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Abstract

This paper focuses on a variation of the Art Gallery
problem that considers open edge guards and open
mobile guards. A mobile guard can be placed on
edges and diagonals of a polygon, and the “open”
prefix means that the endpoints of such edge or di-
agonal are not taken into account for visibility pur-
poses. This paper studies the number of guards that
are sufficient and sometimes necessary to guard some
classes of simple polygons for both open edge and
open mobile guards. This problem is also consid-
ered for planar triangulation graphs using open edge
guards.

1 Introduction

The well known Art Gallery problem studies the min-
imum number of guards that are needed to fully cover
a polygon P, that is, the number of guards from
which every point of P is visible. Ideally, guards may
be placed anywhere on P but usually they are re-
stricted to vertices of the polygon or its edges. In the
first case such guards are called vertex guards and in
the second edge guards. Moreover, a point guard is a
guard that can be placed anywhere on the polygon.
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Lee et al. proved that finding the minimum number
of guards to fully cover a polygon without holes is
NP-hard for all three variations of guards [?]. Tous-
saint conjectured that | %] edge guards are sufficient
to cover any simple polygon of n vertices, except for
small values of n. This exception arose from two ex-
amples of simple polygons with n vertices that need
L”T“J edge guards to be fully covered. If guards are
able to patrol along the edges and diagonals of P
then they are called mobile guards. In this way, a
mobile guard placed on edge e sees a point p of P if
some point of e can see p. O’Rourke could not prove
Toussaint’s conjecture, but showed that [ % | mobile
guards are sufficient and occasionally necessary to
cover any polygon of n vertices [?]. Later, Shermer
proved that [32] edge guards are sufficient to cover
any simple polygon, except for n = 3,6, 13 where an
extra edge guard might be needed [?]. Shermer actu-
ally proved a combinatorial result: any triangulation
of a polygon with n vertices can be dominated by %
edge guards.

In this paper guards are assumed to be placed along
open edges or open diagonals of a polygon, that is, the
endpoints of the edge or diagonal are not taken into
account for visibility purposes. Therefore, a point p is
covered by such guard if p is visible from some interior
point of the edge or diagonal. As shown in Figure [T,
open edge guards can see considerably less than the
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usual edge guards and are therefore an interesting
topic of research on their own.

(a) (b)

Figure 1: (a) The area covered by open edge guard
uv is shown in grey. (b) The area covered by closed
edge guard uv is shown in grey.

Open edge guarding is a variation of the Art
Gallery problem that was first introduced by Vigli-
etta in 2011, as a way to guard 3D polyhedra, and
was published a year later [?]. This work was then
built on by Benbernou et al. [?] and Téth et al.
[?], and also by Viglietta himself in his thesis [?].
Téth et al. studied open edge guards and proved
that L%J guards are necessary to fully cover a simple
polygon and || are always sufficient [?]. Following
this line of thought, open mobile guards are guards
that patrol along open edges and open diagonals of a
polygon. Recently, Mukhopadhyay et al. presented
yet another variation of open edge guards called the
semi-open edge guards [?], which can monitor every
point seen from an interior point of the edge and also
from one of its endpoints. They showed that a non
star-shaped polygon of n vertices needs at most three
semi-open guard edges to be fully monitored and pro-
posed an O(n) algorithm to find all semi-open guard
edges of a simple polygon.

This article is divided into two parts: open edge
guards and open mobile guards. Section [2is devoted
to open edge guards and presents results on the num-
ber of guards that cover several types of polygons,
such as orthogonal and spiral polygons. Some re-
sults related to the Fortress problem on simple and
orthogonal polygons are also presented. Section
studies open edge guarding of planar triangulation
graphs. This problem arises from patrolling trian-
gulated terrains. Section [ introduces open mobile
guards and presents results on the number of open
mobile guards that fully cover monotone, orthogonal

and spiral polygons. Finally, Section [Bl concludes the
paper and discusses some conjectures, as well as fur-
ther research.

2 Open edge guarding of poly-
gons

This section studies the problem of calculating the
number of open edge guards that are sufficient and
sometimes necessary to cover orthogonal polygons,
spiral polygons and the exterior of simple poly-
gons. The latter is also called the Fortress prob-
lem. Consider the following definition in order to
ease the reading of the paper. Given a polygon P,
Gor(P) is the minimum number of open edge guards
that fully cover P and Gog(n) = min{Gogr(P) :
P is a polygon of n vertices}.  Consequently, this
section is devoted to calculate Gog(n) for different
classes of polygons.

2.1 Orthogonal polygons

Bjorling-Sachs proved that L3qg4j closed edge guards

are sufficient and sometimes necessary to fully cover
an orthogonal polygon [?]. This section shows that
| 4] open edge guards are sometimes necessary and
always sufficient to fully cover an orthogonal polygon.

Given an orthogonal polygon P with n vertices,
the edges of P can be divided into four categories as
shown in Figure2la): north (N), south (S), west (W)
and east (E) edges. Each of these four sets represents
a group of open edge guards that completely covers
P. In order to see this, choose a random point p € P.
From this point, it is always possible to draw vertical
segments that will hit a north edge if it goes up from
p and a south edge if it goes down. Similarly, it is
always possible to draw horizontal segments through
p that will hit a west and an east edge. Therefore, the
smallest of these four sets of edges proves the upper
bound: any orthogonal polygon can be covered by
| 4] open edge guards.

Furthermore, Figure Ib) shows an example of an
orthogonal polygon that needs | % | open edge guards
to be fully covered. These two bounds prove the fol-
lowing result.
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Figure 2: (a) Each set of edges drawn in the same
trace style fully covers the polygon. (b) Polygon that
needs at least one open edge guard to cover each of
the marked points.

Theorem 1 Any orthogonal polygon of n wvertices
can be covered by || open edge guards, and in some
cases this number is necessary, that is, Gorp(n) =

L]

Observe that this result essentially holds for or-
thogonal polygons with holes, and the upper bound
can be obtained in the same way it was explained
above. The lower bound is based on Figure Bl which
shows an orthogonal polygon with holes that needs

n

| 47] — 1 open edge guards to be fully covered, as each

marked point is seen by a different open edge guard.

Figure 3: A polygon with holes that needs [%] — 1
open edge guards to cover it.

Proposition 1 Any orthogonal polygon of n vertices
with holes can be covered by | %] open edge guards,

and some need | %] — 1 open edge guards in order to
be fully covered.

2.2 Spiral polygons

Similarly to what happens with orthogonal polygons,
spiral polygons present a set of interesting proper-
ties that usually simplify or help turning some vis-
ibility problems into more tractable ones. There-
fore, this section studies open edge guarding of spiral
polygons, which will also be called spirals when it
eases the reading of the text. According to a previ-
ous work, L"T”J closed edge guards are sufficient and
sometimes necessary to cover spiral polygons [?]. In
the following, it is first shown that |2+ ] open edge
guards are always sufficient and occasionally neces-
sary to cover a spiral polygon. Secondly, an algorithm
to place the minimum number of open edge guards

to cover a spiral polygon is introduced.

2.2.1 Tight bound on the number of open
edge guards

In the example in Figure M{a), each point marked
on the polygon needs a different open edge guard
to cover it. Since this spiral only has one possible
triangulation and there is one of these points per
four triangles, this polygon needs ["T_Q] open edge
guards in order to be fully covered. And therefore,
Gop(n) > [272]. This lower bound can be rewritten
as |2 ], and below it is proven that this bound is
tight: QOE(n) = LnTHJ

() (b)

Figure 4: (a) No two of the marked points can be
covered by the same open edge guard. (b) The two
open edge guards marked with a heavier trace cover
the whole spiral.



The boundary of each spiral can be decomposed
in a reflex chain and a convex chain. Let the con-
vex chain be formed by c edges. The reflex chain is
formed by r edges and all its vertices are reflex, ex-
cept for the two endpoints. The proof that any spiral
can be covered by L”THJ open edge guards uses in-
duction on the number of edges of the polygon.

The base case comprehends four cases. When the
spiral has four, five or six edges it is easy to see that
one open edge guard covers the whole polygon. Spi-
rals with seven edges can be covered by two open
edge guards, since it suffices to place the guards on
the edges of the convex chain that are intersected by
the extensions of the first and last edges of the reflex
chain (see Figure [d(b)).

(b)

Figure 5: (a) The convex chain from ¢; to v is formed
by six edges. (b) The convex chain from ¢; to v is
formed by four edges.

For the inductive step, suppose || open edge
guards are sufficient to cover every spiral of n’ vertices
with n’ < m edges, n > 7. Let P be a spiral with
n > 7 vertices, whose reflex chain is formed by the

vertices {¢1,71,72,...,7k, ¢t }. Now extend the edge
7172 until it intersects some edge of the convex chain.
Let v be the rightmost endpoint of the convex edge
just intersected as shown in Figure The proof is
now divided into four cases depending on the number
of edges of the convex chain from ¢; to v: (a) five or
more than five edges, (b) four edges, (c) three edges
and (d) two edges. For case (a), suppose the convex
chain from ¢; to v has at least five edges (see Figure
Bla)). Then draw the diagonal between 1 and cs,
the fifth vertex of the convex chain. In this way,
the spiral is broken into two spiral polygons: P’ that
has six edges and so can be guarded with one open
edge guard and P” with n — 4 edges. For case (b),
suppose the convex chain from ¢; to v has four edges
as shown in Figure Bl(b). Then draw the diagonal
between ro and ¢4, the fourth vertex of the convex
chain. This breaks the spiral in two: P’ has six edges
and therefore can be guarded with one open edge
guard and P” with n — 4 edges.

In case (c) the convex chain from ¢; to v has three
edges and the situation is slightly different. As shown
in Figure[@ draw the diagonal between v and the first
visible reflex vertex starting from 7o (note that ro can
be such vertex). This procedure breaks the spiral in
two polygons: P’ that can be guarded with one open
edge guard and P” with at most n — 4 edges.

Finally, case (d) in which the convex chain from
c1 to v only has two edges. In this case, draw the
diagonal from v to the first visible reflex vertex after
ro. If there are no visible reflex vertices left, then the
reflex chain is over and an open edge guard placed
on the second edge of the convex chain covers the
whole spiral (see Figure [[l(a)). If there is one visible
reflex vertex then draw the diagonal as before, which
will break the spiral in two polygons: P’ that can be
guarded with one open edge guard and P” with at
most n — 4 edges (see Figure [[{b)).

All the four cases described above end with a poly-
gon P’ that has at most n — 4 edges, which means
the inductive hypothesis can be applied. Therefore,
P’ can be covered by LWJ = |2tL] — 1 open
edge guards. Since polygon P’ is covered exactly by
one open edge guard, the whole spiral is covered by
| 2L | open edge guards and this concludes the proof.



Figure 6: The convex chain from ¢; to v is formed by
three edges. (a) The first reflex vertex visible from v
is ro. (b) The first reflex vertex visible from v is rs.

Theorem 2 Any spiral polygon with n vertices can
be covered by L"THJ open edge guards, and in some

cases this number is necessary.

If the spiral polygon is also orthogonal, then the
previous result can be improved.

Proposition 2 FEvery orthogonal spiral polygon with
n vertices can be covered by f”Tfﬂ open edge guards.
This bound is tight for all polygons of this class.

Proof: Any such polygon is only covered if an open
edge guard is placed on the middle edge of every
group of three consecutive edges of the convex chain.
Therefore, if ¢ is the number of edges on the con-
vex chain, the final number of open edge guards is

[51=T2521. O
2.2.2 Placing the minimum number of open
edge guards

This section presents an algorithm to place the mini-
mum number of open edge guards that cover a spiral

Figure 7: The convex chain from c¢; to v is formed by
two edges. (a) There is no reflex vertex visible from
v besides r3. (b) The first reflex vertex visible from
v is 14.

polygon P. The main idea of the algorithm is to build
two sets simultaneously: G, which is the set of open
edge guards, and H that is the set of points that
guarantees G is of minimum size. The points that
form set H are placed on the polygon in such a way
that each open edge guard can only see one of them
and is therefore associated with it. Consequently,
|G| = |H|. Let {r1,72,...,7} be the set of reflex ver-
tices and {c1,ca,. .., cn—k} the set of convex vertices
of P. Moreover, let {c1,¢a, ..., Cnok, Thy The1y---5T1}
be the sequence of n vertices of spiral polygon P. The
stpdf of the algorithm to place the minimum number
of open edge guards to cover P are depicted in Figure
[l and detailed in the following.

1. G« 0;

2. Let h; be a point very close to ¢1, which has to
be covered. Draw the ray ¢iri that will intersect
some edge of the convex chain that sees point hy.
Let such edge be denoted by (e, es2) and assign
G+ {(61, 62)}.



(a) (b)

Figure 8: (a) Finding an edge of the convex chain that covers point h;. (b) Finding an edge of the convex
chain that covers point hs. (c¢) Polygon P is fully covered by the three open edge guards.

3. Find the last reflex vertex r; that can be seen
from ey and consider point hs, which is very close
to r; along the edge (rj,rj+1). Draw the ray
757541 that will intersect some edge of the convex
chain that sees point ha. Let such edge be de-
noted by (e3,e4) and assign G < G U {(e3,e4)}.

4. Repeat the last step until all reflex vertices and
Cn—p are guarded.

This algorithm selects the convex edges €je;57 that
will be part of set GG, which fully covers any spiral
polygon since it totally covers its convex chain [?].
The idea is to associate hy to the edge starting at
e1, which is the last vertex of the convex chain that
sees h1. Then this procedure is repeated for point hs,
which is placed close to the first reflex vertex that is
not seen by eyes. Afterwards ezey is selected as the
last edge of the convex chain that sees hs, and so on
until every reflex vertex is covered. It is left to prove
that the algorithm described above does indeed place
the minimum number of open edge guards needed to
cover a spiral polygon.

Lemma 1 The algorithm described above builds a set
H of points interior to P such that Gog(P) > |H]|.

Proof: As the algorithm runs, several points h; are
placed in a way that hides them from the edges of
the convex chain of P that were chosen as open edge
guards. Let H be the set of all these points. Note
that all points of H are visibly independent, that is,

if h; # h; then there is no open edge guard that can
cover both points, and therefore Gog(P) > |H|. O

Theorem 3 The algorithm described in this section
places the minimum number of open edge guards
needed to cover a spiral polygon in O(n) time.

Proof: Let G be the set of open edge guards cho-
sen by the algorithm to cover spiral polygon P and
let H be the set of hidden points. According to
Lemma [[l Gog(P) > |H| but since |H| = |G| then
Gor(P) > |G| and therefore G is a minimum set of
open edge guards. Regarding the time complexity,
each edge of the convex chain is only processed once
whilst analysing the rays ’I”J’I“—JH> . In the same way,
each edge of the reflex chain is checked once to find
the last reflex vertex that is visible from the cho-
sen edges. Consequently, each vertex of the spiral
polygon is analysed just once by the algorithm and
therefore it runs in linear time. ]

2.3 Fortress problem

This section is devoted to another variation of the
Art Gallery problem called the Fortress Problem. In-
stead of guarding the interior of a simple polygon, the
Fortress Problem variation focuses on monitoring the
exterior of a polygon. This problem has been studied
for both vertex and edge guards, but the results below
are naturally be associated with open edge guards.
Choi et al. proved that the exterior of any simple
polygon can be covered by [ %] edge guards and that



these guards are necessary to cover the exterior of
convex polygons [?]. In the case of open edge guards,
this problem is trivial since it is easy to see that every
edge will be needed as a guard to cover the exterior
of a convex polygon. Consequently, the exterior of
any simple polygon with n vertices can be covered by
n open edge guards, and in some cases this number
is necessary.

The natural following step is to study orthogonal
polygons. Again, Choi et al. proved that the exterior
of any orthogonal polygon can be covered by | %] +1
edge guards and that this number can be necessary
[?].
The proof of the following theorem is based on the
technique of dividing the edges according to their ori-
entation, as introduced in Section 2Tl As Figure[@(a)
shows, the edges of an orthogonal polygon can be di-
vided into four groups: north edges (N), south edges
(S), west edges (W) and east edges (E). Let R be
the smallest rectangle that encloses polygon P. Ev-
ery point outside P and within R can be covered by
open edges of type N or S. This can be easily seen as a
vertical line through point p € R\ P will always inter-
sect a north edge or a south edge (or both). The same
happens for edges of type E and W and it is fairly
easy to realise that there are as many edges N and S
as E and W. If there is an open edge guard on every
edge of type N or S, then the whole region R\P is
covered by "7_4 open edge guards. The exterior of R
can be guarded by four open edge guards, each placed
on the extreme edges that dominate R (topmost, bot-
tommost, leftmost and rightmost edges). Therefore,
the exterior of P is covered by ”774 +4 = 5 +2open
edge guards.

Finally, the lower bound is given by the orthocon-
vex polygon depicted in Figure [@(b). Each of the
marked points is covered by a different open edge
guard, and so § + 2 is a lower bound for this prob-
lem.

Theorem 4 The exterior of any orthogonal polygon
with n wvertices can be covered by 5 + 2 open edge
guards, and in some cases this number is necessary.

This result can also be rewritten using reflex ver-

tices. Since r +2 = 3, r + 4 open edge guards are

(b)

Figure 9: (a) The edges of the polygon are divided
into N, S, W and E edges. (b) An orthoconvex poly-
gon that needs § + 2 open edge guards to be fully
covered.

always sufficient and occasionally necessary to fully
cover the exterior of an orthogonal polygon.

3 Open edge guarding of trian-
gulations

In the '80s some of the research in visibility problems
shifted to polyhedral terrains. A terrain is a polyhe-
dral surface whose intersection with a vertical line is
either empty or a point. Terrains are often consid-
ered to be triangulated in such way that all its faces
are triangles. If one of these terrains is orthogonally
projected onto a plane below, it becomes a planar
triangulation graph, that is, the graph of a triangu-
lation of a set of points on the plane. This allows
a combinatorial correspondence between guarding a
triangulated terrain and guarding its projection. A
set of edges H is called a set of guards for a triangu-
lation if each face of such triangulation is covered by
at least one guard of H.



Bose et al. showed that the problem of finding
the minimum number of edge guards that fully cover
a terrain is NP-complete [?]. Even though it was
published later, Everett and Rivera-Campo proved
in 1994 that | % | edge guards suffice to cover every
face of a planar triangulation with n vertices [?]. The
lower bound was established by Batista et al. using a
triangulation that needs |252] edge guards in order
to be fully covered [?].

Naturally, this section studies the variation of this
problem that concerns open edge guards.

3.1 Planar triangulations

Since this section deals with open edges, a guard
placed on an interior edge of a triangulation is only
able to patrol the two triangles incident to such edge
(see Figure[Il). The problem of finding a set of open
edge guards that covers a triangulation G can be
translated to finding an edge cover of the dual graph
G*. If Gog(G) is the size of a minimum set of open
edge guards that covers G, then Gop(G) = B/(G*),
where 8'(G*) is the size of a minimum edge cover of
G*, that is, the edge covering number.

(a)

Figure 10: (a) An open edge guard placed on the bold
edge covers the two grey triangles. (b) The bold edge
becomes an edge of the dual graph uniting the nodes
representing the grey triangles.

In the following it is shown how to calculate an
upper bound for 8/(G*). As Figure [I0 shows, each
interior vertex of G becomes a cycle without chords
in G*. If an edge e € G* is deleted from one of such
cycles then 3/(G*) < 8'(G*\e), that is, there is one
less edge but the number of nodes to cover remains
the same. Removing these edges breaks the cycles of
G*, and once there are no cycles left the graph be-

comes a spanning tree T of maximum degree three.
And consequently, f'(G*) < p/(T*). Consider the
following theorem.

Theorem 5 FEvery tree T* with t nodes and max-
imum degree three allows an edge cover that has
| 2451 | edges at most, that is, B/(T*) < |21 ].

Proof: This proof takes advantage of the relation
between edge covering and matching. The latter is a
subset of edges of a graph without common vertices.
Let o/ (T*) be the maximum number of edges of a
matching in 7. According to Gallai’s theorem, if a
graph G has m nodes and none of them is isolated,
then o/ (G) + B/(G) = m. Therefore, it suffices to
prove that there is a matching with ¢ — L%J edges
in every tree T with ¢ nodes and maximum degree
three. Since t — [2tL | = [£21], it is enough to show
that there is a matching in 7% with [1] edges. A
vertex cover of a graph is a set of vertices such that
each edge of the graph is incident to at least one
vertex of the set. The minimum number of vertices
in a vertex cover of a graph G is denoted by 5(G).
According to Ko6nig’s theorem, this number coincides
with o/(G) when G is a bipartite graph. The size
of a matching in a bipartite graph is given by the
following lemma.

Lemma 2 There is a matching with at least % edges
in every bipartite graph of q edges and mazimum de-
gree A.

Proof: To prove this lemma, observe that each ver-
tex of graph G only covers A edges at most. There-
fore, at least % vertices are needed to cover all edges
of G and so B(G) > %. Since G is a bipartite
graph, o/(G) = B(G) > £ and consequently there
is a matching in G with at least % edges. O

To conclude the proof of the theorem, note that
tree T is a bipartite graph with ¢ —1 edges and max-
imum degree three. Therefore, and according to the
previous lemma, o/ (T*) > [£2] and so Gor(G) =
B(G*) < B/(T7) < | 232 ]. -

If Gog(t) is defined as Gop(t) = max{Gor(G) :
G is a triangulation with ¢ triangles} then Gop(t) is



bounded from above by |251], that is, Gop(t) <
23],

Finally, it is left to prove that there are triangu-
lations that need [241] open edge guards in order
to be fully covered. Such triangulation springs from
a tree T* with ¢ nodes and maximum degree three.
This tree is built on a path of even length by adding a
leaf connected to every other node (see Figure[IT}(a)).

Figure 11: (a) Tree T in which there is a leaf con-
nected to every other node. (b) A triangulation that
needs L2t3—+1j open edge guards in order to be fully

covered.

Let H be the set of nodes of T of degree one and
two. Each of these nodes is covered by a different
edge of T, and so if C' is an edge cover of T™* then
|C| > |H|. To count the number of elements of H,
observe that if a tree has t; nodes of degree one, t5
nodes of degree two and ¢3 nodes of degree three,
then t1 + 2to + 3t3 = 2(t1 +t2 +t3 — 1) and therefore
t;1 = 2+ t3. In the example in Figure [[1{a) one can
observe that to = t3 — 1, and so t = t1 +t5 + t3 =
3t3 + 1. The number of elements of H is then given
by:

t—1 2t+1
|H| =t1+ta=2t3+1=2 3 +1= ;

According to this, any edge cover of T* has to
be formed by at least % edges. In the example,
the dual-graph T™* has ¢ nodes where t = 1 (mod 3).
Note that if a node is added to T (adjacent to one of
its leaves) or two nodes are added (adjacent to differ-
ent leaves), the minimum number of edges of an edge
cover of T does not change. This observation con-
cludes the proof of the lower bound, as for any value

of t > 1 there are examples of trees that are domi-
nated by sets formed by at least % edges. Figure
[[Ti(b) shows a triangulation whose dual-graph is tree
T* described above.

The two bounds achieved above prove the following
theorem.

Theorem 6 Any triangulation with t triangles can
be covered by L%J open edge guards and in some

cases this number is necessary, that is, Gop(t) =
|2t
=1

4 Open mobile guarding of
polygons

Since open edge guarding is difficult to tackle, this
section allows open edge guards to monitor diago-
nals of the polygons as well, and therefore it studies
open mobile guards. Given a polygon P, Goa(P)
is the minimum number of open mobile guards that
fully cover P, that is, Gom(n) = min{Gom(P) :
P is a polygon of n vertices}.

4.1 Monotone polygons

Since open mobile guards can also be placed on both
edges and diagonals of a polygon, this section uses
the term open edge guard to make it clearer when it
suffices to place a guard on an edge and no diagonals
are needed.

Theorem 7 Any monotone polygon with n vertices
can be covered by | % | open mobile guards. This bound
is tight for all polygons of this class.

The necessity of [ 5| open mobile guards to cover a
monotone polygon is given by the example in Figure
There is no open mobile guard that can see two
of the points “hidden” inside the spikes. The number
of guards follows directly from this example as there
is one of these points for every three vertices of P.
Observe that this example also holds as a lower bound
for open edge guards.

The sufficiency proof is attained by induction on
n. This proof is immediate for n = 3,4,5 since one



Figure 12: No two black points are seen by the same
open mobile guard.

open mobile guard suffices to fully cover the whole
monotone polygon. If n = 6, then two open mobile
guards can be necessary. For the inductive step, sup-
pose that | %] open mobile guards are sufficient to any
cover polygon of n’ < m vertices, n > 6. Let P be a
polygon of n vertices that is monotone with respect to
a horizontal line. If the vertices of P are sorted from
left to right, let r be a vertical line between vertices
3 and 4. Supposing vertex 4 is on the bottom chain,
let u be the first vertex on the right of r on the top
chain of P. There are two possible cases depending on
whether the diagonal 4u exists (see Figure [[3)). If the
diagonal 4u exists on P then the polygon is divided
into two monotone polygons: P’ of five vertices that
can be covered using one open mobile guard and P”
of n — 3 vertices (see Figure[[3(a)). By the inductive
hypothesis, P” can be covered by [222] = 2] -1
n

open mobile guards. Consequently, ng open mobile

guards suffice to cover the whole polygon P.

If the diagonal 4u does not exist then let v be
the last vertex on the bottom chain on the left of
4u, which is visible to u (as shown in Figure [[3(b)).
Consequently, uv is a diagonal that exists on P and
divides the polygon into two monotone ones: P’ and
P”. There are three cases to be considered in this sit-
uation: P” has at most n—6 edges, P" has n—4 edges
or P” has n—5 edges. If P” has at most n — 6 edges,
then P” is covered by |25%| = [%2]| — 2 open mobile
guards according to the inductive hypothesis. And to
conclude, two extra open mobile guards are needed
to cover P’: one is placed on 3u and the other on the
edge connecting vertices 2 and 4 (see Figure [3|(b)).
If P” has n — 4 edges then v is the fifth vertex of P

Figure 13: (a) The diagonal 4u exists on polygon P
and divides it into polygons P’ and P”. (b) The
diagonal 4u does not exist on P but uv does and it
divides P into two monotones polygons.

(see Figure[I4a)). Now divide P using the diagonal
3v, which creates the pentagon P* that can be fully
covered by one open mobile guard. The polygon yet
to be covered has n—3 edges since it is formed by the
union of P” and the triangle formed by the vertices
3, u and v. According to the inductive hypothesis,
this polygon can be covered by L"T*‘lj < [%]—1open
mobile guards. However, vertex v may not see any
other vertex of the top chain on the left of u. If edge
Tu exists then it fully covers P’. If it does not, then P
has to be split using diagonal wv as shown in Figure
[[4(b). In this case, P’ is covered by placing a guard
on diagonal 3u if vertex 2 is reflex or on edge 2u oth-
erwise. Note that this is the only case of this proof
where an open mobile guard is needed. To conclude
this case, polygon P” has n — 4 edges and therefore
can be guarded by [ %] — 1 open mobile guards.

Finally, if P” has n — 5 edges then v is the sixth
vertex of P. In this case, consider the diagonal uxT
where x is the first vertex of the bottom chain after
v that is visible to u (see Figure[Id{(c)). Diagonal uz
divides P into two monotone polygons, one of them is
P* which can be fully covered using two open mobile
guards placed on edges 3u and 24. The piece of the
polygon P yet to cover has n — 6 vertices, and con-

n

sequently can be covered by |27%| = [%] — 2 open
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Figure 14: (a) The diagonal wv divides P into two
polygons and v is the fifth vertex. (b) Vertex v does
not see any other vertex of the top chain on the left of
u and 1u does not exist. (¢) The diagonal uv divides
P into two polygons and v is the sixth vertex.

mobile guards. This concludes the proof that |%]
open mobile guards suffice to fully cover any mono-

tone polygon.

Note that in the previous examples vertices 2 and 3
lie in different chains. If both vertices are in the same
chain, the proof still holds but it is possible that the
open mobile guard placed on edge 24 that is covering
P’ or P* needs to be swapped for the correct edge.

As previously mentioned, there is only one case
of this proof where the diagonals of the polygon are
needed and so we believe this result holds for open
edge guards. Recall that the example in Figure [2]
already proves the lower bound.

Conjecture 1 Any monotone polygon with n ver-
tices can be covered by || open edge guards.
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4.2 Orthogonal polygons
In Section 2.1] Figure(b) shows an orthogonal poly-

gon that needs | % | open edge guards in order to be
fully covered. This example does not hold for open
mobile guards as a guard placed on some diagonals of
the polygon is able to see two of the marked points.
However, the orthogonal polygon shown in Figure
can be used to prove the lower bound for this type of
guards: at least L”THJ open mobile guards are needed
to cover such polygon. In this example, each set of
ten vertices is only covered if there are at least two
open mobile guards.

Figure 15: Orthogonal polygon that needs at least
one open mobile guard to cover each of the marked
points.

Still, this is a short example and the number of
vertices is a multiple of ten. Nevertheless, this poly-
gon can be generalised to n in order to achieve the
following result.

Proposition 3 There are orthogonal polygons with
n vertices that need at least L"T'HJ open mobile guards
to be fully covered, that is, Gonr(n) > | ZEL].

Obviously, we also believe this lower bound coin-
cides with the upper bound.

Conjecture 2 Any orthogonal polygon with n ver-
tices can be covered by L"T'HJ open mobile guards.



Class of Polygons

Open Edge Guards

Open Mobile Guards

Orthogonal Gor(n) = 7] Gom(n) > | 2]
Orthogonal with holes |24 < Gop(n) < 2] ;

Spirals Gor(n) = |25 Gom(n) = [ L]
Orthogonal Spirals Gor(n) = [252] Gom(n) = [252]
Monotone Gor(n) > | 5] Gom(n) = 2]
Planar Triangulations Gou(t) = |2 ‘ }

Table 1: Summary of the results.

4.3 Spiral polygons

Even though open edge guards are more restrictive
than open mobile guards, the spiral polygon depicted
in Figure [d{(a) in Section 2.2 also works as a lower
bound concerning open mobile guards. Furthermore,
the proof of the upper bound presented in that sec-
tion also holds for open mobile guards. Consequently,
the following theorem follows directly from the results
proven above.

Theorem 8 Any spiral polygon with n vertices can
be covered by L”THJ open mobile guards, and in some
cases this number is necessary.

5 Conclusions and further re-
search

This paper introduced several results on the num-
ber of both open edge and open mobile guards con-
cerning the coverage of some classes of simple poly-
gons. These results are summarised in Table [l Al-
though omitted from the table, the Fortress Problem
— guarding the exterior of a polygon — was also stud-
ied and some results were obtained, mainly for or-
thogonal polygons. We believe that finding the mini-
mum number of open edge guards to cover a polygon
is NP-hard, as this is the case for closed edge guards
[?]. Notwithstanding, Section introduced an al-
gorithm to place the minimum number of open edge
guards to cover a spiral polygon. Further research
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on this topic would focus on finding an algorithm to
place the guards in the case of the fortress problem.
We also believe that the bound of | %] open mobile
guards to cover monotone polygons is a tight bound
for open edge guards as well. On open mobile guards,
tighten the bound of |2t | for orthogonal polygons
remains a future goal.

Section Bl introduced the problem of covering pla-
nar triangulations using open edge guards. The main
theorem of the section can also be found in Table [
and states that for any triangulation with ¢ triangles,
Gop(t) = |2 ]. As further research, it would be
interesting to find an efficient algorithm to calculate
the minimum number of open edge guards that cover
a given triangulation G. Micali et al. showed that it
is possible to build a matching of maximum size in a
graph of n nodes and m edges in O(y/nm) time [?].
Therefore, there is a polynomial algorithm to calcu-
late Gog(G), but it would be compelling to improve
this result.

To conclude, we presented several results for this
variation of the Art Gallery problem, but we also
opened a series of unsolved problems and interesting
conjectures to tackle in the future.
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