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This paper tackles the problem of parallelizing heterogeneous computational tasks across a number of
computational nodes (aka agents) where each agent may not be able to perform all the tasks and may
have different computational speeds. An equivalent problem can be found in operations research, and
it is known as scheduling tasks on unrelated parallel machines (also known as R||Cpax). Given this
equivalence observation, we present the spanning tree decentralized task distribution algorithm (ST-
DTDA), the first decentralized solution to R || Cpax. ST-DTDA achieves decomposition by means of the
min-max algorithm, a member of the generalized distributive law family, that performs inference
by message-passing along the edges of a graphical model (known as a junction tree). Specifically,
ST-DTDA uses min—-max to optimally solve an approximation of the original R||Cnax problem that
results from eliminating possible agent-task allocations until it is mapped into an acyclic structure. To
eliminate those allocations that are least likely to have an impact on the solution quality, ST-DTDA
uses a heuristic approach. Moreover, ST-DTDA provides a per-instance approximation ratio that
guarantees that the makespan of its solution (optimal in the approximated R||Cpax problem) is not
more than a factor p times the makespan of the optimal of the original problem. In our empirical
evaluation of ST-DTDA, we show that ST-DTDA, with a min-regret heuristic, converges to solutions
that are between 78 and 95% optimal whilst providing approximation ratios lower than 3.
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INTRODUCTION

As online and real-time services (e.g. video processing,
image classification and route planning) in a range of
applications (e.g. social networks, search and rescue and
transportation), grow in scale (e.g. hundreds of actors needed
to be coordinated during the Haiti earthquake to find victims
and hundreds of Mechanical Turk workers needed to execute
a project decomposed into micro-tasks), it is crucial that the
systems underpinning such services can distribute computation
efficiently across the available computational nodes in order
to minimize latencies. In the last few years, technologies such

as Hadoop,! Amazon’s Elastic Compute Cloud (EC2)> and
Ushahidi’s CrowdMap platform® have been developed to meet
this challenge by distributing computation across, typically
heterogeneous, computational nodes such as data centres or
mobile devices, possibly belonging to different stakeholders
(e.g. government agencies, private companies or individuals),
and even human operators (e.g. online crowds on Amazon
Turk or volunteers on the ground). Given this heterogeneity

Uhttp://hadoop.apache.org/.
Zhttp://aws.amazon.com/ec2/.
3http://www.ushahidi.com.
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across computational nodes and the variety of tasks that can
be requested, it may not be possible (or even desirable) for all
nodes to perform all tasks. For example, only nodes equipped
with Graphics Processing Units will be able to handle HD
video processing tasks, while only Creole-speaking crowd
members may be able to do translation tasks in Haiti. Moreover,
significant delays may be introduced if hard computational tasks
are allocated to the slowest nodes in the system or if the most
efficient nodes are overloaded with too many tasks. Therefore,
unless such dependencies (i.e. task-specific nodes leading to
node eligibility constraints) and limitations (i.e. computational
inefficiencies) are factored into the parallel execution of these
computational tasks, these distributed information systems may
suffer from significant latencies and, in the worst case, failures to
deliver real-time services that may cause major financial losses
or, in disaster settings, loss of life.

Now, an analogue to this particular class of distributed task
allocation problem has been widely studied in Operations
Research and is known as scheduling on unrelated parallel
machines or R|Cnax [1, 2]. This problem involves a set of
unrelated heterogeneous machines (equivalent to computational
nodes),* and a set of computational tasks that must be performed
by those computational nodes, potentially under node eligibility
constraints (where only a subset of nodes are capable of
processing a task). The objective is to find a mapping from
tasks to nodes such that the maximum finish time across nodes,
known as the makespan, is minimized.

While many algorithms (e.g. [3-5]) have been developed to
solve R||Cmax, they typically focus on the traditional version
of the problem in which a task can be executed by any node.
Hence, they do not take account of node eligibility constraints.
Moreover, all current approaches require the existence of a
central authority that gathers information about all the tasks
and all the nodes in the system. This introduces a single point
of failure, which is highly undesirable in the context of the
online and real-time services exemplified above. In addition,
sending all the data to a central authority may be infeasible
due to computation or communication constraints. Finally,
computational nodes may be managed and owned by different
stakeholders that could be unwilling to send such data to a
central authority for privacy or security issues.

To overcome these problems, we advocate the design
of decentralized algorithms, where both information and
computation are distributed across individual nodes in the
network, thus avoiding the need of such central authority. In
particular, we model the system of distributed computational
nodes as a multi-agent system (MAS) (and hence recast the
problem as the agent-based R ||Cp,x problem) where each node
is managed by a software agent [6]. Each agent is able to
communicate with other nodes to exchange information and

4Unrelated machines are those in which there is no relation between the
execution times of a task on different machines. That is, the time taken by one
machine does not affect the time taken by another machine for another task.

make decisions about which tasks to run based on its individual
computational capacity and load, as well as its capability to
run specific types of tasks. Now, since the R|Cp.x problem
is known to be intractable in the general case [7], we focus
on the design of approximate algorithms. Hence, we sacrifice
optimality for a practical approach that provides bounds on the
error with respect to the optimal solution.

In particular, we develop the spanning tree (ST) decentralized
task distribution algorithm (ST-DTDA). ST-DTDA specifies a
message-passing protocol for agents to compute high quality
approximate solutions in a distributed, efficient manner. By
doing so, we advance the state of the art in the following ways:

(i) We provide a novel representation of the (Agent-Based)
R||Ciax problem in terms of a junction tree (JT) [8].
This representation is able to capture the constraints
on the tasks that each agent can perform, as well as
define the communication network used by the agent
to exchange messages. Thus, we show that the task
allocation constraints result in a sparse network that can
be exploited to reduce computation.

(ii)) We present the first decentralized task distribution
algorithm (i.e. ST-DTDA) for Agent-Based R| Cpax
by building upon the min—max algorithm, a standard
message-passing algorithm that solves specific opti-
mization problems using the generalized distributive
law (GDL) [9]. In particular, ST-DTDA uses a heuris-
tic approach to weight agent-task allocations and thus,
eliminates the ones that are least likely to have an impact
on the solution quality.

(iii) We show how ST-DTDA can bound the error of
its solutions with respect to the optimal solution of
the original problem by computing a per-instance
approximate ratio.’

(iv) We demonstrate the effectiveness of our approach
by empirically evaluating ST-DTDA on a range of
network structures and using different distributions of
task execution times. Our results show that ST-DTDA
finds good solutions (78-95% of the optimal when
using a min-regret heuristic) and outperforms a standard
distributed hill-climbing approach in terms of solution
quality.

When taken together, our results establish the first benchmarks
for distributed solutions to R||Cpax for settings where not all
tasks can be performed by all computational nodes.

The rest of this paper is structured as follows. Section 2
gives background on the current approaches used to solve
R||Cnax and on the min—max algorithm. Next, Section 3
introduces the Agent-Based R| Cpax problem and maps it to

SA per-instance approximate ratio guarantees that the makespan of its
solution is not more than a factor p times the makespan of the optimal solution.
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a JT representation. Then, in Section 4 we present the ST-
DTDA algorithm. Finally, in Section 5 we present our empirical
evaluation and in Section 6 we conclude.

2. BACKGROUND

In this section, we provide the foundations of a decentralized
solution to the R|Cp,x problem. In particular, we first detail
the basics of R| Cpax and discuss the relevant literature. Then,
we describe the min—max algorithm which we use to develop
ST-DTDA.

2.1. The R||Cpax problem

This work focuses on finding solutions to a common scheduling
problem known as scheduling on unrelated parallel machines
(R||Cmax) [1]. In more detail, R||Cpax requires scheduling a
number of tasks on a number of unrelated machines, and
assumes that machines are not identical, so that task execution
times can differ among them.

DEFINITION 2.1 (R||Cmax). Given a set T of tasks, a set M of
unrelated machines, and foreach j € T andi € M, p;; € 7",
the time taken to process task j on machine i, the problem is
to schedule the tasks on the machines so as to minimize the
makespan.®

Now, R||Cmax has been shown to be NP-hard, and hence,
exact solution algorithms generally do not scale well [7]. For
example, Horowitz and Sahni [3] give an exact algorithm for
R||Ciax, With a worst-case time complexity exponential in the
number of tasks: O(min{|T|F, |M|'T'}) where F is the end
time of the schedule obtained by assigning each task to the
processor on which its execution time is minimal and | M| is the
number of machines. Scheduling each task on the machine with
the minimal execution time is unlikely to produce the optimal
solution (i.e. the most efficient machines will be overloaded
with too many tasks, increasing the global makespan), so the
worst-case run-time for this algorithm is exponential.

Thus, in practical applications, it is more beneficial to
focus on approximate algorithms to find solutions to R||Cyyax.
For example, Lenstra er al. [5] developed a polynomial-time
algorithm with a worst-case performance ratio of 2 (i.e. the
solution value is guaranteed to be no more than twice the
optimum). Later, Shchepin and Vakhania [4] developed a
polynomial-time algorithm for R || Cp,x with animproved worst-
case bound of 2 — 1/|M|.

Specifically, in this paper, we focus on R || Cyyax problems with
machine eligibility restrictions (see [10] for a recent survey in
the area). This represents a more general and realistic model in
which every machine is capable of executing only a subset of the

6Makespam: the total time needed to complete the whole set of tasks that
has been scheduled on one or more machines.

tasks (as exemplified in Section 1). Such eligibility constraints
can be introduced in a traditional R| Cp,ax problem by setting
the execution time of a task on a given machine to oo if the
machine is cannot perform that task. However, such a direct
extension means that existing algorithms cannot exploit the
sparsity resulting from eligibility constraints (i.e. each agent
can only execute a limited number of tasks). Moreover, despite
the existence of good centralized approximation algorithms for
R||Cax, there exist no decentralized algorithms as yet.

In contrast, distributed search and constraint handling are
a subfield of MASs specifically devoted to this paradigm of
decentralized problem solving [11]. Many contributions to this
field are message-passing algorithms [12—14], some of which
are derived from distributed graphical models representations of
the problem (e.g. [13, 14]). To date, however, none of the above-
mentioned approaches have been applied to/studied for the
R|| Cax problem and, as we show in this paper, can potentially
provide high quality solutions under certain conditions. Hence,
in the next section we describe just such a message-passing
algorithm which forms the basis of our approach.

2.2. The min—-max algorithm

In this section, we introduce the min—max algorithm, as well
as the JT structure over which it is executed. Specifically, min—
max is a member of the GDL framework, a family of message-
passing algorithms that exploit the way a global function factors
into a combination of local functions to compute the objective
function in an efficient manner [9]. GDL is defined over two
binary operations: marginalization and combination. These
define a commutative semiring (see [15] for a more detailed
introduction to semirings). In our case, since we are concerned
with the problem of minimizing the makespan, such operations
are minimization and maximization (the min-max GDL).” In
order to guarantee optimality, GDL must operate on a JT [8].
A JT is a popular representation which is used in advanced
message-passing algorithms that have been developed in fields
such as bioinformatics, image processing and control theory
[16]. We define a JT as follows [14].

DEFINITION 2.2. A JTis atree of cliques that can be represented
as a tuple (X, C, S, V) where:

1) X = {x1,...,x,} is a set of variables defined over
domains Dy, ..., D,;3

(i) C = {Cy,...,Cyu} is a set of cliques such that each
clique C; C X;

7Concretely, min-max is based on the commutative semiring
(]R"’,min, max, 0o, 0) where Rt is the set of elements of the semiring,
min is the marginalization operator, max the combination operator, oo is
the neutral element of marginalization (min) and O the neutral element of
combination (max).

8In general, we will denote Dy as the cartesian product of the domain of
each individual variable in X.
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(iii) S is a set of separators, where each separator S;; is
an edge between two cliques C;, C; containing the
intersection of the variables they represent, i.e. S;; =
C,’ n Cj;

Gv) W = {Y, ..., ¥} isaset of potentials, one per clique,
where potential y; is a function ; : Dy, — R whose
scope is a subset of the clique to which it is assigned,
namely X; € C;.

Furthermore, the running intersection property must hold as
follows:

If a variable x; is in two cliques C; and Cj, then it must also be in
all cliques on the (unique) path between C; and C ;.

We use x; throughout to refer to a possible value of variable
X;, that is, x; € D;, and X to refer to a possible value for each
variable in X, that is, X € Dy. Moreover, we will refer to Cj ;
as the set of variables in clique C; excluding those in the clique
Cj(Cij =Ci\Cj=Ci\Si).

Given a JT, the GDL approach consists of exchanging
messages along the edges of the JT. In particular, here we focus
on Action-GDL, a specialization of GDL formulated in [14] to
efficiently solve distributed constraint optimization problems
(e.g. problems in which the objective is to distributedly find
the optimal assignment that maximizes the objective function).
Action-GDL is executed over a directed JT® where the cliques
are distributed across the set of agents. Here, we assume that
each agent a; € A is assigned a single clique C;.

Now, to operationalize min—max using Action-GDL (which
we term the min—max algorithm), we propose two message-
passing phases: (1) cost propagation, in which cost messages
are sent from leaves up to the root and (2) value propagation,
in which optimal assignments are decided and communicated
down the tree.

Algorithm 1 outlines the pseudocode for min—max (using
Action-GDL). Given a JT, each agent a; starts with a tuple
(Ci, Si, ¥ (X;)), where C; stands for its clique, S; € S for the
separators relating its clique to adjacent cliques and ¥; (X;) for
its potential function. An agent starts by running the procedure
DFS arrangement,adecentralized depth-first search (DFS)
algorithm that converts the undirected JT into a directed one by
running a token passing mechanism as in [17] (line 1). As the
outcome of this DFS, each agent knows its parent a, and its
children Ch; in the directed JT.

After this initialization phase, the agent starts the cost
propagation phase (lines 2-7). Each agent @; waits until it
receives a cost message from each of its children cliques (line 2).
Formally, a cost message (;_,; from agent a; to agent g; is a
function that returns a cost for every configuration of variables
in their separator (VS;;). In the next step, each agent a; computes
its local knowledge function, k;, by combining (using the max

9Any undirected JT can be converted into a directed one by picking a root
clique and directing arcs from there outwards.

Algorithm 1 min-max () at agent a;

Agent a; starts knowing (C;, S;, ¥;(X;)) and runs:
1: {ap, Ch;) = DFSTransveral (N;)
// PHASE I: cost propagation
2: Wait until receive u;_,; fromalla; € Ch;
: ki (Ci) = max (v (X;), maxy,ecn, 1j—i(Sij)) VCi

. if a; is not root then

Wi p(Sip) = mingy, ki (C;) VSip
Send p;, , to a,

. end if

W

// PHASE II: value propagation

8: if a; is not root then

: Wait until receive (S;“p, V*) from a,
10: end if
i\p = argminc
12: Cf =G, US;,
13: if a; is root then
14: V* =k (C)
15: end if

ki (Civpi S7)

i\p

16: for alla; € Ch; do
17: Send (Sj;, V*) to a;
18: end for

19: return (C?, V*)

operator) the value of its potential function and all the messages
received from its children for every possible assignment of
variables in C; (line 3). After computing its local knowledge
function, if the agent is not the root, it sends a cost message,
Mi—p, to its parent, a, (lines 4-7). Note that each agent g;
computes this message by marginalizing out all variables not
common with its parent a, (using the min operator) from its
local knowledge function (line 5).

During the value propagation phase (lines 8—18), agents
compute the optimal assignment of variables for their clique
variables, along with the value of this optimal assignment,
and propagate them down the tree. Each agent waits until
it receives optimal assignments for all variables it has in
common (in the separator) with its parent, S;“p, as well as the
value of the optimal assignment, V* (lines 8-10). Then, the
agent fixes the values of these pre-inferred variables in its
local knowledge function and computes the assignment that
minimizes its local knowledge function for the rest, Ci"\P (line
11). At this point, agent a; knows the optimal assignment for all
its clique variables (line 12), C;. If ¢; is at the root node, after
the cost propagation phase, it can assess the value of the optimal
configuration as the value returned by its local knowledge
function, V* (lines 13—-15). Then, each agent propagates the
optimal configuration and its value down the tree to its children
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(lines 16-18). Note, however, that each agent only propagates
the variable assignments required by its children’s cliques,
namely assignments for variables in their respective separators
(line 17). Finally, each agent a; returns the values specified in
its optimal assignment'” for its clique’s variables (C;), being
the optimal assignment X* defined as

X* = i (X5), 1
arg mun max Vi (X) (1)

where X; contains the values assigned by X to the variables
in X i-

As stated in [14], we can readily assess the complexity of
min—max from cliques’ and separators’ sizes. In more detail,
the local memory/computation required by each agent a; is
exponential in the cardinality of its clique (i.e. scales with the
joint domain of variables in its clique). However, the number
of messages exchanged is linear in the number of edges in
the JT and the communication complexity lies in the size of
cost messages which are exponential in the cardinality of the
respective separators.

Given the basic definitions of R||Cpax and description of the
min-max algorithm, we next turn to formulating R||Cpx in a
way that we can apply the min—max algorithm.

3. THE AGENT-BASED R| Cyax PROBLEM

We recast R || Ciax as a multi-agent optimization problem where
we have a set of computing entities that we refer to as agents.
Hence, from now on, we term the problem the ‘Agent-Based
R||Cmax’ problem. This general modelling approach allows us
to take into account the fact that (i) agents take charge of
exchanging messages to find an allocation of computation tasks
among them (ii) agents execute these tasks (using the hardware
on which they run) and (iii) there may be restrictions on the tasks
that each agent can execute. Thus, agents here may represent
workers or organizations, as well as machines or processors.
Let the set of agents be denoted as A = {a;, a2, ..., aj4)}, and
the set of computational tasks as T = {t1, 2, ..., fj7|}. Each
agent a; can perform a set of tasks 7; € T (recall that a task
can be performed by a subset of agents, but not necessarily by
all of them). For each agent @; € A, we denote a cost function
as x; : T; — R, that returns the estimated amount of time it
takes for agent a; to perform a task ¢ € T;. Thus, y; () returns
the application-specific runtime required for agent a; to perform
task 1.

A graphical representation of an R||Cpax problem in terms
of the task dependency network (TDN) is given in Fig. 1. Here,
there are four agents (squares) and five tasks (circles). Each
agent is connected to the tasks it can potentially perform by
edges in the graph, and edges are labelled with y;(#). Thus,
for example, agent a; will incur a runtime of 30 timesteps to

101 the presence of multiple optimal assignments, the value propagation
phase itself ensures that agents converge to the same one.

10— &4
Ox @”/ 34
30

o Tl

FIGURE 1. Example of a TDN. Agents are represented by squares,
tasks by circles and edges between agents and tasks indicate an agent
can perform a task (at a cost denoted on the edge).

perform task #, whereas agent a, will only incur a runtime of 20.
Finally, throughout N; will denote the set of agents (neighbours)
with which agent a; shares some tasks (N; = {j € A,j #
i3 e T, N Tj}).

Given this, the problem is to schedule all of the tasks in T’
across the agents in A such that all tasks are completed and the
makespan is minimized. Note that this problem is equivalent
to R||Cpax (as described in Section 2) but formulated from the
decentralized perspective of an MAS. We next formally define
the objective of the Agent-Based R||Ciax problem.

3.1. Objective function

The objective of Agent-Based R||Cpax is to find a mapping
m: A — 27 from agents to the set of tasks, such that the
makespan is minimized. In particular, we wish to find this
mapping subject to a number of constraints. First, each agent
may only be assigned tasks that it can execute:

m(a;) CT; Va; € A.
Secondly, each task must only be assigned to one agent:
m(a;) ﬁm(a‘,-) =0 Vai,aj €A, i#]j.

Thirdly, all tasks must be assigned:

U m(a;)) =T

ai€cA

in which m(a;) denotes the set of tasks allocated to agent a;,
under mapping m. Given this, our objective is to find a set of
optimal mappings M* as follows:

M* —argn\};n Znai( Xi (te). 2)
trem(a;i)

For instance, Fig. 2 depicts two optimal mappings for the
TDN in Fig. 1 where the optimal allocations from agents to
tasks are shown with arrows. Thus, the optimal mapping m*
in Fig. 2a is defined as: m*(a;) = {t1, n}, m*(ax) = {3},
m*(az) = {t4}, m*(ay) {ts} with a makespan value of
max (10 + 30, 60, 70, 60) = 70.
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FIGURE 2. Two optimal mappings from agents to tasks with
makespan V* = 70, for the problem in Fig. 1. Arrows between agents
and tasks depict an agent being assigned to a task.

Now, in order to solve the objective function given in
Equation (2) in a decentralized way, in the next section we
show how to represent this problem as a JT over which efficient
message-passing algorithms such as the min—max algorithm can
operate.

3.2. JT representation

To represent an R||Cpax problem as a JT, we need to represent
its three components, namely tasks, agents and allocations, in
terms of variables, cliques and edges of the JT.

Formally, the JT is built for an R|| Cyax problem as follows:

(1) for each task #, € T, a variable x; is created whose
domain contains all of the indices of agents that can
complete task #;, Dy = {ila; € A, t; € T;};"!

(2) for each agenta; € A, aclique C; is created containing
the variables related to the set of tasks the agent a; can
execute, X; = {x;|tx € T;};'?

(3) each clique C; € C is assigned a potential function
encoding the cost function of agent a;. Formally,

V(XD = ) xin); 3)
€T,

Note that, by doing so, we enforce the constraint that exactly one agent
must perform every task.
12, = i means that agent q; is allocated to #.

(4) any two cliques C; and C; that share variables are
joined by one edge that contains the intersection of their
variables, i.e. §;; = X; N X;.

Now, the graph resulting from applying steps 1-4 above does
not always correspond to a JT. This is because the resulting set
of edges may not form an acyclic graph (and thus it may form
a junction graph, not a JT). Over a junction graph, the min—
max algorithm is neither guaranteed to converge nor to find the
optimal solution. However, it is always possible to convert this
junction graph to a JT, at the expense of increasing the size and
number of cliques and separators. Thus, to convert the junction
graph to a JT we can apply the following steps [18, 19]:!3

(5) selectasubsetof edges that form a connected tree among
cliques;

(6) enlarge cliques (and the corresponding separators) until
the running intersection property is satisfied (by running
a distributed protocol such as the one described in [18]).

In what follows, we provide an example of how the steps above
are applied to a TDN.

Fig. 3a depicts the graph resulting from applying steps 1—
4 to the TDN from Fig. 1. In more detail, the graph contains
five variables, {xi, x2, x3, x4, x5} that correspond to the five
tasks in the figure. Each agent a;’s clique, denoted by a large
circle, contains all variables in X;. Thus, the set of variables
corresponding to agent a,’s clique, X5, is composed of x; and x3,
which are the two tasks that a; can perform in Fig. 1. The domain
of x, is composed of two values, namely 1 and 2, corresponding
to the indices of the agents that can perform task 2, a; and a;.
Moreover, Fig. 3 depicts the potential function of agent a4, 4, in
a tabular form (listing one entry per configuration of variables).
Thus, 14, defined over variables x3, x4 and x5, returns a runtime
of 80 for the configuration x3 = 3, x4 = 4 and x5 = 4, which is
the runtime incurred by a4 to complete tasks 4 and 5 in Fig. 1.
Edges are labelled with the intersection of two cliques. Thus,
agent a, is linked to a3 by an edge that contains the only common
variable in their cliques: x3. As we can see, this junction graph
is not acyclic and thus, steps 5 and 6 are needed.

Fig. 3b shows the JT resulting from applying steps 5 and 6
over the junction graph in Fig. 1. We observe that from the set
of edges in the initial junction graph, only those joining the
clique of agent a4 with the rest of cliques have been selected
to compose the JT. Moreover, the clique of agent a4 has been
enlarged to include variable x; in order to satisfy the running
intersection property (e.g. x, is already included in the cliques
of a; and a, and so it should be also included in the clique of
a3 because the latter is in the path connecting the first two).

Now, this representation allows the application of the min—
max algorithm to find an optimal solution to Agent-Based
R||Cax 1n a decentralized fashion. However, the complexity of

13Note that if the TDN is acyclic, then steps 5 and 6 are never needed since
the junction graph that results from applying steps 1-4 is guaranteed to be a JT.
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Junction graph generated after steps 1-4.

Junction tree generated after steps 5-6
are applied on (a).

FIGURE 3. A JT representation of the scenario given in Fig. 1. Large
circles are cliques, with the elements of the cliques listed. Edges are
labelled with common variables between cliques.

running min—-max over this JT is exponential in the cardinality
of the largest clique (see Section 2.2). This renders this approach
computationally intractable in the general case where all agents
can perform an unrestricted number of tasks. Crucially, in the
particular case when the TDN is acyclic, the computational
complexity grows exponentially in the number of tasks which a;
is connected to in the TDN. Since, by definition, the cardinality
of an agent’s clique is bounded below by the number of tasks
that an agent is connected to (|C;| > T;), the computational
complexity of the algorithm will also be bounded by this. Hence,
the main contribution of this paper, which we detail in the next
section, is the formulation of solutions that exploit this sparsity
in acyclic TDNs that have bounded agent degrees.

Algorithm 2 ST-DTDA () at agent a;

Require: The set of tasks (7;), the set of neighbours (V;), the
heuristic function (%;), the maximum degree (A) and a
lower bound (V5)

// Step 1: Ensure an acyclic TDN

1: f} = computeSTApproximation (7;, N;, h;, A)
// Step 2: Solving the acyclic TDN

2: (m(a;), f/*, )~(,~, S’,-) =solveSTApproximation (Ti, N;)
// Step 3: Computing per-instance
ratio

Jo = computeApproximationRatio (f(,- .S,
‘7* VLB)
4: return (m(a;), V*, p)

4. THE ST-DTDA ALGORITHM

In this section, we describe ST-DTDA, an approximate
algorithm to solve the Agent-Based R|Cmax problem. The
key feature of ST-DTDA involves a step that prunes the JT
representation of the problem in order to allow the min-
max algorithm to converge to high quality solutions with low
computational cost.'* Moreover, this allows to provide a bound
on the quality of the solution computed. In more detail, ST-
DTDA prunes some agent-task allocations so as to form an
acyclic TDN where the maximal number of tasks connected to
an agent is bounded by a parameter A.!> It then applies the
min—-max algorithm to compute a high quality solution as well
as a worst case bound on it.

Specifically, ST-DTDA consists of three steps (outlined in
Algorithm 2):

(1) Ensure an acyclic TDN— ST-DTDA agents create an
acyclic TDN by finding an ST of the original problem
with a bounded number of tasks per agent and omitting
all agent-task allocations not contained in the ST.

(2) Solving the acyclic TDN—ST-DTDA agents run min—
max to optimally solve the JT that encodes the acyclic
TDN created in step 1 and find an approximate solution
for the R||Cpax problem.

(3) Computing the per-instance approximation ratio—ST-
DTDA agents execute a third message-passing phase
to compute a worst-case bound (¢) on the distance
between the quality of the optimal solution in the
original problem and the quality of the solution of the
ST-approximate problem. Then, ST-DTDA agents use
this error bound and a lower bound on the optimal

14This approach was demonstrated for other algorithms from the GDL
family [20], adding a preprocessing step that transforms the original problem
to one that is acyclic, can reduce the computational complexity.

150nly the tasks that can potentially be executed by at least two agents are
considered when computing the agent’s degree. Single-connected tasks can be
omitted from the TDN by adding their execution times to the initial agent’s
makespan.
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solution value to compute a per-instance approximation
ratio.

After running ST-DTDA, each agent knows the set of tasks
allocated to it, m(a;), as well as the makespan, V*, and a per-
instance approximation ratio, p, of its allocation. We elaborate
further on these steps in the remainder of this section.

4.1. Ensuring an acyclic TDN

In this step, the agents build an ST of the TDN with a bounded
number of tasks per agent. The key issue is that producing any
ST of the TDN involves ignoring some of the potential agent-
task allocations (i.e. it produces an acyclic approximation of
the original network). Therefore, it is crucial that the possible
solutions in the ST are of high quality—preferably containing
the optimal solution for the original network and, if not, a
solution whose makespan is close to that of the optimal. With
this aim, agents assign a weight to each agent-task allocation
in the TDN that estimates its impact on the solution makespan.
Next, agents eliminate the agent-task allocations that are less
likely to generate low makespans. However, since computing
the exact values for these weights is as difficult as solving
the original problem, ST-DTDA uses a heuristic approach to
approximate them. Therefore, in this step, agents assign a weight
wix € RT to each of the edges that have not already been
included in the ST.

First, we detail the particular distributed procedure that ST-
DTDA agents follow to compute the ST approximation of the
TDN in which each agent is connected to at most A tasks.'®
Secondly, we propose three different heuristics functions to
weight the edges of the TDN.

4.1.1. Decentralized ST approximation computation

Using Algorithm 3, ST-DTDA agents build the ST iteratively,
adding, at each iteration, the edge with minimal weight to
the ST by implementing a distributed version of Kruskal’s
Maximum ST algorithm [21].!7 In more detail, Algorithm 3
outlines the computeSTApproximation procedure. Each
agent is given the set of tasks it can potentially execute (7;),
the set of neighbours with which a; shares some tasks (N;),
a heuristic edge weighting function (4;) and the maximum
number of tasks per agent (A). An agent starts by running
the procedure DFSTransveral to compute a directed agent-
induced ST that agents will use as a (directed) communication
tree (line 1). As the outcome of this DFS, each agent knows
its parent a, and its children Ch; in the tree. Then, the agent
initializes the set of tasks to which it is connected in the ST,

16This is excluding single-connected tasks: A does not count single-
connected tasks.

"The computeSTApproximation procedure can be seen as a
distributed version of Kruskal’s algorithm with the difference that in Kruskal’s
algorithm all weights are assumed static during the ST computation whereas
here the weights change depending on the set of edges already added to the ST.

Algorithm 3 computeSTApproximation () at agent g;
Require: The set of tasks (7;), the set of neighbours (&; ), the heuristic
function (4;) and the maximum number of tasks per agent (A)

1: (ap, Ch;) = DFSTransveral (N;)
2 CT=T,={teTiltx €T;,j #1i}
3: 1 =|T;|, w* = -0

4: while w* # oo do

5:  if |Tj| = < A then

6: (a*, t*, w*) = computeMinimalEdge(T; \ T})
7: else

8: (a*, t*, w*) = computeMinimalEdge(?)
9: end if

10: CT =CT U {r*}

11: if a* == q; then

12: T, =T, Ur*

13: end if

14: end while

15: forallz € T; \ CT do

16: a* = argming;|pe1;) hj ()

17: if a; == a* then

18: T, =T Ut

19: end if
20: end for
21: return Tl

denoted as T,-, and the set of connected tasks, denoted as CT, as
the set of tasks for which g; is the only agent that can execute
them (line 2). Although the edges between a; and these tasks will
be included in the ST-TDN anyway, adding them initially helps
a; to predict its final makespan with the heuristic. Moreover,
each agent keeps track of this number of initial single-connected
tasks because they are not considered when bounding the agent’s
degree by A (line 3).

Then, each agent iterates over the main loop of this step until
no further edge can be added to the ST (lines 4-14), finding
at each iteration the not added edge with minimal weight by
repetitive calls to computeMinimalEdge (line 19). This
procedure takes as an input the set of tasks whose edges with the
agent can be considered as minimal. If the number of tasks that it
is connected to does not exceed the maximum (line 5), then this
set of tasks correspond to the tasks not added up to that iteration
(line 6). Otherwise, the agent calls computeMinimalEdge
with the empty set to avoid being linked to more tasks (line 7).
Finally, the agent a; adds to its set of tasks all tasks that have
not been connected so far and for which g; is the agent with the
lowest task execution time (lines 15-20). Note that the inclusion
of these tasks does not increase A since agent a; will be the only
agent connected to them in the ST. At the end of this phase,
each agent returns the set of tasks to which it is connected in
the ST, 7;.

Up to this point, we have described this ST-DTDA step
independently of the heuristic edge weighting function used.
Hence, for the sake of completeness, in the next section we
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propose a number of heuristic edge weighting functions and
illustrate their operation using as a running example a trace of
ST-DTDA over the TDN depicted in Fig. 1.

4.1.2. Heuristic edge weighting functions
We propose three different heuristics to weight edges of the
TDN, namely the best-case, the worst-case and the min-regret
heuristics. Each heuristic explores an alternative method for
encoding the impact of edges on the final makespan. The best-
case heuristic is a myopic heuristic that simply weights each
agent-task allocation with the corresponding task processing
time. As a result, we use it as a baseline for our approach.
The worst-case and the min-regret heuristics incorporate
information regarding the expected agent workload in their
weights. Moreover, min-regret aims to improve over worst-
case by bringing forward the decision regarding the agent-task
allocations with higher impact by minimizing the regret (i.e. the
potential to increase the makespan should the wrong edges be
pruned) instead of the processing time. In what follows, all three
weighting heuristics are formulated from the point of view of
the agents. Thus, heuristic /; is a function that given a task
t, € T; returns the weight for the edge between a; and #,
namely wj.

The best-case heuristic. This simply weights the edge
between a; and #; with the time it takes agent a; to compute
task ;. Formally,

hi(t) = xi (). 4)

Note that the weights given by this heuristic are independent
from the edges already added to the ST. The intuition behind
this is that by removing high-weight edges we would remove the
most costly agent-task allocations, which are the least likely to
be in the optimal solution. We refer to this heuristic as best-case
since it assumes that the only task that will be allocated to a; is
tr. Thus, the ST that results from this heuristic always encodes
the greedy allocation, 1, that assigns each task to the agent
with the lowest task execution time (i.e. the edge from one task
to the agent with minimal execution time is always included).

(a)
0 1 2 3 4 5 6
(a1,t1) 10 - - - -
(a1,t2) 30 30 30 - 30
(

ai,t3) 50 50 50 50 50 50
(az.t2) 20 20 - - - -
(az,t3) 60 60 60 60 60 60 -
(as,ts) 80 80 80 80 80 80 80
(a3, ts) 70 70 70 70 70 70 70
(as,t3) 30 30 30 30 - B, -
(as,ts) 20 20 20 - -

(a4,ts5) 60 - - - -

Weights computed for not added edges at each
iteration. The weight of the edge added in a given
iteration appears boldfaced.

(b)

In general, an ST resulting from this heuristic is likely to encode
any solution that assigns tasks to one of the first nth agents in
the order of its processing time, where 7 is a small number.

As an example, Fig. 4a shows a trace of the weights computed
at each iteration of the computeSTApproximation
procedure and Fig. 4b the edges included in the ST at the end
of this procedure when using the best-case heuristic. Since the
value returned by this heuristic does not depend on the set of
edges already included in the ST, the weight for an edge does not
change between iterations. At the initialization step (iteration 0),
edges (ap, t;) and (aa, t5) are added to the ST, as a result of
preprocessing tasks with a single neighbour. During the first
iteration, the edge between a, and f, has a starting minimal
weight (20) and it is added to the ST. The second edge to be
addedis as toty, thenay to 3, a; toty, aj to t3, and finally a; to #4.
Observe that all edges from one task to the agent with minimal
execution time, namely (¢, ay), (2, a2), (3, as4) and (1, as),
have been added. In the same way, all the edges form one task
to the agent with second minimal execution time have also been
added (i.e. (, a1), (#3, a1) and (¢4, a3)). Thus, for this particular
example, the ST encodes any solution that assigns tasks either
to the first or the second agent with minimal execution time for
that task and hence, it encodes one of the optimal solutions.
Thus, for example, the set Tz (related to agent ay) is composed
of #, (for which a, is the agent with second minimal execution
time) but not of #3 (for which it is the third) since this edge is
pruned in the ST.

The worst-case heuristic. The worst-case heuristic aims to
improve upon the greedy-like behaviour of the best-case to
consider the worst possible allocation an agent could get. Thus,
at each iteration, this heuristic considers not only the processing
time of a task by an agent but also the time taken for tasks that
will be allocated to it in the current iteration.

Formally, let m® be the best allocation for tasks added up
to iteration s, namely the optimal allocation of tasks already
included up to iteration s. m® is computed at each iteration by
running min—max over the acyclic TDN that form the allocations
included up to iteration s. Then, the worst-case heuristics

@ !
1

a @ O
(
o Lo ()

0 ar M
<)7 ®) (3)/ a,
7
)

ST-TDN . Boldfaced edges are those included in the
ST, each labeled with the number of the iteration at
which it has been included.

FIGURE 4. Example of (a) the weights of not added edges and (b) the acyclic TDN computed by ST-DTDA using the best-case heuristic over

the TDN depicted in Fig. 1.
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0 1 2 3 4 5

(a1,t1) 10 - - - - -
(a1,t2) 40 40 40 - . .
(a1, t3) 60 60 60 60 - -
(az,t2) 20 20 - - - - -
(az,t3) 60 60 80 80 - - -
(as,t3) 80 80 80 80 80 150 150
(az,ty) 70 70 70 70 70 - -
(as,t3) 90 90 90 90 90 90 90
(as,t4) 80 80 80 80 80 80 -
(aq,ts5) 60 - - - -

Weights computed for not added edges at each
iteration. The weight of the edge added in a given
iteration appears boldfaced.

a; ~
0 1 3

I
@ A 3 © (0)

(1)
/
a, 4

ST-TDN. Boldfaced edges are those included in the
ST, each labeled with the number of the iteration at
which it has been included.

FIGURE 5. Example of (a) the weights of not added edges and (b) the acyclic TDN computed by ST-DTDA using the worst-case heuristic over

the TDN depicted in Fig. 1.

weights the edge between a; and #; at an iteration s with the
time required by g; to execute task #; plus the total time it would
take agent a; to compute all tasks allocated to it in the current
optimal allocation, m*(a;). Formally,

hi() = xi) + Y xi(n). ()

tem® (a;)
1#k

Incase of ties, we consider the edge with the highest execution
time to be the heaviest. We refer to this heuristic as worst-
case because the weight w;; it computes corresponds to the
runtime incurred at agent a; when allocated #; and all other
tasks assigned in the current ST.

As an example, Fig. 5a shows a trace of the weights computed
at each iteration of the computeSTApproximation
procedure and Fig. 5b the edges included in the ST at the end
of this procedure when using the worst-case heuristic. At the
initialization step, all weights are computed as in the best-case
heuristic with the exception of those connected to agent a; and
a4 that need to add the cost of edges already included as a result
of preprocessing tasks with a single neighbour. Then, the first
edge to be added is (a, 1) because it is the one with starting
minimal weight (20) and the weights not added edges will be
updated (the weight of the edge between a; to 73 is updated to
80 for the next iteration). The next edge to be added is a; to
t3, then as to t4, a4 to t4 and finally a4 to t3. Note that, for this
particular example, worst-case adds the same edges than best-
case but in different priority order. Hence, the edge between ay4
and 14 is added at the fifth iteration instead of the second since
this edge is much less attractive when you consider that agent
ay is already assigned ts.

The min-regret heuristic. An obvious problem with the worst-
case heuristic is that it often postpones the decision regarding the
most crucial agent-task allocations to the last iterations where
there is no much freedom of action. The min-regret tries to
circumvent this problem by prioritizing allocations based on
the cost difference of allocating a task to its best agent or to its
second best agent. In other words, min-regret aims to minimize
the regret when omitting edges. Here regret is defined as the
difference in terms of cost that thee system would incur if #; is

not allocated to a;, but rather allocated to another agent other
than g;. The cost of allocating a task #; to an agent a; is computed
as in the worst-case heuristic: the agent will process task #;
and all other tasks to which it is assigned in the best current
allocation in the ST. Formally,

hitte) = xi () + > xi(t)

tlemx(a,')
1k
— min i(t i(t , 6
min |G+ Y ) 6)
jA rem’(aj)

Ik

where m* is the best allocation for tasks added up to iteration s.

In cases where two edge weights are equal, we break ties in
the same way as we do for the worst-case heuristic.

As an example, Fig. 6 shows the resulting ST-TDN and a trace
of the weights computed for possible not added edges at each
iteration of the computeSTApproximation procedure
when using the min-regret heuristic. At the initialization step
(iteration 0), all weights are computed and edges (ai,t;) and
(as, t5) are included as a result of preprocessing tasks with a
single neighbour. Thus, in the first step, the weight between
agent ap and task #, is —20 since 30 is the execution time of
task #, at a, and the alternative best allocation is #, to a; which
has a cost of 30. At this step, this weight is the lowest and hence
the edge is included in the ST. In the following steps, the weights
are recomputed being the next edge to be added a; to #3, then
as to t4, then ay to t4, then a, to #3 and finally a4 to #3. Note
that unlike the best-case and worst-case heuristic, min-regret
does not prioritizes the inclusion of the edge between a; and 1,
which is not finally added to the ST. This is because the edges
regarding task #3 have higher regret and #4 have higher regret
than not the edge between a; and ¢, (there is higher difference
on the solution impact between their possible allocations).

Now, independently of the heuristic function used, once we
have found the ST, we can describe the acyclic TDN as follows:
for each agent a;, we have T} as the set of tasks to which agent
a; is connected in the ST. Given this, it is now possible to find
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(a) 0 1 2 3 4 5 6
(a1,t1) 0o - - - - - -
(a1, t2) 20 20 20 70 70 70
(a1,t3) 0 0o -20 - - -
(az,t2) -20 -20 - - - .

(a2, t3) 0 0 20 20 20 20

(as,ts) 20 20 20 20 90 90 90
(asz,ta) -10 -10 -10 -10 - - -

(aq,ts) 30 30 30 30 30 30 30
(as,t5) 10 10 10 10 10 - B

(arts) —oo - - - o -

Weights computed for not added edges at each
iteration. The weight of the edge added in a given
iteration appears boldfaced.

(b) .
0 1 ™
@,() @ «,7 a,
) L
/a @ ()

/(1)
o @

ST-TDN. Boldfaced edges are those included in the
ST, each labeled with the number of the iteration at
which it has been included.

FIGURE 6. Example of (a) the weights of not added edges and (b) the acyclic TDN computed by ST-DTDA using the min-regret heuristic over

the TDN depicted in Fig. 1.

a mapping m* that minimizes the makespan incurred by tasks
in 7; for any agent a;.

4.2. Solving the acyclic TDN with min-max

In this step, agents run min—max on the JT representation of the
acyclic TDN computed in step 1. As discussed in Section 3.2,
any acyclic TDN maps directly to a distributed JT and hence
ST-DTDA agents only need to execute steps 1-4 to encode the
acyclic TDN into a JT.

In more detail, Algorithm 4 outlines the solveST-
Approximation procedure that each ST-DTDA agent
executes during this step. As input, each agent receives the
set of tasks that it is connected to in the ST (f",-) and the set
of neighbours that a; shares some tasks (/V;) with. Each agent
starts by exchanging this set of tasks with its neighbours (lines
1-4). Once an agent has received the set of tasks from all its
neighbours, it proceeds to create the corresponding JT. First, an
agent creates one variable x; for task #; in T; whose domain
contains the set of indexes of all agents that can execute #; in
the ST (lines 5-7). Secondly, the agent sets its clique and its

Algorithm 4 solveSTApproximation () at agent g;
Require: The set of tasks (7;) and neighbours (N;)

foralla; € N; do
Send f"l toa;
end for
Wait until receiving fj fromall a; € N;
for all 1, € T; do
Create % with D = {jla; € N; Ntx € Tj} U {i}
e~nd for ~
Xi = {xklt € Ti}
9 Yi(Xi) =2 o7 s Xi (00
10: foralla; € N;|T; N T; # ¥ do
11: S'ijz{)zkltkef}ﬂtkefj}
12: end for
13: (Xj, V*) =Min-max (X;, S, v:(X)))

S A O o

14: return ({k|%x € X; N &k = i}, V*, X;, Si)

;

T3,T4,T5

FIGURE 7. The JT formulation for the acyclic TDN resulting from
the best-case heuristic shown in Fig. 4a. Large circles are cliques, with
the elements of the cliques listed. Edges are labelled with common
variables between cliques.

set of local variables to the set of variables representing the
tasks in 7; (line 8). Thirdly, the agent initializes its potential to
encode its cost function incurred by tasks 7; (line 9). Finally,
the agent creates a separator for each neighbour with which it
shares some task in the ST, containing the set of shared tasks
(lines 10-12). Given its clique, potential and separators, each
agent proceeds to run min—max as described in Section 2.2. As
the outcome, each agent knows the optimal configuration of the
ST for its local variables (5(? ) and its value (\7*). The set of
allocated tasks to the agent, {k|Xk € X; N & = i}, is computed
from the optimal configuration (line 14).

As an example, Fig. 7 shows the JT computed by the agents
during this step for the ST found by the best-case heuristic in
Fig. 4a. The domain of X3 is restricted to 1, 4 not including 2, 3
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since these edges were pruned in the ST. Similarly, clique X»
only contains X, since the possible allocation of #3 to a, is not
considered in the ST. After running min—max on this JT, it will
find a solution where x; = 1, x, = 2, x3 = 1, x4 = 3 and
x5 = 4, and the makespan is max (10 + 50, 20, 70, 60) = 70.
Thus, the solution value found in this step, denoted by \7*, is 70.

We can assess the complexity of this step from the complexity
of running min—-max over the JT encoding the acyclic TDN.
As discussed at the end of Section 3.2, in acyclic TDNs the
computation of the solution grows exponentially in the number
of tasks an agent is connected to in the TDN. Since the TDNs
that result from Step 1 have the maximum number of tasks that
an agent can be connected to bounded by A, min—max runs in
polynomial time for fixed A.

4.3. Computing the per-instance approximation ratio

The final step of ST-DTDA involves computing an approxima-
tion ratio, which can always be used to bound the quality of
the solution found in step 2. Having an approximation ratio p
means that V* /V* < p (e.g. the value of the solution found
by ST-DTDA will not be more than a factor p the value of the
optimal solution).
Each agent estimates the approximation ratio p of V* as
follows: _
V*
p = (N

max(V* — g, VLB)’

where ¢ is an absolute bound on the error of V* (V* —¢ < V*)
and VB is a lower bound on V* (VB < V*). Note that
V* > max(V* —¢, VB) and then the approximation ratio from
Equation (7) comes simply from rearranging this expression. We
detail the computation of & and VB next.

Computing . Let TM C T be a set that contains tasks whose
domains have been modified in the ST (i.e. at least one agent-
task allocation has been omitted for each 7, € T™).

As proved in Appendix 2, we can define ¢ as the value of
the minimum makespan in the approximate problem composed
only of tasks in 7M. Formally,

= mi i (1) 8
e =minmax > (1) ®)
tkETM

F=i

To compute ¢, ST-DTDA agents run min—-max over the
JT corresponding to the vertex-induced subgraph of the TDN
induced by T™ and the set of agents nodes.

Specifically, Algorithm 5 outlines the procedure that each
ST-DTDA agent executes during this step. As input, each agent
receives the set of variables and separators of the agent in
the JT (X;,S;), the value of the ST-DTDA solution (V*) and
a lower bound (V'B). Then, each agent proceeds to compute
the JT corresponding to the vertex-induced subgraph of the
TDN induced by T¥. First, each agent restricts the set of
variables, and its clique, to those corresponding to tasks whose

Algorithm 5 computeApproximationRatio () atagenta;

Require: The set of variables ()N{ i), the set of separators (S;), the value
of the ST-DTDA solution (V*) and a lower bound on the optimal
solution (VL5)

: é,-M~= XM = (% € X;|Dx # Di}

L Yi(XM) = ek =i Xi ()

: for all s;; € Si do

M _ § wM

Sij = Sij n Xi

: er}(&/{for B ~ 5

: (G, e) = Min-max(CM, S, v;i(XM))

7: return V*/(max(V* — ¢, VLBY)

FIGURE 8. The JT whose solution gives a worst-case bound on the
quality of the solution returned by ST-DTDA in the JT in Fig. 7. Edges
are labelled with common variables between cliques.

domains have been modified in the ST (line 1). Secondly, each
agent computes its potential as its cost function but considering
only the task execution times of the modified tasks (line 2).
Finally, each agent recomputes its separators (lines 3-5). Given
its clique, potential and separators, each agent proceeds to run
min-max. As the end of this procedure, each agent returns the
approximation ratio computed as in Equation (7).

Figure 8 shows the JT the agents need to solve to obtain
the worst-case bound for the solution produced by ST-DTDA
over the JT specified in Fig. 7. The only edges removed in the
ST found by the best-case in Fig. 4a are (a, t3) and (a3, t3).
Hence, in this case, T = {t;}. To compute the bound, min—
max is used to find the optimal value of X3, which, in this case,
is aq (e.g. arg, ,, min(50, 30) = a4). Note that, to compute the
absolute error bound, ST-DTDA agents are only interested in
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the value of the best configuration, not in the best configuration
itself. Thus, ¢ = 30 in our example, which means that any
solution found in step 3 will be at most 30 away from the optimal
solution value.

Computing VB, Now, there can be cases where ¢ is equal to
V*.In particular, in cases where at least one edge per task needs
to be pruned to create the ST. In such cases, there is no guarantee
on the quality of the solution returned by agents running ST-
DTDA because the value of the absolute error bound is the
same than the value of the solution. To provide a guarantee in
these cases, we combine this bound with a simple lower bound
on the optimal solution, VB, In particular, we define VB as
the time taken for the fastest agent to perform the longest task.
Formally,

yLB

= max min x; (). O]
tkeT a;€A

Thus, for the TDN in Fig. 1, VB is computed as

VLB = max | min(x; (¢ , min (x;(t2)), min i(13)),
(iem(xx D). min Ga(r)._min ()

,-2{1312]()(" (14)), IIE[lﬁ(Xi (ts)))
= max(min(10), min(20, 30), min(50, 60, 80, 30),
min(70, 20), min(60)) = 60.
Finally, given ¢ = 30, V* = 70 and VB = 60, we compute
the approximation ratio, according to Equation (7), as follows:

70 70

= — = 1.16.
max(70 — 30,60) 60

p:

Thus, in this case, the best-case heuristic achieves an
approximation ratio of 1.16, despite the fact that the
approximate solution is equal to the optimal.

We can assess the complexity of this step from the complexity
of running min—-max over the JT encoding the acyclic TDN
restricted to tasks whose domains have been modified in the ST.

Thus, clearly the complexity of solving this JT is bounded
above by the complexity of solving the JT for the whole acyclic
TDN in Step 2.

Having completed our definition of ST-DTDA, we next
proceed to evaluate it on a number of scenarios and compare
it against a baseline algorithm in order to identify its strengths
and weakness on different types of TDNs since its performance
is clearly dependent on the graph structure (node degrees in
particular) of the TDNSs.

5. EMPIRICAL EVALUATION

In this section, we present an evaluation of the ST-DTDA
algorithm (using our heuristics, namely best-case, worst-
case and min-regret as given in Section 4.1). Moreover, we
benchmark ST-DTDA against distributed stochastic algorithm

(DSA),'8 a decentralized hill-climbing algorithm we propose as
a baseline approach to solve Agent-Based R||Cpax, and against
IBM ILOG CPLEX, ' a centralized mixed integer programming
solver.

In what follows, first, we explain the details of our experi-
mental setup in Section 5.1. Then, we describe and analyse our
empirical results in Section 5.2.

5.1. Experimental setup

To determine the average-case performance of ST-DTDA and
DSA, we evaluate them on random TDNs. The process of
generating a TDN is divided in two steps. First, we generate the
structure of the TDN, namely the set of agent/task nodes and
the set of edges that stand for possible agent-task allocations.
Secondly, we generate the task execution time for each edge
between a task and an agent in the TDN.

As discussed in [7], the task-to-agent ratio and the density
are the two key structural parameters that are most likely to
impact performance. Hence, to control these parameters, the
TDN is generated by specifying: the number of agents (| A|), the
number of tasks (| 7'|) and the average number of tasks connected
to an agent (|7,]). Thus, the first two parameters fix the task-
to-agent ratio (|7|/|Al) of the TDN whereas the latter fixes its
density (or, equivalently, its sparsity).? Then, a random tree can
be generated with vertices composed of agents and tasks (this
guarantees that the corresponding TDN is connected) where for
each edge to be added, we randomly select one task and one
agent not directly connected (i.e. there is no edge between that
task and the agent) and add an edge between them. We then
check that all tasks can potentially be executed by at least two
agents. Otherwise, the instance is discarded. This check avoids
the generation of trivial decision variables; a task with degree
1 generates a variable that can only take one value, that is, the
only agent that can execute this task.

Once the structure of a TDN is generated, we proceed to
generate the task execution time for each edge between a task
and an agent. Now, as stated in [22], the solution quality of
algorithms may depend on the method used to generate task
execution times. To take this into account, we consider, for each
instance, three different methods to generate the execution time
of task 7, at agent a; (V; (#)):

(i) Uncorrelated: ;(t;) is drawn from a truncated normal
distribution N[100, 10] bounded below?! by 10;

(ii) Agent correlated: times are correlated with the agents’
computational delay. Thus, ¥;(#) is drawn from a

18A complete description of DSA algorithm is given in Appendix 1.

https://www.ibm.com/software/commerce/optimization/cplex-
optimizer/.

20From the number of agents and the average number of tasks connected
to an agent, we can assess the number of edges included in the network
(1E| = [A]-|Tal).

2lwe use a bounded distribution to ensure that task execution times are
never negative nor close to zero.
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truncated normal distribution N[c¢;, 10] bounded below
by 10 where «;, the agent’s computational delay, is
drawn from the uniform distribution U[50, 100];

(iii) Agent/task correlated: times are correlated with the
agents’ speed and the workload of the corresponding
task. Thus, ¥;(#;) is drawn from a truncated normal
distribution N[ +«;, 10] bounded below by 10, where
B, o; stand, respectively, for the task’s workload and the
agent’s delay. Both B,o; are drawn from the uniform
distribution U[50, 100].

Below we summarize the parameters used in our experi-
ments:

(i) number of tasks: 100;
(i) number of agents: 40, 60, 80;
(iii) number of tasks per agent: 5, 10, 15;
(iv) task execution times: uncorrelated, agent correlated and
agent/task correlated;
(v) number of problems tested per combination: 100.

For our benchmarks, we set the activation probability of DSA
to 0.7 (a value that is reported to work well in [23D)* and
the number of iterations to 10000 (Imax = 10000),23 while
for CPLEX we use the version 12.4 and stop the computation
after 900 s. Finally, for ST-DTDA we set the maximum number
of tasks per agent to 10 (A = 10). All the experiments were
performed on a 3.2 GHz Intel Core i5 with 16 GB ram.

5.2. Results

Tables 1-3 list our results for each task execution time
distribution. Each table contains an entry for each scenario,
namely each combination of tasks (|T'|), agents (JA|) and
average number of tasks per agent (|7,|). The fourth column,
headed by m* \ m/|T|, reports the fraction of tasks in the
optimal allocation, m*, that differ from the greedy allocation,
m, that assigns each task to the agent with minimal processing
time. For each metric, we report the mean over 100 instances
plus/minus the 95% confidence interval.

For CPLEX, we report the CPU time (in seconds) to capture
the hardness of the problem when solved by a centralized
algorithm. The number inside the parentheses is the number
of problems that did not terminate within the time limit (CPU
time averages are computed over the solved problems only).
We observe that time taken by CPLEX to solve a problem
can vary significantly across execution time distributions. Thus,
CPLEX can solve most of the instances with uncorrelated times
or times correlated with agents within a few seconds. In contrast,
the same TDN structures with times correlated to agents and
tasks tend to be computationally intensive. For instance, when

22We run DSA with different activation probabilities (i.e. 0.3 and 0.5) but
results obtained were similar than the ones presented here for 0.7.

ZDSA always run this number of iterations, independently if its solution
stabilize before.

(JT| = 100, |A] = 60, |T,] = 15) more than one half of
the instances (58) were not solved within the time limit (see
Table 3).

For the rest of algorithms (ST-DTDA and DSA), they are
extremely fast as expected and therefore we do not report
computational times for them. In fact, all problems were
solved within a few seconds and hence with much lower
CPU requirements than CPLEX in many agent/task correlated
instances. Instead, we focus our attention on the quality of
their solutions. For each algorithm, we assess the quality of the
solution it generates by dividing the optimal makespan found
by CPLEX (V*) by the makespan of the solution found by the
algorithm (V*).2* For ST-DTDA, Tables 1-3 also show the per-
instance approximation ratio obtained in step 3 of ST-DTDA
execution.

In general, we observe that the quality of the solutions
found by ST-DTDA and DSA algorithms follow the same
trend as the CPLEX solving times: instances with execution
times agent-task correlated times lead to lower quality solutions
than instances with uncorrelated or agent correlated times.
For example, for uncorrelated times and the configuration
(T|, |Al, 1T,]) = (100,40, 15) (see Table 1), the average
solution quality of ST-DTDA with best-case is 0.57. However,
for the same configuration but with agent-task correlated times,
the average solution quality decreases to 0.35 (see Table 3).
A similar behaviour is observed for worst-case, min regret
heuristics and DSA. To explain this result, we use the measure of
the fraction of tasks that were not allocated in a greedy fashion
in the optimal solution (i.e. the average fraction of tasks that
were not assigned to the agent with minimal execution time),
that is, (m* \ m)/|T|. We observe that the fraction of tasks not
allocated in a greedy fashion is significantly higher in agent-task
correlated times than in agent-correlated and uncorrelated times
(e.g. compare the 0.55 of uncorrelated with the 0.79 of agent-
task correlated for configuration (|7'| = 100, |A| = 80, |T,| =
15)). Hence, the first problems are more difficult than the latter
(i.e. the higher the fraction of tasks allocations that differ from
the greedy allocation, the lower the quality of the solutions of
the algorithms).

On the other hand, although the number of tasks per agent
affects the density of the TDN, this does not seem to have
a significant impact on the solution quality of the algorithms
for the parameters explored. Nevertheless, the quality of the
solutions does vary significantly from one algorithm to the other
as we analyse next.

First, we observe that ST-DTDA with best-case exhibits
poor performance, especially for agent-task correlated times
for which the average quality of the solutions ranges from 0.22
to 0.44 (see Table 3). This can be explained by the greedy
behaviour of the best-case heuristic that assigns each task to
the agents with the lowest processing times without taking into

24For problems in which CPLEX reaches the maximum time without finding
the optimal solution, the best solution found up to this time limit is used.
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TABLE 1. Performance of ST-DTDA and DSA algorithms for uncorrelated execution times.

Problem characteristics CPLEX ST-DTDA best-case ~ ST-DTDA worst-case ~ ST-DTDA min-regret DSA
A\ m Sol. lit Sol. lit Sol. lit
7oAl T T ey oo Qully _Sol. Quality. _Sol. Quality Sol. quality
|T| Approx. Ratio Approx. Ratio Approx. Ratio
100 40 5 040£0.01 <1(0) 0.58 £0.02 0.83 £0.02 0.95£0.03 0.72£0.04
4.45+0.13 3.05 £ 0.06 2.66 +0.02
10 044+£0.01 <1(0) 0.53 £0.09 0.85 £0.08 0.94 £0.01 0.76 £ 0.04
4.85+0.16 3.00 £0.06 2.63 £0.02
15 046+0.01 12+10(2) 0.57+£0.02 0.89 £0.01 0.93 +£0.00 0.88 £0.02
4.49+0.14 2.85 +0.05 2.70 £0.02
60 5 044+£0.01 <1(0) 0.54 £0.02 0.79 £0.02 0.93 +£0.03 0.89 £0.01
329+£0.12 2.24 £0.06 1.85£0.01
10 046+0.04 2+£1(0) 0.50 + 0.09 0.81 +0.11 0.94 £0.01 0.89 £0.01
3.56+0.13 2.15+0.06 1.85+0.01
15 046+0.01 3+£046(0) 0.52+0.02 0.88 +£0.01 0.94 +£0.00 0.90 +£0.01
347+0.12 2.00 +0.04 1.86+0.01
80 5 0.53+£0.01 <1(0) 0.59 £0.02 0.89 £0.01 0.93£0.03 0.90 £ 0.00
2.86 £0.11 1.87 +£0.03 1.76 £ 0.01
10 0.57+£0.05 14+350) 0.59+0.09 0.90 £ 0.04 0.94 +£0.01 0.90 +0.00
2.92+0.10 1.87£0.03 1.77 £0.01
15 0.55+£0.01 2=£0.15(0) 0.60+£0.02 0.93 £0.01 0.94 £ 0.00 0.89 £ 0.00
2.96 £0.12 1.83 £0.01 1.81 £0.01
The number between parentheses in the CPLEX column is the number of instances not completed within 900 s.
TABLE 2. Performance of ST-DTDA and DSA algorithms for agent correlated execution times.
Problem characteristics CPLEX  ST-DTDA best-case = ST-DTDA worst-case ~ ST-DTDA min-regret DSA
*\ i Sol. lit Sol. lit Sol. lit
oA T T Timey oo Qually, _Sol. Quality. _Sol. Quality. Sol. quality
|T| Approx. Ratio Approx. Ratio Approx. Ratio
100 40 5 042+£0.01 <1(0) 0.58 £0.02 0.80 £0.01 0.93 +£0.01 0.84 £0.01
330+£0.12 236 £0.06 2.02+£0.03
10 0.49+0.01 <I1(0) 0.54 +£0.01 0.81 £0.01 0.92 £0.00 0.85+0.01
3.53+£0.13 2.324+0.05 2.03+0.03
15 0.58+£0.01 <1(0) 0.52 £0.01 0.85£0.01 0.89 +0.00 0.85+0.02
3.90+£0.12 2.36 £0.06 2.23+0.04
60 5 0.49+0.01 <I1(0) 0.56 +0.02 0.76 +£0.01 0.89 £ 0.01 0.80 £ 0.01
2.58+0.01 1.85+0.04 1.57 £0.03
10 0.58£0.01 <1(0) 0.50 £0.01 0.78 £0.02 0.90 £ 0.00 0.82 £0.01
2.88+0.11 1.85+0.05 1.58 £0.03
15 0.64 £0.01 <I1(0) 0.48 +0.01 0.83 £0.01 0.87+£0.01 0.85+0.01
350+£0.12 1.99 +0.04 1.88 £ 0.04
80 5 0.58£0.01 <1(0) 0.52£0.02 0.76 £0.02 0.90 £0.01 0.79 £0.01
2.18 £0.10 1.50 £0.05 1.23 £0.02
10 0.65+£0.01 <1(0) 0.46 £0.01 0.80 £0.02 0.90 £ 0.00 0.82£0.01
2.75+0.10 1.56 £ 0.05 1.39+0.03
15 0.69+£0.01 <1(0) 0.46 £ 0.01 0.87 £0.01 0.87 +£0.01 0.83+£0.01
3.21+0.14 1.66 £ 0.04 1.64 £0.03

The number between parentheses in the CPLEX column is the number of instances not completed within 900 s.

THE COMPUTER JOURNAL, 2013

¥T0z ‘2 Afenuer uo 1s9nb Aq /B10°seulnolploxo’ julwooy/:dny wouy pspeojumoq


http://comjnl.oxfordjournals.org/
http://comjnl.oxfordjournals.org/

16 M. VINYALS et al.

TABLE 3. Performance of ST-DTDA and DSA algorithms for agent/task correlated execution times.

Problem characteristics CPLEX ST-DTDA best-case ~ ST-DTDA worst-case ~ ST-DTDA min-regret DSA
7| Al T m*\ m Time (s) Sol. Quallt}./ Sol. Quallt)./ Sol. Quaht)-/ Sol. quality
|T| Approx. Ratio Approx. Ratio Approx. Ratio

100 40 5 0.55+£0.01 11+£12(1) 0.44 +0.01 0.74 £ 0.01 0.88 + 0.01 0.67 +£0.03
4.61+0.12 2.74 +£0.05 2.29 +£0.02

10 0.60£0.01 152+39(41) 0.39£0.01 0.74 £ 0.01 0.87 £0.00 0.65£0.03
5.04 £0.12 2.65+0.04 2.29 +£0.03

15 0.68 £0.01 205+31(20) 0.35£0.01 0.75 +£0.01 0.85 + 0.00 0.73 £0.03
5.77+0.12 2.69 £ 0.05 2.374+0.03

60 5 0.62 +0.01 24+0.60(0) 0.38+£0.10 0.73 £0.01 0.86 + 0.01 0.81+0.01
4.04 +0.14 2.05 £0.04 1.74 £ 0.02

10 0.70+0.01 72429 (8) 0.31+0.01 0.73 £ 0.01 0.87 £ 0.01 0.80 £ 0.01
491+0.14 2.05 £0.04 1.80 £ 0.02

15 0.78£0.01 2324+54(58) 0.27£0.01 0.74 £ 0.01 0.87 +£0.01 0.79 £0.01
5.68 £0.14 2.07+0.03 1.77 £ 0.02

80 5 0.66 + 0.01 9+ 14 (1) 0.32+0.01 0.69 +0.01 0.81 +0.01 0.76 £ 0.01
3.80 £ 0.14 1.76 £ 0.04 1.48 £0.02

10 0.74+£0.01 7+£4Q2) 0.25 +0.01 0.69 +0.01 0.81 +0.01 0.76 £ 0.01
4.87 +£0.15 1.77 £0.03 1.53 £0.02

15 0.79£0.01 12+£6(2) 0.22 £0.01 0.71 £0.01 0.78 £ 0.01 0.76 £ 0.01
5.65£0.15 1.75 +£0.03 1.59 +0.02

The number between parentheses in the CPLEX column is the number of instances not completed within 900 s.

account the fact that these agents may already be overloaded.
In contrast, as expected, ST-DTDA with worst-case and min-
regret achieves significantly higher quality (around 0.69-0.75
and 0.78-0.88, respectively, with agent-task correlated times,
see Table 3). This is explained by the fact that the worst-
case and min-regret heuristics consider the current agents’
workload as defined by the best allocation of the existing
tasks connected to the agents. Thus, these heuristics can
better minimize the possibility of overloading some agents and
therefore creating bottlenecks. Secondly, we find that the min-
regret and worst-case heuristics have very similar performances
but the quality of the solutions of min-regret is always
higher (around 5-15% higher). This is because the min-regret
heuristic prioritized the tasks with higher regret. Finally, DSA
returns competitive solutions, sometimes better than ST-DTDA
with the worst-case heuristic on average. Nevertheless, DSA
always achieves worse average solutions than ST-DTDA with
min-regret.

Finally, regarding the per-instance approximation ratio we
observe that in general the approximation ratio returned by ST-
DTDA is not very accurate (i.e. there is a significant gap between
the real approximation ratio of the solution found and the one
reported by ST-DTDA). For instance, observe in Table 2, that the
average approximation ratio returned by ST-DTDA with min-
regret for configuration (|7| = 100, |A| = 40, |T,| = 5) is

2.02 whilst its real average approximation ratio is ﬁ = 1.07.

We also observe that the accuracy of the bound gets worse as
we reduce the number of agents in the problem. For instance,
the average approximation ratio returned by ST-DTDA with
min-regret for the same configuration (|7 = 100, |A| = 80,
|T,| = 5) but with 80 agents is 1.23 (see Table 2), much closer
to it real average approximation ratio, ﬁ =1.11.

Overall, the best results in each scenario are achieved by ST-
DTDA with min-regret. On all configurations, ST-DTDA is thus
able to achieve high quality solutions (>0.78 of the optimal) and
outperform the baseline algorithm.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented ST-DTDA, the first
decentralized algorithm for the problem of scheduling a set
of tasks on unrelated parallel machines (i.e. R|Cpax). In
more detail, ST-DTDA uses the min—-max message-passing
algorithm to compute an approximate solution for the Agent-
Based R||Cpax problem in a completely decentralized manner.
In so doing, ST-DTDA agents execute three steps. First,
they use a heuristic approach that deletes possible agent-task
allocations in order to form an acyclic version of the original
problem. In particular, we define, and evaluate, three different
heuristics for weighting the importance of links between agents
and tasks they can do. Secondly, agents run the min-max
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message-passing algorithm to compute the optimal solution
to this relaxed R||Cyax problem. Finally, they compute a per-
instance approximation ratio for its solution.

Our empirical evaluation shows that ST-DTDA with the min-
regret heuristic is able to produce high-quality solutions (>78%
of the optimal) on arange of network structures and distributions
of task processing times. In particular, we show that the min-
regret heuristics that recompute weights during the formation of
the relaxed R || Cpax problem and prioritizes the allocations with
respect to the regret leads to typically high quality solutions.
Finally, we benchmark ST-DTDA against a distributed hill-
climbing approach and show that it outperforms it in all tested
configurations.

We believe ST-DTDA is a significant first step in the space
of decentralized solutions to the unrelated parallel machines
problem with machine eligibility restrictions. Yet, the bounding
of complexity of ST-DTDA by means of A only makes ST-
DTDA truly scalable in terms of solution quality in domains
where the interactions between the tasks and machines are
sparse (i.e. each agent can execute a small number of tasks
and each task can be executed by a small number of agents).
Otherwise, in very dense problems, the restriction imposed by
A is likely to lead to many tasks single-connected in the ST and
hence, with its allocation fixed already in the first step. Hence,
future work will look into extensions that make it scalable
and provide more accurate bounds in domains where agent-
task interactions are not as sparse as those evaluated in this
paper. Finally, in this paper we focused on scheduling problems
where the set of tasks are independent. Hence, in future, we
intend to extend our approach to deal with problems with task
precedence constraints (i.e. where one or more tasks may have
to be completed before another task is allowed to start its
processing) as in [24].

FUNDING

This work was supported by the iDEaS (www.ideasproject.info)
and ORCHID (www.orchid.ac.uk) projects at the University of
Southampton.

REFERENCES

[1] Graham, R.L., Lawler, E.L., Lenstra, J.K. and Rinnoy Kan,
A.H.G. (1979) Optimization and approximation in deterministic
sequencing and scheduling: a survey. Ann. Discrete Math., S,
287-326.

Pinedo, M.L. (2008) Scheduling: Theory, Algorithms, and
Systems (3rd edn). Springer.

Horowitz, E. and Sahni, S. (1976) Exact and approximate
algorithms for scheduling nonidentical processors. J. ACM, 23,
317-327.

Shchepin, E.V. and Vakhania, N. (2005) An optimal rounding
gives a better approximation for scheduling unrelated machines.
Oper. Res. Lett., 33, 127-133.

[2

—

[3

—

[4

—

[5] Lenstra,J.K., Shmoys, D.B. and Tardos, E. (1990) Approximation
algorithms for scheduling unrelated parallel machines. Math.
Program., 46, 259-271.

[6] Wooldridge, M. and Jennings, N.R. (1995) Intelligent agents:
theory and practice. Knowl. Eng. Rev., 10, 115-152.

[7] Wotzlaw, A. (2006) Scheduling unrelated parallel machines: algo-
rithms, complexity, and performance. PhD Thesis, Universitit
Paderborn.

[8] Jensen, F.V. and Nielsen, T.D. (2007) Bayesian Networks and
Decision Graphs (2nd edn). Springer.

[9] Aji, S.M. and McEliece, R.J. (2000) The generalized distributive
law. IEEE Trans. Inf. Theory, 46, 325-343.

[10] Leung, J.Y.-T. and Li, C.-L. (2008) Scheduling with pro-
cessing set restrictions: a survey. Int. J. Prod. Econ., 116,
251-262.

[11] Farinelli, A., Vinyals, M., Rogers, A. and Jennings, N.R. (2013)

Distributed Search and Constraint Handling. In Weiss, G. (ed.),

Multiagent Systems: A Modern Approach to Distributed Artificial

Intelligence. MIT Press.

Fitzpatrick, S. and Meertens, L. (2002) Experiments on Dense

Graphs with a Stochastic, Peer-to-Peer Colorer. Probabilistic

Approaches in Search, Workshop at 18th National Conf. on

Artificial Intelligence (AAAI), Alberta, Canada, pp. 24-28. AAAI

Press.

Farinelli, A., Rogers, A. and Jennings, N.R. (2009) Bounded

Approximate Decentralised Coordination using the Max-

sum Algorithm. At the 2Ist Int. Joint Conf. on Artifi-

cial Intelligence (IJCAI), Pasadena, California, USA, July,

pp. 46-59.

[14] Vinyals, M., Rodriguez-Aguilar, J.A. and Cerquides, J. (2011)
Constructing a unifying theory of dynamic programming DCOP
algorithms via the generalized distributive law. J. Auton. Agents
Multi-Agent Syst., 22, 439-464.

[15] Pouly, M. and Kohlas, J. (2011) Generic Inference: A Unifying
Theory for Automated Reasoning (1st edn). Wiley.

[16] Wainwright, M.J. and Jordan, M.I. (2008) Graphical models,
exponential families, and variational inference. Found. Trends
Mach. Learn., 1, 1-305.

[17] Collin, Z. and Doleyv, S. (1994) Self-stabilizing depth-first search.
Inf. Process. Lett., 49, 297-301.

[18] Paskin, M.A., Guestrin, C. and McFadden, J. (2005) A Robust
Architecture for Distributed Inference in Sensor Networks.
Proc. 4th Int. Conf. Information Processing in Sensor Networks
(IPSN), UCLA, Los Angeles, California, USA, April, pp. 55-62.
IEEE.

[19] Vinyals, M., Rodriguez-Aguilar, J.A. and Cerquides, J. (2009)
Generalizing DPOP: Action-GDL, A New Complete Algorithm
for DCOPs. Proc. 8th Int. Joint Conf. Autonomous Agents and
Multiagent Systems (AAMAS), Budapest, Hungary, May, pp.
1239-1240. IFAAMAS.

[20] Rogers, A., Farinelli, A., Stranders, R. and Jennings, N.R. (2011)

Bounded approximate decentralised coordination via the max-

sum algorithm. Artif. Intell., 175, 730-759.

Kruskal, J.B. (1956) On the shortest spanning subtree of a graph

and the traveling salesman problem. Proc. Amer. Math. Soc., 7,

48-50.

[12

—

[13

—_—

[21

—

THE COMPUTER JOURNAL, 2013

¥T0z ‘2 Afenuer uo 1s9nb Aq /B10°seulnolploxo’ julwooy/:dny wouy pspeojumoq


file:www.ideasproject.info
file:www.orchid.ac.uk
http://comjnl.oxfordjournals.org/
http://comjnl.oxfordjournals.org/

18 M. VINYALS et al.

[22] Vredeveld, T. and Hurkens, C.A.J. (2002) Experimental compari-
son of approximation algorithms for scheduling unrelated parallel
machines. INFORMS J. Comput., 14, 175-189.

[23] Zhang, W., Wang, G., Xing, Z. and Wittenburg, L. (2005)
Distributed stochastic search and distributed breakout: properties,
comparison and applications to constraint optimization problems
in sensor networks. Artif. Intell., 161, 55-87.

[24] Satish, N., Ravindran, K. and Keutzer, K. (2007) A
Decomposition-Based Constraint Optimization Approach for
Statically Scheduling Task Graphs with Communication Delays
to Multiprocessors. Design, Automation and Test in Europe
Conf. Exposition (DATE), Nice, France, April 16-20, pp. 57-62.
ACM.

APPENDIX 1. A BASELINE APPROACH TO
DECENTRALIZED R| Cymax

As stated in Section 2, there are no decentralized algorithms
for R||Cpax in the literature. Given this, we describe a baseline
benchmarking approach to decentralized R| Cp,x that results
from applying a standard distributed hill-climbing algorithm
to this problem. More concretely, this algorithm is inspired
by the DSA, formulated in [12] for distributed constraint
optimization problems. The key idea behind DSA is that each
variable iteratively selects (with some probability), the value
that minimizes its cost given the values chosen by other variables
in the last iteration.

In more detail, Algorithm A.1 describes our implementation
of DSA for R||Cpax. Since decisions in R|Cp,x correspond
to which agent we assign each task to, we initially assign
a group of tasks to each agent @; € A for which they are
responsible for computing an assignment. We denote this as
P;. The decision as to partition the tasks does not influence
the final task allocation. Hence, we use a simple rule where
each shared task goes to the agent with the lowest ID. Agents
also agree on the maximum number of iterations, In,x, that
they will run the algorithm for. Finally, DSA uses an activation
threshold, p4, to reduce the likelihood that multiple changes
occur simultaneously with outdated information, a phenomenon
that results from the decentralization. Thus, Algorithm A.1
receives P;, Imax and p4 as inputs.

Following Algorithm A.1, each agent starts by running the
procedure initialize (Algorithm A.1, lines 1-7). First, the
agent’s assigned task set, m(a;), is initialized to the set of tasks
for which the agent should find an allocation (line 2). Then, for
each task, the agent initializes its iteration counter, denoted as
1(#), to O (line 4) and sends a request message to each of the
agents which can be assigned that task asking for their marginal
costs (line 5).

When an agent a; receives a REQUEST(#;) message, it runs
the procedure given in lines 8—11 to compute its marginal cost
for task #; (given the assignment of all other tasks). The marginal
cost of an agent a; for a task #;, namely A, is computed as
the sum of the time it takes @; to compute f; plus the total
time it would take a; to compute all tasks assigned to it in the

Algorithm A.1 DSA () at agent a;.

Require: The set of tasks for which a; is responsible for
computing the allocation (P;), the maximum number of
iterations (Inax) and the probability threshold (pr)

1: procedure initialise

2: m(a;)=P; //initialise assigned tasks

3: forall 7, € P; do

4: I1(t;)=0 //initialise iterations
counters

5: Send REQUEST (#) to all {ay € Al € T;}//ask
for marginal costs

6: end for

7: end procedure

8: procedure received REQUEST(#) from agent a;

9 Au=xit)+ Y xi) //recompute
nem(a;),l#k
marginal cost
10: Send (A, xi(t), t) to a;
11: end procedure

12: procedure received (A ji, x;i(f%), ) from agent a;
13: if Received Ay, from all Ay ={aq; € A|t;y € T;} then
14: if rand() < pr then

15: a* = arg min max | Ay, max Aux — Xm(f)
ajeAx am €Ak,
m#s

16: Send ASSIGN(#) toa*// Assign to agent
with minimum marginal cost

17: Send UNASSIGN(#;) to agent f; was previously
assigned to

18: I(ty)=1(t)+1 //Increment the number
of iterations for this task

19: if 1(ty) < Ihx //Start next iteration
then

20: Send REQUEST (%) toalla; € Al € T;

21: end if

22: end if

23: else

24: Defer until next received message

25: end if

26: end procedure

27: procedure received ASSIGN(#;)
28: m(a;)=m(a;) Uty //Add to assigned tasks
29: end procedure

30: procedure received UNASSIGN(#)

31: m(a;)=m(a;) \ t#H //Remove from assigned
tasks

32: end procedure

current assignment (line 9). This value, along with the time it
takes a; to compute 1y, is then sent back to the requesting agent
(line 10).
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FIGURE A1l. Agents respond to REQUEST messages during the first
iteration of DSA algorithm over the TDN depicted in Fig. 1.

<70,70,1,>

Once an agent has received the marginal costs from all agents
to which a task # can be assigned (line 13), it proceeds to
consider changing the current assignment of this task with a
probability p4 (line 14). Thus, if the generated random number
(given by the rand() function) is lower than p4, the agent
proceeds to compute the best assignment by finding the agent
that minimizes the cost of the assignment. The cost of assigning
an agent a; to task #; is computed as the maximum between this
agent’s marginal cost, A, and the marginal cost of the rest of the
agents {a,,, ty € T,,, m # I}, when excluding this assignment,
Ak — xm () (line 15). Agent a; sends an ASSTGN(#;) message
to the agent with the minimum cost of assignment (line 16)
and an UNASSIGN(f;) message to the agent to which #; is
currently assigned (line 17). Then, the iteration counter is
incremented (line 18), and, if the algorithm has not reached the
maximum number of iterations, the process starts over again
(lines 19-21). Once all iterations have been completed for all
tasks #x € T, each agent has a set of tasks assigned by the
algorithm.

Figure A1 shows a single iteration of the first step of DSA over
the TDN in Fig. 1. In this example, agent a; is initially assigned
tasks #, ©, and #3 for which it is in charge of computing the
allocation. Similarly, #; is assigned to a3 and #5 to as. Agents
begin by sending a REQUEST message, effectively from each
task to each agent that can compute it (following the links
agent-task in Fig. 1) and on receipt of a REQUEST(#) from
another agent, each agent computes its A;; value as detailed
in Algorithm A.1, and sends that back, along with the task
processing cost, to the sender for #; (this is denoted by the text on
the arrows in Fig. A1). Observe that, for example, the marginal
cost of assigning #, to a; is 90, even when the execution time
of 1, is 30, because in the initial assignment agent a; executes
t; and t3.

APPENDIX 2. PROOFS OF BOUNDED
APPROXIMATION

In this appendix, we give the proofs for the absolute bound ¢.
Namely, we prove that

V* — V* < | £ = min max xi(t) | - (A.1)

X aicA tk‘eT/"”
Xp=i
To prove Equation (A.1), consider the subset of assignments
of variables in X in which the set of tasks in 7™ (e.g. tasks
whose domain have been modified with respect to the original
problem) are assigned to the same agent as they are assigned to
in the optimal solution. That is, any assignment X such that
x¥ = x}ift; ¢ TM. Note that since X is an assignment of
variables X, the value of any X%, V¢, will always be higher
(worse) than the optimal value of the ST approximate problem,
Vv, Then, it follows that VX

| A VAR VA v

&ETM &¢TM
xXp=i Xy=i
— max E Xi (t)
mGA
el
xp=i

< max Do) = Y xiw)

uﬁTM &gTM
X =i xi=i

< max i (7
= max [ 37 i)
1 g™

o_
X/( =1

Thus, the value of the makespan of any assignment of tasks
in T™ to agents in the ST problem bounds the distance of
V* to the optimal V*. This also holds for the particular
assignment of tasks 7Y that minimizes the makespan. Thus,
Equation (A.1) holds.
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