
A tutorial on optimisation for

multi-agent systems

Jesus Cerquides1, Alessandro Farinelli2, Pedro Meseguer1

and Sarvapali D. Ramchurn3

1IIIA, Arti�cial Intelligence Research Institute
CSIC, Spanish Council for Scienti�c Research
Email: {cerquide,pedro}@iiia.csic.es

2University of Verona, Italy
Email: alessandro.farinelli@univr.it

3School of Electronics and Computer Science, University of Southampton, SO17 1BJ, UK

Email: {sdr1,mv2y11}@soton.ac.uk

Research on optimisation in multi-agent systems has contributed with a wealth

of techniques to solve many of the challenges arising in a wide range of multi-

agent application domains. Multi-agent optimisation focuses on casting multi-

agent system problems into optimisation problems whose solving could possibly

involve the active participation of the agents in a multi-agent system. Research

on multi-agent optimisation has rapidly become a very technical, specialised �eld.

Moreover, the contributions to the �eld in the literature are largely scattered.

These two factors dramatically hinder the access to a basic, general view of the

foundations of the �eld. This tutorial is intended to ease such access by providing

a gentle introduction to fundamental concepts and techniques on multi-agent

optimisation.

Keywords: Optimisation; Multi-agent systems; coalition formation; resource allocation;
auctions; distributed constraint optimisation; DCOP

Received 15 November 2012; revised 15 November 2012

1. INTRODUCTION

Multi-agent system (MAS) applications in a number of
areas such as e-commerce, disaster management, and
information acquisition through embedded devices (e.g.
wireless sensor networks) have generated a number of
new challenges for algorithm designers. These chal-
lenges mainly take the form of very hard optimisation
problems that are substantially di�erent from problems
traditionally dealt with in other areas (e.g. industrial
processes or scheduling applications). More speci�cally,
novel challenges come from the distributed nature of
MAS where the actors reside on di�erent computational
units and can communicate only a limited amount of
information with their neighbours (e.g., �re �ghters
on di�erent trucks with limited communication capa-
bilities, or sensor networks spread over a large area).
Moreover, the agents may be acting on behalf of di�er-
ent stakeholders (e.g., �re �ghters may need to coordi-
nate with ambulances, buyers in online markets inter-
acting with sellers), each with its own aims and objec-
tives (e.g., �re �ghters extinguish �res while ambulances
aim to provide medical care), have di�erent computa-
tion/communication capabilities, and be tied to phys-
ical devices prone to failures. Furthermore, given the

dynamic nature of the application scenarios (e.g., where
�res may spread across a region, or where goods in an
online market may arrive at di�erent rates), e�ective
algorithms have to provide anytime solutions and ap-
proximate techniques are often required/desirable.
Research on optimisation in MAS has contributed

with a wealth of techniques to support many of
the challenges outlined above. However, we identify
two factors that dramatically hinder the access to a
basic, general view of the foundations of this �eld.
First, research on multi-agent optimisation has rapidly
become a very technical and specialised �eld. Second,
the contributions to the �eld in the literature are largely
scattered across various papers and literature surveys
without any coherent view of how all the optimisation
techniques developed by the MAS community compare
against or overlap with each other. With the aim to ease
such access, this tutorial provides a gentle introduction
to fundamental concepts and techniques on multi-agent
optimisation. In particular, this tutorial focuses on
several fundamental MAS problems that have been cast
as multi-agent optimisation problems, namely:

• How to assemble collectives. In many applications
involving multiple stakeholders, the formation of

The Computer Journal, Vol. ??, No. ??, ????

2 Cerquides, Farinelli, Meseguer, Ramchurn

the groups or collectives of agents is central to
achieving either their individual objectives or some
global objective. Assembling such groups of agents
to collaborate has been the main focus of coalition
formation techniques.

• How to make joint decisions for coordinated
actions. In many cooperative applications,
agents form a team that has to coordinate in a
decentralised manner to perform the best actions.
Research on distributed constraint optimisation has
developed a clear formulation of the problem along
with a signi�cant number of algorithms to handle
the problem.

• How to allocate limited resources. The assignment
of resources within a system of autonomous agents
that have preferences over alternative allocations
of resources is a fundamental problem in MAS.
Research on multi-agent resource allocation has
contributed with a wealth of techniques to tackle
this problem.

This paper is by no means intended to be a thorough
survey on multi-agent optimisation (e.g. we do not
cover bio-inspired approaches or optimization without
communication), though we do provide references for
the reader to undertake a deeper investigation of the
problems and techniques described herein. This paper is
a sequel to the "Optimization in Multi-Agent Systems"
tutorial tought by the same authors at IJCAI 2011 in
Barcelona4. At the end of this tutorial paper, the reader
is expected to be able to answer the following questions
regarding central issues on multi-agent optimisation:

Coalition formation.

• What is the coalition formation problem?
• What are the key steps of the coalition

formation process?
• What are the features of application domains

where coalition formation applies?

Distributed constraint optimisation.

• What is a distributed constraint optimisation
problem (DCOP)?

• What are the state-of-the-art exact techniques
for DCOPs?

• What are the state-of-the-art approximate
techniques5 for DCOPs?

• What are the bene�ts and limitations of those
techniques?

Multi-agent resource allocation.

4Video recordings of that tutorial are freely available online at
http://videolectures.net/ijcai2011_t3_optimization/.

5Approximated techniques are an important topic that
pervades all optimisation problems. However, in this paper we
consider approximation techniques only for DCOPs because, in
contrast to the other themes, recent literature on DCOPs shows
a signi�cant interest in this direction.

• What is a winner determination problem?
• What are the optimisation problems posed by

the winner determination problem of state-of-
the-art auction mechanisms?

• How can winner determination problems be
solved?

The paper is organised as follows. First, Section 2
tackles the problem of assembling coalitions of agents.
Then, Section 3 introduce the problems of assessing
the optimal joint decisions that enable multi-agent
coordination. Next, Section 4 analyzes how to assign
resources to the agents in a MAS. Finally, Section 5
summarises and relates the multi-agent optimisation
problems visited in this tutorial.

2. HOW TO ASSEMBLE COLLECTIVES:

COALITION FORMATION

In many applications involving multiple stakeholders
with common or individual objectives, the formation
of the groups or collectives of actors is central to
achieving these objectives. For example, in emergency
management scenarios, it may be more e�ective to
allocate small teams of �rst responders to multiple
disaster sites rather than sending a large team to each
site in succession. In the context of mobile sensor
network applications, the best way to patrol an area
may involve combining capabilities of di�erent types of
unmanned vehicles (aerial, ground, underwater) rather
than using only one type.
While these examples involve actors or agents that

are fully cooperative (i.e., will forego their own bene�t
for the common good � e.g., a mobile sensor will
change its patrolling region in order to maximise the
accuracy of the global patrolling e�ort even if it may
have to travel more than the others in its team), in many
cases, the actors may actually be self-interested (e.g., in
collective energy purchasing schemes where each home
is meant to pay a fair price for the energy it uses) and
this may render the formation of collectives harder as
they would need to agree on the terms that regiment
their group actions.
In general, these applications are of particular

interest to multi-agent systems research in that they
involve actors that may:

1. Have distinct capabilities and local knowledge.
For example, �re brigades will extinguish co-
located �res while ambulances provide assistance
to casualties.

2. Have their individual objectives. For example,
each unmanned vehicle will aim to obtain the best
information in its own goal area.

3. Need to come together at some point in time and
space and disband to form di�erent groupings at
other points in time and space.

4. Need to engage in a negotiation process that will
allow them to align their individual objectives (e.g.,

The Computer Journal, Vol. ??, No. ??, ????

A tutorial on optimisation for multi-agent systems 3

through peer to peer messaging or through receiv-
ing commands from a centre). Such a negotiation
process may be particularly important when the
actors in the system may be self-interested and
therefore require some form of payment or non-
monetary reward (e.g., participants in a group-
buying programme [1, 2] or collectives of wind gen-
erators where each generator belongs to a di�erent
stakeholder [3]). In these cases, the process is often
termed a `coalitional game' given the strategic de-
cisions each stakeholder may make to join di�erent
collectives or coalitions.

These features de�ne the key computational issues in-
volved in forming collectives and, within the multi-agent
systems paradigm, such issues are studied within the
overarching theme of coalition formation [4]. Coali-
tion formation is one of the fundamental approaches
in multi-agent systems for establishing collaborations
among agents, each with individual objectives and prop-
erties. Building upon the seminal work of Shehory and
Kraus [5], Sandholm et al.'s [6] description of the coali-
tion formation process is the most common framework
used within the coalition formation literature to char-
acterise the key computational tasks involved, namely:

1. Coalition value calculation and optimisation � this
step forms the basis of the coalition formation
process as it outputs a well de�ned value (that may
represent a cost or pro�t) for each subset of the set
of all agents. This value numerically captures how
good the coalition is, for example, in completing
tasks before a given deadline, in making a pro�t
by selling or buying goods in bulk, or in obtaining
information with a given degree of accuracy.
Abstract approaches to coalition value calculation
typically focus on the process of enumeration of
coalition values while more practical approaches
focus on the optimisation of coalition members'
actions in order to achieve the optimal coalition
value (e.g., minimum cost or maximum pro�t).
While the process of enumeration is a well
de�ned combinatorics problem that requires the
manipulation of number sequences with simple
arithmetic operations (e.g., to �nd the position
of a coalition in a list of coalitions or generating
all combinations of numbers from a dynamic list
of numbers without repetition), the optimisation
of member actions will depend on the type of
application studied. For example, in the emergency
response domain, the optimisation may involve
coming up with a schedule of actions for each
responder, while in the mobile sensor domain, the
optimisation problem may involve �nding the best
orientation of sensors to patrol an area.

2. Coalition structure generation (CSG) � this
involves partitioning the set of all agents so as
to maximise the sum of the values of the chosen
coalitions. Hence, if the value of a coalition

determines the bene�t the coalition brings to its
members, maximising the total value generated
by all coalitions is equivalent to concept of social
welfare maximisation. This maximisation problem
is termed the optimal coalition structure generation
problem, which is a particular version of the well-
known set partitioning problem, and is one of
the hardest combinatorial optimisation problems to
be studied in multi-agent systems.6 At the core of
the problem is the issue that the set of coalitions,
in the worst case, is exponential in the number
of agents, and this is the input to the coalition
structure generation problem. Hence, while
some approaches consider the complete input and
attempt to navigate such a space using dynamic
programming or heuristics, other approaches look
at restricting this input in such a way that it still
preserves the key features of the coalition formation
process and facilitate the search for the optimal
coalition structure.

3. Payo� Distribution � this step is mainly relevant
to applications where the agents engage in a
coalitional game i.e., each agent is self-interested
and only joins a given coalition to improve its own
utility. The optimisation problem here involves
�nding out the transfer or payment to each agent
to ensure it is fairly rewarded for its contribution
to its coalition and that it will not �nd it more
bene�cial to pair up with some agents or group of
agents other than the one it has been assigned to.
Thus the goal is to induce a fair or stable outcome
to the process. Most of the literature in this space
involves �nding out how such payments can be
calculated for coalitional games where the coalition
value function may be complex and uncertain
[7, 8] and proving that stability or fairness can be
achieved.

Approaches to coalition formation in the multi-agent
systems literature broadly involve some or all of the
above features to di�erent degrees. Thus, while points 1
and 2 deal with the algorithmics of coalition formation,
point 3 deals with computational economics of coalition
formation, where the focus is on establishing the
computational costs of �nding stable or fair outcomes.
Hence, in this paper we will focus on points 1 and 2
and point the reader to [7] for further details on payo�
distribution approaches.
In what follows, we describe the formal models

involved, discuss the key computational challenges and
how they may be solved, and point to the relevant
literature in this area. The aim is to provide the reader
with an understanding of the challenges rather than a
detailed account of all approaches in the literature.

6It is a special case of the winner determination problem (see
Section 4) where the input to the problem is exponential in the
number of agents and where all agents (agents equal items in the
winner determination problem) have to be chosen (not all items
need to be chosen in the winner determination problem).

The Computer Journal, Vol. ??, No. ??, ????

4 Cerquides, Farinelli, Meseguer, Ramchurn

2.1. Coalition Value Calculation

Most research in coalition value calculation typically
address the problem at an abstract level and assume
the value of a coalition is given, though there are some
notable exception focus on de�ning the coalition values
according to particular needs of a given domain. In
the next subsections, we will �rst consider the more
theoretical approaches and then go on to describe
in some detail other more practical approaches that
consider complex task allocation problems.

2.1.1. General Algorithms
Assuming the value of coalitions will be given (e.g., by
an oracle), the challenge in coalition value calculation
is to enumerate all the feasible coalitions and e�ciently
distribute this computation among the agents in order
to make the best use of their computational resources
and to avoid bottlenecks in the system. Typically,
this procedure is optimised by enumerating coalitions
of each feasible size at a time, that is from size 1 to the
number of agents in the system. In what follows, we
introduce some formal de�nitions and then discuss the
di�erent approaches in the literature that attempt to
generate such lists (instead of providing pseudocode of
these algorithms, here we only refer the reader to the
papers where these are described in detail).
Given a set of agents A, a coalition is a subset

C ⊆ A of agents. Note that subsets of size 1 (e.g.,
{a1} or {a10}) are called singleton coalitions while
the subset containing all agents is called the grand
coalition. Enumerating all coalitions given a set of
agents in then equivalent to enumerating all the subsets
of the set of agents and the number of such subsets
is exactly 2|A| − 1. Formally speaking, expressing the
coalition value calculation process as the enumeration
of coalitions of all sizes s ∈ {1, · · · , |A|}:

Ls = {C|s ∈ {1, · · · , |A|} ∧ |C| = s ∧ C ∈ 2A} (1)

where Ls is the list of coalitions of size s. As can
be seen, such lists are drawn from the power set of
agents and this enumeration process can quickly unravel
as the number of agents grows. Thus, for only 20
agents, the number of coalitions is more than a million.
Thus, to combat this complexity, it is important to
come up with algorithms that are both e�cient in
computation and in memory requirements. Distributing
the enumeration process across several nodes can also
help reduce the computation time but can potentially
increase communication requirements.
One of the �rst approaches to attempt to distribute

the coalition value calculation process involved having
every agent enumerate the subsets of agents they are
part of and communicate to exchange the computed
values and to avoid redundant computations of the
same coalitions [4]. However, as [9] showed, such
a process can be extremely expensive both in time
and memory. Instead, it was shown by [9], that

the enumeration process is very much similar to that
required for the generation of Gray codes [10] whereby
every combination of numbers can be generated from
a previous combination with only one digit changed.
This �rst requires the trivial assignment of integer ids
to agents (where the highest agent id is the number
of agents). By so doing, it is possible to enumerate
all feasible coalitions and to do so without keeping
any of the previously computed coalitions in memory.
Thus to enumerate (and store) all the coalitions in
A, one can use these simple steps as described by
[9]. Such an algorithm can be distributed by assigning
to each agent an index i to start computations from
for each list of coalitions a given size s (the agent
knows when to stop by simply calculating how many
coalitions it should count according to an agreed split
of computation). Furthermore, they show how this can
be fairly distributed based on the known size of such
lists and the computation power of each agent. The key
bene�t of this technique is that, in order to distribute
the computation, each agent only needs to know at what
index it should start enumerating coalitions from, for
every coalition size s. For numbers of agents less than
30, the above enumeration process can be done within
minutes.

2.1.2. Restricting Coalition Feasibility

The key problem with the above approach is that
it assumes that all subsets of agents can exist as
coalitions. It uses this fact to impose a strict procedure
on the generation of the next coalition from the current
coalition. Thus, if given a 100 agents and only about
100 coalitions are feasible, the above algorithm would
have to go through all of the 2100 − 1 coalitions in
order to enumerate and check for the validity of each.
This would be infeasible in practice. Recently, however,
a new approach to coalition enumeration has been
suggested whereby the `feasibility' of coalitions can be
described using a graphical approach, mimicking the
kind of relationships that exist in communication or
social networks [11]. This representation of feasible
coalitions (as opposed to all real-valued coalitions)
in this way gives rise to the connected sub-graph
enumeration problem, whereby each coalition is a
connected subgraph of a graph and the enumeration of
all coalitions requires the enumeration of all subgraphs
of the graph of agents. Voice et al., (2012) thus propose
an algorithm to solve this problem e�ciently and
non-redundantly and suggest techniques to distribute
the computation among agents as fairly as possible.
Their techniques have been shown to speed up the
coalition enumeration process by orders of magnitude,
particularly when the agents are connected within trees
of low branching factors.

The Computer Journal, Vol. ??, No. ??, ????

A tutorial on optimisation for multi-agent systems 5

2.1.3. Practical Coalition Value Calculation
Turning to coalition formation applied to more realistic
settings we note that most related work in this
space focus on task allocation problems. Thus, we
note the work [4, 12] who proposed coalition value
calculation algorithms where each agent in a coalition
has to perform some tasks (at a certain cost) and the
allocation of such tasks within each coalition needs to be
optimised. Dang et al., [13], consider a similar problem
in the domain of sensor networks where each coalition
of agents requires them to orientate their sensors in a
particular direction to achieve the maximum coverage
as an aggregate, trading o� their individual information
gains in some respects. In more complex emergency
response scenarios, [14] have also proposed techniques
to compute coalition values based on the ability of a
group of agents to save civilians. In their context,
the value of a coalition is dictated by the schedule
that each agent adopts to join the coalition at a
certain time at a given location in order to dig out
civilians.7 In such a case, coming up with the optimum
schedule for each coalition member is a problem that
is strongly dependent on the process of deciding on
which coalitions to form at di�erent points in time,
that is, what is the coalition structure that exists at
each point in time. Hence, in the next section, we turn
to approaches to solve the optimal coalition structure
generation problem.

2.2. Optimal Coalition Structure Generation

The optimal coalition structure generation (OCSG)
problem is a standard optimisation problem that is a
special case of the set partitioning problem [15]. The
key di�erence between the OCSG problem and the
traditional formulation of the set partitioning problem
is that the former typically looks at the fact that all
subsets of agents are feasible while the latter typically
assumes there are large numbers of items (or agents)
that can be partitioned into small numbers of subsets.
In recent years, a number of approaches have also looked
at the middle ground between these two extremes,
where not all coalitions are feasible or where the
coalition values are structured in such a way that it
is easier to identify the optimal coalition structure.
Formally speaking, the optimal coalition structure

generation problem �nds the solution to:

arg max
CS∈F(G)

∑
C∈CS

v(C) (2)

where v is the characteristic function that returns
the value of a given coalition (where this value is
independent of the membership of other coalitions), G
is the set of all partitions of the set of agents A, F
returns the subset of these coalition structures that
contain feasible coalitions (we elaborate on this point

7The setting they use is that provided by the RoboCupRescue
simulation environment, a realistic disaster simulation platform.

later), CS ∈ G is a coalition structure, i.e., CS ⊆ 2A

where for any Ci, Cj ∈ CS, Ci ∩ Cj = ∅, i.e., no agent
is assigned to more than one coalition.
There are two important points to note from the

above formulation. First, it assumes that the value
of a coalition is independent of any other coalition
chosen in the coalition structure, i.e., the v(C) ∈ <+

is a characteristic function, which may not always
be the case [16]. Formally, for non-characteristic
functions, this means assigning the value of to coalition
conditioned on the coalition structure it is contained
within, i.e., v(C|CS), where C ∈ CS. This renders
the problem signi�cantly harder to tackle but is
typically regarded as a special case. Second, the above
formulation assumes that each agent can only form part
of only one coalition at any time. Again, in settings
where agents can participate in multiple teams at the
same time (e.g., mobile sensors providing information
to di�erent teams at the same time, or rescuers helping
to recover casualties from under rubble while providing
resources to support other teams' communications).
These settings are typically regarded as overlapping
coalition formation settings [17, 4] and typically relate
to the well known a set covering problem [15].
In the next subsections, we focus on the most

common coalition structure generation cases that
involve a characteristic coalition value function and
problems where the set of coalitions or coalition value
functions may be restricted by some arbitrary domain-
speci�c feature.

2.2.1. General Solutions

The general OCSG problem can be represented in a
number of ways, leading the way to di�erent solution
approaches. The most straightforward approach to
try and solve the problem would be to use a mixed-
integer programming (MIP) solver such as IBM ILOG's
CPLEX using equation 2 as the objective function and
specifying constraints on the membership of agents
to exactly one coalition at a time (see details in
[18]). However, doing so would not exploit the fact
that larger coalitions can naturally be dissected into
their smaller parts, which would only need to be
evaluated once. In more detail, one of the �rst
representations for the problem was provided by Yun
Yeh [19] for the (complete) set partitioning problem
whereby, coalitions are categorised according to their
size and the traversal of the space of coalitions can
simply be done by looking into subdivisions of each
coalition, using a dynamic programming (DP) approach
(which was recently improved by Rahwan and Jennings
[20] to avoid going through redundant subdivisions).
The latter grows in O(3|A|) in both memory and time
and does not allow for anytime computation of a
solution.
Now, Sandholm et al. [6] and Dang and Jennings [12],

also proposed other ways to represent the problem using

The Computer Journal, Vol. ??, No. ??, ????

6 Cerquides, Farinelli, Meseguer, Ramchurn

FIGURE 1: Space representation proposed by Rahwan
et al. [18], where Pi represents the search
space containing coalition structures of a particular
con�guration �tting an integer partition of the number
4. The search space is split into levels to separate
coalition structures in terms of the number of coalitions
they contain as used in [21] for example.

the concept of a coalition structure graph, where levels
of the graph are de�ned according to the maximum size
of coalitions in each level of the graph. However, even
though their approach allows for anytime solutions with
well de�ned worst-case bounds, they are not e�cient in
�nding the optimal solution (grows in O(|A||A|) and do
not scale beyond 15 agents as Rahwan et al. showed
[9, 18].
Instead, in recent years, a novel approach to

representing the problem has emerged using the notion
of integer partitions (IP). Thus, it was noted that
coalitions in a coalition structure adhere to well de�ned
sizes represented by the integer partitions of the number
of agents |A|, that is, {|C|, C ∈ CS} is equivalent
to a given integer partition of A. Hence, for 3
agents, the integer partitions are {1, 1, 1}, {1, 2}, {3}
and, these can be used to de�ne categories where, for
example, a coalition structure {{1}, {2}, {3}}, would
�t the category {1, 1, 1}, and {{1}, {2, 3}} would �t
{1, 2}. Hence, it is possible to partition the search
space of all coalition structures by assigning coalition
structures to their category according the sizes of the
coalitions they involve. A more elaborate example with
4 agents is given in Figure 1. As Rahwan et al. showed,
such a representation facilitates the computation of
bounds (linear in the input) for individual parts of
the search space and therefore help prune the space

in an e�ective way using branch-and-bound techniques.
Using such techniques, it was then possible to scale up
solutions to the coalition structure generation problem
from 15 agents to 27 agents and to generate high-quality
solutions anytime. Furthermore, in later endeavours,
the approach was further combined with the DP
approach above to further improve the search strategy
[22] and extended to allow for the distribution of the
computation of the optimal coalition structure [23].
However, a number of issues remain. In the worst
case, IP algorithms will have to go through all coalition
structures to return the optimal solution. In addition
to this, due to the lexicographic ordering techniques it
employs, the IP approach and extensions of it are all
limited by the fact that they require that all coalitions
be feasible in order to navigate through the search space
e�ciently. Thus, such issues restrict these techniques to
solving problems involving less than 27 agents. Hence,
in the next subsection, we turn to those approaches that
try to solve the more general problem where not all
coalition structures are feasible and where there may
be restrictions on the coalition value function.

2.2.2. Restricted Structures

At the foundations of the OCSG problem lies the issue
that the input to the problem is exponential (i.e., the
list of all feasible coalitions). Hence, building upon the
coalition value calculation work presented earlier, recent
approaches have looked at �nding the optimal coalition
structure when the coalition value function takes a
speci�c shape that precludes the selection of speci�c
coalitions in the optimal structure. This includes
imposing restrictions on the individual contribution of
an agent to any coalition [24, 25] or on the feasibility of
coalitions (i.e., whether some coalitions can be formed
or not) without restricting the value an agent brings
to the coalition. We focus on the latter approach as
it can e�ectively consider any coalition value function
(i.e., those coalitions that are infeasible simply have
an in�nitely negative value). The state of the art
in this respect is the synergy graph representation
from Voice et al. [11] where they apply a social
network structure as shown in Figure 2. These links
between the agents imply constraints that may be due
to communication constraints (e.g., non-overlapping
communication loci or energy limitations for sending
messages across a network), social or trust relationships
(e.g., energy consumers who prefer to group with their
friends and relatives in forming energy cooperatives),
or physical constraints (e.g., emergency responders that
have enough fuel to join only speci�c teams or have life-
saving capabilities that match only a limited number of
other responders). Formally, agents can form coalitions
C ⊆ A, however, the set of feasible coalitions, C, is
constrained by a graph G = (A,E), where E is a set
of edges between agents. We consider the situation
where a coalition of agents C is feasible if and only

The Computer Journal, Vol. ??, No. ??, ????

A tutorial on optimisation for multi-agent systems 7

FIGURE 2: Synergy graph example for 5 agents from
Voice et al. [11].

if there exists a connected subgraph G′ = (C,E′) with
edges E′ ⊆ E and vertex set exactly equal to C. The
objective function for such a problem is given as in (2),
rede�ning F as the function that extracts all feasible
coalition structures from the the graph G.

As can be seen in Figure 2, the network restricts
the formation of coalitions that do not have an
underlying connected subgraph connecting all agents
in the coalition. For example, coalitions {2, 5} cannot
be formed because no edge exists between 2 and 5 while
coalition {1, 2, 4, 5} can exist because there is an edge
linking 1 and 4, one linking 1 and 2, and another edge
linking 4 and 5. In the worst case, the graph is complete
(i.e., there is an edge between every pair of agents),
which then maps back to the original problem detailed
in the previous section. However, when the graph is
sparse, in such structures as in trees, small worlds, or
lines, the number of feasible coalitions is signi�cantly
reduced and also permit the faster computation of the
optimal coalition structure. In e�ect, the algorithms
proposed by Voice et al. has been shown to permit
the enumeration of up to 50 agents (on trees) in less
than 15 minutes, and the computation of the optimal
coalition structure for up to 30 agents within days,
in the worst case (on a complete graph) and in less
than 6 minutes in the best case (on trees). The
algorithm they proposed for OCSG on sparse synergy
graphs (DyCE) is very similar to the IDP algorithm
proposed by Rahwan et al. [20]. However, contrary
to IDP, DyCE avoids enumerating a large number of
infeasible coalition structures as it uses the structure of
the network to iterate only through those that contain
feasible coalitions.

It is also to be noted that graph-restricted structures
as described above have also been the subject of studies
in the economics literature as they pose interesting
challenges for payo� distribution mechanisms and the
design of generalised solution concepts. In this context,
it is highly recommended to complement the design

and analysis of graph-restricted OCSG algorithms with
some background and requirements from [26, 27, 28, 29].

2.3. Challenges and Further Readings

So far, we have described the key steps of the
coalition formation process and how it can be useful
in addressing speci�c collaboration challenges in real-
world applications. Our survey of some of the recent
literature also shows that there is a dearth of algorithms
to solve coalition formation problems for domains
presenting issues of scale, where hundreds or thousands
of agents may need to be grouped into coalitions in the
most e�ective manner. Moreover, it is not clear how
the summarisation of the e�ectiveness of a coalition
into a value function is at all useful in real-world
applications that may involve humans each with their
own understandings of the world around them and
of their preferences to interact with team members
they may be familiarly with. Finally, in this paper
we have only focused on one-shot coalition formation
algorithms and ignored the fact that many coalition
formation problems may require coalitions to disband
and reform over time, leading to challenges in de�ning
the sequentially optimal way to form such coalitions
[30]. Hence, we summarise some of the key challenges
for coalition formation research as follows:

1. There is a need to design e�cient anytime
algorithms for domains with large numbers of
agents beyond hundreds, in order to provide
realistic solutions to coalition formation problems
involving arti�cial or human agents.

2. Better representations are need to capture the
value of forming coalitions involving human agents
operating alongside software agents and robots.

3. Algorithms for sequential formation of coalitions
over time, particularly when the value of future
coalitions may be liable to signi�cant degrees of
uncertainty.

Now, the parts covered in this tutorial are limited to
the basics of the state of the art algorithms and do not
delve into the details of the algorithms intentionally in
order to give a �avour of the key representations and
algorithms. In order to get an in-depth understanding
of particular algorithms and mechanisms, the reader
is referred to chapters 8 and 17 of [31] as well as the
following:

1. Coalition value calculation: the key algorithms
for the enumeration of sequences of numbers are
covered by Knuth in his well known book series
[10]. The PhD thesis of Rahwan [32] also contains
a wealth of analysis of more elaborate coalition
enumeration problems (including dynamic ones)
and discussions on the topic.

2. Coalition structure generation: most of the latest
algorithms have been mentioned already and, as

The Computer Journal, Vol. ??, No. ??, ????

8 Cerquides, Farinelli, Meseguer, Ramchurn

yet, one of the most comprehensive benchmarks
and comparisons of the most important approaches
are given in Rahwan's thesis [32] which is a must-
read for the topic.

3. Payo� distribution: we did not explicitly deal
with this topic in this tutorial as this is
extensively covered in the recent publication by
Chalkiadakis et al. [7] which covers the analysis
of the computational aspects of cooperative game
theoretic solutions to the problem of coalition
formation.

3. HOW TO MAKE JOINT DECISIONS:

DISTRIBUTED CONSTRAINT OPTIMI-

SATION

When agents operate in the context of a team they
must take joint rather than single decisions to maximize
a system-wide objective. Teams of agents arise
whenever agents' preferences are aligned with the
system objective, this is often the case in emergency
management, surveillance and more in general for
applications involving a single stakeholder that is
responsible for designing the whole system (e.g., most
applications involving roots or embedded devices). In
several situations, the computation of these coordinated
actions may be a necessary step to address more general
problems. For example, as discussed in section 2, one
critical aspect of coalition formation is how to assess the
value of a coalition which may go from a very simple
computation to a hard optimization problem involving
the coordination of agents actions [33]. Similarly, in
the auction mechanisms presented in section 4 bidders
may need to coordinate internally to assess the value for
which they bid for a service (e.g. a company may need
to coordinate their carriers to assess the logistic cost of
delivering the services for which they are bidding).
Choosing the individual actions that jointly maximize

a system wide objective is a key issue for coordination
and there are several frameworks that can be used to
tackle this problem (e.g., Sequential Decision Making
[34, 35], Multi-Agent Planning [36, 37], to name a
few). In this tutorial paper we focus on constraint
processing [38] and more speci�cally on Distributed
Constraint Optimization Problems (DCOPs) [39, 40]
for several reasons: i) DCOPs have a strong focus
on decentralised approaches where agents negotiate
a joint solution through local message exchange; ii)
the proposed solution techniques exploit the structure
of the domain (by encoding this into constraints)
to tackle hard computational problems; iii) there is
a wide choice of solutions for DCOPs ranging from
complete algorithms [41, 42] to suboptimal algorithms
[43, 44, 45, 46, 47]. Such approaches have been widely
studied and applied in many reference domains (disaster
management, tra�c control, intelligent light control or
energy-e�cient sensor networks). To provide the reader
with a gentle introduction to DCOP formalism, in what

(a) (b)

FIGURE 3: a) A diagram showing an exemplar coordi-
nation scenario and b) a factor graph corresponding to
a possible DCOP formulation considering no synergies
among agent's actions.

FIGURE 4: A factor graph corresponding to a
possible DCOP formulation for the scenario in Figure
3a considering pairwise dependencies among agent's
actions. Optimal assignments are boldfaced.

follows we introduce a case study inspired by disaster
management and use this to exemplify the key elements
of a standard DCOP formalization.

3.1. Case study: Coordination in disaster

management

Consider a set of rescue units, one �re brigade and
two ambulances, that need to handle the disaster
management scenario depicted in Figure 3a. At some
point in time three rescue tasks are reported in the
disaster area: one building on �re (t1), injured people
(t2) and a road blocked with rubble (t3). The �re
brigade is required for tasks t1 and t3. Ambulances are
required in all tasks, but the �rst ambulance can only
reach t1 and t2 whereas the second can only access t1
and t3 (i.e., only the ones within a given travel distance
from their current position). We can model this speci�c
problem as a DCOP by de�ning the following �ve
components:

• Agents (A). Each rescue unit is modeled as an
agent ai.

• Variables (X). The individual decision of each
rescue unit is modeled with a discrete variable xi,
which represents the next task to be attended by
the agent that controls such variable.

The Computer Journal, Vol. ??, No. ??, ????

A tutorial on optimisation for multi-agent systems 9

• A set of discrete and �nite domains (D). In the
example, the domain of a variable xi, Di, contains
one value for each possible task that each agent can
tackle.

• A set of constraints (F) where a constraint is
a function fV (xV) : Dj1 × · · · × Dj|V | → < ∪
{−∞} that assigns a real value for each possible
joint assignment of the variables it depends on
(xV ⊆ X) quantifying the relative utility for the
system8. Hence, in the following we will refer to
these as utility functions9. In the example utility
functions quantify the gain in terms of avoiding
casualties and reducing damages to infrastructures
that correspond to the joint agent action.

• A function M : X → A that maps each variable to
the controlling agent. For the sake of simplicity in
all the examples given in this tutorial each agent ai
controls a discrete variable xi but in general each
agent can control several variables (although each
variable is controlled by a single agent).

Given this, agents aim at �nding the joint variable
assignment that maximizes the sum of utility functions,
i.e. x∗ = argmaxx

∑
fV ∈F fV (xV).

A key concept for DCOPs is the factor graph,
a bipartite graph that graphically represent agents'
interactions. A factor graph is a bipartite graph
with two types of nodes: variable and function nodes.
Each function node is linked to a variable node if the
variable belongs to the function scope. When functions
are all de�ned over two variables, factor nodes are
simply omitted linking the two variables directly in the
graph, and the graphical representation is then called
constraint graph. Given an agent ai, the agents directly
connected with ai in the constraint/factor graph are the
neighbours of ai.
Figures 3b depicts a factor graph for a scenario in

which the utility of each rescue unit to attend a task is
independent from the assignment of other rescue units
to that task (there is no synergy among their actions).
Tables associated with rescue unit decision variables
report the utility for each of the possible task that the
unit can execute. For instance, the �re brigade unit (x1)
receives a utility of 5 when assigned to t1 and a utility
of 4 when assigned to t3. With independent utilities
agents do no need to coordinate: each agent just takes
the task that gives the highest utility. Thus, x1 chooses
task t1 (with a utility of 5), x2 chooses task t2 (with
a utility of 5) and x3 chooses task t2 (with a utility of
5). The computational complexity of each agent when
solving the DCOP is linear with respect to its number
of actions O(|Di|) (each agent needs to go through all

8Here the index of a function is the set of indices of its scope
variables. Hence, V is a subset of variable indices and we use it
to indicate functions (e.g., f12(x1, x2)) and to specify subsets of
variables (e.g., x12 = {x1, x2}).

9If constraint functions represent costs, as it is often the case
in DCOP literature, then the objective function is a minimization
task and we refer to these functions as cost functions.

actions and pick the one with maximum utility).
As the reader may have noticed, the assumption of

individual utilities taken in scenario 1 does not hold
in many real-world situations. For example, assume
that in the building on �re (t1) there are injured people
that can only be saved by the joint action of the �re
brigade and an ambulance unit. Thus, the �re brigade
and the ambulance unit will receive an utility of 10 only
if both of them are assigned to t1, however, if only the
ambulance is assigned to t1 then this utility is reduced
to 3. Thus, the actions of the two agents in this case are
complementary. In other tasks, the actions of agents
may not be complementary but rather substitutable.
For example, consider that to help injured people
(t2) only one ambulance is required. Then the two
ambulances do not get 5 each when assigned to t2
but rather 5 together. Figure 4 reports the factor
graph corresponding to the DCOP formulation for such
scenario. There is one utility function representing each
task, and each function depends only on the subset of
variables that correspond to agents that can execute
the task. Observe that now the joint agent action that
would be optimal in scenario 1 is no longer optimal
here. Thus, to solve this maximization task, agents
need to collaboratively solve the underlying DCOP.
In the next Section we present the most prominent
complete approaches that can be used when aiming for
the optimal solution.

In the remainder of this section we will discuss a
subset of the available solution techniques for DCOPs.
This is not an exhaustive survey of DCOP solution
approaches but rather an overview of di�erent solution
patterns that are of particular interested for people
working in the �eld. In more detail, we start from
complete solution techniques (e.g., techniques that are
guaranteed to compute the optimal solution) and then
proceed on suboptimal approaches.

3.2. Distributed constraint optimization: com-

plete algorithms

In the following we present three distributed search
algorithms [48, 41, 49] and one distributed inference
algorithm [42] for DCOP solving (more algorithms
have been proposed, we restrict ourselves to these four
to give a representative sample of solving strategies).
Regarding distributed search algorithms, we focus
our attention on asynchronous ones, where agents
communicate among them at any time, and no agent
has to wait for any other agent. We start with ABT
[48] because it was the �rst distributed algorithm for
DCOP solving (assuming a special case). We provide
a kind of informal �but accurate� description of these
algorithms. For a deeper or more formal treatment, the
reader is referred to the original sources.
To be aligned with relevant literature on complete

DCOP approaches, in this Subsection we assume a

The Computer Journal, Vol. ??, No. ??, ????

10 Cerquides, Farinelli, Meseguer, Ramchurn

slightly di�erent �but equivalent� DCOP de�nition,
replacing utility functions by cost functions. An
optimal solution is a complete assignment (involving all
variables) that minimizes the global cost, computed as
the addition of all cost functions. For simplicity, we
also assume that cost functions are binary, although
the following approaches can be easily extended to deal
with cost functions of any arity.

3.2.1. Distributed constraint satisfaction: ABT
There is a special case of distributed optimization
when the possible costs associated with any value
tuple are only two: either 0 or ∞. This case is
known as distributed constraint satisfaction (DisCSP)
because cost functions become constraints made of
permitted/forbidden tuples (any value pair is either
permitted �it costs 0� or forbidden �it costs ∞�),
and the obvious optimum is when all selected variable
assignments are taken from permitted pairs so the
global cost is 0.
The pioneer algorithm to solve this kind of problems

is asynchronous backtracking (ABT) [48]. ABT is
an asynchronous algorithm executed in each agent of
the constraint network. Because it is asynchronous,
during ABT execution agents may change their values
at any time, without generating any malfunction. It
has been proved formally that ABT is a correct and
complete algorithm for DisCSPs solving. In general,
the advantage of search algorithms is that they require
polynomial memory. Their downside is that they
may produce a very large number of small messages,
resulting in large communication overhead.
ABT requires (i) a total agent ordering and (ii)

constraints to be directed. A constraint between two
agents, ai and aj , ai higher than aj in the ordering,
is depicted as a directed link starting from ai �called
the value-sending agent� and arriving to aj , �called the
constraint-evaluating agent�. In this way, it is assured
that the network is cycle-free.
The operation of ABT inside each agent is as follows.

Each agent keeps its own agent view and nogood store.
The agent view of ai is the set of values that ai
believes that are assigned to agents connected to ai
by incoming links. The nogood store is a memory of
received nogoods.10 These nogoods are justi�cations of
why some values are inconsistent.
ABT is based on message passing. The types

and structure of ABT messages appears in Figure 5.
Agents exchange assignments and nogoods, using OK?
and NGD messages. An OK? message contains a
value assignment, while a NGD message contains a

10A nogood is simply a conjunction of assignments that has
been found inconsistent; often nogoods are written in directed
form, as a logical implication with left and right-hand sides. The
right-hand side of the nogood mentions the assignment of the last
agent in the ordering, while the left-hand side is the conjunction
of all the other assignments. This conjunction is the justi�cation
for the last agent in the ordering not to take the mentioned value.

OK?(sender,receiver,value)
NGD(sender, receiver, nogood)
ADDL(sender, receiver)
STOP(sender, receiver)

FIGURE 5: Messages used by the ABT algorithm

VALUE(sender, receiver, value)
COST(sender, receiver, lb, ub, context)
THRESHOLD(sender, receiver, threshold)
TERMINATE(sender, receiver)

FIGURE 6: Messages used by the ADOPT algorithm

nogood. Their usage is as follows. When ai makes an
assignment, it informs those agents connected to it by
outgoing links using OK? messages. When ai receives
OK? messages, it always accepts their information,
updating its agent view accordingly. When ai receives a
NGD message, the contained nogood is accepted if it is
consistent with the agent view of the receiver �including
its own value�, otherwise it is discarded as obsolete. An
accepted nogood is added to the nogood store of the
receiver, to justify the deletion of the value it targets.
When ai cannot take any value consistent with its agent
view, because of the original constraints or because of
the received nogoods, new nogoods are generated as
inconsistent subsets of the agent view, and are sent
to the closest agent involved, causing backtracking.
The simplest way to generate an inconsistent subset
is resolving all nogoods [50]. If ai receives a nogood
mentioning another agent not connected with it, ai
requires to add a link from that agent to ai, using
the ADDL message. From this point on, a link from
the other agent to ai will exist (although there is no
constraint between them). The process terminates
when achieving quiescence, meaning that a solution has
been found, or when the empty nogood is generated,
meaning that the problem is unsolvable. While the
empty nogood is detected by ABT (and the agent
noticing it sends STOP messages to all its neighbors,
which resend it before stopping) quiescence is detected
by external algorithms.

3.2.2. Distributed constraint optimization: ADOPT
When cost functions may output any non-negative
value, we are in the general case of distributed
constraint optimization. In this case, the ADOPT
algorithm [41] is able to solve this problem; it has some
historical relevance because it was the �rst proposed
algorithm for optimal DCOP solving in 2003.
ADOPT (acronym for Asynchronous Distributed

OPTimization) assumes that agents are arranged in a
DFS tree (acronym for Depth First Search tree), which
is a special case of pseudotree with all its links belonging
to the constraint graph. As pseudotree, the DFS tree

The Computer Journal, Vol. ??, No. ??, ????

A tutorial on optimisation for multi-agent systems 11

has the property that constrained agents have to be in
the same branch. In this way, independent subproblems
are naturally located in di�erent branches. The DFS
tree can be found �by distributed algorithms� from a
depth-�rst traversal of the constraint graph, where a
subset of links are the arcs of a tree and the rest of
links are pseudo-arcs. Although more than one path
may exist between two nodes, there is only one path if
we limit ourselves to these arcs. Finding the DFS tree of
minimum height is an NP-hard problem [51], although
several heuristics can be used to compute DFS trees of
reasonable quality.
In a preprocessing phase, the DFS tree is built. At

this point, each agent knows its parent and pseudopar-
ents (ancestors connected by arc/pseudoarcs), and also
its children and pseudo-children (descendants connected
by arcs/pseudo-arcs). Then, ADOPT execution starts.
An agent takes the most promising value, as the one
with minimum lower bound. Agents exchange informa-
tion using VALUE and COST messages. The whole
process terminates when agents �nd a value for which
its bounds are equal.
In the following we describe the ADOPT algorithm

in more detail. We detail its internal data structures,
communication through message passing, and its
coherence detection among messages.
Data Structures. Each agent ai maintains for its
variable xi: its current value vi; its current context Xi

(= recorded current values of its ancestors); the lower
and upper bounds LBi(v) and UBi(v) for all values
v ∈ Di, given that ai takes the value v and its ancestors
take their respective values in Xi; the lower and upper
bounds lbci (v) and ubci (v) for all values v ∈ Di and
children ac; the thresholds THi and th

c
i (v) for all values

v ∈ Di and children ac, which are used to speed up
the solution reconstruction process. Formally, bounds
expressions are,

LBi(v) = δi(v) +
∑

xc∈CHi

lbci (v) LBi = min
v∈Di

{LBi(v)}

UBi(v) = δi(v) +
∑

xc∈CHi

ubci (v) UBi = min
v∈Di

{UBi(v)}

δi(v) =
∑

(xj ,vj)∈Xi

Fij(v, vj) vi = arg min
v∈Di

{LBi(v)}

for all values v ∈ Di, where CHi is the set of children
of agent ai and δi(v) is the sum of the costs of all cost
functions between ai and its ancestors given that ai
takes the value v and the ancestors take their respective
values in Xi.
At the start, each agent xi initializes its current

context Xi to ∅, lower and upper bounds lbci (d) and
ubci (d) to user-provided heuristic values h

c
i (d) (or 0) and

∞, respectively. The current context and lower and
upper bound tables are updated as messages arrive.
Each agent has a threshold, informed by its parent

(except the root, for which it is always ∞). Thresholds

are used to decide when to change value. When an agent
takes a new value, it informs its children of thresholds
associated to its new value.
Communication. ADOPT is based on message
passing. The types and structure of ADOPT messages
appears in Figure 6. When an agent takes a value, it
informs of it to its children and pseudochildren though
VALUE messages. Upon reception, the receiver agent
sends a COST message to its parent, with its lower
and upper bounds and its current context. When an
agent receives a COST message (always from one of its
children), it updates its internal tables, changes value
if needed, and sends again VALUE messages to its
children and pseudochildren, and a COST message to
its parent. This process is repeated at every agent until
the root �nds that its lower and upper bounds are equal.
This means that the optimum cost has been found,
and the algorithm may terminate execution. The root
sends TERMINATE messages to its children, which
send again TERMINATE messages to their children
and terminate execution after reaching that their lower
bounds are equal to their upper bounds. It has been
proved that ADOPT always terminate, producing the
optimum cost [41]. In addition, each agent takes the
value that minimizes the global cost.
Operation. Agents exchange messages, and this
causes agents to update their internal data structures.
When the current context becomes incompatible
(di�ering in the value of at least one variable) with the
context of a child, the lower and upper bounds, and the
context of this child are reinitialized. When the context
of a COST message is compatible with the current
context, its bounds are copied in the internal tables
of the receiver agent. Otherwise, these tables are not
updated, and the message is discarded. After processing
either VALUE or COST message, it recalculates the
remaining lower and upper bounds and takes its best
value using the above equations and sends VALUE and
COST messages.
Due to memory limitations, each agent ai can only

store lower and upper bounds for the current context.
Thus, it reinitializes its bounds each time the context
changes. If its context changes back to a previous one,
it has to update its bounds from scratch. ADOPT
optimizes this process by having the parent of ai send ai
the lower bound computed earlier as threshold THi in
a THRESHOLD message. This optimization changes
the condition for which an agent changes its value.
Each agent ai now changes its value vi only when
LBi(vi) ≥ THi.
This process repeats until the root agent xr reaches

the termination condition LBr = UBr, which means
that it has found the optimal cost. It then sends
a TERMINATE message to each of its children and
terminate. Upon receipt of a TERMINATE message,
each agent operates until reaching the termination
condition, and it sends TERMINATE messages to its
children (which again perform a similar process ...).

The Computer Journal, Vol. ??, No. ??, ????

12 Cerquides, Farinelli, Meseguer, Ramchurn

3.2.3. Distributed constraint optimization:
BnB-ADOPT

The BnB-ADOPT algorithm [49] shares most of the
data structures and messages of ADOPT. The main
di�erence is their search strategies. ADOPT employs
a best-�rst search strategy while BnB-ADOPT employs
a depth-�rst branch-and-bound search strategy. This
di�erence in search strategies is re�ected by how agents
change their values. While each agent ai in ADOPT
eagerly takes the value that minimizes its lower bound
LBi(v), each agent ai in BnB-ADOPT changes its value
only when it is able to determine that the optimal
solution for that value is provably no better than the
best solution found so far for its current context. In
other words, when LB(vi) ≥ UBi for its current value
vi.
The role of thresholds in the two algorithms is also

di�erent. As described earlier, each agent in ADOPT
uses thresholds to store the lower bound previously
computed for its current context such that it can
reconstruct the partial solution more e�ciently. On the
other hand, each agent in BnB-ADOPT uses thresholds
to store the cost of the best solution found so far for
all contexts and uses them to change its values more
e�ciently. Therefore, each agent xi now changes its
value vi only when LBi(vi) ≥ min{THi,UBi}.

3.2.4. Distributed constraint optimization: DPOP

The DPOP (acronym for Distributed Pseudotree
Optimization Procedure) algorithm [42] was the
�rst DCOP inference algorithm based on dynamic
programming. More concretely, DPOP performs
variable elimination on a DFS in a distributed fashion.
Thus, as the previous ADOPT and BnB-ADOPT,
DPOP works on a DFS tree of the constraint graph.
The advantage of inference algorithms with respect to
search approaches is that they require a linear number
of messages. Their downside is that the messages agents
exchange may be exponentially large.
Before describing the algorithm, some concepts are

needed. An assignment or tuple tS with scope S is
an ordered sequence of values, each corresponding to a
variable of S ⊆ X. The projection of tS on a subset
of variables T ⊂ S, written tS [T], is formed from tS by
removing the values of variables that do not appear in
T . This idea can be extended to cost functions: the
projection of fV on T ⊂ V , is a new cost function
fV [T] formed by the tuples of fV removing the values of
variables that do not appear in T , removing duplicates
and keeping the minimum cost of the original tuples in
fV . The concatenation of two tuples tS and t′T , written
tS · t′T , is a new tuple with scope S ∪ T , formed by
the values appearing in tS and t′T . This concatenation
is only de�ned when common variables have the same
values in tS and t′T . The cost of a tuple tX (involving
all variables) is

∑
f∈F f(tX), that is, the addition of the

individual cost functions evaluated on tX (implicitly, it

is assumed that, f(tX) = f(tX [var(f)]), where var(f)
is the set of variables that form the scope of f). Two
operations on functions are de�ned,

1. Projecting out a variable x ∈ V from fV , denoted
fV [−x], is a new function with scope V − {x}
de�ned as projecting fV on V − {x}, fV [−x] =
fV [V − {x}].

2. Adding two functions fV and gW is a new function
f + g with scope V ∪ W and ∀t ∈

∏
xi∈V Di,

∀t′ ∈
∏

xj∈W Dj s.t. t · t′ is de�ned, (f + g)V ∪W (t ·
t′) = fV (t) + gW (t′).

DPOP performs three phases in sequence: (1) DFS
phase. An agent is selected as root (for instance, by a
leader election process). From this agent, a distributed
DFS traversal of the constraint graph is started. At
the end, each agent labels its neighbors as parents,
pseudoparents, children or pseudochildren. (2) UTIL
phase. Each agent (starting from leaves) sends a
UTIL message to its parent, that contain an aggregated
cost function computed adding received UTIL messages
from its children with its own cost functions with parent
and pseudoparents. The sent cost function does not
contain the agent's variable, which is projected out.
(3) VALUE phase. Each agent determines its optimal
value using the cost function computed in phase 2 and
the VALUE message received from its parent. Then, it
informs its children using VALUE messages. The agent
at the root starts this phase.

3.3. Distributed constraint optimisation: sub-

optimal algorithms

In many real world applications we cannot a�ord to
pay the price of an exponential coordination overhead
to achieve optimal solutions. This is particularly
true in applications that must deal with real-time
constraints and dynamism, such as coordination in
disaster management or applications involving low
power devices that exhibit severe restrictions in terms
of computation and communication capabilities.
In these settings, sub-optimal approaches are usually

preferred [43, 44, 45, 46, 47, 52, 53, 54]. These
algorithms are based on local information exchange
and can provide good solutions while being e�cient in
terms of computation and communication. Here we will
brie�y describe two of these approaches: local search
and sub-optimal inference-based approaches. Finally,
we will describe region optimality, a framework used to
de�ne quality guarantees on the sub-optimal solutions
returned by these algorithms.

3.3.1. Local search algorithms
In local search [55] agents initialize their variables with
a random assignment and then they perform a series
of local moves to optimize the objective function. For
example, in Figure 4 assume that agents depart from the
initial assignment x0 = {x1 = t3, x2 = t2, x3 = t3}. A

The Computer Journal, Vol. ??, No. ??, ????

A tutorial on optimisation for multi-agent systems 13

local move involves changing the joint assignment of the
variables corresponding to a subset of the agents (aka
neighborhood) to optimize the local gain (the di�erence
between the sum of local utility functions evaluated
with the new assignment with respect to the previous
one). Now, with respect to Figure 4, consider changing
the assignment of variable x1 from t3 to t1. This local
move has a local gain of 1: there is an increment utility
of 5 when assigning a1 to t1 (given by function f12)
and an utility reduction of 4 when not assigning it to t3
(since a3 is still assigned to t3, function f13 still returns
some utility). This is the only local move involving
a single variable that has a positive gain in this case:
moving a2 from t2 to t1 gives a negative gain of −2 (we
get an utility increment of 3 by assigning it to t1 but we
lost all the utility given by t2 since a3 is not assigned)
and moving a3 from t3 a t2 gets a negative gain of −6.
Thus, the selected local move leads to new assignment
x1 = {x1 = t1, x2 = t2, x3 = t3}. Local search
algorithms iteratively repeat this step until the gain
can not be further improved by performing any local
move (i.e., when the search reaches a local maxima).
Following our example, the algorithm will not perform
any further moves that involve changing the assignment
of a single agent since the obtained solution can not be
improved. Observe that the current assignment is not
optimal, and the algorithm results in a local maxima.
When local search techniques operate in a decentral-

ized context, agents evaluate and perform local moves
in parallel, informing their neighbours of the new as-
signment after each move. Notice that such parallel ex-
ecution without coordination can results in poor system
performance since agents can act based on out-of-date
knowledge about the choices of other agents. Two solu-
tions have been proposed for this problem each of them
leading to a di�erent algorithm in the DCOP commu-
nity: DSA [43] and MGM [44]. DSA introduces stochas-
ticity by only allowing each agent to optimize its local
gain if a random number exceeds a certain activation
probability in that iteration. In contrast, MGM per-
forms an explicit coordination phase to decide who is in
the best position to perform the local move in an agent
neighbourhood (i.e., the agent with the maximum lo-
cal gain). Empirical evidence indicates that MGM has
comparable performance to DSA, however MGM does
not require parameter tuning and it is guaranteed to
have anytime performance [44].
Notice that, the work by Maheswaran et al.[44]

proposes a general framework that advocates game
theoretic approaches for DCOPs. In such framework,
DCOPs are represented as graphical games [56] and
locally optimal solutions for a DCOP are shown to be
Nash equilibria for the corresponding graphical game.
This intuition allows to provide an analytical unifying
framework for the local search techniques described
above (DSA and MGM) as well as many re�nements
of those. Such unifying analytical framework was
proposed by Chapman et al.[57].

FIGURE 7: The messages corresponding to the �rst
iteration of the max-sum algorithm for the factor graph
corresponding to Figure 4.

Whereas DSA and MGM algorithms only consider
moves involving the variable of one single agent (we
refer to them as 1-size algorithms), solutions of higher
quality can be obtained by considering local moves
that involve larger groups of agents. For example, in
Figure 4, consider now local moves involving pairs of
agents. In this case, the algorithm will not be trapped
in the local maximum x1 since agents a2 and a3 can
make a local move that involves their variables at once
and move to x1 = t1, x2 = t1, x3 = t2 with a local gain
of 1. Along this direction, Vinyals and colleagues in
[46] propose a generalization of the above described
algorithms, the DALO algorithm, which allows agents
to asynchronously execute local moves involving any
agent's neighbourhood. When considering groups of
two or more agents, these algorithms require coor-
dination techniques to �nd a joint solution that is
optimal for the whole group. For example, to �nd
the joint local move with highest gain, agents a2 and
a3 need to solve the following optimization problem:
max
x2,x3

(f12(x1 = t1,x2) + f23(x2,x3) + f13(x1 = t1,x3)).

This problem involves coordination as function f23
depends on both decision variables.

3.3.2. Sub-optimal Inference-based approaches
Sub-optimal inference-based approaches o�er a very
di�erent perspective for solving DCOPs. In such
approaches, each agent tries to compute an estimation
of the impact that each of its action has on the
global optimization function (usually called the zi(xi)
function). Such an estimate is build up by iteratively
exchanging messages with its neighbours, and once
the zi(xi) function is built each agent chooses the
assignment that maximizes this function.
The most prominent approach for sub-optimal

inference-based methods in DCOPs is the max-sum
approach. The operations of the max-sum algorithm
are best understood on a factor graph representation

The Computer Journal, Vol. ??, No. ??, ????

14 Cerquides, Farinelli, Meseguer, Ramchurn

FIGURE 8: Reports the messages corresponding to
the �fth iteration of max-sum for the factor graph
corresponding to Figure 4. For this speci�c problem
after �ve iterations max-sum converges to a �xed point
for the messages and to the optimal allocation, this is
not always the case in general cyclic graphs, however for
graphs with a single loop there are strong guarantees
on convergence and solution quality (see [58] for more
details).

of the agents' interactions. In more detail, to compute
the mentioned zi(xi) function, the max-sum algorithm
exchanges two kinds of messages in the factor graph:
variable to function messages qxi→f (xi) and function
to variable messages rf→xj

(xj).
The messages �owing into and out of the variable

nodes within the factor graph are functions that
represent the total utility of the network for each of
the possible value assignments of the variable that is
sending/receiving the message. For example, consider
the factor graph shown in Figure 7, here message
rf13→x1(x1) = [(¬t3, 4), (t3, 8)] represents the utility
that the sub-graph connected to x3 through f13 can
achieve if x1 takes value t3 (i.e., 8) and any other
value di�erent from t3 (i.e., 4). At any time during
the propagation of these messages, agent ai is able to
determine which value it should adopt such that the
sum over all the agents' utilities is maximised. This is
done by locally calculating the function, zi(xi), from
the messages �owing into agent i's variable node:

zi(xi) =
∑

g∈Mi

rg→xi
(xi) (3)

and then �nding argmaxxi
zi(xi). Here Mi is the

set of functions connected to xi. Consider again
the factor graph shown in Figure 7, we have that
z3(x3) = rf13→x3(x3) + rf23→x3(x3) = [(t2, 2), (t3, 8)] +
[(t2, 5), (t3, 5)] = [(t2, 7), (t3, 13)], hence agent a3 will
decide to execute task t3. Notice that with respect
to our example, this is an incorrect decision (we know
from Figure 4 that the optimal allocation requires a3
to execute task t2) and this is due to the fact that

this is the �rst iteration of max-sum and hence variable
must acquire more information to compute a correct
evidence. Furthermore, notice that in general in a
cyclic network the sub-graphs connected to the variable
do depend on each other (i.e., here f13 and f23 are
connected through another path that does not include
x3) hence the computation of zi(xi) is in such cases
only an approximation of the maximum utility that the
system can achieve in the optimal con�guration.

Algorithm 1 max-sum

1: Q ← ∅ {Initialize the set of received variable to function
message}

2: R ← ∅ {Initialize the set of received function to variable
message}

3: while termination condition is not met do
4: for xj ∈ Ni do

5: rf→xj
(xj) = computeMessageToV ariable(xj , fV ,Q)

6: SendMsg(rf→xjj(xj),aj) {aj agent that controls vari-

able xj}
7: end for

8: for g ∈Mi do

9: qxi→g(xi) = computeMessageToFunction(xi, g,R)
10: SendMsg(qxi→g(xi),ag) {ag agent that controls func-

tion g}
11: end for

12: Q← getMessagesFromFunctions()
13: R← getMessagesFromV ariables()
14: x∗i = updateCurrentV alue(xi,R)
15: end while

The operations performed by each agent in the max-
sum approach are reported in Algorithm 1. At each
execution step, each agent computes and sends the
variable to function (Q) and function to variable ((R))
messages. Next, each agent updates the incoming
Q and R messages and updates its current value
by computing the variable assignment that maximises
function zi(xi).
When computing a message to a function, qxi→f (xi),

agent ai (i.e., the agent responsible for variable xi),
sums up all the last messages received by linked
functions except the one received from function f .
This is simply a component wise sum of the values
in the messages (similar to what we have seen for
the computation of zi(xi)). In formulas, qxi→f (xi) =∑

g∈Mi,g 6=f rg→xi(xi). In cyclic graphs, messages are

normalized to prevent them increasing endlessly11.
When computing a message to a variable,

rfV→xj (xj), agent ai projects out variable xj from the
function that results by summing up the function fV
and the last messages received by linked variables (ex-
cept the one received from variable xj)

12. For example,
consider the factor graph reported in Figure 8 which re-
ports the value of messages computed by the algorithm

11This normalization can be performed by subtracting from
each component of a message to function qxi→f (xi) a value

α =

∑
di∈Di

qxi→f (di)

|Di|
so that

∑
di∈Di

qxi→f (di) = 0.
12see Section 3.2 for the de�nition of projection and sum

operators

The Computer Journal, Vol. ??, No. ??, ????

A tutorial on optimisation for multi-agent systems 15

in the �fth iteration13. Consider message rf13→x3(x3),
the value of rf13→x3

(x3 = t2) is given by max([f13(x1 =
t3, x3 = t2) + qx1→f13(x1 = t3)], [f13(x1 = t1, x3 =
t2) + qx1→f13(x1 = t1)]) = max(−1, 3). In formulas,
agent ai considers all the joint variable assignments
(dj , dk1 , · · · , dks) of variables V = (xj , xk1 , · · · , xks),
then for each value d ∈ Dj it computes
rfV→xj

(d) = maxdk1
,··· ,dks

[fV (d, dk1
, · · · , dks

) +∑
k∈(k1,··· ,ks)

qxk→fV (dk)]
The max-sum iterative message passing process

terminates when the messages reach a �xed point
(i.e., new messages are identical to previous messages).
However, the max-sum algorithm is guaranteed to
converge to a �xed point only if the factor graph
is acyclic and in this case it computes the optimal
assignment. In more general settings, there are only
limited guarantees on convergence and solution quality
[58], however extensive empirical results [45, 52] show
that when executed on a loopy factor graph max-sum
often achieves very good solutions. Since in these cases
convergence is not guaranteed the iteration process is
usually performed for an arbitrary (relatively small)
number of coordination cycles.
Finally, notice that in general there can be multiple

joint variable assignments that achieve the optimal
solution. In such cases an extra coordination phase
(usually called value propagation) is required to make
sure agents chooses the same joint assignment [59].
Another approach that works well in practice is to break
the symmetry of the problem by inserting small random
preference for each variable over its domain values [45].

3.3.3. Approximate quality assessment
All the algorithms presented in this section are low-
cost algorithms that can scale to large problems or
return fast solution in dynamic environments at the
cost of returning sub-optimal solutions. In particular,
suboptimal coordination returns good solutions on
average but can also converge to very poor solutions.
Whereas in many applications optimality is not
achievable, it does not mean that guarantees on solution
quality are not important (e.g. some applications may
need to guarantee that the algorithm does not converge
to very poor solutions). Hence, in this section, we
analyse frameworks that can provide such guarantees.
The most prominent approach to provide guarantees

to suboptimal DCOP algorithms is the region optimal-
ity framework [46]. More concretely, a quality guaran-
tee δ ensures that the value of a solution x is within a
give distance δ from the optimal x∗. Region optimality
de�nes worst-case guarantees on the solution quality of
any region optimal solution in any arbitrary region C.
We can regard a collection of neighborhoods C as an
exploration region in a constraint graph. A solution is

13To perform this computation we assume a synchronous
execution model for the agents, i.e. each agent computes at the
same time and then all messages are sent. However, max-sum
can operate also in asynchronous settings [45].

C-optimal when its value cannot be improved by chang-
ing the decision of any group of agents, which we shall
refer to as neighbourhoods, inside the region C.
From this de�nition, the reader can foresee that the

solutions to which algorithms introduced in sections
above converge are region optimal, each on its own
particular region. More speci�cally, MGM and DSA
algorithms are optimal in a region that contains
one neighbourhood per agent, composed of its single
variable. We refer to these algorithms as 1-size region
optimal (e.g. the region is characterised by including
all neighborhoods of size 1). DALO is a generic region
optimal algorithm that �nds a region optimal for any
arbitrary region C. Finally, the solutions returned
by Max-Sum on convergence are region optimal in
the SLT-region � namely, the region that contains
one neighborhood for any subset of variables whose
induced subgraph in the constraint graph contains at
most one cycle [60]. Figure 9 depicts the set of
possible neighborhoods for the DCOP in Figure 4 where
boldfaced nodes in the DCOP constraint graph stand
for variables included in the neighborhood.
Region optimality provides two mechanisms to

compute these quality guarantees that di�er on their
computational cost. The �rst mechanism directly
searches the space of problems to �nd a problem where
the quality of the region optimum with respect to the
global optimum is minimized. The main drawback of
this mechanism is that it requires to generate and solve
a linear program (LP) with a number of constraints
exponential to the number of variables in the largest
neighborhood in the region. Here, we explain the second
mechanism that allows to assess the quality guarantees
in linear time at the cost of loosing bound tightness.
Before describing this method, prior we need to de�ne
some relationships between the scope of the functions in
the DCOP formulation and the region. In more detail,
given a region C, for each fV ∈ F we de�ne:

• cc(fV , C) = |S ∈ C s.t. V ⊆ S|, that is the number
of neighborhoods in C that cover the domain of fV
completely. For example in Figure 9 the constraint
between variable x1 and x2 (f12) is totally covered
by neighborhoods (d) and (g).

• nc(fV , C) = |S ∈ C s.t. V ∩ S = ∅|, that is the
number of neighborhoods in C that do not cover
variables in the domain of fV at all. For example
in Figure 9 the constraint between variable x1 and
x2 (f12) is non-covered at all by neighborhood (c).

Given these de�nitions, the region optimality bound is
de�ned as:

δ =
cc∗

|C| − nc∗
(4)

where cc∗ = minf∈F cc(f,F), nc∗ = minf∈F cc(f, C)
and, for any C-optimal assignment, xC in any DCOP
with non-negative utilities14, the following equation

14Every DCOP that does not have in�nite negative costs can

The Computer Journal, Vol. ??, No. ??, ????

16 Cerquides, Farinelli, Meseguer, Ramchurn

holds:
F (xC) ≥ δ · F (x∗) (5)

In what follows we give some intuition behind Equation
5 (we refer the interested reader to [46] for a detailed
derivation of this bound). Take |C| assignments,
X, inside region C, one per neighbourhood in C.
Without loss of generality, we assume that the set of
variables that vary in each x ∈ X with respect to
xC (corresponding to one neighborhood in the region)
take the same value than in the optimal assignment
x∗. By its de�nition, xC is guaranteed to have greater
value than any assignment x ∈ X and consequently

than their average value: F (xC) ≥
∑

x∈X F (x)

|C| . Then

Equation 4 exploits that: cc∗ is the number of times
that all constraints take the value of the optimal in
these assignments and nc∗ is the number of times that
all constraints take value of xC to de�ne the bound.
Equation 4 directly provides a simple algorithm to
compute a bound δ. Given a region C and a
constraint graph, for each constraint fV ∈ F we can
directly assess cc∗ and nc∗ by computing cc(fV , C)
and nc(fV , C) and taking the minimum. Next we
illustrate the computation of this bound for the DCOP
in Figure 4 when using regions whose neighborhoods are
characterized by its size (the so-called k-size regions):

• For the 1-size region (C = {{x1}, {x2}, {x3}},
corresponding to neighborhoods (a)(b)(c) in Figure
9) none of the constraints is totally covered by any
neighbourhood, then cc∗ = 0 and δ = 0. This
bound is the same for any 1-size region optimal
algorithm (as are DSA and MGM reviewed in
Section 4) meaning that region optimality can
not provide any guarantees for regions containing
neighbourhoods composed of single variables.

• For the 2-size region (C =
{{x1, x2}, {x1, x3}, {x2, x3}}, corresponding to
neighborhoods (d)(e)(f) in Figure 9), each func-
tion is totally covered exactly once (cc∗ = 1) and
the is no neighbourhood that do not cover at all
any function (nc∗ = 0). Hence, cc∗ = 1, nc∗ = 0,
|C| = 3 and the bound in this case is δ = 1

3 ;
• The 3-size region contains a group composed of

all variables (C = {{x1, x2, x3}, corresponding to
neighborhood (g) in Figure 9) and consistently the
bound δ = 1 guarantees optimality in this case.

As the reader may have noticed from Equation 4,
the set of neighborhoods that compose a region is of
central importance because they determine the degree
of dominance of the region optima, hence directly
a�ecting the de�nition of the corresponding quality
guarantees. Along this line, researchers have explored
di�erent criteria, other than size, to characterize
the neighborhoods to be included in a region. For

be normalized to one with all non-negative rewards. However the
analysis is not directly applicable to DCOPs that include hard
constraints.

FIGURE 9: All possible neighborhoods for the DCOP
in Figure 4. Boldfaced nodes stand for variables
included in a neighborhood and boldfaced edges for the
scope of functions totally covered by the neighborhood.

example, the t-distance criterion, proposed in [61],
includes one neighborhood per agent composed of
all agents at distance at most t from this one in
the constraint graph. For example, the 0-distance
neighborhood centered of a1 in the constraint graph
in Figure 9 contains its variable (corresponding to
neighborhood (a)) whereas its 1-distance neighborhood
contains its own variable and the variable of its
direct neighborhoods in the graph, that is x2 and
x3 (corresponding to neighborhood (g)). Lastly, an
alternative trade-o� to size and distance, the so-called
the s-size-bounded distance criterion, was proposed
in [46] which includes for each agent the largest t-
distance region centered on it whose number of variables
does not exceed the limit s. For example, the 2-size-
bounded distance neighborhood of agent a1 in Figure
9 corresponds to the 0-distance neighborhood since
as we have seen the 1-distance neighborhood contains
three variables and hence, exceeds the maximum
size threshold. The experimental results provided in
[46] show how this more �ne grained control of the
complexity of the neighbourhoods provided by the size-
bounded distance criterion leads to better solution
qualities than when employing k-size or t-distance
criteria.
Finally, notice that the quality guarantees provided

by the region optimality framework are very general,
in the sense that are valid for any constraint graph
with the considered agents' interactions (or with any
subset of them), independently of the particular utility
values returned by the constraints (what we shall
refer to as reward structure). Thus, the bound of 1

3
computed by the 2-size region of the DCOP in Figure
4 indeed holds for any DCOP with three decision
variables since it is independent of the reward structure
and considered the complete structure of interactions
(any pair of agents is connected in the corresponding
constraint graph). This, together with the property
that these bounds can be assessed at design time (prior
to the execution of the algorithm) makes these generic-
instance bounds particularly interesting for dynamic
environments or for problems for which little knowledge
is available at design time. However, a much better
bound can be obtained if we restrict our attention to

The Computer Journal, Vol. ??, No. ??, ????

A tutorial on optimisation for multi-agent systems 17

speci�c constraint graph topologies or assuming some
a priori knowledge on the reward structure [62, 63].
For example, Bowring et al. show that the k-size
approximation bounds can be improved by knowing the
ratio between the minimum reward to the maximum
reward [62].

3.4. Challenges and Further Readings

In Sections 3.2 and 3.3 we provided a broad overview
of DCOPs for Multi-Agent System coordination.
Speci�cally, we described what a DCOP is and how
a joint decision making problem can be modelled as
a DCOP. We presented several solution approaches
for DCOPs discussing three main categories: exact
approaches, heuristics and approximate algorithms.
Our overview clearly shows that there are many
solution techniques for solving DCOPs and that they
tackle several aspects of the coordination problem: (i)
complete algorithms can be used when computational
resources are available and it is crucial to achieve an
optimal solution; (ii) suboptimal algorithms provide
fast and light approaches for computing good solutions
in practical applications with scarce resources (i.e.,
robotics or low power devices); and �nally, (iii)
approximate quality assessment over the solutions
returned by these algorithms is particularly useful
for large scale critical operations, when optimality
is not achievable but pathological behaviours of
the algorithms must be avoided (e.g., emergency
management).
As mentioned in Section 3.3.1, there is an interesting

and strong relationship between DCOPs and graphical
games. In this perspective, it is worth noting
that the important problem of computing Nash and
correlated equilibria in graphical games has been
recently addressed by using message passing techniques
that show deep relationships with the inference-based
approaches discussed here. In particular the work
by Ortiz and Kearns [64] proposes a message passing
approach for computing Nash equilibria and the work
by Chapman et al. [65] proposes a message passing
approach to compute pure strategy Nash equilibria that
optimise standard criteria (such as the utilitarian social
welfare function). In the interest of space we do not
expand this theme here but we refer the interested
reader to the above cited references for further readings.
While previous sections present a rich wealth

of solution approaches for DCOPs, there are still
many aspects which are crucial for several practical
applications that are not properly addressed by current
state of the art. In particular, a crucial challenge
for future DCOP techniques is to deal with the
uncertainty that comes from lack of knowledge or
limited perception of the agents when operating in
real world environments. In more detail, the DCOP
formalization we detailed in Section 3 assumes full
knowledge of the rewards for every combination of

variable assignments. In practical applications this
is often a strong assumption and agents typically
have an uncertain estimate of the rewards that they
can achieve given their actions or must learn these
values when acting. Hence the uncertainty must be
somehow captured into the DCOP model and dealt
with in the solution technique. There are a number
of approaches that tackle these issues, in particular,
we refer the interest reader to [66] for approaches that
model uncertainty of the reward and attempts to �nd
optimal solution considering such uncertainty, and to
[67, 68] for approaches that aim at learning unknown
rewards of agents' joint actions.

Regarding quality assessment, we can be broadly
divide most approaches in two main categories:
instance-generic and instance-speci�c approaches. The
former can provide guarantees on solution quality
without running any algorithm on the speci�c problem
instances, as in the described region optimality
framework. In contrast, the latter can only provide
quality guarantees for a solution after processing a
speci�c problem instance. Instance-speci�c approaches
are complementary to instance-generic ones, as they
usually give accurate bounds but only for speci�c
problem instances [54, 47]. In this respect, the Bounded
Max-Sum (BMS) approach is a good representative for
this kind of technique [54]. The main idea behind
BMS is to remove cycles from the original constraint
network by simply ignoring some of the dependencies
between agents. It is then possible to optimally solve
the resulting tree structured constraint network, whilst
simultaneously computing the approximation ratio for
the original problem instance.

Another crucial challenge for future DCOP tech-
niques is to model and handle the dynamism of the
environment. In fact, current DCOP models consider
one shot problems where agents build a DCOP rep-
resentation of the environment, negotiate over a joint
solution and then execute. In most applications the
environment changes whenever agents execute their ac-
tions. For example in applications involving physical
agents (e.g., robotics or emergency management) when
agents execute their action their positions will change
and consequently the constraint graph that describes
the agents' interactions will be di�erent. While many
DCOP techniques have been used in domains with these
characteristics by simply repeating a new optimization
problem at subsequent time steps (see for example [69]),
there are relatively few approaches that explicitly take
dynamism into account. We refer the interest reader to
[70] and [71] for approaches that deal with unexpected
changes in the constraint graph.

Finally, we have not discussed self-emergence and bio-
inspired approaches since they typically involve indirect
coordination, with no direct communication among
agents. We refer the interested reader to [72, 73] for
overviews of these speci�c areas.

The Computer Journal, Vol. ??, No. ??, ????

18 Cerquides, Farinelli, Meseguer, Ramchurn

4. HOW TO ASSIGN TASKS AND RE-

SOURCES: MULTI-AGENT RESOURCE

ALLOCATION

As established in [74]:

Multiagent Resource Allocation (MARA) is
the process of distributing a number of items
amongst a number of agents.

MARA encompasses a wide variety of research top-
ics: (i) preference representation languages; (ii) social
welfare measures; (iii) computational complexity of de-
termining feasible/optimal allocations; (iv) negotiation
protocols; (v) e�cient algorithm design; (vi) mechanism
design; and (vii) implementation, simulation and exper-
imentation of MARA systems. All these topics are thor-
oughly described and reviewed in the survey by Cheva-
leyre et al. [74]. Henceforth, we mainly focus on the
usage of auctions to solve MARA problems, since auc-
tions [75] have been widely and successfully employed
in MAS to allocate tasks and resources. Nonetheless
the reader should keep in mind that auctions are not
the only means of solving MARA problems.
An auction is a protocol that allows agents to indicate

their interests in one or more resources and that uses
these indications of interest to determine both an
allocation of resources and a set of payments by the
agents [76]. The goal of an auction is to allocate
the goods to those who value them most. Therefore
auctions o�er allocation procedures for MAS resource
allocation.
There are several reasons why auctions are widely

employed in MAS. First, they can use the market to
dynamically assess the value of resources whose value
is unknown. Second, auctions are �exible and can be
used to e�ciently allocate complex resources. Third,
auctions can be easily automated: the use of simple
rules reduces the complexity of negotiations, hence
being ideal for computer implementation.
Computer science, and in particular arti�cial

intelligence, has paid special attention to the notion
of markets-as-computation [77], namely the use of a
market-based method, such as an auction, to compute
the outcome to a distributed problem. Along this
line, auctions have been largely, and successfully,
employed to solve a wealth of distributed task
allocation (e.g. collaborative planning [78], formation
of virtual organisations [79] , coordination for robot
navigation [80], coordination in disaster management
[81]), and distributed resource allocation problems,
such as resource allocation in sensor networks [82].
All these market-based distributed systems share the
commonality of being �exible and robust to rapidly
adapt to changes and respond to failures (e.g. refer to
[83]). Furthermore, there is the assumption that agents
participating in auctions bid truthfully.
We take the same stance in this tutorial. We do not

discuss the concern that bidders in an auction might

not report their true valuations15 because of strategic
considerations. We focus on the optimisation problem
faced by an auctioneer that must identify the winner(s)
of an auction: given a set of bids, �nd an allocation
of resources to bidders that maximizes the auctioneer's
revenue. Neither do we discuss the issue that in some
auctions the prices charged from winning bidders di�er
from the bids made, implying that the value of the
optimal allocation is not equal to the revenue for the
auctioneer. However, as argued in [84], the optimisation
problems discussed below are key to designing auction
mechanisms that motivate bidders to report their true
valuations. In those mechanisms payments, namely
prices charged to winning bidders, may di�er from the
bids made. We show a simple example supporting this
observation in Section 4.1.
In what follows, we introduce a case study inspired by

transportation procurement, a domain where auctions,
and in particular combinatorial auctions, have been
widely applied (e.g. [85]). We introduce several
problems appearing in our case study and show how
to solve them by means of auctions. This part of the
tutorial ends with some recommendations on readings
that may help the reader to delve further into auctions.

4.1. Case study: News distribution

Consider a company, News Ltd., which is in charge of
distributing newspapers to the newsagents of a zone.
The company itself hauls newspapers to newsagents,
where they are sold to customers. News Ltd. owns
two depots, W1 and W2, as pictured in Figure 10. As
newsagents request to be serviced, News Ltd. must
decide whether to ship the newspapers from either
depotW1 or depotW2. This decision will depend on the
transportation costs from each depot and on the revenue
generated by each requesting newsagent. Our purpose
is to design an auction protocol that helps News Ltd.
make such a decision. With this aim, in what follows
we will gradually show several auction alternatives that
will serve to illustrate di�erent optimisation problems.
All the auctions introduced below will follow a

common pattern divided into four sequential steps 16:

1. Bid call. The auctioneer broadcasts a call for bids
to serve some customer(s) and declares when the
auction will close.

2. Bid collection. Depots transmit their bids to the
auctioneer, and the auctioneer collects the bids.
Depots bid trutfhully and each bid is computed by
each depot as the cost of delivering newspapers to
a set of customers.

15A bidder's valuation is a function that de�nes the bidder's
preferences for the objects at auction.

16As shown in [77], in general we can think of all auctions as
being instantiations of a general auction process, which is broken
down into sub-processes. Thus, an auctioneer equipped with this
model would be able to run any kind of auction by instantiating
each process appropriately. The interested reader should refer to
[77] for details about this abstract auction process model.

The Computer Journal, Vol. ??, No. ??, ????

A tutorial on optimisation for multi-agent systems 19

FIGURE 10: Single customer scenario

Depots

W1 W2

Cheapest route servicing A 12 7 8 3

TABLE 1: Single customer bids

3. Winner determination. Upon collection of all
bids, the auctioneer determines, depending on the
auction mechanism, who gets which customers
(namely, an allocation).

4. Clearing. The auctioneer informs the depots about
the resulting allocation.

Notice that since bidders only bid once, all auction
protocols that we consider next are called one-shot.

4.1.1. Scenario 1: Handling a single customer
Consider the scenario depicted in Figure 10. A
single customer, newsagent A, requests to be delivered
newspapers. News Ltd. must decide whether to serve
that request from either depot W1 or depot W2. The
auction starts by issuing a bid call to serve customer
A. After the bid call, the auctioneer collects two bids:
W1's bid, BID(〈W1, A〉, 12), indicates that its cost to
serve A is 12 ; W2's bid, BID({A}, 8), indicates that
its cost to serve A is 8. Each bid is a pair whose �rst
component is a journey and its second component is the
cost of the journey. For instance, BID(〈W1, A〉, 12) is
an o�er to go from W1 to A, and back from A to W1.
Thus, the cost considers that there is a cost to deliver
to A (6) plus a cost to return to W1 (6). The winner
determination problem faced by the auctioneer is rather
straightforward: to pick up the bid that minimises the
cost of the service. Then, the auctioneer would clear the
auction by informing W1 and W2 about the resulting
allocation: W2 will deliver newspapers to A. Thus, the
cost of the allocation is 8.
In general, given a set of n bids, the winner

determination problem (WDP) will consist in picking
up the bid with minimum cost. Therefore, the
computational complexity of the WDP is O(n).
Consider now that customers are sel�sh and hence

may not necessarily bid truthfully. In that case we could
select the winner of the auction solving the same winner
determination problem described above, but using a
di�erent clearing. Thus, we could employ a second-price
auction, which allocates the resource to the winner,
but has him pay the second highest price. Although
the price that the winner would pay in this auction is
di�erent from the auction described above, both solve
exactly the same winner determination problem. In
general, this applies to all the Groves mechanisms, and

FIGURE 11: Multiple customer scenario

Depot

Cheapest route servicing W1 W2

A 12 7 8 3

B 8 3 14 7

TABLE 2: Parallel auctions bids

in particular to the Vickrey-Clarke-Groves mechanism
[76].

4.1.2. Scenario 2: Handling multiple customers with
parallel auctions

Consider now a scenario where News Ltd. must serve
multiple customers such as depicted in Figure 11.
There, two customers, newsagents A and B, request
to be delivered newspapers. In this case, News Ltd.
decides to run two separate auctions in parallel, one
per customer. After the two separate bid calls, the
auctioneer of each of the auctions collects two bids
as shown in Table 2. The auctioneer collecting bids
to serve customer A receives the same bids as in the
single-customer scenario. The auctioneer collecting
bids to serve customer B receives two bids: W1's bid,
BID(〈W1, B〉, 8), indicates that its cost to serve B
is 8; W2's bid, BID(〈W2, B〉, 14), indicates that its
cost to serve B is 14. Likewise in the above-described
scenario, the winner determination problem faced by
each auctioneer is rather straightforward: to pick up the
bid that minimises the cost of the service. Therefore,
the auction to serve customer A would allocate the
service to W2, whereas the auction to serve customer
B would allocate the service to W1. Thus, the total
cost of the allocation is 16.
In this case, each auctioneer faces the very same

optimisation problem than the auctioneer of the single-
customer scenario. In general, if there are m resources
and n agents, the computational complexity of parallel
auctions as an allocation procedure is O(m · n).

Routes

None Only A Only B A & B

W1 0 7 12 7 8 7 14 3

W2 0 3 8 7 14 7 15 7

TABLE 3: Combinatorial auction bids. Service to both
A and B should be guaranteed.

The Computer Journal, Vol. ??, No. ??, ????

20 Cerquides, Farinelli, Meseguer, Ramchurn

4.1.3. Scenario 3: Handling multiple customers with
combinatorial auction

At this point, the reader might have noticed that the
cost of the allocation obtained in our latest scenario
can be decreased had bidders been allowed to bid to
service more than a single customer. Consider again
Figure 11. Regarding W1, its cost to service both A
and B is 14 that we split into the following costs: from
W1 to A (6), from A to B (4), and from B back to
W1 (4). Regarding W2, its cost to service both A and
B is 15, after adding the cost from W2 to A (4), from
A to B (4), and from B back to W2 (7). Therefore,
allocating both delivery services to either W1 or W2

would be more advantageous to News Ltd. than the
allocation obtained by the parallel auctions considered
in the latest scenario.
In combinatorial auctions (CA) [86] di�erent goods

can be traded simultaneously and bidders can submit
bids for subsets of the goods at trade.
Then News Ltd. sets up a CA where bidders are

allowed to bid for bundles (subsets) of the services in
R = {A,B}. Thus, News Ltd. would run a single
auction this time. In the bid call, both W1 and W2

are requested to communicate the cost of servicing each
possible subset of R: (1) to do no delivery at all; (2)
to deliver only to A; (3) to deliver only to B; and (4)
to deliver to both A and B. In this case, the winner
determination problem faced by the auctioneer is a
combinatorial optimization problem: choosing which
bidder to award to each service so as to minimize the
overall total cost.
In general, let R be a set of resources and A a set of

agents. Let 2R be the powerset (set of subsets) of R. For
each agent a ∈ A and each subset of resouces R′ ∈ 2R

we de�ne: (1) pa,R′ , the cost for agent a to provide the
set of resources R′ ; and (2) xa,R′ , a binary decision
variable that takes on value 1 if agent a is allocated the
set of resources R′ and 0 otherwise. Solving the WDP
for a CA amounts to solving the following integer linear
program:

minimize
∑
a∈A

∑
R′∈2R

pa,R′ · xa,R′

subject to
∑

R′∈2R
xa,R′ = 1 ∀a ∈ A

∑
a∈A

∑
R′⊇{r}

xa,R′ = 1 ∀r ∈ R

xa,R′ ∈ {0, 1} ∀a ∈ A,∀R′ ∈ 2R

The �rst constraint guarantees that each agent is
assigned a single subset of resources. The second
constraint guarantees that each resource is assigned to
one and only one agent.
The approach of submitting each possible cost to

the auctioneer can be adopted when the number of
resources at trade is small. However, as the number of
resources at trade increases, it turns out infeasible that

the agents communicate 2R values to the auctioneer
to provide their costs in full detail. Thus, it is
necessary to de�ne a language that allows for a succinct
communication of the costs of each agent to the
auctioneer. Such languages are known as bidding
languages. The reader interested in learning more
about bidding languages for combinatorial auctions is
suggested to read [87]. To illustrate the concept of
bidding language we provide an example, known as the
OR language and the corresponding WDP.
Given a set of resources R = {r1, . . . , rm} and a set of

agents A, the OR language allows each agent to submit
as many bids as she wants for di�erent subsets of goods.
The auctioneer is free to select as many as she wants to
be in the winning set. Thus, the bids of all agents are
included into a set of bids B = {〈R1, p1〉, . . . , 〈Rn, pn〉},
where R1, . . . , Rn ⊆ 2R and p1, . . . , pn are the bid
prices.
We now show how to map the WDP for a CA using

the OR language into integer programming (IP) [15].
Let xi be a decision variable that takes on value 1 if
bid 〈Ri, pi〉 is chosen as a winning bid, and 0 otherwise.
Now solving the WDP for a CA using the OR language
amounts to solving the following integer program:

minimize
∑
i=1

pi · xi

subject to
∑

Ri⊇{r}

xi = 1 ∀r ∈ R

xi ∈ {0, 1} ∀i ∈ B

The (decision problem underlying the) WDP for
standard CAs is known to be NP-complete, with
respect to the number of goods [86]. NP-hardness
can, for instance, be shown by reduction from the well-
known set packing problem.
Back to the problem in our scenario, after running

the integer program above, the auctioneer would choose
the bid submitted by W1 to serve both customers,
BID(〈W2, A,B〉, 14), as the winning bid and would
discard all bids submitted byW2. Thus, the total cost of
the allocation is 14, which is less than the allocation cost
obtained through parallel auctions. Here the auctioneer
bene�ts from the fact that bidders have non-additive
valuation functions. Indeed notice that the bid to
service A plus the bid to service B separately is greater
than the bid to service A and B altogether for both
W1 and W2 (e.g. considering W1, its o�ers to serve A
and B separately �BID(〈W1, A〉, 12), BID(〈W1, B〉, 8)
�add up to 20, while its o�er for the bundle is 14 �
BID(〈W1, A,B〉, 14)). In our example, we say that
the services at trade are complementary. In general,
CAs are interesting when the goods at trade are either
complementary (e.g. a left shoe and a right shoe) or
substitutable (e.g. two tickets to di�erent movies that
you like, playing at the same time).
CAs lead to more e�cient allocations by avoiding the

exposure problem inherent to sequential and parallel

The Computer Journal, Vol. ??, No. ??, ????

A tutorial on optimisation for multi-agent systems 21

auctions. This problem occurs when bidders fail to
obtain complementary goods (e.g. imagine that a
bidder manages to buy a left shoe but not the right
shoe). Nonetheless, there are drawbacks that hinder
their application. On the one hand, such as the
computational complexity of the WDP and the size of
the valuation function to communicate to the auctioneer
(for each bidder, there is a bid per element in 2R).
To cope with the �rst problem, there are two

main alternatives: (1) require bids to come from a
restricted set, guaranteeing that the WDP can be
solved in polynomial time17; and (2) use heuristic
methods to solve the problem (this works pretty well
in practice, making it possible to solve WDPs with
many hundreds of goods and thousands of bids). As
argued before, bidding languages [87] can cope with
the second problem, providing a more e�cient way of
communicating a value function.

4.1.4. Scenario 4: Including valuations and costs via
a combinatorial exchange

The scenarios analysed so far have not taken into
account that customers may be di�erently valued
by News Ltd.. For instance, consider again the
scenario depicted in Figure 10 along with the bids
issued by W1 and W2, namely BID(〈W1, A〉, 12) and
BID(〈W2, A〉, 8). Moreover, say that the auctioneer
knows also the value of customer A (e.g. in terms
of the sale price to be charged to the customer), and
hence she intends to take into account this value to
determine the winner of the auction. First, say that
the valuation of customer A is 3. In that case, the
auctioneer would allocate the delivery to A neither to
W1 nor to W2 because that would bring a loss (at least
−5). However, if the valuation of customer A were 15,
then the auctioneer would allocate the service to W2 to
generate a revenue of 7 (15− 8).
Going one step further, we consider again the scenario

involving multiple customers depicted in Figure 12, but
now we count on the valuations of customers as follows:
v(∅) = 0, v({A}) = 3, v({B}) = 10 and v({A,B}) =
13. Again, the winner determination problem faced
by the auctioneer is a combinatorial optimization
problem: choosing which services to award to each
bidder so as to maximise the bene�t (as the di�erence
between customer valuation and service costs). We can
regard customers' valuations as o�ers to buy delivery
services and depots' bids as o�ers to sell delivery
services. Hence, in fact the auctioneer is dealing
with a combinatorial exchange (CE) [89] because it
involves combinatorial o�ers involving multiple buyers
(the customers) and multiple sellers (the delivery
service providers). A combinatorial exchange is a
generalisation of a CA where participanting agents are
allowed to both buy and sell (bundles of) resources, or

17The problem is that these restricted sets must be very
restricted (see [88]).

FIGURE 12: Combinatorial exchange scenario

just buy or just sell.
In general, let R be a set of m resources and A a set

of agents. As in section 4.1.3, the bids of all agents are
included into a set of bids B = {〈R1, p1〉, . . . , 〈Rn, pn〉},
where R1, . . . , Rn ⊆ 2R are sets of resources and
p1, . . . , pn are the prices requested to provide each of
those sets.
Similarly, valuations are included into a set of

valuations V = {〈Q1, v1〉, . . . , 〈Qm, vm〉}, such that
each valuation Vl ∈ V takes the same form as a bid.
However, unlike bids, given a valuation 〈Ql, vl〉, Ql is
the set of resources requested and vl indicates how much
the buyer is willing to pay for getting Ql (the valuation
price). Now we de�ne two types of decision variables:
xi, to decide whether bid Bi is taken or not; and yl,
to decide whether valuation Vl is taken or not. Then,
solving the WDP for a CE in the OR language amounts
to solving the following integer linear program:

maximize

|V |∑
l=1

vl · yl −
|B|∑
i=1

pi · xi

subject to
∑

Ql⊇{r}

yl =
∑

Ri⊇{r}

xi ∀r ∈ R

xi, yl ∈ {0, 1} ∀Bi ∈ B , ∀Vl ∈ V

The function to maximize computes the bene�t of an
allocation. The �rst constraint ensures that the demand
and supply of resources are balanced.
The interested reader may refer to [89] for a more

general, compressed formulation of the WDP for CE
that allows the trading of multiple units of resources.
Back to our example in Figure 12, an auctioneer

solving the WDP of the CE by means of the linear
program above would allocate W1 to service customer
B, but would leave customer A without service. The
reason is that the valuation for A is too low. Given
the bids and valuations in this scenario, allocating
a delivery service to A would lead to an allocation
with negative value: −1, which results from adding
the valuations for A and B and subtracting the
combinatorial bid issued by W1. Instead, allocating a
service only to B has value 2 (10, the value for B, minus
8, corresponding to the single bid for B sent by W1).
Notice that this allocation di�ers from the one formerly
obtained by a CA when disregarding valuations.

The Computer Journal, Vol. ??, No. ??, ????

22 Cerquides, Farinelli, Meseguer, Ramchurn

Routes

None Only A Only B A & B

W1 0 7 12 7 8 3 14 7

W2 0 3 8 7 14 7 15 7

Value 0 7 3 7 10 3 13 7

TABLE 4: Combinatorial exchange bids. The best
option is not to service A.

4.2. Discussion

Notice that from a designer's point of view, choosing (or
de�ning) a market price system (e.g. an auction) and
de�ning the bidding functions for the agents involved
in the computational market become central issues.
The methodology described in [90] provides valuable
guidelines as to how to tackle this endeavour.
As discussed in [91] (see Chapter 3), the motiva-

tion for market-based approaches has been to pro-
duce e�cient solutions to distributed problems. Hence
computational aspects were investigated before game-
theoretical properties of market mechanisms. Nonethe-
less, more recently there is an ongoing e�ort to inte-
grate game-theoretic concerns and computational con-
cerns in the emerging �eld of computational mechanism
design (CMD) (refer to [91, 92, 93] for excellent in-
troductions to the �eld). The challenge of CMD is to
make mechanisms computationally feasible while main-
taining useful game-theoretical properties such as e�-
ciency (allocating the goods to those who value them
most) and strategy-proofness (enforcing agents to re-
port truthfully). Unlike the auction approaches studied
in this section, CMD does not assume that the agents
composing a MAS necessarily cooperate to �nd a good
system-wide solution. Instead, CMD assumes that the
designer might not be able to enforce bidding strategies
on the market participants.

4.3. Further readings and advanced concepts

Sections 4.1 and 4.2 have illustrated concepts and
simple techniques that arise to allocate resources among
di�erent agents. In this section we provide references
that could prove valuable for the interested reader and
quickly review some additional techniques and lines of
work.

4.3.1. Further readings
Multi-agent resource allocation can be enclosed into
the broader �eld of computational social choice. [94]
provides an introductory overview of the main ideas
and problems of this �eld that lies in the intersection
of computer science, arti�cial intelligence and social
choice. [74] provides a review of the MARA �eld wider
than the short overview presented in this section.
Parsons et al. [77] survey the auction literature,

primarily from the viewpoint of computer scientists
who are interested in learning about auction theory.

Furthermore, they also provide pointers into the
economics literature for those who want a deeper
technical understanding. Additionally to that survey,
we also recommend the book on combinatorial auctions
by Cramton et al. [95] for a wide, exhaustive
perspective of the �eld.
In this section, we have mostly concentrated on

auctions as a coordination tool in cooperative multi-
agent systems. Latest advances on this area are
reported in [96]. Koenig states that the standard
testbed of auction based coordination systems is multi-
robot routing [97]. A seminal paper on auctions for
multi-robot routing is [98].
Mechanism design is a large area of research in

economics and computer science. For detailed technical
discussions, the interested reader is referred to the
excellent introductions in [91, Chapter 2], [99], [100]
and the most recent survey on mechanism design for
computer scientists in [101]. As to computational
mechanism design, a good starting point is [91, Chapter
3], though we de�nitely recommend the reader to
dive into [76, Chapter 10] for further discussions into
implementation issues as well as for a description
of several computational applications of mechanism
design.

4.3.2. Advanced optimisation problems
This tutorial is only intended to help the reader learn
the foundations of some of the problems that multi-
agent resource allocation poses. The reader might be
interested in exploring further optimisation problems
de�ned by other resource allocation mechanisms in the
literature. Below we provide a selection of articles
that by no means intends to be exhaustive, but only
representative of general problems:

• Supply chain formation. Supply chain formation is
a highly relevant problem in which auctions are the
method of choice. Quoting [102] "A supply chain is
a network of production and exchange relationships
that spans multiple levels of production. Whenever
we have a producer that buys inputs and sells
outputs, we have a supply chain. Supply
chain formation is the process of determining the
participants in the supply chain, who will exchange
what with whom, and the terms of the exchanges."
The problem is clearly of utmost importance
for today's networked economy. Mixed multi-
unit combinatorial auctions (MMUCAs) [103]
generalize several types of auctions and are a
very convenient tool for automating supply chain
formation. However, the winner determination
problem is solved by a single centralized auctioneer
and requires extensive computational resources.
Diminishing the negative e�ect of these two issues
is subject of current research. Thus, approximate
distributed solvers, based in parallel auctions
[102] or max-sum [104, 105], have been proposed

The Computer Journal, Vol. ??, No. ??, ????

A tutorial on optimisation for multi-agent systems 23

for certain types of MMUCAs. Despite their
expressiveness, one of the main drawbacks of
MMUCAs is that they are not able to manage
time information, although there is ongoing work
to extend the bidding language and WDP in that
direction [106]. Another relevant issue in supply
chain formation is dealing with eventual failure
of agents to ful�ll their commitments. Dealing
with failures can be done by either taking into
account the possibilities of failure during the supply
chain formation process [107, 108] or by providing
the agents with ways to repair the supply chain
whenever failure happens [109].

• Trust-based resource allocation. Ramchurn et al.
[110] extend combinatorial exchanges to include
the trust and reputation of agents in a task
allocation setting. Furthermore, the authors design
a mechanism to cope with self-interested agents
that is aimed at preventing agents' failures when
performing tasks.

• Robust resource allocation. The work in [108, 111]
introduces robust auctions, which can take into
account the cost of repairing failures occurring in
an allocation. Thus, the WDP is designed to take
into account such costs to compute a robust enough
allocation at the price of losing some revenue.

5. SUMMARY

In this section we summarise the key messages from the
tutorial and provide the reader with an overview of the
di�erent approaches she could use to solve multi-agent
optimisation problems. In more detail, in this paper we
presented multi-agent optimisation techniques that can
be used to form collectives of agents, coordinate their
actions, and allocate resources among themselves. It is
clear that there are overlaps and di�erences in the types
of problems these techniques aim to solve. For example:

1. Assembling a collective of agents and assigning
actions to each agent in a decentralised manner are
two closely related problems in that in both cases,
the optimal grouping of agents to perform some
tasks is the main objective. However, the research
agendas for these two problems target di�erent
issues. Thus, while research on coalition formation
focuses on the combinatorics of the formation of
groupings, the distributed constraints optimisation
algorithms essentially focus on the algorithmics of
the communication protocols needed to reach an
optimal assignment of tasks or resources to agents.
In some cases, it may even be possible to use
the combinatoric techniques developed in coalition
formation within DCOP algorithms to speed up the
computation [14].

2. Allocating resources to agents (whether combina-
torial or not) could either be carried out using auc-
tions or DCOPs. While auctions are deemed ap-
propriate for competitive settings where each agent

is vying for some resource and is unlikely to re-
veal its private information to gain an advantage,
DCOPs are more appropriate when the agents aim
at maximising a system wide objective and might
be willing to exchange messages containing some
of their private information to do so. Nonetheless,
privacy is considered as a crucial issue in DCOP
solution techniques and there are approaches that
analyse the privacy-e�ciency tradeo� (e.g.,[112])
or propose the use of DCOPs for issues related to
mechanism design, such as devising a faithful dis-
tributed implementation for e�cient social choice
(e.g., [113]). These approaches lead toward inter-
esting research directions where DCOPs could be
used as e�cient tools for resource allocation prob-
lems that are typically solved by using auctions.

Now, given a particular problem, a practitioner would
also need to decide what are the trade-o�s that apply
to a given technique based on the computational costs
that this may involve. Thus, the need for decentralised
decision making should be balanced against the cost
of communication that may incur while the need
for optimality may need to be balanced against the
computation time allowed in the chosen scenario. While
the �nal decision will largely depend on the context,
our hope is that this survey can act not only as a
recipe of solutions for real-world problems but also help
those new to these research areas identify how their
work correlates with the whole multi-agent optimisation
research space.

6. FUNDING

This work was carried out as part of the following
projects: ORCHID (funded by EPSRC EP/I011587/1),
TIN2009-13591-C02-02, Generalitat de Catalunya 2009-
SGR-1434, COR (TIN2012-38876-C02-01), AT (CON-
SOLIDER CSD2007-0022), MECER (201250E053).

7. ACKNOWLEDGEMENTS

We would like to thank Meritxell Vinyals for her
extensive contribution on section 3.3. All the credit for
that section should be given to her, and any remaining
mistakes are the sole responsibility of the authors.

REFERENCES

[1] Lu, T. and Boutilier, C. (2012) Matching models for
preference-sensitive group purchasing. Proceedings of
the 13th ACM Conference on Electronic Commerce, pp.
723�740. ACM.

[2] Vinyals, M., Bista�a, F., Farinelli, A., and Rogers,
A. (2012) Coalitional energy purchasing in the smart
grid. Proceedings of the IEEE International Energy
Conference & Exhibition (ENERGYCON 2012), pp.
848�853.

[3] Chalkiadakis, G., Robu, V., Kota, R., Rogers, A.,
and Jennings, N. (2011) Cooperatives of distributed

The Computer Journal, Vol. ??, No. ??, ????

24 Cerquides, Farinelli, Meseguer, Ramchurn

energy resources for e�cient virtual power plants.
Proceedings of the 10th International Conference on
Autonomous Agents and Multiagent Systems, pp. 787�
794. IFAAMAS.

[4] Shehory, O. and Kraus, S. (1998) Methods for task
allocation via agent coalition formation. Arti�cial
Intelligence, 101, 165�200.

[5] Shehory, O. and Kraus, S. (1995) Task allocation
via coalition formation among autonomous agents.
Proceedings of the 14th International Joint Conference
on Arti�cial Intelligence, pp. 655�661.

[6] Sandholm, T. W., Larson, K., Andersson, M.,
Shehory, O., and Tohme, F. (1999) Coalition structure
generation with worst case guarantees. Arti�cial
Intelligence, 111, 209�238.

[7] Chalkiadakis, G., Elkind, E., and Wooldridge, M.
(2011) Computational aspects of cooperative game
theory. Synthesis Lectures on Arti�cial Intelligence and
Machine Learning, 5, 1�168.

[8] Chalkiadakis, G., Markakis, E., and Boutilier, C. (2007)
Coalition formation under uncertainty: Bargaining
equilibria and the Bayesian core stability concept.
Proceedings of the 6th International Joint Conference
on Autonomous Agents and Multi-Agent Systems, pp.
400�407. IFAAMAS.

[9] Rahwan, T. and Jennings, N. R. (2007) An algorithm
for distributing coalitional value calculations among
cooperating agents. Arti�cial Intelligence, 171, 535�
567.

[10] Knuth, D. E. (2004) Generating all n-tuples. Addison-
Wesley.

[11] Voice, T., Ramchurn, S., and Jennings, N. (2012) On
coalition formation with sparse synergies. Proceedings
of the 11th International Conference on Autonomous
Agents and Multiagent Systems, pp. 223�230. IFAA-
MAS.

[12] Dang, V. and Jennings, N. (2004) Generating
coalition structures with �nite bound from the optimal
guarantees. Proceedings of the 3rd International Joint
Conference on Autonomous Agents and Multiagent
Systems, pp. 564�571. IEEE Computer Society.

[13] Dang, V. D., Dash, R. K., Rogers, A., and
Jennings, N. R. (2006) Overlapping coalition formation
for e�cient data fusion in multi-sensor networks.
Proceedings of 21st National Conference on Arti�cial
Intelligence (AAAI-06), pp. 635�640. AAAI Press.

[14] Ramchurn, S. D., Polukarov, M., Farinelli, A.,
Jennings, N., and Trong, C. (2010) Coalition formation
with spatial and temporal constraints. Proceedings of
the 9th International Joint Conference on Autonomous
Agents and Multi-Agent Systems (AAMAS 2010), pp.
1181�1188. IFAAMAS.

[15] Hillier, F. S. and Lieberman, G. J. (2009) Introduction
to Operations Research. McGraw-Hill.

[16] Rahwan, T., Michalak, T., Jennings, N., Wooldridge,
M., and McBurney, P. (2009) Coalition structure
generation in multi-agent systems with positive
and negative externalities. Proceedings of the
21st International Joint Conference on Arti�cial
Intelligence, pp. 257�263. Morgan Kaufmann.

[17] Elkind, E., Chalkiadakis, G., and Jennings, N.
(2008) Coalition structures in weighted voting games.

Proceedings of the 18th European Conference on
Arti�cial Intelligence Frontiers in Arti�cial Intelligence
and Applications, pp. 393�397. IOS Press.

[18] Rahwan, T., Ramchurn, S., Jennings, N. R., and
Giovannucci, A. (2009) An anytime algorithm for
optimal coalition structure generation. Journal of
Arti�cial Intelligence Research, 34, 521�567.

[19] Yun Yeh, D. (1986) A dynamic programming approach
to the complete set partitioning problem. BIT
Numerical Mathematics, 26, 467�474.

[20] Rahwan, T. and Jennings, N. R. (2008) An improved
dynamic programming algorithm for coalition structure
generation. Proceedings of the 7th International
Conference on Autonomous Agents and Multi-Agent
Systems, pp. 1417�1420. IFAAMAS.

[21] Sandholm, T., Larson, K., Andersson, M., Shehory,
O., and Tohmé, F. (1998) Anytime coalition structure
generation with worst case guarantees. Proceedings of
the 15th National Conference on Arti�cial Intelligence,
pp. 46�53. AAAI Press / The MIT Press.

[22] Rahwan, T. and Jennings, N. R. (2008) Coalition
structure generation: Dynamic programming meets
anytime optimisation. Proceedings of the 23th AAAI
Conference on Arti�cial Intelligence, pp. 156�161.
AAAI Press.

[23] Michalak, T. P., Sroka, J., Rahwan, T., Wooldridge, M.,
McBurney, P., and Jennings, N. R. (2010) A distributed
algorithm for anytime coalition structure generation.
Proceedings of the 9th International Conference on
Autonomous Agents and Multiagent Systems, pp. 1007�
1014. IFAAMAS.

[24] Ieong, S. and Shoham, Y. (2005) Marginal contribution
nets: a compact representation scheme for coalitional
games. Proceedings of the 6th ACM conference on
Electronic commerce, pp. 193�202. ACM.

[25] Ohta, N., Iwasaki, A., Yokoo, M., Maruono, K.,
Conitzer, V., and Sandholm, T. (2006) A compact
representation scheme for coalitional games in open
anonymous environments. Proceedings of 21st National
Conference on Arti�cial Intelligence, pp. 697�702.
AAAI Press.

[26] Demange, G. and Wooders, M. (2005) Group
Formation in Economics: Networks, Clubs, and
Coalitions. Cambridge University Press.

[27] Demange, G. (2004) On group stability in hierarchies
and networks. Journal of Political Economy, 112, 754�
778.

[28] Greco, G., Malizia, E., Palopoli, L., and Scarcello,
F. (2011) On the complexity of core, kernel, and
bargaining set. Arti�cial Intelligence, 175, 1877�1910.

[29] Chalkiadakis, G., Markakis, E., and Jennings, N. R.
(2012) Coalitional stability in structured environments.
Proceedings of the 11th International Conference on
Autonomous Agents and Multiagent Systems, pp. 779�
786. IFAAMAS.

[30] Matthews, T., Ramchurn, S., and Chalkiadakis, G.
(2012) Competing with humans at fantasy football:
team formation in large partially-observable domains.
Proceedings of the 26th Conference on Arti�cial
Intelligence, pp. 1394�1400. AAAI press.

[31] Weiss, G. (2013) Multi-Agent Systems. MIT Press.

The Computer Journal, Vol. ??, No. ??, ????

A tutorial on optimisation for multi-agent systems 25

[32] Rahwan, T. (2007) Algorithms for Coalition Formation
in Multi-Agent Systems. PhD thesis University of
Southampton.

[33] Ueda, S., Iwasaki, A., Yokoo, M., Silaghi, M.-C., Hi-
rayama, K., and Matsui, T. (2010) Coalition structure
generation based on distributed constraint optimiza-
tion. Proceedings of the 24th AAAI Conference on Ar-
ti�cial Intelligence. AAAI Press.

[34] Nair, R., Tambe, M., Yokoo, M., Pynadath, D. V., and
Marsella, S. (2003) Taming Decentralized POMDPs:
Towards E�cient Policy Computation for Multiagent
Settings. Proceedings of the 18th International Joint
Conference on Arti�cial Intelligence, pp. 705�711.
Morgan Kaufmann.

[35] Bernstein, D. S., Zilberstein, S., and Immerman,
N. (2000) The complexity of decentralized control of
markov decision processes. Proceedings of the 16th
Conference in Uncertainty in Arti�cial Intelligence, pp.
32�37. Morgan Kaufmann.

[36] Srivastava, S., Immerman, N., and Zilberstein, S.
(2011) A new representation and associated algorithms
for generalized planning. Arti�cial Intelligence, 175,
615�647.

[37] Kumar, A., Zilberstein, S., and Toussaint, M.
(2011) Scalable multiagent planning using probabilistic
inference. Proceedings of the 22nd International Joint
Conference on Arti�cial Intelligence, pp. 2140�2146.
IJCAI/AAAI.

[38] Dechter, R. (2003) Constraint Processing. Morgan
Kaufmann.

[39] Farinelli, A., Vinyals, M., Rogers, A., and Jennings,
N. (2013) Distributed search and constraint handling.
In Weiss, G. (ed.), Multiagent Systems: A Modern
Approach to Distributed Arti�cial Intelligence. MIT
Press.

[40] Faltings, B. and Yokoo, M. (2005) Introduction: Special
issue on distributed constraint satisfaction. Arti�cial
Intelligence, 161, 1�5.

[41] Modi, P. J., Shen, W.-M., Tambe, M., and Yokoo,
M. (2005) Adopt: asynchronous distributed constraint
optimization with quality guarantees. Arti�cial
Intelligence, 161, 149�180.

[42] Petcu, A. and Faltings, B. (2005) A scalable method
for multiagent constraint optimization. Proceedings of
the 19th International Joint Conference on Arti�cial
Intelligence, pp. 266�271. Professional Book Center.

[43] Fitzpatrick, S. and Meertens, L. (2003) Distributed
Sensor Networks: A multiagent perspective. Kluwer
Academic.

[44] Maheswaran, R. T., Pearce, J. P., and Tambe, M.
(2004) Distributed Algorithms for DCOP: A Graphical-
Game-Based Approach. Proceedings of the ISCA 17th
International Conference on Parallel and Distributed
Computing Systems, pp. 432�439. ISCA.

[45] Farinelli, A., Rogers, A., Petcu, A., and Jennings,
N. R. (2008) Decentralised coordination of low-power
embedded devices using the max-sum algorithm.
Proceedings of the 7th International Conference on
Autonomous Agents and Multiagent Systems, pp. 639�
646. IFAAMAS.

[46] Vinyals, M., Shieh, E. A., Cerquides, J., Rodriguez-
Aguilar, J. A., Yin, Z., Tambe, M., and Bowring, E.

(2011) Quality guarantees for region optimal DCOP
algorithms. Proceedings of the 10th International
Conference on Autonomous Agents and Multiagent
Systems, pp. 133�140. IFAAMAS.

[47] Vinyals, M., Pujol, M., Rodriguez-Aguilar, J. A., and
Cerquides, J. (2010) Divide-and-coordinate: DCOPs
by agreement. Proceedings of the 9th International
Conference on Autonomous Agents and Multiagent
Systems, pp. 149�156. IFAAMAS.

[48] Yokoo, M., Durfee, E., Ishida, T., and Kuwabara, K.
(1998) The distributed constraint satisfaction problem:
formalization and algorithms. IEEE Transactions on
Knowledge and Data Engineering, 10, 673�685.

[49] Yeoh, W., Felner, A., and Koenig, S. (2010) BnB-
ADOPT: An asynchronous branch-and-bound DCOP
algorithm. Journal of Arti�cial Intelligence Research,
38, 85�133.

[50] Baker, A. (1994) The hazards of fancy backtraking.
Proceedings of the 12th National Conference on
Arti�cial Intelligence, pp. 288�293. AAAI Press / The
MIT Press.

[51] Petcu, A. (2007) A Class of Algorithms for Distributed
Constraint Optimization. PhD thesis EPFL Lausanne.

[52] Kok, R. J. and Vlassis, N. (2005) Using the max-plus
algorithm for multiagent decision making in coordina-
tion graphs. Proceedings of the Seventeenth Belgium-
Netherlands Conference on Arti�cial Intelligence, pp.
359�360. Koninklijke Vlaamse Academie van Belie voor
Wetenschappen en Kunsten.

[53] Pearce, J. P. and Tambe, M. (2007) Quality
Guarantees on k-Optimal Solutions for Distributed
Constraint Optimization Problems. Proceedings of
the 19th International Joint Conference on Arti�cial
Intelligence, pp. 1446�1451. IFAAMAS.

[54] Rogers, A., Farinelli, A., Stranders, R., and Jennings,
N. R. (2011) Bounded approximate decentralised
coordination via the max-sum algorithm. Arti�cial
Intelligence, 175, 730�759.

[55] Hoos, H. H. and Stützle, T. (2004) Stochastic Local
Search: Foundations & Applications. Elsevier / Morgan
Kaufmann.

[56] Kearns, M. J., Littman, M. L., and Singh, S. P.
(2001) Graphical models for game theory. Proceedings
of the 17th Conference in Uncertainty in Arti�cial
Intelligence, pp. 253�260. Morgan Kaufmann.

[57] Chapman, A. C., Rogers, A., Jennings, N. R.,
and Leslie, D. S. (2011) A unifying framework
for iterative approximate best-response algorithms
for distributed constraint optimization problems.
Knowledge Engineering Review, 26, 411�444.

[58] Weiss, Y. and Freeman, W. T. (2001) On the optimality
of solutions of the max-product belief propagation
algorithm in arbitrary graphs. IEEE Transactions on
Information Theory, 47, 723�735.

[59] Zivan, R. and Peled, H. (2012) Max/min-sum
distributed constraint optimization through value
propagation on an alternating DAG. Proceedings of the
11th International Conference on Autonomous Agents
and Multiagent Systems, pp. 265�272. IFAAMAS.

[60] Vinyals, M., Cerquides, J., Farinelli, A., and Rodriguez-
Aguilar, J. A. (2010) Worst-case bounds on the quality
of max-product �xed-points. In Proceedings of the

The Computer Journal, Vol. ??, No. ??, ????

26 Cerquides, Farinelli, Meseguer, Ramchurn

Neural Information Processing Systems (NIPS), pp.
2325�2333. MIT press.

[61] Kiekintveld, C., Yin, Z., Kumar, A., and Tambe, M.
(2010) Asynchronous algorithms for approximate dis-
tributed constraint optimization with quality bounds.
Proceedings of 9th International Conference on Au-
tonomous Agents and Multiagent Systems, pp. 133�140.
IFAAMAS.

[62] Bowring, E., Pearce, J., Portway, C., Jain, M.,
and Tambe, M. (2008) On k-optimal distributed
constraint optimization algorithms: new bounds and
algorithms. Proceedings of the 7th International Joint
Conference on Autonomous Agents and Multiagent
systems. IFAAMAS.

[63] Vinyals, M., Shieh, E., Cerquides, J., Rodriguez-
Aguilar, J. A., Yin, Z., Tambe, M., and E., B. (2011)
Reward-based region optimal quality guarantees. In
Proceedings of the 4th International Workshop on
Optimization in Multi-Agent Systems.

[64] Ortiz, L. E. and Kearns, M. J. (2002) Nash propagation
for loopy graphical games. Proceedings of the Neural
Information Processing Systems (NIPS), pp. 793�800.
MIT Press.

[65] Chapman, A. C., Farinelli, A., de Cote, E. M., Rogers,
A., and Jennings, N. R. (2010) A distributed algorithm
for optimising over pure strategy Nash equilibria.
Proceedings of the 24th AAAI Conference on Arti�cial
Intelligence. AAAI Press.

[66] Léauté, T. and Faltings, B. (2011) Distributed
constraint optimization under stochastic uncertainty.
Proceedings of the 25th Conference on Arti�cial
Intelligence, pp. 68�73. AAAI Press.

[67] Taylor, M. E., Jain, M., Tandon, P., Yokoo, M.,
and Tambe, M. (2011) Distributed on-line multi-agent
optimization under uncertainty: Balancing exploration
and exploitation. Advances in Complex Systems, 14,
471�528.

[68] Stranders, R., Tran-Thanh, L., Fave, F. M. D.,
Rogers, A., and Jennings, N. R. (2012) DCOPs and
bandits: exploration and exploitation in decentralised
coordination. Proceedings of the 11th International
Conference on Autonomous Agents and Multiagent
Systems - Volume 1, pp. 289�296. IFAAMAS.

[69] Lesser, V., Ortiz, C. L., and Tambe, M. (eds.) (2003)
Distributed Sensor Networks A multiagent perspective.
Kluwer Academic.

[70] Petcu, A. and Faltings, B. (2005) S-DPOP: Superstabi-
lizing, fault-containing multiagent combinatorial opti-
mization. Proceedings of the 20th National Conference
on Arti�cial Intelligence, pp. 449�454. AAAI Press.

[71] Lass, R., Sultanik, E., Greenstadt, R., and Regli, W.
(2009) Robust distributed constraint reasoning. Pro-
ceedings of the workshop of on Distributed Constraint
Reasoning, pp. 75�86.

[72] Serugendo, G. D. M., Gleizes, M. P., and Karageorgos,
A. (2006) Self-organisation and emergence in mas: An
overview. Informatica (Slovenia), 30, 45�54.

[73] Mano, J.-P., Bourjot, C., Lopardo, G. A., and Glize,
P. (2006) Bio-inspired mechanisms for arti�cial self-
organised systems. Informatica (Slovenia), 30, 55�62.

[74] Chevaleyre, Y., Dunne, P. E., Endriss, U., Lang, J.,
Lemaître, M., Maudet, N., Padget, J., Phelps, S.,

Rodríguez-Aguilar, J. A., and Sousa, P. (2006) Issues
in Multiagent Resource Allocation. Informatica, 30,
3�31.

[75] Klemperer, P. (2004) Auctions: Theory and Practice.
Princeton University Press.

[76] Shoham, Y. and Leyton-Brown, K. (2009) Multiagent
Systems: Algorithmic, Game-Theoretic, and Logical
Foundations. Cambridge University Press.

[77] Parsons, S., Rodriguez-Aguilar, J. A., and Klein, M.
(2011) Auctions and bidding: a guide for computer
scientists. ACM Computing Surveys, 43, 10.

[78] Hunsberger, L. and Grosz, B. (2000) A combinatorial
auction for collaborative planning. In Durfee, E.,
Kraus, S., Nakashima, H., and Tambe, M. (eds.),
Proceedings of the 4th International Conference on
Multiagent Systems, pp. 151�158. IEEE Computer
Society.

[79] Patel, J., Teacy, W. T. L., Jennings, N. R., Luck, M.,
Chalmers, S., Oren, N., Norman, T. J., Preece, A. D.,
Gray, P. M. D., Shercli�, G., Stockreisser, P. J., Shao,
J., Gray, W. A., Fiddian, N. J., and Thompson, S.
(2005) Agent-based virtual organisations for the grid.
Multiagent and Grid Systems, 1, 237�249.

[80] Sierra, C., de Mantaras, R. L., and Busquets, D. (2000)
Multiagent bidding mechanisms for robot qualitative
navigation. Intelligent Agents VII, Lecture Notes in
Arti�cial Intelligence, 1986, pp. 198�212.

[81] Ramchurn, S. D., Rogers, A., MacArthur, K., Farinelli,
A., Vytelingum, P., Vetsikas, I., and Jennings,
N. R. (2008) Agent-based coordination technologies
in disaster management. Proceedings of the 7th
International Conference on Autonomous Agents and
Multiagent Systems, pp. 1651�1652. IFAAMAS.

[82] Ostwald, J., Lesser, V., and Abdallah, S. (2005)
Combinatorial auction for resource allocation in a
distributed sensor network. RTSS '05: Proceedings
of the 26th IEEE International Real-Time Systems
Symposium, pp. 266�274. IEEE Computer Society.

[83] Jennings, N. R. and Bussmann, S. (2003) Agent-based
control systems. IEEE Control Systems Magazine, 23,
61�74.

[84] Lehmann, D., Mülller, R., and Sandholm, T. W. (2006)
The Winner Determination Problem. Combinatorial
Auctions, chapter 12, pp. 297�317. MIT Press.

[85] Ma, Z. (2008) Combinatorial auctions for truckload
transportation procurement. PhD thesis University of
Toronto.

[86] Rothkopf, M. H., Pekec, A., and Harstad, R. M. (1998)
Computationally manageable combinational auctions.
Management Science, 44, 1131�1147.

[87] Nisan, N. (2006) Bidding Languages for Combinatorial
Auctions. Combinatorial Auctions, chapter 9, pp. 215�
231. MIT Press.

[88] Müller, R. (2006) Tractable Cases of The Winner
Determination Problem. Combinatorial Auctions,
chapter 13, pp. 319�336. MIT Press.

[89] Sandholm, T. W., Suri, S., Gilpin, A., and Levine,
D. (2002) Winner determination in combinatorial
auction generalizations. Proceedings of The �rst
International Joint Conference on Autonomous Agents
and Multiagent Systems, pp. 69�76. ACM.

The Computer Journal, Vol. ??, No. ??, ????

A tutorial on optimisation for multi-agent systems 27

[90] Bussmann, S., Jennings, N., and Wooldridge, M.
(2004) Multiagent systems for manufacturing control:
A design methodology Series on Agent Technology.
Springer-Verlag, Berlin, Germany.

[91] Parkes, D. (2001) Iterative Combinatorial Auctions:
Achieving Economic and Computational E�ciency.
PhD thesis University of Pennsylvania Department of
Computer and Information Science.

[92] Dash, R. K., Parkes, D. C., and Jennings, N. R. (2003)
Computational mechanism design: A call to arms.
IEEE Intelligent Systems, 18, 40�47.

[93] Conitzer, V. (2008). Mechanism design for MAS.
Course at the Dubai Agents and Multiagent Systems
School.

[94] Chevaleyre, Y., Endriss, U., Lang, J., and Maudet,
N. (2007) A Short Introduction to Computational
Social Choice. SOFSEM 2007 Theory and Practice of
Computer Science, Lecture Notes in Computer Science,
4362, pp. 51�69. Springer.

[95] Cramton, P., Shoham, Y., and Steinberg, R. (eds.)
(2006) Combinatorial Auctions. The MIT Press,
Cambridge, MA.

[96] Koenig, S., Keskinocak, P., and Tovey, C. (2010)
Progress on Agent Coordination with Cooperative
Auctions. Proceeding of the 24th AAAI Conference on
Arti�cial Intelligence. AAAI Press.

[97] Dias, M., Zlot, R., Kalra, N., and Stentz, a. (2006)
Market-Based Multirobot Coordination: A Survey and
Analysis. Proceedings of the IEEE, 94, 1257�1270.

[98] Gerkey, B. and Mataric, M. (2002) Sold!: auction meth-
ods for multirobot coordination. IEEE Transactions on
Robotics and Automation, 18, 758�768.

[99] Jackson, M. O. (2003) Mechanism theory. In
Devigs, U. (ed.), Optimization and Operations Research
The Encyclopedia of Life Support Science. EOLSS
Publishers, Oxford, UK.

[100] Maskin, E. S. and Sjöström, T. (2002) Implementation
theory. In Arrow, K. J., Sen, A. K., and Suzumura, K.
(eds.), Handbook of Social Choice Theory and Welfare.
North-Holland, Amsterdam.

[101] Nisan, N. (2007) Introduction to mechanism design
(for computer scientists). In Nisan, N., Roughgarden,
T., Tardos, E., and Vazirani, V. V. (eds.), Algorithmic
Game Theory. Cambridge University Press.

[102] Walsh, W. E. and Wellman, M. (2003) Decentralized
Supply Chain Formation: A Market Protocol and
Competitive Equilibrium Analysis. Journal of
Arti�cial Intelligence Research, 19, 513�567.

[103] Cerquides, J., Endriss, U., Giovannucci, A., and
Rodriguez-Aguilar, J. A. (2007) Bidding languages and
winner determination for mixed multi-unit combina-
torial auctions. Proceedings of the 20th International
Joint Conference on Arti�cial Intelligence, pp. 1221�
1227. Morgan Kaufmann.

[104] Winsper, M. and Chli, M. (2010) Decentralised
Supply Chain Formation: A Belief Propagation-Based
Approach. Workshop on Agent-Mediated Electronic
Commerce, pp. 1�6.

[105] Penya-Alba, T., Cerquides, J., Rodriguez-Aguilar, J.,
and Vinyals, M. (2012) A Scalable Message-Passing
Algorithm for Supply Chain Formation. Proceedings of
the Twenty-Sixth Conference on Arti�cial Intelligence,
AAAI 2012, pp. 1436�1442. AAAI Press.

[106] Witzel, A. and Endriss, U. (2010) Time Constraints in
Mixed Multi-unit Combinatorial Auctions. Workshop
on Agent-Mediated Electronic Commerce.

[107] Pan, F. and Nagi, R. (2010) Robust supply chain
design under uncertain demand in agile manufacturing.
Computers & Operations Research, 37, 668�683.

[108] Muñoz i Solà, V. (2010) Robustness on resource
allocation problems. PhD thesis University of Girona.

[109] Fox, M., Gerevini, A., Long, D., and Serina, I.
(2006) Plan Stability : Replanning versus Plan Repair.
Proceeding of the Sixteenth International Conference on
Automated Planning and Scheduling (ICAPS), pp. 212�
221. AAAI.

[110] Ramchurn, S. D., Mezzetti, C., Giovannucci, A.,
Rodriguez-Aguilar, J. A., Dash, R. K., and Jennings,
N. R. (2009) Trust-based mechanisms for robust and
e�cient task allocation in the presence of execution
uncertainty. Journal of Arti�cial Intelligence Research,
35, 119�159.

[111] Bo�ll, M., Busquets, D., Muñoz, V., and Villaret,
M. (2013) Reformulation based maxsat robustness.
Constraints, 18, 202�235.

[112] Greenstadt, R., Pearce, J. P., and Tambe, M.
(2006) Analysis of privacy loss in distributed constraint
optimization. Proceedings of the 21st National
Conference on Arti�cial Intelligence (AAAI-06), July
2006, pp. 647�653. AAAI Press.

[113] Petcu, A., Faltings, B., and Parkes, D. (2008)
M-DPOP: Faithful distributed implementation of
e�cient social choice problems. Journal of Arti�cial
Intelligence Research (JAIR), 32, 705�755.

The Computer Journal, Vol. ??, No. ??, ????

