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Abstract. The popular Nelder and Mead algorithm (NM) has four parameters associated to 

the operations known as reflection, expansion, contraction and shrinkage. The authors set 

their values to 1, 2, 0.5 and 0.5, respectively, which have been universally used. Here we 

propose to use NM to calibrate itself. A computational experiment is carried out and results 

show that the parameter values originally proposed by Nelder and Mead are better than the 

ones obtained with more sophisticated ways. 
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1. Introduction 

The Nelder & Mead algorithm [1], NM, is the most widely used direct search method 

for solving unconstrained optimisation problems [2]. It is specially used in chemical 

engineering, chemistry, and medicine [3]. Although NM may converge to a non-

stationary point (e.g., [3]), the algorithm usually performs well and remains as a popular 

search method [4]. 

 

NM has four scalar parameters, α , γ , β  and δ , which are associated with the 

operations reflection, expansion, contraction and shrinkage, respectively. The NM 

authors, at the beginning of the sixties, set the parameter values to 1, 2, 0.5 and 0.5, 

respectively, after a short experiment. Since then, these values have been virtually 
                                                 
* Corresponding author: Alberto García-Villoria, Institute of Industrial and Control Engineering (IOC), Av. Diagonal 647 (Edif. 
ETSEIB), 11th floor, 08028 Barcelona, Spain; Tel.: +34 93 4010724; E-mail: alberto.garcia-villoria@upc.edu 



 2 

always used ([2], [5]). Gao and Han [2] wonder how to choose the most suitable 

parameter values. Here we propose to use NM itself in order to try to find better 

parameter values.  

 

The structure of this paper is as follows. In section 2 we describe the tested NM 

algorithm. In section 3 we propose two ways for setting the NM parameters. In section 4 

we show the results of the computational experiment. The final remarks are given in 

section 5. 

 

2. The Nelder & Mead algorithm 

The NM algorithm is a direct search method for minimising ( )f x  where : nf →   

is the objective function and n  the dimension. It is based on 1n +  points that are the 

vertices of a simplex in the n-dimensional space: 1 2 1, , , nx x x + . The algorithm adopted 

here is explained next. 

 

NM starts from an initial simplex (usually regular) and iteratively moves the vertices 

over the n-dimensional space according to their objective function values until a 

stopping criterion is reached. 

 

At each iteration of NM the vertices of the simplex are labelled and ordered such that 

( ) ( ) ( )1 2 1nf x f x f x +≤ ≤ ≤ . In case of tie, the oldest vertex has priority. Let 

( )1r nx x x xα += + −  be the reflection of 1nx + , where x  is the centroid of the n best 

vertices (i.e., 
1

n
ii

x x n
=

=∑ ) and 0α >  is a parameter. Four cases are considered 

according to the ( )rf x  value: 
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1) Expansion. If ( ) ( )1rf x f x<  then calculate ( )e rx x x xγ= + − , where 1γ >  is a 

parameter. If ( ) ( )1ef x f x< , replace 1nx +  with ex ; otherwise, replace 1nx +  with rx . 

2) Reflection. If ( ) ( ) ( )1 r nf x f x f x≤ <  then replace 1nx +  with rx . 

3) Outside contraction. If ( ) ( ) ( )1n r nf x f x f x +≤ <  then calculate ( )oc rx x x xβ= + − , 

where 0 1β< <  is a parameter. If ( ) ( )oc rf x f x< , replace 1nx +  with ocx ; otherwise, 

replace 1nx +  with rx  and shrink all vertices except 1x : ( )1 1i ix x x xδ= + −  

2,..., 1i n= + , where 0 1δ< <  is a parameter. 

4) Inside contraction. If ( ) ( )1n rf x f x+ ≤  then calculate ( )1ic nx x x xβ += + − . If 

( ) ( )1ic nf x f x +< , replace 1nx +  with icx ; otherwise, shrink all vertices except 1x  as in 

3). 

 

NM stops when conditions S1 and S2 are met: ( ) ( ) ( )1 1 11 ε+= − ≤ ⋅nS f x f x f x  and 

( )2 max ,1α γ δ ε= ⋅ ⋅ ⋅ ≤ne nsS L , where 810ε −= , ne  is the number of expansions (i.e., 

the number of iterations in which 1nx +  is replaced with ex ), ns  is the number of 

shrinkages (i.e., the number of iterations in which the vertices are shrunk) and L is the 

length of the edges of the initial simplex (that we assume regular). That is, NM stops 

when the differences between the values of the vertices are small enough (condition S1) 

and the simplex is small enough (condition S2). 

 

3. Calibration of the NM parameters 

The problem of calibrating the parameters can be approached as an optimisation 

problem, in which the objective function to optimise is the performance of NM. Let 
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( ), , ,Α Γ Β ∆fNM  be the point returned by NM when minimising function f  using the 

parameter values Α , Γ , Β  and ∆ , respectively. We define the NM performance 

function ( ) ( )( ), , , , , ,ϕ Α Γ Β ∆ = Α Γ Β ∆f ff NM ; in case of tie, the lower number of 

iterations has priority. A direct search method is needed to minimise fϕ ; in particular, 

we propose to use NM with the standard parameter values 1, 2, 0.5 and 0.5. 

 

We evaluate the NM performance in the family of functions 

( )1 1
,..., ,θλ

=
= ⋅∑ iN

N i ii
f x x x  where 1 25N≤ ≤ , 610 1iλ

− ≤ ≤  and 0 10iθ≤ ≤ . Note that 

the minimum point is always * 0x =  and ( )* 0f x = . We use a training set, TSF , to 

carry out the optimisation of the NM parameters, which contains 100 functions obtained 

as follows: N  and iλ  values generated at random with a uniform distribution between 

their lower and upper values; iθ  values are drawn with equal probability either from the 

distribution U[0,1] or from U[1,10].. 

 

We propose two ways for calibrating the parameter values, C1 and C2: 

C1. ( ) ( ), , , 1, 2,0.5,0.5ϕα γ β δ
∈

= ∑ f
f TSF

NM TSF . 

C2. ( ) ( ), , , 1, 2,0.5,0.5ϕα γ β δ =
F

NM , where ( ) ( )
f TSF

F x f x TSF
∈

= ∑ . 

 

The initial regular simplex in the NM parameter space of both C1 and C2 is [(1, 2, 0.5, 

0.5), (0.9, 2, 0.5, 0.5), (0.95, 1.9134, 0.5, 0.5), (0.95, 1.9711, 0.5816, 0.5), (0.95, 1.9711, 

0.5204, 0.5791)]. Note that it is generated from the point (1, 2, 0.5, 0.5) and the length 

of the edges is equal to 0.1. 
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To calibrate the parameters, a variant of NM is used in order to handle the constraints 

associated to the lower and upper values of α , γ , β  and δ ( 0α > , 1γ > , 0 1β< <  

and 0 1δ< < ). Inspired by [6] the value of an unfeasible point ( ), , ,α γ β δ  is equal to 

ϕ +worst NU , where ϕworst  is the function value of the worst feasible vertex (at the 

current iteration) and NU  is the number of constraint violations. The idea is that the 

vertex with the highest number of constraint violations will be identified as the worst 

vertex and NM will try to move away from that vertex. 

 

4. Computational experiment 

The NM parameter values obtained with calibrations C1 and C2 are shown in Table 1. 

 
 α γ β δ 
Standard 1 2 0.5 0.5 
C1 0.9424 2.1061 0.5026 0.5114 
C2 0.9000 2.2222 0.5000 0.5000 

 

Table 1. NM parameter values 

 

We can observe that the obtained parameter values are not very different from the 

standard values. To test these parameter values, we minimised 900 test functions 

generated as explained in Section 3 (the complete sets of training and test instances are 

available at https://www.ioc.upc.edu/EOLI/research/). Table 2 shows the results 

obtained when NM is run with the standard, C1 and C2 parameter values; specifically, 

the average function value of the point returned by NM ( f ) and the average number of 

function evaluations ( )#eval . In all cases, the length of the edges of the initial simplex 

is equal to 200 with the starting vertex (-100, ..., -100), and generated so the point 0 is 

located close to the centre of the simplex. 
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 f  #eval 
Standard 30.3573 12583.63 
C1 34.0910 13481.56 
C2 114.1234 317996.73 

 

Table 2. NM results 

 

Although the optimized functions are smooth, NM does not usually converge to the 

optimum as is well known in the literature (e.g., [3]); specifically, it does not converge 

92.56%, 96.00% and 93.67% of times when NM is run with the standard calibration, C1 

and C2, respectively. The results show two points. First, NM is very sensitive to the 

parameter values in terms of the quality of the solutions and in the number of function 

evaluations. And second and as the main result of this work, the standard parameter 

values given by Nelder and Mead seem to be an inspired proposal and perform better 

than seemingly smarter calibrations. 

 

5. Conclusions 

The Nelder & Mead algorithm is based on the reflection, expansion, contraction and 

shrink operations, each of them being associated with a parameter. Its authors set their 

values which are being used in almost all implementations of the algorithm. One 

question that arises is whether the algorithm performs better with other parameter 

values. In this work we propose two ways to use the Nelder and Mead algorithm for 

calibrating itself. Finally, the widely used parameters originally proposed by the authors 

are clearly better than the ones obtained with more sophisticated ways. 
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