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Abstract

Amethod is given for calculating the strict minimummessage length (SMML) estimator
for 1-dimensional exponential families with continuous sufficient statistics. A set of n
equations are found that the n cut-points of the SMML estimator must satisfy. These
equations can be solved using Newton’s method and this approach is used to produce new
results and to replicate results that C. S. Wallace obtained using his boundary rules for
the SMML estimator. A rigorous proof is also given that, despite being composed of step
functions, the posterior probability corresponding to the SMML estimator is a continuous
function of the data.

1 Introduction

The minimum message length (MML) principle [4] is an information theoretic criterion that
links data compression with statistical inference [3]. It has a number of useful properties
and it has close connections with Kolmogorov complexity [5]. Using the MML principle
to construct estimators is known to be NP-hard in general [1] so it is common to use
approximations in practice [3]. The term ‘strict minimum message length’ (SMML) is
used to distinguish the exact MML criterion from these approximations.

The only known algorithm for calculating an SMML estimator is Farr’s algorithm [1]
which applies to data taking values in a finite set which is (in some sense) 1-dimensional.
For 1-dimensional continuous data, certain rules of thumb called boundary rules can some-
times be used for calculating the SMML estimator [3]. However, these rules were derived
from a heuristic criterion and are not in general satisfied by the SMML estimator. There-
fore the calculation of the SMML estimator, even in the simple case of 1-dimensional
continuous data, is an open problem.

This paper gives a method for calculating the SMML estimator for a 1-dimensional
exponential family of statistical models with a continuous sufficient statistic. Section 2
recalls the relevant definitions and fixes our notation. Our main results appear in Section
3, where we give equations that the cut-points of the SMML estimator must satisfy, show
how to solve these equations with Newton’s method and prove a previously unknown fact
about the SMML estimator. These results are based on certain technical lemmas whose
proofs are deferred to Appendix A. We then apply the results of Section 3 to examples (in
Sections 4 and 5) before addressing some numerical issues (in Section 6). Section 7 states
our main conclusions and discusses some ideas for further research.
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2 The SMML estimator

In order to define our notation, this section briefly recalls the definition of the SMML
estimator for a 1-dimensional exponential family of statistical models with a continuous
sufficient statistic.

Let the exponential family have support X and natural parameter space Θ and assume
that both are open, connected subsets of R. For each θ ∈ Θ, let f(x|θ) be the probability
density function (PDF) on X given by

f(x|θ) def

= exp(xθ − ψ(θ))h(x) (1)

for any x ∈ X , where ψ and h are given functions with h strictly positive everywhere on
X . If π is a Bayesian prior on Θ then we define the marginal PDF r to be given by

r(x)
def

=

∫

Θ

π(θ)f(x|θ)dθ

for any x ∈ X , and r(x) = 0 elsewhere. We make the technical assumption that the first
moment of r exists.

For the 1-dimensional case considered above, the SMML estimator with n cut-points is
defined as follows [3]. Suppose we are given an integer n ≥ 1 and real numbers a1 < . . . <

an in X (the cut-points) as well as θ̂0, θ̂1, . . . , θ̂n ∈ Θ (the assertions) and q0, q1, . . . qn ∈ R

(the coding probabilities for the assertions) so that 1 = q0 + q1 + . . .+ qn and each qi > 0.
Then for each i = 0, 1, . . . , n, define Ui to be the interval Ui = [ai, ai+1) where a0 and

an+1 are the boundaries of X , e.g. if X = R then a0 = −∞ and an+1 = ∞. Let θ̂ and q

be the step functions given by θ̂(x)
def

= θ̂i and q(x)
def

= qi where i is the unique integer for
which x ∈ Ui. If we discretize the data space X to a lattice then there is a 2-part coding
of the data which has expected length

I1 = −E[log(q(X)f(X |θ̂(X)))] (2)

plus a constant which only depends on the width of the lattice, where X is a random
variable with PDF r, written X ∼ r. Then an SMML estimator with n cut-points is a
function θ̂(x) which minimizes I1 out of all estimators of this form.

This minimality condition can be used to solve for the assertions and the coding prob-

abilities in terms of the cut-points. Let µ : Θ → R be the function µ(θ)
def

=
∫

R
xf(x|θ)dx

which relates the natural parametrization of the exponential family to the expectation
parametrization. By a standard result for exponential families (e.g. see Theorem 2.2.1
of [2]), ψ is infinitely differentiable, µ = ψ′ and µ has an infinitely differentiable inverse.
Then it is not too hard to show (see R2 and R3 on pages 155-156 and 168-169 of [3]), for
each i = 0, 1, . . . , n, that

qi =

∫

Ui

r(x)dx (3)

and

θ̂i = µ−1

(

1

qi

∫

Ui

xr(x)dx

)

. (4)

So (3) says that qi is the mass of Ui and (4) says that the centre of mass of Ui is the

expectation parameter corresponding to θ̂i.
Note that an SMML estimator with n cut-points might not exist or might not be

unique in general. However, we will often refer to ‘the’ SMML estimator when discussing
this estimator informally.
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3 Constructing the SMML estimator

This section describes our construction of the SMML estimator. This construction is given
in terms of the natural parametrization of the exponential family but this determines the
SMML estimator in general since this estimator transforms simply under reparametriza-
tion.

Using (3), (4) and the fact that Ui = [ai, ai+1), we can consider qi and θ̂i to be functions

of the cut-points a
def

= (a1, . . . , an) ∈ R
n. Then I1 becomes a function solely of a and each

SMML estimator with n cut-points corresponds to a value of a ∈ R
n which minimizes

this function I1(a). But r is continuous so qi(a) and θ̂i(a) are continuously differentiable
functions of a, hence so is I1(a) by (6) below. Then since I1(a) is defined on the open
subset

R
n
>

def

= {a ∈ Xn | a1 < . . . < an}
of Rn, its gradient vanishes at its minimum (if a minimum exists, i.e. if an SMML estimator
with n cut-points exists). For each j = 1, . . . , n we therefore have an equation

∂I1
∂aj

= 0 (5)

which is satisfied at any a ∈ R
n
> corresponding to an SMML estimator. These n equations

can then be used to solve for the n unknowns a1, . . . , an, giving the corresponding SMML
estimator by (3) and (4).

The next lemma therefore calculates the partial derivatives which appear in (5).

Lemma 1. Let qi and θ̂i be the functions of a ∈ R
n
> given by (3) and (4) and let C be the

constant −
∫

X r(x) log h(x)dx. Then

I1(a) = C −
n
∑

i=0

qi

(

log qi + θ̂iµ(θ̂i)− ψ(θ̂i)
)

(6)

and, for j = 1, . . . , n,

∂I1
∂aj

= r(aj) log

(

qjf(aj |θ̂j)
qj−1f(aj |θ̂j−1)

)

. (7)

Proof. See Appendix A.

Note that the numerator and denominator in the logarithm of (7) are, respectively, the

limits of q(x)f(x|θ̂(x)) as x approaches aj from above and below. Therefore (5) is exactly

the condition which ensures that q(x)f(x|θ̂(x)) is a continuous function of x at x = aj . So

even though q(x) and θ̂(x) are step functions, we have proved the following.

Corollary 2. For the SMML estimator, q(x)f(x|θ̂(x)) is a continuous function of x.

Now, let G : Rn
> → R

n be the function whose jth co-ordinate is given by

Gj(a) = log

(

qjf(aj |θ̂j)
qj−1f(aj |θ̂j−1)

)

(8)

for any a ∈ R
n
>. By Lemma 1,

∂I1
∂aj

= r(aj)Gj(a),

so since r(aj) is never zero, solving the system of equations (5) is equivalent to the simpler
and numerically better-behaved problem of finding the zeroes of the function G : Rn

> → R
n.

We will use Newton’s method to find the zeroes of G so the next lemma calculates the
Jacobian matrix of G and shows that it is sparse.
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Lemma 3. For j, k = 1, . . . , n,

∂Gj

∂ak
= 0 if |j − k| > 1.

∂Gj

∂aj−1
=

r(aj−1)

qj−1

(

1 +
(aj−1 − µ(θ̂j−1))(aj − µ(θ̂j−1))

µ′(θ̂j−1)

)

if j 6= 1

∂Gj

∂aj
= θ̂j − θ̂j−1 −

r(aj)

qj

(

1 +
(aj − µ(θ̂j))

2

µ′(θ̂j)

)

− r(aj)

qj−1

(

1 +
(aj − µ(θ̂j−1))

2

µ′(θ̂j−1)

)

∂Gj

∂aj+1
=

r(aj+1)

qj

(

1 +
(aj − µ(θ̂j))(aj+1 − µ(θ̂j))

µ′(θ̂j)

)

if j 6= n.

Proof. See Appendix A.

Note that µ′(θ) is the variance of the distribution (1) for any θ ∈ Θ (e.g. see Theorem
2.2.1 of [2]).

Remark 1. A global minimum of I1 : Rn
> → R is (the set of cut-points of) an SMML

estimator, but solutions to the system of equations (5) are only critical points of I1. We
can use Lemma 3 to check if a solution to (5) is a local minimum, but these might not be
global minima.

Remark 2. If an SMML estimator with n cut-points a(n) ∈ R
n
> exists for each n then

I1(a
(n)) is a non-increasing function of n. To see this, note that I1(a

(n)) ≤ I1(a) for every
a ∈ R

n
> since a(n) is a global minimum of I1 : Rn

> → R. Also, there exist a ∈ R
n
> with I1(a)

arbitrarily close to I1(a
(n−1)), e.g. take a to be a(n−1) but with an extra cut-point close to

one of the cut-points of a(n−1) and use (6). Therefore I1(a
(n)) ≤ I1(a) = I1(a

(n−1)) + ǫ
for every ǫ > 0, so I1(a

(n)) ≤ I1(a
(n−1)).

Remark 3. There is a one-to-one map between the set of possible cut-points R
n
> and the

set of all p ∈ R
n with 0 < p1 < . . . < pn < 1, given by pi = R(ai) where R(x) =

∫ x

∞ r(ξ)dξ
is the marginal cumulative distribution function. So we can consider a and hence I1 to
be a function of p alone, in which case ∂I1

∂pj
= Gj by (7) and the chain rule, since the

Jacobian of the transformation a 7→ p is the diagonal matrix with entries r(a1), . . . , r(an).
Parameterizing the cut-points in terms of p has several advantages (e.g. qi is given by the
simple formula qi = pi+1 − pi), but we will not pursue this parametrization here.

4 Normal data with known variance and a normal

prior

We now apply the work of the previous section to a simple case. Each set of cut-points a
in this section gives a local minimum of I1(a) but not necessarily a global minimum, so
we will refer to these as ‘likely SMML estimators’ to indicate that they are likely but not
guaranteed to be SMML estimators (see Remark 1).

Let X = Θ = R and choose a normal prior on Θ with variance α2, i.e. θ ∼ N(0, α2).
Let the data X given θ be normally distributed with mean θ and variance 1, i.e. (X |θ) ∼
N(θ, 1). For example, if Y1, . . . , Ym are independent and all distributed according to

N(θ
√
m
σ , σ2), where σ is known, then (X |θ) def

= σ√
m
Y is a minimal sufficient statistic for

Y1, . . . , Ym and (X |θ) ∼ N(θ, 1).

The PDF of X given θ is of the form (1) with ψ(θ) = 1
2θ

2 and h(x) = 1√
2π
e−x2/2. As

noted earlier, µ(θ) = ψ′(θ), so µ is the identity map. Also, it is not hard to show that the
data X (not conditioned on θ) is distributed as X ∼ N(0, β2) where β =

√
1 + α2, so

r(x) =
1

β
√
2π

exp

(

− x2

2β2

)

.
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n I1 − I0 b1 b2 b3 b4 b5 b6 b7 b8
1 0.2968787967 0.0000 − − − − − − −
2 0.1848522963 1.9740 − − − − − − −
3 0.1756409558 0.0000 3.8977 − − − − − −
4 0.1753131831 1.9203 5.9799 − − − − − −
5 0.1753126143 1.9044 5.9619 10.8610 − − − − −
6 0.1753120750 1.9203 5.9797 10.8840 − − − − −
7 0.1753120750 1.9203 5.9797 10.8840 17.5442 − − − −
8 0.1753120750 1.9203 5.9797 10.8840 17.5442 − − − −
9 0.1753120750 1.9203 5.9797 10.8840 17.5442 27.1130 − − −
10 0.1753120750 1.9203 5.9797 10.8840 17.5442 27.1130 − − −
11 0.1753120750 1.9203 5.9797 10.8840 17.5442 27.1130 41.1964 − −
12 0.1753120750 1.9203 5.9797 10.8840 17.5442 27.1130 41.1964 − −
13 0.1753120750 1.9203 5.9797 10.8840 17.5442 27.1130 41.1964 62.1447 −
14 0.1753120750 1.9203 5.9797 10.8840 17.5442 27.1130 41.1964 62.1447 −
15 0.1753120750 1.9203 5.9797 10.8840 17.5442 27.1130 41.1964 62.1447 93.4500
16 0.1753120750 1.9203 5.9797 10.8840 17.5442 27.1130 41.1964 62.1447 93.4500

Table 1: For various numbers n of cut-points, the difference I1 − I0 in expected code-lengths
of the one- and two-part codes as well as the non-negative cut-points b1, . . . , bk of the likely
SMML estimator.

Table 1 gives, for various numbers n of cut-points, the non-negative cut-points b1, . . . , bk
of the likely SMML estimator when α = 2. The bottom line of Table 1 (n = 16) corresponds
to the ‘exact SMML’ column in Table 3.2 on page 176 of Wallace [3] and it agrees with
this column except for Wallace’s last entry, which he says is ‘not correct’.

Wallace generated his results using an unspecified iterative procedure which combined
his boundary rules and (4), even though he says these are ‘incompatible’. Due to this
incompatibility, it is maybe not surprising that the boundary rules are not satisfied for the
likely SMML estimators given in Table 1, though this makes the close agreement between
his results and ours even more surprising. It is not clear what connections exist between
the system of equations (5) and Wallace’s boundary rules, but there does not seem to be
a simple connection.

The SMML estimator seems to be unique and symmetric about 0 when n is 1 or
3 or n is even, so Table 1 determines the likely SMML estimator in these cases, e.g.
a = (−bk, . . . ,−b1, b1, . . . , bk) if n = 2k. For odd n ≥ 5 there are two likely SMML
estimators, e.g. if n = 5 the two estimators have cut-points

a = (−5.9978,−1.9362, 1.9044, 5.9619, 10.8610)

and
a = (−10.8610,−5.9619,−1.9044, 1.9362, 5.9978).

For odd n ≥ 7, each negative cut-point is minus one of the positive cut-points (to four
decimal places), e.g. when n = 7 the cut-points are

a = (−10.8840,−5.9797,−1.9203, 1.9203, 5.9797, 10.8840, 17.5442),

or the negative of this in the reverse order.
Table 1 also gives the difference I1 − I0 in expected code-lengths of the one- and two-

part codes, where I0 = −
∫

X r(x) log r(x)dx. Note that increasing the number of cut-points
beyond n = 6 improves the expected code-length by less than 10−10, so n = 6 cut-points
are probably sufficient for most practical applications. Also note that, to four decimal
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Figure 1: For the likely SMML estimator with 6 cut-points, the graphs of D0(x) (dashed line),
D1(x) (solid line) and r(x) (dotted line) and the corresponding cut-points (vertical lines).

places, the set of cut-points of each likely SMML estimator with 6 ≤ n ≤ 16 is just a
subset of the cut-points for the likely SMML estimator when n = 16. This is probably due
to the fact that more than n = 6 cut-points makes very little difference to I1 and hence
has little impact on the placement of the existing cut-points.

Of theoretical interest, there is a local minimum of I1 at a =
(−5.9978,−1.9362, 1.9044, 5.9619, 10.8610, 17.5118) which is not a global minimum,
since I1 − I0 = 0.1753126143 for this set of cut-points and this is is larger than I1 − I0 for
the cut-points given in Table 1 for n = 6. So this is a counter-example to idea that all
local minima of I1 correspond to SMML estimators.

Figure 1 shows the cut-points and the graphs of D0(x), D1(x) and r(x) corresponding
to the likely SMML estimator when n = 6, where D0(x) = −r(x) log r(x) and D1(x) =

−r(x) log(q(x)f(x|θ̂(x))) so that I0 =
∫

X D0(x)dx and I1 =
∫

X D1(x)dx. Note that the
continuity of D1(x), which is guaranteed by Corollary 2, is consistent with this figure.

5 Exponential data with a gamma prior

In this section, we apply the results of Section 3 to exponential data with a gamma prior.
For exponential data, f(x | θ) is of the form (1) if we choose X = [0,∞), Θ = (−∞, 0),

ψ(θ) = − log(−θ) and h(x) = 1 (though note that exponential distributions are usually
parameterized in terms of the rate −θ). Hence the corresponding mean is µ(θ) = ψ′(θ) =
−1/θ. Choose a gamma prior for −θ with shape and rate parameters α > 0 and β > 0
(respectively) so that

π(θ) =
βα

Γ(α)
|θ|α−1eβ|θ|.

6



n I1 − I0 a1 a2 a3 a4 a5
1 0.0589128612 4.49 − − − −
2 0.0579045079 4.42 80.55 − − −
3 0.0579008163 4.42 80.17 1380.63 − −
4 0.0579008036 4.42 80.17 1374.66 23597.96 −
5 0.0579008036 4.42 80.17 1374.64 23496.46 403274.23

Table 2: For various numbers n of cut-points, the difference I1−I0 in expected code-lengths of
the one- and two-part codes as well as the cut-points a1, . . . , an of the likely SMML estimator.

Then the data X has marginal PDF

r(x) =
α

β

(

1 +
x

β

)−α−1

,

i.e. X has a Lomax distribution (equivalently, 1 + X/β has a Pareto distribution). In
order to satisfy our technical condition that the first moment of r should exist we need
to additionally assume that α > 1. Note that for exponential data with an exponential
prior (α = 1), the expectation defining I1 in (2) does not in general exist (see (10)), so the
SMML estimator is not defined in this case.

Table 2 gives the cut-points for the likely SMML estimator when α = 2 and β = 1. In
contrast to the normal-normal case of Section 4, for exponential data and a gamma prior
it seems that the SMML estimator is unique and that all local minima of I1(a) are global
minima.

6 Numerical considerations

To construct the SMML estimator we might have to consider cut-points a1, . . . , an which
are far outside the likely range of the data, so some of the corresponding values of r(aj)
and qj might be extremely small, smaller even than machine precision. This section briefly
discusses some simple and effective solutions to the numerical problems that this causes.

By (1), the jth co-ordinate of G : Rn
> → R

n is given by

Gj(a) =
(

log qj + aj θ̂j − ψ(θ̂j)
)

−
(

log qj−1 + aj θ̂j−1 − ψ(θ̂j−1)
)

(9)

for any a ∈ R
n
>. For any c ∈ X , let r̃c(x)

def

= r(x)/r(c), so by (3) we have

log qj = log

(

∫

Uj

r(x)dx

)

= log

(

r(c)

∫

Uj

r̃c(x)dx

)

= log r(c) + log

(

∫

Uj

r̃c(x)dx

)

.

By choosing c appropriately, all terms in the right hand side of this expression can be
calculated numerically to a high degree of precision (for many functions r(x)). For example,
with r(x) as in Section 4, r̃c(x) = exp(−(x2 − c2)/2β2), so taking c = aj we have

log qj = −
a2j
2β2

− 1

2
log(2πβ2) + log

(

∫ aj+1

aj

exp

[

−(x2 − a2j)

2β2

]

dx

)

which is numerically well-behaved even for large aj . Also, by (4) we have

θ̂j = µ−1

(

1

qj

∫

Uj

xr(x)dx

)

= µ−1

(∫

Uj
xr(x)dx

∫

Uj
r(x)dx

)

= µ−1

(∫

Uj
xr̃c(x)dx

∫

Uj
r̃c(x)dx

)

7



and the right-hand side is again numerically well-behaved for some choice of c, e.g. with
r(x) as in Section 4 we could take c = aj if aj > 0 and c = aj+1 if aj < 0. This shows
that high-precision numerical calculations of I1 and G are possible, even when qj is smaller
than machine precision.

We also note that r(ai) and qj only appear in Lemma 3 as ratios of each other. We
can calculate r(aj+1)/qj by evaluating the right-hand side of

r(aj+1)

qj
=

r(aj+1)
∫

Uj
r(x)dx

=
r̃c(aj+1)
∫

Uj
r̃c(x)dx

and this is numerically well-behaved for appropriate c. Other ratios r(ai)/qj can be cal-
culated similarly so the Jacobian matrix of G can also be calculated numerically.

7 Conclusions and extensions

In the context of 1-dimensional exponential families with continuous sufficient statistics,
we have found equations that the cut-points of the SMML estimator must satisfy. As
a corollary, we proved that the posterior probability q(x)f(x|θ̂(x)) corresponding to the
SMML estimator is a continuous function of x, despite being composed of step functions.
We also solved these equations for a particular example using Newton’s method. Our
approach is very simple but it solves an outstanding problem in information theory which
previously could only be attempted with rules of thumb like Wallace’s boundary rules.

Focussing on the case of continuous data allowed us to use calculus to solve the opti-
mization problem defining the SMML estimator. Restricting to 1-dimensional data allowed
us to assume a particular form (intervals) for the shape of the regions defining the SMML
estimator. Therefore our results probably generalize fairly easily to non-exponential fam-
ilies with 1-dimensional sufficient statistics. It is also possible that they will generalize
to higher-dimensional continuous data, if the regions which define the SMML estimator
are assumed to be convex polygons (or any other shapes whose configuration space is a
manifold).

Many questions about SMML estimators for continuous data remain unanswered, even
in the simple, 1-dimensional case considered here. Does an SMML estimator with a given
number of cut-points always exist? Is the SMML estimator with a given number of cut-
points unique for positive data? Does the system of equations (5) have a finite number
of solutions? If the data is restricted to a compact (i.e. finite and closed) interval then is
there an upper bound to the number of cut-points that an SMML estimator can have?

An affirmative answer to the last two questions would open the possibility of developing
a rigorous algorithm to find all SMML estimators with a given number of cut-points (by
finding all solutions to (5) and outputting those with the lowest I1) and a continuous
analogue of Farr’s algorithm [1] for positive data.

A Proofs of technical lemmas

This appendix contains the proofs of our main technical lemmas. We begin with a calcu-
lation which will be used in both proofs.

Lemma 4. Let qi and θ̂i be the functions of the cut-points a given by (3) and (4). Then
for i = 0, 1, . . . , n and k = 1, . . . , n,

∂qi
∂ak

= ǫ r(ak)

and
∂θ̂i
∂ak

= ǫ
r(ak)

qiµ′(θ̂i)

(

ak − µ(θ̂i)
)

8



where

ǫ =







−1 if k = i;
1 if k = i+ 1;
0 otherwise.

Proof. Let R be the marginal cumulative distribution function of the data given by R(x) =
∫ x

−∞ r(ξ)dξ for any x ∈ R. Then by (3), qi = R(ai+1) − R(ai) so ∂qi
∂ai

= −r(ai), ∂qi
∂ai+1

=

r(ai+1) and
∂qi
∂ak

= 0 unless k = i, i+ 1.

Now, let M(x) =
∫ x

−∞ ξr(ξ)dξ for any x ∈ R so that qiµ(θ̂i) = M(ai+1) −M(ai) by
(4). Differentiating this equation with respect to ai gives

−r(ai)µ(θ̂i) + qiµ
′(θ̂i)

∂θ̂i
∂ai

= −air(ai)

so by rearranging we have

∂θ̂i
∂ai

=
r(ai)

qiµ′(θ̂i)

(

µ(θ̂i)− ai

)

.

The cases k = i+ 1 and k 6= i, i+ 1 can be handled similarly.

Proof of Lemma 1. As in the statement, let C be the constant −
∫

X r(x) log h(x)dx. From
(2) we have

I1 = −
∫

X
r(x) log(q(x)f(x|θ̂(x)))dx

= −
n
∑

i=0

∫

Ui

r(x) log(q(x)f(x|θ̂(x)))dx

= −
n
∑

i=0

∫

Ui

r(x) log(qif(x|θ̂i))dx

= C −
n
∑

i=0

∫

Ui

r(x)[log qi + xθ̂i − ψ(θ̂i)]dx by (1)

= C +

n
∑

i=0

(

−qi log qi + qiψ(θ̂i)− θ̂i

∫

Ui

xr(x)dx

)

(10)

and (6) follows by (4). Then by (10) and Lemma 4,

∂I1
∂aj

=

j
∑

i=j−1

∂

∂aj

(

−qi log qi + qiψ(θ̂i)− θ̂i

∫

Ui

xr(x)dx

)

= r(aj)
(

− log qj−1 − 1 + ψ(θ̂j−1)− aj θ̂j−1

)

+
∂θ̂j−1

∂aj

(

qj−1ψ
′(θ̂j−1)−

∫

Uj−1

xr(x)dx

)

+r(aj)
(

log qj + 1− ψ(θ̂j) + aj θ̂j

)

+
∂θ̂j
∂aj

(

qjψ
′(θ̂j)−

∫

Uj

xr(x)dx

)

.

Now,
∫

Uj
xr(x)dx = qjµ(θ̂j) by (4) and ψ′(θ) = µ(θ) by Theorem 2.2.1 of [2]. Therefore the

bracketed expression multiplying
∂θ̂j
∂aj

vanishes, as does the expression multiplying
∂θ̂j−1

∂aj
,

so we have

∂I1
∂aj

= r(aj)
(

log qj + aj θ̂j − ψ(θ̂j)
)

− r(aj)
(

log qj−1 + aj θ̂j−1 − ψ(θ̂j−1)
)

(11)

and the lemma follows from (1).
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Proof of Lemma 3. By (1) and (8),

Gj(a) =
(

log qj + aj θ̂j − ψ(θ̂j)
)

−
(

log qj−1 + aj θ̂j−1 − ψ(θ̂j−1)
)

(12)

for any a ∈ R
n. So

∂Gj

∂ak
= 0 whenever |j − k| > 1 by Lemma 4.

For the rest of the lemma, just differentiate (12), use the fact that µ = ψ′ and apply
Lemma 4. For example, if j 6= n then

∂Gj

∂aj+1
=

(

1

qj

∂qj
∂aj+1

+
(

aj − µ(θ̂j)
) ∂θ̂j
∂aj+1

)

−
(

1

qj−1

∂qj−1

∂aj+1
+
(

aj − µ(θ̂j−1)
) ∂θ̂j−1

∂aj+1

)

=
r(aj+1)

qj
+
(

aj − µ(θ̂j)
) r(aj+1)

qjµ′(θ̂j)

(

aj+1 − µ(θ̂j)
)

by Lemma 4

=
r(aj+1)

qj



1 +

(

aj − µ(θ̂j)
)(

aj+1 − µ(θ̂j)
)

µ′(θ̂j)



 .
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