
– 1 –

Password capabilities revisited
Lanfranco Lopriore

Dipartimento di Ingegneria dell’Informazione, Università di Pisa, via G. Caruso 16, 56126 Pisa, Italy
E-mail: l.lopriore@iet.unipi.it

Abstract — With reference to a distributed system consisting of nodes connected by a local
area network, we present a new formulation of the password capability paradigm that takes
advantage of techniques of symmetric-key cryptography to represent password capabilities in
memory. We assign a cryptographic key to each application; the password capabilities held by
a process of a given application are encrypted by using the key of this application. Passwords
are associated with object types; two or more objects of the same type, which are allocated to
the same node, share the same set of passwords.
Our password capability paradigm preserves all the advantages concerning simplicity in access
right representation and administration (distribution, verification, review and revocation) that
characterize the classical paradigm, while keeping the memory requirements for password stor-
age low, and solving the problems connected with password capability stealing and forging.

Keywords: access right, distributed system, password capability, protection, revocation, sym-
metric-key cryptography.

1. INTRODUCTION

1.1. Capability-based addressing

Let us refer to a distributed system consisting of nodes connected by a local area network

in an arbitrary network topology. In a system of this type, an important problem is the repre-

sentation of access rights in memory. A classic solution is based on the concept of a capability

[1]. This is a pair (G, AR), where G is the identifier of a protected object, and AR is a set of

access rights on this object. The capability makes it possible to access the object identified by

G to perform the operations corresponding to the access rights specified by AR. Object identi-

fiers are unique system-wide; it is never the case that two objects exhibit the same identifier,

even if these objects are hosted in different nodes.

The segregation problem

A salient problem of capability-based addressing techniques is capability segregation in

memory. This is necessary to prevent a process from tampering with an existing capability to

alter its access right field to amplify access rights illegitimately, for instance, or even to cause

the capability to reference a different object. Segregation will also preclude processes from

forging new capabilities from scratch.

Several solutions have been proposed for the segregation problem [2], [3]. Special objects,

which we shall call the capability objects, can be reserved for capability storage (in contrast,

– 2 –

data objects will contain ordinary data items) [4], [5]. This approach is subject to object prolif-

eration. Processes must adhere to a complicated memory structure complying with a hierar-

chical object organization in which one or more capability objects are reserved to contain the

capabilities for other capability and data objects, and the data objects form the lowest level in

the hierarchy. Even the simplest data structure should include at least one capability object and

one data object. In a distributed system, this implies that the transfer of the data structure to a

different node must be preceded by the marshalling of its component objects to linear form. In

the recipient node, the data structure will be unmarshalled to reconstruct its hierarchical com-

position.

In a different approach, capability segregation takes advantage of a tagged memory system.

In this approach, a one-bit tag is associated with each memory cell to identify the cells reserved

to contain a capability [6], [7], [8]. The usual machine instructions for data processing are des-

tined to fail if they are executed on a memory cell tagged to contain a capability; instead, a cell

of this type can only be accessed by using a set of special instructions, the capability instruc-

tions, aimed at capability processing. Tag-based capability segregation needs an ad-hoc

memory system aimed at supporting cell tags, e.g., in a 64-bit primary memory, the size of a

memory cell is 65 bits. This is contrary to hardware standardization [9]. Complications ensue

in secondary memory management from the necessity to transfer the tags as part of each

memory swapping activity. In a distributed memory system, when an information item is moved

between two network nodes, the corresponding tags should be transferred, too.

The revocation problem

Capabilities can be freely copied, possibly with reduced access rights; an action of this type

grants an access permission to the capability recipient. Indeed, ease of access right transfers is

a salient aspect of capability-based addressing environments. In turn, a process that receives a

capability is free to transmit this capability further. In a distributed system, capability prolifer-

ation in memory is exacerbated by the possibility that copies of the same capability spread on

different nodes.

A related problem is that of capability revocation [10]. The original owner of a given ca-

pability should be in a position to revoke the existing copies of that capability from the respec-

tive recipients. Revocation should extend to all subsequent copies, recursively.

Stolen capabilities

The validity of a given capability is independent of the process that holds this capability.

It follows that a process that steals a capability can take advantage of this capability, to access

– 3 –

the object it references illegitimately. This is a serious security problem of capability based

addressing systems.

It should be clear that the extent of a stolen capability might extend well beyond the object

referenced by that capability. In a system that segregates capabilities into capability objects, let

us consider a capability that references a capability object, for instance. A process that steals

this capability will be in a position to access all the objects referenced by the capabilities con-

tained in that capability object. This is true even if the stolen capability grants a read-only access

permission for the capability object [11].

1.2. Password capabilities

Password capabilities are an important improvement to the classical capability concept

[12], [13], [14]. In a protection system based on password capabilities, one or more passwords

are associated with each protected object. In a possible approach, each password corresponds

to a subset of all the access rights defined for that object by its type. A password capability is a

pair (G, w), where G is an object identifier and w is a password. If a match exists between w

and one of the passwords of object G, then the password capability grants the access rights

associated with the matching password on G.

Password capabilities are protected from forging by the password size; for large passwords,

the probability of guessing a valid password is vanishingly low [15]. It follows that password

capabilities can be freely mixed in memory with ordinary data items, and consequently, they

represent a valid solution to the segregation problem.

In a password capability environment, high memory costs may follow from the necessity

to maintain a set of passwords for each object. This is especially true if objects are small-sized

[16], and if several passwords are associated with each given object. Passwords are a viable

solution to the revocation problem. If we modify one or more passwords of a given object, we

invalidate all the password capabilities expressed in terms of these passwords (it will be no

longer possible to use these password capabilities to access the object they reference).

The validity of a password capability extends system-wide. A process that steals a valid

password capability from the legitimate owner will be in a position to exercise all the access

permissions granted by that capability on the referenced object. With respect to classical capa-

bilities, this problem is exacerbated by the lack of capability segregation in memory. Storage

of password capabilities in the stack and heap memory areas may result in occasions for appli-

cation of well-known techniques for data stealing [17], [18], for instance.1

1 In fact, the opportunity to steal a capability is strictly dependent on the environment. For instance, in the Walnut

– 4 –

In this paper, we refer to a distributed system featuring an operating system unable to guar-

antee the origin and the integrity of capabilities. We present a new formulation of the password

capability paradigm that improves the classical paradigm in many respects. From now on, we

shall use the term p-capability to refer to our new paradigm, while reserving the term password

capability to denote the classical paradigm.

We take advantage of techniques of symmetric-key cryptography in the representation of

p-capabilities in memory. To this aim, we assign a cryptographic key, called the application

key, to each application. An application is the result of the execution of one or more closely

related, cooperating processes that are possibly allocated on different network nodes. All the

processes of the same application are considered mutually trustworthy. In sharp contrast with

the classical password capability paradigm, which associates passwords with objects, we asso-

ciate passwords with object types, and we reserve different sets of passwords for the same type

in different nodes.

Our protection system does not rely on ad-hoc hardware inside the processor or the memory

management system; instead, it is designed for a distributed system whose nodes exhibit a con-

ventional architecture, with functionalities to handle p-capabilities retrofitted at software level.

We hypothesize that each node supports the two usual execution modes, a kernel (privileged)

mode and a user (non-privileged) mode with memory access limitations. A memory manage-

ment system is deputed to virtual to physical address translation, forcing separation between

the kernel space and the user spaces, as is necessary to support storage of cryptographic keys

and passwords at kernel level, in reserved memory areas of the protection system.

The rest of this paper is organized as follows. Section 2 introduces our protection model

with special reference to the encrypted form of p-capabilities in memory and the transformation

of p-capabilities between plaintext and ciphertext. Section 3 presents a small set of primitives,

the protection primitives, which form the interface of the protection system to user processes.

Section 4 discusses our p-capability paradigm from a number of salient viewpoints, which in-

clude p-capability stealing and forging, the review and revocation of access permissions, and

the memory requirements for password storage. Section 5 gives concluding remarks. The Ap-

pendix illustrates the actions involved in the execution of each protection primitive.

kernel [15] the stack and the heap of a given process are mapped into the address space of that process, which is
made invisible to other processes by the virtual space separation enforced by the underlying virtual memory sys-
tem.

– 5 –

2. THE PROTECTION MODEL

Let us refer to a local area network consisting of up to 2d nodes. The memory system dis-

tributed over the network nodes gives physical support to a protected environment based on

typed objects and access rights. Up to 2g objects can be supported. The g-bit global identifier

G = (M, GL) of a given object consists of the d-bit name M of the node where that object is

allocated, and a (g – d)-bit local identifier GL of the object in that node. An object created in a

given node is never moved to a different node. It follows that the node name portion of the

global identifier of a given object allows us to determine the present network location of that

object. (On the other hand, as will be shown shortly, it is possible to create a copy of an existing

object, and the copy may well be allocated to a different node.)

An object type T is defined as a set of values that can be assumed by the objects of that

type, a set of operations R0, R1, … that operate on these values, and a set of access rights AR0,

AR1,…. The type definition associates the operations with the access rights, so that each given

operation is made possible by possession of an access permission expressed in terms of one or

more access rights. In all object types, access right AR0 is the OWN access right that includes all

access rights, and access right AR1 is the COPY access right that, if applied to a given object,

makes it possible to create copies of that object.

2.1. P-capabilities

A set of passwords is associated in each node with each object type. Each password corre-

sponds to one or more access rights. In the following, for the given object type, we shall denote

the i-th password associated with this type in node M by wM,i. The password corresponding to

access right OWN will be called the owner password and will be denoted by wM,OWN. We wish to

remark that passwords are specific to the node; if objects of a given type are allocated to differ-

ent nodes, a set of passwords is reserved for that type in each of these nodes.2

A p-capability is a pair (G, w) where G is a global object identifier and w is a password.

Let T be the type of object G, and suppose that this object is allocated to node M. If a match

exists between w and the one of the passwords associated with T in M, say password wM,i, then

p-capability (G, w) grants the access rights corresponding to wM,i on the object identified by G.

P-capabilities are never stored in memory in plaintext. Instead, they are protected from

tampering by a form of symmetric-key cipher. As seen in Section 1, the protection system as-

sociates a cryptographic key, the application key, with each application. The key of a given

2 Thus, passwords are never passed between different nodes. No network overhead is connected with password
management, and no security problem follows from password transmission across the network.

– 6 –

application is shared by all the processes that form this application, and is stored in each node

that hosts one of these processes, in the memory area of the protection system.3

Let G = (M, GL) be the global identifier of a given object, where M is the name of the node

storing G, and GL is the local identifier of G in M. Furthermore, let A be an application, let kA

be the key of this application, and let w be a password. Figure 1 shows the transformation of p-

capability (G, w) from plaintext to the ciphertext C = (M, V). Quantity V is called the validation

field and is obtained by encrypting pair (GL, w) using a symmetric-key cipher and key kA. The

cipher should guarantee a careful mixing of the bits of GL and w, so that in V it will be impos-

sible to separate the part corresponding to GL from the part corresponding to w. It should be

noted that, in the transformation of (G, w) to C = (M, V), node name M is not encrypted.

Figure 2 shows the reverse transformation of p-capability C = (M, V) to plaintext. Appli-

cation key kA is used to convert validation field V to plaintext pair (GL, w). Let T be the type of

object G = (M, GL). Quantity w is compared with the passwords in the set ST of passwords

associated with type T in node M. If a match is found and w is the matching password, then p-

capability C is valid and grants the access rights associated with w on object G.

As seen previously, different sets of passwords are associated with the given type T in

different nodes. On the other hand, an object that was allocated to a given node is never moved

to a different node. This means that the passwords granting access permission to a given object

3 When a new application is created, a cryptographic key is generated for that application. This key is distributed
to all the nodes that contain a process of the new application. If a process is added to an application, the corre-
sponding application key will be distributed to the node where the new process is allocated. We may conclude that
the actions of key distribution are comparatively rare, and the costs in terms of network traffic connected with
these actions are negligible. The usual security measures will be used in the protocols for inter-node communica-
tions (e.g. message encryption, and prevention of forms of replay attacks) [19], [20]. We shall take advantage of
the separation between the kernel address space and the user address spaces for secure storage of the application
keys in a kernel space area.

(G, w)

Figure 1. Transformation of p-capability (G, w) from plaintext to the ciphertext C = (M, V). kA is the key
of the application A of the process executing the transformation. Validation field V is obtained by en-
crypting pair (GL, w) using a symmetric-key cipher and key kA.

C = (M, V)

kA

GL M

– 7 –

never change. When process pA of application A creates object G of type T in node M, a p-

capability C = (M, V) is generated for the new object. This p-capability contains node name M.

The validation field is obtained by encrypting the local object name GL and the owner password

wM,OWN associated with T in M; the encryption key is the key kA of application A.

We wish to remark that the key used to encrypt p-capabilities is application-specific. This

is an important security measure against the stealing of p-capabilities; this issue will be dis-

cussed in detail in subsequent Section 4.1.

3. THE PROTECTION PRIMITIVES

The protection system defines a set of primitives, the protection primitives, aimed at p-

capability processing (Table I). Execution of a protection primitive is completely accomplished

within the boundaries the node where this primitive is issued (the current node), or, for a few

primitives, it can imply cooperation with a different node. This will be the case for a primitive

involving a given object, which is issued in a node that does not store this object. All primitives

can be fully implemented at software level by system routines; they will be executed in the

privileged state, to have access to the memory areas reserved by the kernel for storage of cryp-

tographic keys and passwords.

In the rest of this section, we shall illustrate the effects of the execution of each protection

primitive from the point of view of the process that issues the primitive. A more detailed presen-

tation of the actions involved in the execution of each primitive can be found in the Appendix.

Figure 2. Transformation of p-capability C = (M, V) from ciphertext to the plaintext (G, w), and validation
of the result. Key kA is used to convert validation field V into the plaintext pair (GL, w). Quantity w is
compared with the passwords in the set ST of passwords associated with the type T of object G in node
M. If a match is found, C is valid, and it grants the access rights associated with the matching password
on G.

C = (M, V)

kA

w

(G, w)

match

ST

GL

– 8 –

3.1. Object allocation and deletion

A first example of a protection primitive is the C ← newObject(T) primitive. Its execution

in node M allocates an object of type T in the primary memory of this node and returns a p-

capability for the new object. This p-capability specifies access right OWN, that is, it includes

the password wM,OWN of type T that corresponds to this access right in node M.

We wish to remark that newObject() can only be used to create an object in the primary

memory of the node where this primitive is issued; it is impossible to take advantage of newOb-

ject() to allocate an object in a remote node.

Object deletion is supported by the deleteObject(C) primitive whose execution in node M

deletes the object G referenced by p-capability C. This p-capability should specify access right

OWN, that is, it should include the password wM,OWN of type T in node M. Execution is successful

only if object G is contained in the primary memory of node M, that is, the node name field of

p-capability C should contain quantity M. This means that a process running in a given node

cannot delete an object stored in the primary memory of a different node.

3.2. Accessing an object, and creating an object copy

Let G = (N, GL) be an object of type T allocated to node N, where GL is the local object

identifier, and let Ri be the generic operation defined by T. Furthermore, let C = (N, V) be a p-

capability that references G. Execution in node M of operation Ri on object G is made possible

by protection primitive S ← operation(C, i). Execution returns the result S of Ri. Execution

Table I. Protection primitives.1

C ← newObject(T)
Allocates a new object of type T in the primary memory of the current node. Returns a p-capability that
references this object and contains access right OWN.
deleteObject(C)
In the current node, deletes the object referenced by p-capability C. Requires access right OWN in C.
S ← operation(C, i)
Accesses the object referenced by p-capability C, and executes operation Ri of the type T of this object.
Returns the result of this operation. Requires the access rights corresponding to Ri in C.
C’ ← copyObject(C)
Allocates a new object in the primary memory of the current node, and returns a p-capability referencing
this object, with access right OWN. The new object has the value of the object referenced by p-capability
C. Requires access right COPY in C.
C’ ← reduce(C, i)
Returns a p-capability for the object referenced by C, defined in terms of the i-th password of the type of
this object. Requires access right OWN in C.
C’ ← convert(C, app)
Returns a p-capability that references the same object, and includes the same access rights, as p-capability
C. The resulting p-capability is encrypted by using the key of application app.
1 The current node is the node where the given protection primitive is issued.

– 9 –

terminates successfully only if the password in C includes the access rights corresponding to

Ri.

Creation of a copy of a given object is supported by the C’ ← copyObject(C) protection

primitive. Let G = (N, GL) be an object of type T allocated to node N, where GL is the local

object identifier, and let C = (N, V) be a p-capability that references G and includes the COPY

access right. Execution in node M of this primitive allocates an object of type T in the primary

memory of this node and returns a p-capability C’ for the new object. This p-capability specifies

access right OWN in terms of the password wM,OWN of type T in node M. The new object has the

value of object G.

3.3. P-capability reduction

Suppose that a process pA of application A holds a p-capability including the OWN access

right for object G of type T. If pA transfers this p-capability to another process p’A of the same

application, this process will be in a position to access G and perform all the operations defined

by type T, including object deletion. Capability reduction is the action of transforming a p-

capability with the OWN access right into a new p-capability with a reduced privilege. An action

of this type will be possibly performed before transferring the p-capability to limit the access

privilege of the recipient.

Let G = (N, GL) be an object of type T allocated to node N, where GL is the local object

identifier. Let C = (N, V) be a p-capability that references G and specifies the OWN access right.

Execution of protection primitive C’ ← reduce(C, i) returns a p-capability C’ referencing object

G, defined in terms of the i-th password wN,i of type T in node N.

3.4. Inter-application p-capability conversion

Let pA and pB be processes of two different applications A and B, and let kA and kB be the

keys of these applications. Suppose that pA holds p-capability C = (N, V); this p-capability is

encrypted by using kA. Suppose also that pA grants C to pB, and pB tries to take advantage of C

to access the object it references, for instance, by executing the operation() primitive. In the

execution of this primitive on behalf of pB, C is converted to plaintext (see the Appendix); this

action will use key kB instead of key kA that was used to generate this p-capability. Conse-

quently, p-capability validation, as illustrated in Figure 2 and involved in the execution of op-

eration(), is destined to fail.

In fact, transmission of a p-capability between processes of different applications must be

preceded by an inter-application conversion of the p-capability, from the key of the granting

process to the key of the recipient process. In the foregoing example, process pA should convert

– 10 –

p-capability C from key kA to key kB before granting this capability to process pB. To this aim,

pA executes the C’ ← convert(C, app) protection primitive, where app is the name of the appli-

cation of the recipient process (B, in our example). Execution of this primitive uses key kA to

convert p-capability C to plaintext, first, and then uses the key of application app to convert the

plaintext to ciphertext p-capability C’, which is returned to the caller. Execution of this primi-

tive is possible in node M only if the key of application app is stored in this node. This means

that a process of app should be executed in M.

4. DISCUSSION

4.1. Stealing p-capabilities

As seen in Section 1, a serious security problem of classical password capability environ-

ments is that of stolen password capabilities. This problem follows from the fact that the validity

of a given password capability extends system-wide and is independent of the process that gen-

erated that password capability. In a distributed system, this problem is exacerbated by the fact

that the validity of a password capability is independent of the node where that password capa-

bility is stored.

The opportunity to steal a capability depends strictly on the environment and the imple-

mentation. For instance, the Walnut kernel precludes password capability stealing by a strict

separation between user address spaces enforced by the underlying virtual memory system [15].

In our system, the validity of a p-capability is confined within the boundaries of an application.

For instance, let us consider two processes pA and pB that are part of different applications A

and B, respectively, and let kA and kB be the keys of these applications. Suppose that process pA

holds p-capability C = (M, V); this p-capability is encrypted by using key kA. Suppose also that

process pB steals C, and then tries to take advantage of this p-capability to access the object it

references, for instance, by executing protection primitive operation(). Execution of this prim-

itive uses the key kB of the application B of the issuing process pB to transform the validation

field V of p-capability C from ciphertext to plaintext. Pair (GL, w) resulting from the transfor-

mation is sent to node M for validation. In fact, C was encrypted by using key kA and is de-

crypted by using key kB. Thus, quantity w is meaningless, and validation is destined to fail.

We wish to point out that the security mechanism illustrated above does not apply to pro-

cesses of the same application, which are always considered mutually trustworthy. Further-

more, as seen in Section 3.4, protection primitive convert() allows the issuing process to convert

a p-capability from the key of its own application to the key of a different application; however,

– 11 –

this primitive cannot be used for a conversion in the opposite direction, from an arbitrary key

to the key of the issuing process. In the previous example, process pB that stole p-capability C,

encrypted by using key kA, cannot take advantage of convert() to translate this p-capability from

key kA to its own key kB.

4.2. Forging p-capabilities

Let C and C’ be p-capabilities that reference two objects of the same type, and suppose that

C’ includes the owner password. Let pA be a process that holds both C and C’, and suppose that

pA tries to extract the owner password from the validation field of C’ and insert it into the vali-

dation field of C. In fact, this illegitimate attempt to amplify the access rights is destined to fail.

As stated in Section 2.1, the cipher used to transform a p-capability from plaintext to ciphertext

guarantees a careful mixing of the bits of local object identifier and the password, so that in the

validation field it is impossible to separate the two components.

Similarly, suppose that process pA tries to modify p-capability C to obtain a p-capability

referencing a different object of the same type. To this aim, pA should replace the validation

field of C to insert the local identifier of the other object. This a partial modification of the

validation field, which is virtually impossible.

Now suppose that process pA modifies p-capability C = (M, V) by replacing node name M

with a different node name, say N. Let C’ = (N, V) be the p-capability resulting from the modi-

fication. Process pA will try to take advantage of C’ to access the object it references, by exe-

cuting protection primitive operation(), for instance. In the first phase of the execution of this

primitive, key kA of the application A of process pA is used to convert the validation field V’ of

p-capability C’ to plaintext. Let (GL, w) be the result of this conversion, where GL is the local

name of an object supposedly allocated to node N. Pair (GL, w) is sent to node N for validation.

However, w is a password of type T in node M, and the passwords depend on the node; conse-

quently, no match will be found, and validation will fail.

Finally, suppose that process pA tries to forge a p-capability for a given object G from

scratch. The validation field of this p-capability should be obtained by using key kA of applica-

tion A to encrypt the local identifier of G and one of the passwords of the object type. In fact,

the application key and the passwords are stored in reserved memory areas of the protection

system, and process pA cannot access them. Suppose that pA resorts to using an arbitrary value

for the validation field. Decryption of a p-capability forged in this way will produce a casual

local object identifier and a casual password. Of course, validation of this p-capability is des-

tined to fail.

– 12 –

4.3. Memory requirements

Our system associates passwords with object types, and reserves different sets of passwords

for the same type in different nodes. In a given node, two or more objects of the same type share

a single set of passwords. With respect to the classical password capability paradigm, which

associates passwords with objects, significant savings follow in our approach in terms of

memory space for password storage. This is especially true if the system should support a large

number of small-sized objects [16], as will be the case if we are aimed at exercising protection

at a high level of granularity [21], [22].4

We have obtained this result by relying on the cryptographic form of p-capabilities in

memory. In a classical password capability environment, passwords are stored in plaintext; of

course, if objects could share the passwords, it would be possible to use the password of a given

object to forge a password capability for a different object. Instead, in our environment, the

validation field of a p-capability contains a local object identifier that is indissolubly linked to

the password, cryptographically; as seen in the preceding Section 4.2, it is impossible to extract

the password and use it to forge a p-capability for a different object.

It is worth remarking that, in a p-capability, the node name is not encrypted; the conversion

process from plaintext pair (G, w) to the ciphertext C = (M, V) does not modify quantity M (see

Figure 2). It follows that the two components, the node name and the validation field, do not

need to be stored in contiguous memory locations. Furthermore, a process that holds two or

more p-capabilities for objects allocated to the same node may well maintain a single copy of

the node name. The process will reconstruct the association of the node name with the valida-

tion field of a given p-capability before using this p-capability, to transmit the p-capability to

another process or to execute a protection primitive, for instance.

4.4. P-capability revocation

In Section 1 we introduced the problem of the revocation of access permissions. Several

solutions have been proposed to this problem. A reference monitor can be associated with a

protected object to manage all the access rights for that object [11]. Capabilities can be short-

4 For each object, at least two passwords are necessary, the owner password granting the OWN access right and the
copy password granting the COPY access right that makes it possible to generate object copies. Of course, more
passwords are necessary for several access rights, as will be the case if fine-grained protection should be supported.
In a classical password capability environment, for 64-bit passwords and small objects, the memory cost for pass-
word storage can be significant in percentage. In our protection environment, this cost is paid only once for each
object type, and is negligible. Of course, if memory is large, memory cost is a less critical factor. This may well
be the case, especially given Moore’s law [23].

– 13 –

lived, so that the access permission granted by a given capability needs to be periodically re-

newed [24]. A propagation graph can be associated with a given capability to keep track of all

copies of that capability [10]. These solutions tend to subvert the main characteristic of capa-

bility-based addressing systems, i.e. simplicity in access right distribution. In a distributed sys-

tem, the propagation graph extends beyond the boundaries of the node that contains the original

capability, for instance. Complex message exchanges across the network will be necessary for

the periodical renewal of capabilities, or, in the presence of a reference monitor, to consult the

monitor at each object access.

In our system, for the given object type, the revocation of access permissions can be ob-

tained at the node level by changing the passwords. If we change the i-th password wM,i associ-

ated with type T in node M, we revoke all the p-capabilities expressed in terms of this password,

irrespectively of the nodes where these p-capabilities are stored (it will be no longer possible to

use them for object access). Revocation extends to the p-capabilities for all the objects of type

T allocated to node M, but it does not affect the p-capabilities for the objects of type T allocated

to the other nodes. Password substitution is a local action that affects a single node (node M, in

our example). Thus, no network traffic is generated by an action of p-capability revocation.

This feature is especially important if p-capabilities are being frequently distributed and re-

voked across the network.

Despite its simplicity, our revocation mechanism results to possess a number of interesting

properties. Revocation is [10]:

• Transitive, that is, if a process transmits a p-capability to other processes, and these in turn

grant the p-capability to subsequent recipients, in the same node or in different nodes, the

effects of the revocation propagate across the network to all the copies of the original p-

capability, recursively, at any transition depth. Indeed, if a password is changed, all the p-

capabilities expressed in terms of that password are invalidated, independently of the pre-

sent network location of these p-capabilities.

• Temporal, that is, the effects of the revocation can be reversed through the same mechanism

as for revocation. By returning a given password to its original value, we restore the validity

of all the p-capabilities expressed in terms of that password, which were invalidated by the

password change.

• Immediate, that is, a process that holds a p-capability expressed in terms of a given pass-

word cannot take advantage of this p-capability to access the object it references, past the

time when the password is changed.

Let us suppose that, in node M, process pA of application A holds p-capability C expressed

– 14 –

in terms of password wM,i of type T. C is encrypted by using key kA of application A. Let us now

suppose that pA takes advantage of protection primitive convert() to transform C into a p-capa-

bility C’ encrypted by using the key of a different application, say key kB. The conversion does

not change the password (see Section 3.4). It follows that, if we replace password wM,i, C’ is

invalidated, too. Indeed, the effects of the revocation are independent of the application.

5. CONCLUDING REMARKS

With reference to a distributed system consisting of nodes connected by a local area net-

work, we have considered the security problems related to the representation and administration

(distribution, verification, review and revocation) of the access rights to protected objects. We

revisited the classical password capability paradigm to introduce a new paradigm relying on

symmetric-key cryptography to represent p-capabilities in memory. In this paradigm:

• A set of passwords is associated with each object type. Each password corresponds to an

access permission expressed in terms of one or more access rights. Passwords are specific

to the node; different set of passwords are associated with the same given type in different

nodes.

• P-capabilities are never stored in memory in plaintext. Instead, a cryptographic key is as-

sociated with each application, and is used to encrypt the p-capabilities for the objects al-

located by the processes of that application.

• A small set of protection primitives forms the interface of the protection system to user

processes. These primitives allow processes to allocate and delete objects in memory, to

create copies of the existing objects, and to access the objects and execute the correspond-

ing operations, as are defined by the object types. Two primitives make it possible to trans-

form a p-capability, to reduce the access rights it contains, and to change the application

key used to encrypt that p-capability in view of transferring the p-capability to a process of

a different application.

We have obtained the following results:

• A process that steals a p-capability from another process of a different application cannot

take advantage of this p-capability for object reference. Essentially, this is a consequence

of the cryptographic form of p-capabilities in memory: the encryption key is application-

specific, and a p-capability loses its validity outside the boundaries of its own application.

In contrast, in classical password capability environments, the validity of password capa-

bilities extends system-wide, and a process that steals a password capability is free to use

– 15 –

this password capability to access the object it references.

• The cryptographic form of p-capabilities in memory guarantees that, in a given p-capabil-

ity, it is impossible to separate the part corresponding to the local object identifier from the

part corresponding to the password. This prevents attempts to modify an existing p-capa-

bility to insert the identifier of a different object, or to amplify the access rights it contains.

Any such attempt is destined to produce an invalid p-capability whose utilization for object

access is destined to fail.

• Two or more objects of the same type, allocated to the same node, share the same set of

passwords. Significant savings follow in terms of memory space with respect to the classi-

cal password capability paradigm that associates passwords with objects. This is especially

true if the average object size is small, as is the case if we are aimed at exercising protection

at a high level of granularity.

• By taking advantage of the possibility to change the passwords, we can implement forms

of review and revocation of access permissions. If we replace a given password, we revoke

all p-capabilities defined in terms of that password, irrespectively of the nodes where these

p-capabilities are stored. This revocation mechanism results to be transitive, temporal and

immediate.

Application of cryptographic techniques in the implementation of forms of protected point-

ers is certainly not a new idea [2], [25]. In [26], protection is exerted at the level of the memory

segments. In this proposal, a segment pointer specifies an access privilege in terms of the iden-

tifier of a segment and a set of access rights for this segment. Segment pointers are always

stored in memory in ciphertext. Inside the processor, a set of segment registers are reserved for

storage of segment pointers in plaintext. A segment pointer referencing a given segment can be

effectively used to access an information item in that segment only after it has been converted

to plaintext and it has been loaded into a segment register. The protection primitives are de-

signed to be implemented at the hardware level as machine instructions, with partial support at

the software level, e.g. for memory management. In a subsequent proposal [27], the basic unit

of protection is the single memory page within the framework of a single-processor architecture

supporting a form of segmentation with paging. The protection system makes it possible to

define protection contexts defined in terms of collection of access rights for the pages that form

a segment. A protected pointer, called a handle, specifies an access privilege in terms of one or

more protection contexts for the same given segment. Handles are always stored in the primary

memory in ciphertext, and are converted to plaintext for memory reference. The implementa-

– 16 –

tion of the protection system relies on ad-hoc hardware in the processor and the memory man-

agement system. Special handle registers are deputed to storage of handles in plaintext. The

address translation circuitry includes hardware support for access right verification.

In contrast, in this paper we have considered a distributed system whose nodes include no

special hardware for p-capability processing. Each node is required to support the two usual

processor modes, kernel and user, and a separation between the kernel space and the user

spaces. The protection primitives are designed to be implemented as kernel routines; crypto-

graphic keys and passwords are stored in the kernel space.

Our proposal is aimed at demonstrating that a careful redesign of the password capability

paradigm allows us to preserve all the advantages concerning simplicity in access right repre-

sentation and administration that characterize the classical paradigm, in a distributed environ-

ment, while keeping the memory requirements for password storage low, and solving the prob-

lems connected with password capability stealing and forging.

ACKNOWLEDGEMENT
The author wishes to thank the anonymous reviewers for their constructive suggestions and

insightful comments.

REFERENCES

[1] Levy, H. M. (1984) Capability-Based Computer Systems. Digital Press, Bedford, Mass., USA.

[2] de Vivo, M., de Vivo, G. O. and Gonzalez, L. (1995) A brief essay on capabilities. ACM SIGPLAN
Notices, 30, 7, 29–36.

[3] Wilkes, M. V. (1982) Hardware support for memory protection: capability implementations.
ACM SIGARCH Computer Architecture News, 10, 2, 107–116.

[4] England, D. M. (1974) Capability Concept Mechanisms and Structure in System 250. In Proceed-
ings of the International Workshop on Protection in Operating Systems, IRIA, Paris, France, pp.
63–82. IRIA, Paris, France.

[5] Klein, G. et al. (2009) seL4: Formal Verification of an OS Kernel. In Proceedings of the 22nd
ACM Symposium on Operating Systems Principles, Big Sky, MT, USA, October, pp. 207–220.
ACM, New York, NY, USA.

[6] Brown, J. et al. (2000) A Capability Representation with Embedded Address and Nearly-Exact
Object Bounds. Project Aries Technical Memo 5. Available at:
http://www.ai.mit.edu/projects/aries/Documents/Memos/ARIES-05.pdf

[7] Carter, N. P., Keckler, S. W. and Dally, J. W. (1994) Hardware support for fast capability-based
addressing. ACM SIGPLAN Notices, 29, 11, 319–327.

– 17 –

[8] Houdek, M. E., Soltis, F. G. and Hoffman, R. L. (1981) IBM System/38 Support for Capability-
Based Addressing. In Proceedings of the 8th Annual Symposium on Computer Architecture, Min-
neapolis, Minnesota, USA, May, pp. 341–348. IEEE Computer Society Press, Los Alamitos, CA,
USA.

[9] Meyer, M. (2004) A novel processor architecture with exact tag-free pointers. IEEE Micro, 24, 3,
46–55.

[10] Gligor, V. D. (1979) Review and revocation of access privileges distributed through capabilities.
IEEE Transactions on Software Engineering, SE-5, 6, 575–586.

[11] Shapiro, J. S., Smith, J. M. and Farber, D. J. (1999) EROS: A Fast Capability System. In Pro-
ceedings of the Seventeenth ACM Symposium on Operating Systems Principles, Kiawah Island
Resort, SC, USA, December, pp. 170–185. ACM, New York, NY, USA.

[12] Chase, J. S., Levy, H. M., Lazowska, E. D. and Raker-Harvey, M. (1992) Lightweight Shared
Objects in a 64-Bit Operating System. In Proceeding of the Conference on Object-Oriented
Programming Systems, Languages, and Applications, Vancouver, October, pp. 397–413. ACM,
New York, NY, USA.

[13] Heiser, G., Elphinstone, K., Vochteloo, J., Russell, S. and Liedtke, J. (1998) The Mungi single-
address-space operating system. Software – Practice and Experience, 28, 9, 901–928.

[14] Pose, R. (2001) Password-Capabilities: Their Evolution From the Password-Capability System
into Walnut and Beyond. In Proceedings of the Sixth Australasian Computer Systems Architec-
ture Conference, Gold Coast, Australia, January, pp. 105–113. IEEE.

[15] Castro, M. D., Pose, R. D. and Kopp, C. (2008) Password-capabilities and the Walnut kernel. The
Computer Journal, 51, 5, 595–607.

[16] Gehringer, E. F. (1979) Variable-Length Capabilities as a Solution to the Small-Object Problem.
In Proceedings of the Seventh Symposium on Operating Systems Principles, Asilomar, California,
USA, December, pp. 131–142. ACM, New York, NY, USA.

[17] Shahriar, H. and Zulkernine, M. (2010) Classification of Buffer Overflow Vulnerability Monitors.
In Proceedings of the Fifth International Conference on Availability, Reliability, and Security,
Kraków, Poland, February, pp. 519–524. IEEE.

[18] Younan, Y., Piessens, F. and Joosen, W. (2009) Protecting Global and Static Variables from
Buffer Overflow Attacks. In Proceedings of the Fourth International Conference on Availability,
Reliability and Security, Fukuoka, Japan, March, pp. 798–803. IEEE.

[19] Ferguson, N. and Schneier, B. (2003) Practical Cryptography. Wiley, Indianapolis, Indiana,
USA.

[20] Stamp, M. (2011) Information Security: Principles and Practice, 2nd Edition. John Wiley &
Sons, Hoboken, New Jersey, USA.

[21] Leontie, E., Bloom, G., Narahari, B. and Simha, R. (2012) No Principal Too Small: Memory
Access Control for Fine-Grained Protection Domains. In Proceedings of the 15th Euromicro Con-
ference on Digital System Design, Izmir, Turkey, September, pp. 163–170. IEEE.

– 18 –

[22] Witchel, E., Cates, J. and Asanović, K. (2002) Mondrian Memory Protection. In Proceedings of
the 10th International Conference on Architectural Support for Programming Languages and Op-
erating Systems, San Jose, California, October, pp. 304–316. ACM, New York, NY, USA.

[23] Mack, C. A. (2011) Fifty years of Moore's law. IEEE Transactions on Semiconductor Manufac-
turing, 24, 2, 202–207.

[24] Leung, A. W. and Miller, E. L. (2006) Scalable Security for Large, High Performance Storage
Systems. In Proceedings of the Second ACM Workshop on Storage Security and Survivability,
Alexandria, Virginia, USA, October, pp. 29–40. ACM, New York, NY, USA.

[25] Tanenbaum, A. S., van Renesse, R., van Staveren, H., Sharp, G. J. and Mullender, S. J. (1990)
Experiences with the Amoeba distributed operating system. Communications of the ACM, 33, 12,
46–63.

[26] Lopriore, L. (2012) Encrypted pointers in protection system design. The Computer Journal, 55,
4, 497–507.

[27] Lopriore, L. (2013) Protection structures in multithreaded systems. The Computer Journal, 56, 4,
478–496.

APPENDIX

This appendix illustrates the actions involved in the execution of each protection primitive.

To simplify the presentation, we shall omit details concerning the protocols for inter-node com-

munications (e.g. message encryption, and the message routing algorithms), as well as the usual

security measures in these communications (e.g. prevention of forms of replay attack) [20].

Execution of primitives newObject(), deleteObject() and convert() is completely accomplished

in the node where these primitives are issued, whereas network traffic is generated by execution

of primitives operation(), copyObject() and reduce() for cooperation with a different node.

In the presentation, we shall hypothesize that each protection primitive is issued in node M

by an application A whose key is kA. C denotes a p-capability referencing an object G of type

T; GL is the local identifier of this object in the node where the object is stored.

C ← newObject(T)

 A primary memory area is reserved in node M for the new object.

 A new local object identifier GL is generated.

 Key kA is used to convert pair (GL, wM,OWN) to ciphertext quantity V, where wM,OWN is the

owner password granting access right OWN for type T in node M (see Figure 1). Quantities

M and V are paired to obtain p-capability C = (M, V). This p-capability is returned to the

caller.

At point 2, let us hypothesize that the size of a local object identifier is so large that iden-

tifier reuse is never necessary. In this hypothesis, a simple method to generate a local object

– 19 –

identifier is a sequential allocation, as follows. Each node maintains an object counter that, at

any given time, contains the local identifier of the object to be allocated next at that time. The

object counter is initialized to 0, and is incremented by 1 after creation of a new object.

deleteObject(C)

 Application key kA is used to convert the validation field V of p-capability C = (M, V) to

plaintext (see Figure 2). Let (GL, w) be the result of this conversion.

 If quantity w does not match owner password wM,OWN of type T in node M, execution of

deleteObject() terminates with failure; otherwise,

 Object G is deallocated from node M, and the primary memory area reserved for this object

is made free.

S ← operation(C, i)

 Node M uses application key kA to convert the validation field V of p-capability C = (N, V)

to plaintext. Let (GL, w) be the result of this conversion.

 Node M assembles a message m containing pair (GL, w). This message is sent to node N.

 Node N extracts pair (GL, w) from message m. Quantity w is compared with the passwords

associated with type T in node N. If no match is found, or the matching password does not

grant the access rights that make it possible to execute operation Ri, a negative acknowl-

edgement message is sent to node M, and execution of operation() terminates with failure;

otherwise,

 Node N executes operation Ri on object G. Let S be the result of this operation.

 Node N assembles a message m’ including quantity S. This message is sent to node M.

 Node M extracts quantity S from message m’. This quantity is returned to the caller.

C’ ← copyObject(C)

 Node M uses application key kA to convert the validation field V of p-capability C = (N, V)

to plaintext. Let (GL, w) be the result of this conversion.

 Node M assembles a message m containing pair (GL, w). This message is sent to node N.

 Node N extracts pair (GL, w) from message m. Quantity w is compared with the passwords

associated with type T in N. If no match is found, or the matching password does not grant

access right COPY, a negative acknowledgement message is sent to node M, and execution

of copyObject() terminates with failure; otherwise,

 Node N assembles a message m’ containing the value of object G. This message is sent to

node M.

– 20 –

 Node M extracts the value of object G from message m’ and reserves an area in its own

primary memory for a new object of type T. The value of G is copied into this area.

 Node M generates a new local object identifier G’L. Key kA is used to convert pair (G’L,

wM,OWN) to ciphertext quantity V’, where wM,OWN is the owner password granting access right

OWN for type T in node M. Node name M is paired with V’ to obtain p-capability C’ = (M,

V’). This p-capability is returned to the caller.

C’ ← reduce(C, i)

 Node M uses application key kA to convert the validation field V of p-capability C = (N, V)

to plaintext. Let (GL, w) be the result of this conversion.

 Node M assembles a message m containing pair (GL, w). This message is sent to node N.

 Node N extracts pair (GL, w) from message m. If quantity w does not match owner password

wN,OWN of type T in node N, a negative acknowledgement message is sent to node M, and

execution of reduce() terminates with failure; otherwise,

 Node N assembles a message m’ containing pair (GL, wN,i). This message is sent to node

M.

 Node M extracts pair (GL, wN,i) from message m’, and uses application key kA to convert it

to ciphertext quantity V’. Then, node name N is paired with V’ to obtain p-capability C’ =

(N, V’). This p-capability is returned to the caller.

C’ ← convert(C, app)

 Application key kA is used to convert the validation field V of p-capability C = (N, V) to

plaintext. Let (GL, w) be the result of this conversion.

 The key of application app is used to convert pair (GL, w) to ciphertext quantity V’. Node

name N is paired with V’ to obtain p-capability C’ = (N, V’). This p-capability is returned

to the caller.

At point 1, the validity of the password of the original capability C is not checked. In fact,

conversion of an invalid capability to a different key produces an invalid capability, which will

be rejected at the first subsequent attempt to access the object it references.

