algorithm in Table 1 can be used also in this case by
setting σB−1 = ρ((λ − ρν)/(λ − ρμ)) in Step 3 and changing
the equation in the while loop (Step 6) with Equation (52).

Note that substituting in the formula for the queue length
distribution the explicit expressions of the σi , we obtain a
new version of this result which allows the derivation of a
closed-form expression of π0. Indeed we can state the following
corollary.

Corollary 3.2. Consider the queue with state space as
depicted in Fig. 1. The steady-state distribution of the number
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12 G. Balbo and M.G. Vigliotti

of customers in the queue is

πn =

⎧⎪⎪⎨
⎪⎪⎩

π0
1 − ρn+1

1 − ρ
, n ≤ (B − 2),

π0
1 − ρB−1

1 − ρ

λ − ρν

λ − ρμ
ρn−B+1, n ≥ (B − 1),

(53)

where π0 has the following closed form:

π0 = (1 − ρ)

(B − 1) − ρ((λ − ρν)/(λ − ρμ))((1 − ρB−1)/(1 − ρ))
.

4. BOUNDS

In the previous section, we studied four variants of the same
queue with bulk service: two versions where the service of single
customers are state dependent, and two queues with different
constant service rates for a single customer when the service of
bulks is not possible. A natural question that arises after having
derived all these results concerns the relationships among the
steady-state distributions of these different versions of the
queue. In this section, we provide an answer to this question
by comparing their corresponding stochastic processes [1] from
the point of view of their cumulative distribution functions. For
this purpose, we use the notion of stochastic order over totally
ordered sets in CTMCs [1].

The basic idea in what follows is to derive the ranking over
the probability distributions of two (or more chains), assuming
a pre-defined ordering among the corresponding states of the
chain. The order on the states of the chain is simply a relation
that is reflexive, transitive, but not symmetric. In this work, as
we are dealing with queues in which the states represent the
number of customers in the system and are indexed with that
same number, the order of the states is assumed to be the natural
order ≤ on the natural numbers, N. Moreover, in what follows,
it is assumed that the order on the states of the chain is total.

We use the symbols X, Y, V, U for random variables and
{X(t) : t ≥ 0}, {Y (t) : t ≥ 0} for stochastic processes.
Two random variables may be compared with respect to their
expectations.

Definition 4.1. Let X, Y be two random variables. We write
X �st Y if and only if E[f (X)] ≤ E[f (Y )], for any increasing
function f for which both expectations exist.

Definition 4.2. Let {X(t) : t ≥ 0} and {Y (t) : t ≥ 0} be two
stochastic processes. We write {X(t)} �st {Y (t)} if, for all t, it
holds that:

X(t) �st Y (t).

Proposition 4.1 [12, 13]. Let {X(t) : t ≥ 0} and {Y (t) : t ≥
0} be two CTMCs with state space S = {0, 1, 2, 3, . . .} with

generator matrices A, B such that X(0) �st Y (0). It holds that
{X(t)} �st {Y (t)}, if∑

k≥m

A(i, k) ≤
∑
k≥m

B(j, k)

for all i ≤ j and for all m such that m ≤ i or m > j .

This last result is very useful as it allows one to compare CTMCs
by looking at their transition matrices only.

Assume that {X(t) : t ≥ 0} and {Y (t) : t ≥ 0} are
the stochastic processes corresponding to two M/M/1 queues,
with arrival rates λ1, λ2 and service rates μ1, μ2, respectively.
Here {X(t)} and {Y (t)} represent the number of customers in
queue (and in service as well) in the two systems at time t .
Proposition 4.1 says that {X(t)} �st {Y (t)} if λ1 ≤ λ2 and
μ1 ≥ μ2.

We can compare now the queues we have analysed in this
paper. In each queue we have changed only the variable rates
of the single departures. We write {X(t) : t ≥ 0} for our
generic queue with variable rates of the single departures,
{Xν(t) : t ≥ 0} for the queue with fixed rate ν of the single
departures and {Xμ(t) : t ≥ 0} for the queue with fixed rate
μ of the single departures. Using the arguments, we have just
developed, it is easy to see that the following holds.

Lemma 4.1.

(i) {Xμ(t) : t ≥ 0} �st {Xν(t) : t ≥ 0}.
(ii) Assume that, for all i, μ ≥ ηi ≥ ν; then {X(t) : t ≥

0} �st {Xν(t) : t ≥ 0} and {Xμ(t) : t ≥ 0} �st {X(t) :
t ≥ 0}.

For what concerns the other two cases corresponding to
queues that exhibit peculiar properties, in the sense that they
are quasi-reversible with respect to different transitions, we can
make the following observations. The quasi-reversible queue
with respect to batch departures has the relevant property that,
for all i such that 1 ≤ i ≤ B − 2, it holds that ηi > ηi+1

and ηB−1 = μ as can be easily seen from the expression of
Equation (35). The quasi-reversible queue with respect to single
departures has the property instead thatηi < ν for any i such that
1 ≤ i ≤ B −1, as we can see from Equations (42) and (52). We
write {X[R,δ](t) : t ≥ 0} for the queue that is quasi-reversible
with respect to batch departures, and {X[R,ν](t) : t ≥ 0} for the
queue that is quasi-reversible with respect to single departures.
We thus obtain the following lemma.

Lemma 4.2.

(1) {Xν(t) : t ≥ 0} �st {X[R,ν](t) : t ≥ 0}.
(2) {X[R,δ](t) : t ≥ 0} �st {Xμ(t) : t ≥ 0}.

Proof. The first statement simply follows from Proposition 4.1;
the second statement follows from Equation (35).
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The previous lemma is rather important because it gives a
total order among the various queue configurations studied in
this paper, namely:

{X[R,δ](t) : t ≥ 0} �st {Xμ(t) : t ≥ 0},
{Xμ(t) : t ≥ 0} �st {Xν(t) : t ≥ 0},
{Xν(t) : t ≥ 0} �st {X[R,ν](t) : t ≥ 0}.

By transitivity of �st we conclude that {X[R,δ](t) : t ≥ 0} �st

{X[R,ν](t) : t ≥ 0}.
This apparently obvious observation allows one to draw an

important conclusion referring to the fact that the performance
figures computed for the choices of parameters that yield the
quasi-reversible behaviours bracket similar performance results
computed for M/MB∗

/1 queues with parameters belonging to
the parameter space defined by these two extreme cases.

Specifically, since the queue length distributions for the
two quasi-reversible models have closed-form expressions that
depend only on the input parameters (λ, μ, p, B) and on the
loading factor ρ, which is the root of the polynomial of degree B

of Theorem (3.1), they easily provide bounds for the solutions of
variants of the models that do not enjoy these properties, as long
as their service rates belong to the space identified are bound by
the state dependent service rates of these two reference models.

5. DISCUSSION

The results derived in the previous section ensure that a ranking
exists among the different versions of the M/MB∗

/1 analysed
in this paper. No quantitative information is however provided
by these results for what concerns the actual distance among the
performance figures computed in the different cases.We can say
that the extreme situations corresponding to the quasi-reversible
parametrizations provide approximations for the behaviour of
any other M/MB∗

/1 with intermediate parameters. However,
in order to get a feeling for the quality and the effectiveness
of these approximations, we must refer the reader to a specific
case as we will do in the sequel of this section.

Consider an M/MB∗
/1 with bulk’s size B = 20 (clients),

total service rate μ = 2 (clients/s) and probability p = 0.6 of
removing a bulk of B clients from the queue upon completion
of a service when more that B customers are at the station.
Depending on the value of λ which represents the arrival rate
of clients at the M/MB∗

/1, we can easily identify the loading
factor ρ of the system and compute the distribution of the
number of customers in our queue for the case of the bulk’s
reversible process using Equation (30). Most important for our
purposes is however the computation of the variable service
rates ηi that our M/MB∗

/1 must exhibit with less than B clients.
Figure 5a depicts the sets of values that must be assumed for
different values of λ ranging from the case of a very lightly
loaded queue (λ = 0.4 clients/s) to an almost saturated one
(λ = 22 clients/s). Note that all these sets have the common
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FIGURE 5. Plots of single departures rates η. (a) Plot of the value of
the ηs versus different arrival rates for a quasi-reversible queue with
respect to bulk departures with bulk size B = 20. (b) Plot of the value
of the ηs versus different arrival rates for a quasi-reversible queue with
respect to single departures with bulk size B = 20.

value of η19 = 2.0 as discussed in the section devoted to the
analysis of this case (Section 3.3.1). Similar sets of values can
also be computed for the single customer reversible process as
depicted in Fig. 5b. Note that in this case all the values are
smaller than ν = 0.8 with a substantial discontinuity between
the rates required for n = 19 in the case of different load
configurations and that for B = 20 with the difference being
substantial in the case of a lightly loaded queue. Figure 6
combines the information contained in the two previous figures,
selecting a specific arrival rate (λ = 10 clients/s) and pointing
out the parameter space for the possible service rates for less
than B customers in the queue (portion (a) of the figure).
Any M/MB∗

/1 with an ηi ‘curve’ positioned between the two
extremal curves of the diagram will have a cumulative queue
length distribution bounded by those of the two reversible cases,
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14 G. Balbo and M.G. Vigliotti

and more specifically will be such that its mean queue length will
be larger than that computed for the bulk’s reversible process
case and smaller than that of the single customer reversible
process.

Turning now our attention to the comparison among the
distribution functions and the cumulative distributions for the
different cases, we can start with the discussion of the results
depicted in Fig. 6 and computed for λ = 10, where the left
one (part b) corresponds to the distribution function, while the
right one (part c) reports the cumulative distribution. The shapes
of the distribution functions are quite different for values of n

smaller than B, while they become comparable for larger values
of n (Fig. 7). Moreover, we can note the similarity and the
closeness among three of the four cases studied in this paper
singling out the peculiar behaviour of the M/MB∗

/1 when
the bulk output process is reversible. A similar remark can be
made also with respect to the comparison among the cumulative
distributions where it becomes evident the lower bound role
played by the M/MB∗

/1 with reversible bulk’s output process.
The differences in performance of the several versions of the
M/MB∗

/1 become smaller with the increasing load of the
queue, while some similarities among the distribution functions
of the different models start to appear for extremely lightly
loaded models (see Fig. 8a and b). Moreover, we can observe
that, for n larger than B, the ratios among different distribution
functions remain constant for any value of n. The behaviours
of the different versions of the M/MB∗

/1 for increasing values
of the arrival rate λ are summarized in Fig. 8, which provide
a comprehensive view of the differences and similarities of the
various cases.

Despite the fact that, in order to satisfy the GBEs, the
queues exhibiting quasi-reversible behaviours with respect to
the two different output processes must have very specific load-
dependent service rates when the queue length is smaller than
B (which make them very unlikely to occur in practice), the
queue length distributions expressed by Equations (30) and
(53) provide computationally efficient bounds for the solution
of similar models, but such that η

[R,ν]
i ≤ νi ≤ η

[R,ν]
i (where

we borrowed the notation from the previous Section 4 to
identify the service rates of the two quasi-reversible models).
Moreover, the small distance that exists for many loading factors
among the cumulative distributions of the cases with constant
service rates equal to μ and ν = pμ and that corresponding
to the quasi-reversible single customer output process allows
one to say that such a model can be often used as a good
approximation of the other ones.

6. CONCLUSION

In this paper, we presented the results of the analysis of the
M/MB∗

/1, where bulks of customers of size B are possibly
removed from the queue upon completion of a service when
more than B clients are present in the system. When the
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FIGURE 6. Plots of the density function, distribution function and the
rates of single departures η for a queue with bulk size 20 and arrival rate
10. (a) Plot of the value of the ηs for the quasi-reversible queues with
arrival rate λ = 10 and with bulk size B = 20. (b) Plot of the density
function for the queues in steady state with arrival rate λ = 10 and
with bulk size B = 20. (c) Plot of the cumulative distribution function
for the queues in steady state with arrival rate λ = 10 and with bulk
size B = 20.
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FIGURE 7. Plots of the various density function and distribution functions of the queues with bulk size 20 and different arrival rates. (a) Graph
of the pdf with arrival rate λ = 0.4. (b) Graph of the cdf with arrival rate λ = 0.4. (c) Graph of the pdf with arrival rate λ = 2. (d) Graph of the cdf
with arrival rate λ = 2. (e) Graph of the pdf with arrival rate λ = 4. (f) Graph of the cdf with arrival rate λ = 4.

global service rate μ is kept constant for any value of n

larger than B, the distribution function of this queue shows
a geometric tail independently of the service rates presented
by the system when less than B clients are there. The
‘regularity’ of this result relies on the computation of the
load factor that derives from the solution of an equation of
degree B. We have shown that conditions may be put on the
rates of the server when less than B customers are there, in

order to obtain quasi-reversible behaviours. Quasi-reversibility
provides a general set of conditions to guarantee a product-
form solution. It has been shown that quasi-reversibility is a
necessary condition for this result to be true [2, 3, 14, 15],
and that nearly all networks that enjoy product-form solutions
are formed of queues that are quasi-reversible, or can be
seen as such, including the problematic G-networks with
triggers [16].
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FIGURE 8. Plots of the various density function and distribution functions of the queues with bulk size 20 and different arrival rates. (a) Graph
of the pdf with arrival rate λ = 10, (b) Graph of the cdf with arrival rateλ = 10, (c) Graph of the pdf with arrival rate λ = 14, (d) Graph of the cdf
with arrival rate λ = 14, (e) Graph of the pdf with arrival rate λ = 22 and (f) Graph of the cdf with arrival rate λ = 22.

The model discussed in this paper identifies two output
processes corresponding to the fact that a single customer or
a bulk of customers leave the queue upon a service completion.
Assuming that the process of arriving customers is Poisson,
then the service rates of the M/MB∗

/1 can be adjusted to
make the bulk output process or the single customer output
process Poisson too. These two processes cannot be Poisson at

the same time however (i.e. for the same set of service rates
ηi), showing that they cannot be considered as the result of
a simple Bernoulli decomposition of Poisson processes. This
last feature is quite important when the M/MB∗

/1 has to be
connected with other servers within a queueing network. Indeed,
we can envision the two types of departure processes as two
different ‘interfaces’ that can be used to connect the queue
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within a network. Considering the M/MB∗
/1 as a module

(component) of a queueing network, if the interface used for
the connection corresponds to a reversible process, then the
module becomes a candidate for ensuring that the stationary
distribution of the whole network has a product form with the
important computational consequences that make it suitable
for practical applications. The bounds and the approximations
that we propose in this paper thus become relevant in this
context where an approximate model can be acceptable if the
computational cost of its solution is limited.

Since the results in this paper refer to the computation of the
queue length distributions for different model’s configurations,
performance figures such as the expected value of the queue
length (as well as higher moments of the queue length distribu-
tion) and expected waiting times are easy to derive. Obviously,
the order relationships among the queue length distributions
that have been obtained for these various configurations can be
easily extended to the comparisons among derived performance
indices. The derivation and the analysis of the distribution of
the waiting time is instead a complex topic on its own and must
be considered to be outside the scope of this paper.

A full understanding of the relevance of this results for
product form queueing network applications will be the topic
of future research where queues with bulk services and bulk
arrivals will be considered as components of complex queueing
networks generalizing the work that we have already discussed
in Balbo and Vigliotti (submitted for publication) and showing
the practical relevance of these new results in many application
scenarios.
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APPENDIX. DERIVATION DETAILS

Derivation of Equation (19):

πiηi = πi

σi

λ − δπi

[
B−1∏

k=i+1

σk

] ⎡
⎣ i∑

j=1

ρj

⎤
⎦ ,

πiσiηi + πiσiδ

[
B−1∏

k=i+1

σk

] ⎡
⎣ i∑

j=1

ρj

⎤
⎦ = πiλ,

σi = λ

ηi + δ[∏B−1
k=i+1 σk][∑i

j=1 ρj ]
= λ

ηi + δ[∏B−1
k=i+1 σk][ρ((1 − ρi)/(1 − ρ))] . (A.1)
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Derivation of Equation (33):

ηB−2 = λ

ρ
− δ ρ2 1 − ρB−2

1 − ρ

= λ

ρ
− δ ρ

ρ − ρB−1

1 − ρ

= λ

ρ
− δ ρ

(ρ − 1) + 1 − ρB−1

1 − ρ

= λ

ρ
− δ ρ

(1 − ρB−1

1 − ρ
+ δ ρ

= ηB−1 + δ ρ

= μ + δ ρ. (A.2)

Derivation of Equation (34):

ηi = λ

ρ
− δρB−i 1 − ρi

1 − ρ

= λ

ρ
− δρB−i−1 ρ − ρi−1

1 − ρ

= λ

ρ
− δρB−i−1 (ρ − 1) + 1 − ρi−1

1 − ρ

= λ

ρ
− δρB−(i+1) (1 − ρi+1

1 − ρ
+ δ ρB−(i−1)

= ηi+1 + δ ρB−(i+1) i = 1, 2, . . . , (B − 2). (A.3)

Derivation of Equation (35):

ηi = ηi+1 + δρB−(i+1)

= ηi+2 + δρB−(i+2) + δρB−(i+1)

...

= ηB−1 +
(B−1)−i∑

h=1

δ ρh

= μ + ρδ
1 − ρ(B−1)−i

1 − ρ
1 ≤ i ≤ (B − 1). (A.4)

Derivation of Equation (44):

λ − ρ(ν + δ)

ρδ
= ρ(1 − ρB−1)

1 − ρ
,

ν
λ − ρμ

ρδ

λ − ρν

λ − ρν
= ρν

(1 − ρB−1)

1 − ρ
,

ν
λ − ρμ

λ − ρν

λ − ρν

ρδ

1 − ρ

(1 − ρB−1)
= ρν,

ηB−1
λ − ρν

ρδ

1 − ρ

(1 − ρB−1)
= ρν.

(A.5)

Derivation of Equation (49):

σB−2 = λ

ηB−2 + δσB−1ρ((1 − ρB−2)/(1 − ρ))
,

σB−2ηB−2 + σB−2δσB−1ρ
1 − ρB−2

1 − ρ
= λ,

ρν + σB−2δσB−1ρ
1 − ρB−2

1 − ρ
= λ,

σB−2 = λ − ρν

σB−1δρ ((1 − ρB−2)/(1 − ρ))

= λ − ρν

((λ − ρν)(1 − ρ)/δρ(1 − ρB−1))

δρ((1 − ρB−2)/(1 − ρ))

= 1 − ρB−1

1 − ρB−2
. (A.6)

Derivation of Equation (49):

σB−2 = (λ − ρν)

ρδ((1 − ρB−2)/(1 − ρ))σB−1

= (λ − ρν)

ρδ((1 − ρB−2)/(1 − ρ))((λ − ρν)(1 − ρ)/

δρ(1 − ρB−1))

= 1 − ρB−1

1 − ρB−2
. (A.7)
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