
From Ephemerizer to
Timed-Ephemerizer: Achieve

Assured Lifecycle Enforcement
for Sensitive Data

Qiang Tang

APSIA group, SnT, University of Luxembourg. 6, rue Richard Coudenhove-Kalergi, L-1359
Luxembourg

Email: qiang.tang@uni.lu

The concept of Ephemerizer, proposed by Perlman, is a cryptographic primitive for assured
data deletion. With an Ephemerizer protocol, data in persistent storage devices will always
be encrypted simultaneously using an ephemeral public key of the Ephemerizer (an entity
which will publish a set of ephemeral public keys and periodically delete the expired ones)
and the long-term public key of a user. An Ephemerizer protocol enables the user to securely
decrypt the encrypted data without leaking any information to the Ephemerizer. So far, no
security model has ever been proposed for this primitive and existing protocols have not
been studied formally. Not surprisingly, we show that some existing Ephemerizer protocols
possess security vulnerabilities. In this paper, we review the notion of Timed-Ephemerizer,
which can be regarded as a hybrid primitive by combining Ephemerizer and Timed-Release
Encryption. Compared with an Ephemerizer protocol, a Timed-Ephemerizer protocol further
guarantees that data will only be released after a pre-defined disclosure time. Moreover, we
revisit a security model for Timed-Ephemerizer and adapt it for Ephemerizer. We also revise
a previous Timed-Ephemerizer protocol by Tang and prove its security in the security model.

Keywords: Ephemerizer; storage privacy; assured lifecycle

Received x; revised y

1. INTRODUCTION

Rapid growth of information technology has greatly
facilitated individuals and enterprizes to generate
and store sensitive data (business transaction details,
electronic health records, personal profiles, etc). It
is common that backups of the same piece of data
will be placed on many different persistent storage
devices, such as hard disks, tapes, and USB tokens.
To protect the confidentiality, sensitive data are often
firstly encrypted then stored on various devices, while
the cryptographic keys also need to be stored and
backed up on some persistent storage devices. With
respect to storing data in persistent storage devices,
there are two concerns.

1. It is relatively easy to recover data from
persistent storage devices, even when the data
has been deleted. As such, the US government
specification has suggested to overwrite non-
classified information three times [1]. In contrast
to persistent storage devices, it is more difficult for
an adversary to corrupt volatile storage devices
(for example, most forms of modern random

access memory) because the data in such devices
will disappear when the electricity/power is gone.
However, it is worth noting that this could be
very subtle in the presence of side channel attacks,
especially when considering the cold boot attacks
[2].

2. Backups of encrypted sensitive data and crypto-
graphic keys often reside in many devices. Conse-
quently, it is difficult to guarantee that all relevant
backups have been deleted.

The above observations imply that an adversary
may simultaneously obtain a copy of encrypted data
and relevant cryptographic keys due to the potential
management carelessness. Especially, this may be
fairly easy for a malicious insider in organizations. To
reduce the potential risks facing sensitive data, it is
crucial to define an expiration time and strictly enforce
secure deletion afterwards. Subsequently, an effective
cryptographic protocol is needed for the enforcement.

Ephemerizer, proposed by Perlman [3, 4] and further
studied by Nair et al. [5], has shown a promising
direction towards a practical solution to the above

The Computer Journal, Vol. ??, No. ??, ????

2 Q. Tang

problem. At the core of Ephemerizer is a key
management service provided by an entity, referred
to as the Ephemerizer, which will publish a set of
ephemeral public keys and securely delete the expired
ones periodically. With an Ephemerizer protocol, data
in persistent storage devices will always be encrypted
simultaneously using an ephemeral public key of the
Ephemerizer and the long-term public key of a user.
The novelty of a secure Ephemerizer protocol is that it
enables the user to securely decrypt the encrypted data
without leaking any information to the Ephemerizer. If
we assume that the plaintext data only reside in volatile
storage devices such as memory, then an Ephemerizer
protocol guarantees that expired data will remain
unrecoverable even if the user’s persistent storage, the
user’s long-term private key, and the unexpired private
keys of the Ephemerizer have been compromised.

1.1. Problem Statement

So far, no security model has ever been proposed
for Ephemerizer and existing protocols have not been
analyzed formally. As a result, even if an existing
Ephemerizer protocol is employed, it is not clear
what kind of security guarantee will be provided.
To gain confidence in these protocols, we need
to propose a formal security model and conduct
corresponding security analysis. The other concern
is that an Ephemerizer protocol is only supposed
to provide assured deletion but not assured initial
disclosure, which however could be a very useful
feature in some practical applications. In a security
guideline published by the Cloud Security Alliance1,
thirteen domains of interest have been identified for
applications in the cloud computing environment, one
of which is information lifecycle management. As such,
protocols providing assured lifecycle (marked by an
assured initial disclosure and an assured deletion) will
be more appealing than those providing only assured
deletion. We illustrate this by an outsourcing data
security example in Section 6.2.

It is worth noting that Ephemerizer and its variants
only guarantee the lifecycle of data release through
encryption. Once data is decrypted (e.g. residing in
clear in memory), other complementary solutions are
needed to securely delete the data (e.g. the state re-
incarnation technique [6]). We do not consider such
techniques in this work.

1.2. Our Contribution

This is an extended version of the conference paper
[7], in which the author only introduced the concept
of Timed-Ephemerizer and gave an instantiation. Our
extentions fall into the following aspects.

Firstly, we show that some Ephemerizer protocols in
[5, 3, 4] possess security vulnerabilities. Specifically,

1http://www.cloudsecurityalliance.org/

we show that the Ephemerizer protocol using blind
decryption technique in [3, 4] is vulnerable to attacks
from a curious Ephemerizer. More seriously, we show
that the hybrid PKI-IBC Ephemerizer protocol in [5]
does not achieve assured deletion, i.e. an adversary
can recover expired data.

Secondly, we provide a general overview of Timed-
Ephemerizer. The workflow is illustrated in Fig.
1. Data in persistent storage devices will always
be encrypted using an ephemeral public key of the
Ephemerizer, the public key of the user, and the long-
term public key of the time server (which will publish
timestamps periodically). As a security guarantee,
a Timed-Ephemerizer protocol enables the user to
securely decrypt the encrypted data only during a pre-
defined time slot, namely before the expiration of the
ephemeral private key and the after the release of the
timestamp from the time server, yet without leaking
any information to the Ephemerizer or the time server.
If the time server’s private key is made public (or, the
assured initial disclosure property is disabled), then
Timed-Ephemerizer becomes Ephemerizer. Based on
the security model for Timed-Ephemerizer, we present
a security model for Ephemerizer.

FIGURE 1. An Illustration of Timed-Ephemerizer

Thirdly, we revise the Timed-Ephemerizer protocol
[7] with hash function usage and prove its security in
the proposed security model.

Fourthly, we compare Timed-Ephemerizer with
other solutions such as Vanish [8]. As an application,
we show that Timed-Ephemerizer is a useful tool for
users to enforce information lifecycle management in
outsourcing activities.

1.3. Organization

The rest of the paper is organized as follows. In
Section 2 we briefly present some notations and

The Computer Journal, Vol. ??, No. ??, ????

From Ephemerizer to Timed-Ephemerizer: Achieve Assured Lifecycle Enforcement for Sensitive Data 3

basics about pairing. In Section 3 we show that
some existing Ephemerizer protocols possess security
vulnerabilities. In Section 4 we review the concept
of Timed-Ephemerizer and its security properties. In
Section 5 we revise the Timed-Ephemerizer protocol [7]
and prove its security. In Section 6, we present some
further remarks on Timed-Ephemerizer. In Section 7
we briefly review the relevant works on Ephemerizer
and Timed-Release Encryption. In Section 8 we
conclude the paper.

2. PRELIMINARY

Throughout the paper, we use ` to denote the security
parameter. The notation u ∈R S means u is chosen
from the set S uniformly at random. If A is a
probabilistic algorithm, then v $

← A
(f1,f2,···)(x, y, · · ·)

means that v is the result of running A, which takes
x, y, · · · as input and has any polynomial number of
oracle queries to the functions f1, f2, · · · . As a standard
practice, the security of a protocol is evaluated by
an experiment between an attacker and a challenger,
where the challenger simulates the protocol executions
and answers the attacker’s oracle queries. Without
specification, algorithms are always assumed to be
polynomial-time.

We now review some basics about pairing and the
related assumptions. More detailed information can be
found in the seminal paper [9]. A pairing (or, bilinear
map) satisfies the following properties:

1. G and G1 are two multiplicative groups of prime
order p;

2. g is a generator of G;
3. ê : G×G→ G1 is an efficiently-computable bilinear

map with the following properties:

• Bilinear: for all u, v ∈ G and a, b ∈ Zp, we
have ê(ua, vb) = ê(u, v)ab.

• Non-degenerate: ê(g, g) , 1.

The Bilinear Diffie-Hellman (BDH) problem inG is as
follows: given a tuple g, ga, gb, gc

∈ G as input, output
ê(g, g)abc

∈ G1. An algorithm A has advantage ε in
solving BDH in G if

Pr[A(g, ga, gb, gc) = ê(g, g)abc] ≥ ε.

Similarly, we say that an algorithmA has advantage ε
in solving the decision BDH problem in G if

|Pr[A(g, ga, gb, gc, ê(g, g)abc) = 0]−Pr[A(g, ga, gb, gc,T) = 0]| ≥ ε

where the probability is over the random choice of
a, b, c ∈ Zp, the random choice of T ∈ G1, and the
random bits ofA.

Definition 2.1. We say that the (decision) BDH
assumption holds in G if no polynomial-time algorithm has
a non-negligible advantage in solving the (decision) BDH
problem.

Besides these computational/decisional assump-
tions, the Knowledge of Exponent (KE) assumption is
also used in a number of papers (e.g. [10, 11]). The KE
assumption is defined as follows.

Definition 2.2. For any adversary A, which takes a KE
challenge (g, ga) as input and returns (C,Y) where Y = Ca,
there exists an extractor A′, which takes the same input as
A returns c such that gc = C.

3. REVIEW OF EXISTING EPHEMERIZER PRO-
TOCOLS

An Ephemerizer protocol involves two types of entities:
users and an Ephemerizer. The idea behind of this
primitive is quite simple. The Ephemerizer chooses a
set of time timestamps, say teph j (1 ≤ j ≤ N) where N
is an integer, and correspondingly generates a set of
ephemeral key pairs (PKtephj

,SKtephj
). For 1 ≤ j, k ≤ N ,

it is assumed that if j < k then teph j < tephk (i.e.
tephk is later than teph j). Data is encrypted using a
symmetric key, which will be double-encrypted using
one ephemeral public key of the Ephemerizer and the
public key of the user. The decryption is an interactive
algorithm between the user and the Emphemerizer.
It is required that, at time teph j , the Ephemerizer will
delete SKtephj

, so that any ciphertext generated under the
ephemeral public key PKtephj

will become unrecoverable
afterwards.

In this section, we point out some vulnerabilities
of the Ephemerizer protocol which uses the blind
decryption technique in [3, 4] and the hybrid PKI-IBC
Ephemerizer protocol in [5].

3.1. Ephemerizer Protocol using Blind Decryption

3.1.1. Description of the Protocol
The Ephemerizer protocol using blind de-
cryption [3, 4] consists of algorithms
(SetupE,SetupU,Encrypt,Decrypt), which are de-
fined as follows.

• SetupE(`): The Ephemerizer generates a set of
tuples

(KeyIDtephj
,PKtephj

,SKtephj
, teph j),

where 1 ≤ j ≤ N , KeyIDtephj
is the identifier of

this tuple, (PKtephj
,SKtephj

) is a key pair of a public
key encryption scheme E1 with the algorithms
(Encrypt1,Decrypt1), and teph j is the expiration time
of the key pair.

• SetupU(`): A user generates a key pair (PKU,SKU)
for a public key encryption scheme E2 with the
algorithms (Encrypt2,Decrypt2). The user also
selects a symmetric key encryption scheme

E0 = (Encrypt0,Decrypt0),

The Computer Journal, Vol. ??, No. ??, ????

4 Q. Tang

which has the key space K and will be used to
encrypt data in the system.

• Encrypt(M,PKU,PKtephj
): The ciphertext is

(KeyIDtephj
,C,PKtephj

), where K ∈R K ,

Cm = Encrypt0(M,K), Ck = Encrypt1(K,PKtephj
),

Ctephj
= Encrypt2(Ck,PKU), C = (Cm,Ctephj

).

• Decrypt(C,SKU; SKtephj
):

1. The user generates an ephemeral function
pair (Blind,Unblind) satisfying the following
homomorphic property:

K = Unblind(Decrypt1(Blind(Ck),SKtephj
)).

2. The user then decrypts Ctephj
to obtain Ck, and

then computes and sends (KeyIDtephj
,C′tephj

) to

the Ephemerizer, where

C′tephj
= Blind(Ck).

3. If the ephemeral key SKtephj
associated with

KeyIDtephj
has not expired, the Ephemerizer

decrypts C′tephj
and sends C′′tephj

to the user,

where

C
′′

tephj
= Decrypt1(C′tephj

,SKtephj
)

= Decrypt1(Blind(Ck),SKtephj
).

4. The user obtains M as follows

K = Unblind(C
′′

tephj
), M = Decrypt0(Cm,K).

With respect to the efficiency, this protocol may be
quite inefficient in practice. The main reason is that the
Ephemerizer potentially needs to publish and certify all
the ephemeral public keys before data can be encrypted
by the user. Considering the fact that the data may have
a wide range of expiration time, the Ephemerizer may
need to publish a large volume of key pairs.

3.1.2. Security Analysis of the Protocol
In [3, 4], the following assumptions are made on the
validation of public keys.

1. The user should validate that the ephemeral public
keys PKtephj

is certified by a long-term private key
of the Ephemerizer, where the corresponding long-
term public key is certified by a Trusted Third Party
(TTP).

2. There is no need for the Ephemerizer and the user
to authenticate each other. There is no need to
encrypt or protect the integrity of the ephemeral
key sent to the user, i.e. there is no need for the
user to check the validity of PKtephj

in any received
message (KeyIDtephj

,C,PKtephj
).

We show below that lacking of validation of PKtephj
by

the user may lead to a potential security vulnerability
if the Ephemerizer is curious. As one of the options
suggested in [3, 4], we suppose that the public key
encryption scheme E1 is RSA [12]. Then, the above
Ephemerizer protocol will be instantiated to be the
following.

• SetupE(`): The Ephemerizer generates
(PKtephj

,SKtephj
) in the form ((e j,N j), d j) where

e jd j ≡ 1 (mod ϕ(N j)).

• SetupU(`): The algorithm is the same as in the
above.

• Encrypt(M,PKU,PKtephj
): The ciphertext is

(KeyIDtephj
,C, (e j,N j)), where C = (Cm,Ctephj

),

Cm = Encrypt0(M,K),

Ck = Ke j mod N j, Ctephj
= Encrypt2(Ck,PKU).

• Decrypt(C,SKU; SKtephj
):

1. The user generates R ∈R Z∗N j

2. The user decrypts Ctephj
to obtain Ck =

Ke j mod N j, and then computes and sends
(KeyIDtephj

,C′tephj
) to the Ephemerizer, where

R ∈R Z
∗

N, C′tephj
= Ke j Re j mod N j. (1)

3. If the ephemeral key SKtephj
associated with

KeyIDtephj
has not expired, the Ephemerizer

decrypts C′tephj
and sends C′′tephj

to the user,

where

C
′′

tephj
= (C′tephj

)d j mod N j

= (Ke j Re j)d j mod N j

= KR mod N j.

4. The user obtain K = C′′tephj
R−1 mod N j,

and then decrypts Cm to obtain M =
Decrypt0(Cm,K).

Suppose the Ephemerizer has obtained
(KeyIDtephj

,C, (e j,N j)) by eavesdropping on the user’s
communications. In order to recover the key K, the
Ephemerizer can send (KeyIDtephj

,C, (ϕ(N j),N j)) to the
user. Note that the Ephemerizer knows ϕ(N j). Ac-
cording to the Decrypt algorithm, the user will send
(KeyIDtephj

,C′tephj
), where

C′tephj
= Ke j Rϕ(N j) mod N j

= Ke j mod N j,

The Computer Journal, Vol. ??, No. ??, ????

From Ephemerizer to Timed-Ephemerizer: Achieve Assured Lifecycle Enforcement for Sensitive Data 5

to the Ephemerizer for blind decryption. Clearly, the
Ephemerizer can obtain K = (C′tephj

)d j mod N j.

Due to the fact that the ephemeral public keys are
only required to be certified by the private key of the
Ephemerizer, the presented security vulnerability will
still remain even if the user validates the public keys
in the ciphertext. One possible countermeasure is to
let a TTP to certify that the ephemeral public keys of
Ephemerizer are generated properly.

3.2. The Hybrid PKI-IBC Ephemerizer Protocol

3.2.1. Description of the Protocol
The Ephemerizer protocol [5] consists of algorithms
(SetupE,SetupU,Encrypt,Decrypt), which are defined
as follows.

• SetupE(`): The Ephemerizer first generates a
bilinear map ê : G × G → G1, a generator g ∈R G,
whereG andG1 are multiplicative groups of prime
order p. The Ephemerizer then generates a long-
term private key SKE ∈R Zp and the public key
PKE = gSKE , two hash functions

H1 : {0, 1}∗ → G, H2 : G1 → {0, 1}n,

and a set of ephemeral tuples
(KeyIDtephj

,PKtephj
,SKtephj

, texp j) where 1 ≤ j ≤ N ,
KeyIDtephj

is the identifier of this tuple, and

PKtephj
= g

SKtephj . Suppose also that the Ephemer-
izer possesses the identity IDE.

• SetupU(`): The user generates a key pair
(PKU,SKU) for a public key encryption scheme
E2 with algorithms (Encrypt2,Decrypt2). The user
also selects a symmetric key encryption scheme

E1 = (Encrypt1,Decrypt1),

which has the key space K and will be used to
encrypt data in the system.

• Encrypt(M,PKU,PKtephj
): The ciphertext is

(KeyIDtephj
,C), where r ∈R Zp, K ∈R K ,

Cm = Encrypt1(M,K), Ck = Encrypt2(K,PKU), (2)

IDtephj
= IDE||Expiry : t′exp j

,

Qtephj
= ê(H1(IDtephj

),PKtephj
),

Ctephj
= (gr,Ck ⊕ H2((Qtephj

)r)), (3)

C†tephj
= Encrypt2(IDtephj

||Ctephj
,PKU), (4)

C = (Cm,C†tephj
)

It is required t′exp j
should be smaller than texp j which

is the expiration time of (PKtephj
,SKtephj

).

• Decrypt(C,SKU; SKtephj
,SKE):

1. The user first decrypts C†tephj
to obtain IDtephj

and Ctephj
, and then computes and sends

(KeyIDtephj
, ID′tephj

,C′tephj
) to the Ephemerizer,

where

ID′tephj
∈R {0, 1}∗, Q′tephj

= ê(H1(ID′tephj
),PKE),

r′ ∈R Zp, K′ ∈R K ,

C′tephj
= (gr′ , (IDtephj

||K′) ⊕ H2((Q′tephj
)r′)). (5)

2. If the ephemeral key SKtephj
associated with

KeyIDtephj
has not expired, the Ephemerizer

decrypts C′tephj
to obtain IDtephj

and K′ as

follows

IDtephj
||K′ = (IDtephj

||K′) ⊕ H2((Q′tephj
)r′)⊕

H2(ê(H1(ID′tephj
), gr′)SKE).

(6)

It then computes and sends C′′tephj
to the user,

where

C
′′

tephj
= Encrypt1(H1(IDtephj

)
SKtephj ,K′). (7)

3. The user decrypts C′′tephj
to obtain

H1(IDtephj
)
SKtephj , and then decrypts Ctephj

to obtain Ck as follows.

Ck = Ck ⊕ H2((Qtephj
)r) ⊕ H2(ê(gr,H1(IDtephj

)
SKtephj)). (8)

The user then sequentially decrypts Ck and
Cm to obtain M as follows:

K = Decrypt2(Ck,SKU), M = Decrypt1(Cm,K). (9)

3.2.2. Security Analysis of the Protocol
On the exact expiration time. In the above protocol,
when the entity, who runs Encrypt, constructs IDtephj

=

IDE||Expiry : t′exp j
, it chooses an ephemeral public key

PKtephj
where t′exp j

< texp j . This means that, at the time
between t′exp j

and texp j , if an adversary compromises
both the Ephemerizer and the user, then it is able to
recover M. This observation implies that the expiration
time for the ciphertext C is in fact texp j instead of t′exp j

.

On recovering expired data. In [5], no rigorous analysis
has been done for this protocol. Next, we show that
expired data can still be recovered by an adversary.
Suppose that, through eavesdropping, the adversary
has obtained (C,C′tephj

,C′′tephj
), where

C = (Cm,C†tephj
), Cm = Encrypt1(M,K),

The Computer Journal, Vol. ??, No. ??, ????

6 Q. Tang

C†tephj
= Encrypt2(IDtephj

||Ctephj
, PKU),

C′tephj
= (gr′ , (IDtephj

||K′) ⊕ H2((Q′tephj
)r′)),

C
′′

tephj
= Encrypt1(H1(IDtephj

)
SKtephj ,K′).

Suppose that, at the time teph j+1 , where teph j+1 > teph j , the
adversary compromises the Ephemerizer and the user,
and obtains SKE and SKU. Note that, at the time teph j+1 ,
SKtephj

has been securely deleted and any ciphertext
encrypted with PKtephj

should be unrecoverable.

1. Based on the equation (5), using SKE, the adversary
can decrypt C′tephj

and obtain IDtephj
||K′.

2. Based on the equation (7), using K′, the adversary

can recover H1(IDtephj
)
SKtephj by decrypting C′′tephj

.

3. Based on the equation (4), using SKU, the
adversary can recover Ctephj

by decrypting C.

4. Based on the equation (3), using H1(IDtephj
)
SKtephj ,

the adversary can recover Ck by decrypting Ctephj
.

5. Based on the equations (2), using SKU, the
adversary can recover K by decrypting Ck, and
then recover M by decrypting Cm using K.

4. THE CONCEPT OF TIMED-EPHEMERIZER

A Timed-Ephemerizer protocol guarantees that
encrypted data will only be recoverable during a
pre-defined lifecycle, beyond which no adversary
can recover the data even if it has compromised all
existing private keys in the system. Compared with
Ephemerizer protocols [5, 3, 4], a Timed-Ephemerizer
protocol explicitly provides the guarantee that data can
only be available after the pre-defined initial disclosure
time.

Generally, a Timed-Ephemerizer protocol involves
the following types of entities: a time server, users,
and an Ephemerizer. Compared with an Ephemerizer
protocol, a Timed-Ephemerizer protocol has one
additional entity, namely the time server. One may
have the observation that the Ephemerizer can be
required to release timestamps so that the time server
can be eliminated. However, we argue that the
separation of functionalities provides a higher level of
security guarantee in general. First of all, the time
server only needs to publish timestamps without any
additional interaction with other entities. In practice,
the risk that time server is compromised is less than
that for the Ephemerizer. Secondly, the risk that both
the Ephemerizer and the time server are compromised
is less than that one of them is compromised.

The idea behind of this new primitive is similar to
that of Ephemerizer. The Ephemerizer plays the same
role as in the case of Ephemerizer and generates a set
of ephemeral key pairs (PKtephj

,SKtephj
) (1 ≤ j ≤ N).

The time server defines a time set T and sequentially

publishes a timestamp TSt at the time t ∈ T . Data
is encrypted using a symmetric key, which will be
encrypted using one ephemeral public key of the
Ephemerizer and the public key of the user while taking
into account an initial disclosure time tint ∈ T . The
decryption is an interactive algorithm between the user
and the Emphemerizer. The security is mainly based
on two facts.

1. Only at time t ∈ T , the time server publishes a
timestamp TSt, so that any ciphertext generated
with time t will only become recoverable after t.

2. At the time teph j , the Ephemerizer will delete
SKtephj

, so that any ciphertext generated under
the ephemeral public key PKtephj

will become
unrecoverable afterwards.

In the rest of this section, we define the algorithms
of Timed-Ephemerizer and formalize its security
properties.

4.1. The Algorithm Definitions

A Timed-Ephemerizer protocol consists of the
following algorithms. Note that, compared with
an Ephemerizer protocol, there are two additional
algorithms, namely SetupT and TimeExt.

• SetupT(`): Run by the time server, this algorithm
generates a public/private key pair (PKT,SKT). In
addition, the time server also publishes a time set
T .

• TimeExt(t,SKT): Run by the time server, this
algorithm generates a timestamp TSt for t ∈ T .
It is assumed that the time server publishes TSt at
the point t.

• SetupE(`): Run by the Ephemerizer, this algorithm
generates a set of tuples (PKtephj

,SKtephj
, teph j), where

1 ≤ j ≤ N , (PKtephj
,SKtephj

) is an ephemeral
public/private key pair, and teph j is the expiration
time. The Ephemerizer will securely delete SKtephj

at the point teph j . We assume that there is only one
ephemeral key pair for any expiration time teph j .

• SetupU(`): Run by a user, this algorithm generates
a public/private key pair (PKU,SKU).

• Encrypt(M, tint,PKU,PKtephj
,PKT): This algorithm

outputs a ciphertext C. For the message M,
tint ∈ T is the initial disclosure time and teph j is the
expiration time. We explicitly assume that both
(tint, teph j) and C should be sent to the user.

• Decrypt(C,TStint ,SKU; SKtephj
): Run between the

user and the Ephemerizer, this algorithm outputs
a plaintext M or an error symbol for the user.

In the algorithm definitions, besides the explicitly
specified parameters, other public parameters could

The Computer Journal, Vol. ??, No. ??, ????

From Ephemerizer to Timed-Ephemerizer: Achieve Assured Lifecycle Enforcement for Sensitive Data 7

also be specified and be implicitly part of the input. We
omit those parameters for the simplicity of description.
In the algorithm designs, we let the time server and
the Ephemerizer choose T and teph j (1 ≤ j ≤ N)
respectively. How to choose these timestamps is a
practical issue, and may be subject to the application
environment where a Timed-Ephemerizer protocol will
be used. However, no matter how this will be done, it
will not affect our security analysis.

Note that a Timed-Ephemerizer protocol can be
employed by an entity, say Alice, to protect her
own data in persistent storage devices or protect her
data that she wants to share with another entity, say
Bob. In the first situation, Alice encrypts her data
Encrypt(M, tint,PKA,PKtephj

,PKT), where PKA is Alice’s
public key. In the second situation, Alice encrypts
her data Encrypt(M, tint,PKB,PKtephj

,PKT), where PKB is
Bob’s public key. The example in Section 6.2 is in the
second situation.

Similar to other cryptographic primitives, the basic
requirement to Timed-Ephemerizer is soundness.
Informally, this property means that the algorithms
Encrypt and Decrypt work properly with valid inputs.
Formally, it is defined as follows.

Definition 4.1. A Timed-Ephemerizer protocol achieves
(unconditional) soundness if the following equality always
holds for any M, tint, j.
Decrypt(Encrypt(M, tint,PKU ,PKtephj

,PKT),TStint ,SKU ; SKtephj
) = M.

4.2. The Security Definitions

With respect to the entities involved in a Timed-
Ephemerizer protocol, we make the following trust
assumptions.

• The time server publishes TSt at the time t, where
t ∈ T . Except for this, the time server may try
to obtain some information about users’ plaintext
data.

• A user is supposed to access the data during its
lifecycle, but not beyond it. Furthermore, the user
will not store plaintext data on persistent storage
devices.

• The Ephemerizer publishes ephemeral pub-
lic/private key pairs and revoke them periodically.
Except for this, the time server may try to obtain
some information about users’ plaintext data.

A Timed-Ephemerizer protocol is aimed to guarantee
that data will only be available during its lifecycle,
while neither before the initial disclosure time nor after
the expiration time. We assume that the validation
of public keys in the protocol can be verified by
all the participants. For example, the validation
can be done with the help of a TTP. Note that
the validation of keys are crucial to achieve the
security properties against both Type-I and Type-II

adversaries. We generally assume that an outside
adversary is active, which means that the adversary
may compromise the protocol participants and fully
control the communication channels (i.e. capable
of deleting, relaying, and replacing the messages
exchanged between the participants). Considering the
threats against confidentiality of data, we identify three
categories of adversaries.

• Type-I adversary: This type of adversary wants to
access data before its initial disclosure time. Type-
I adversary represents a curious user and also a
malicious outside entity which has compromised
the Ephemerizer and the user before the initial
disclosure time of the data.

• Type-II adversary: This type of adversary wants
to access data after its expiration time. Type-II
adversary represents a malicious outside entity
which has compromised the time server, the
Ephemerizer, and the user after the expiration time
of the data.

• Type-III adversary: This type of adversary
represents a malicious time server and a malicious
Ephemerizer, and also a malicious outside entity
which has compromised the time server and the
Ephemerizer.

The implications of a Type-I adversary and a Type-II
adversary are clear for a Timed-Ephemerizer protocol.
Nonetheless, the existence of a Type-III adversary still
makes sense even in the presence of these two types
of adversary. Compared with a Type-I adversary, a
Type-III adversary has the advantage of accessing the
private key (and all timestamps) of the time server;
while compared with a Type-II adversary, a Type-
III adversary has the advantage of accessing all the
private keys of the Ephemerizer. However, a Type-
III adversary does not have direct access to the user’s
private key.

It is worth stressing that when the adversary com-
promises an entity (the time server, the Ephemerizer,
or the user) it will obtain the private keys possessed by
that entity. For example, if the Ephemerizer is compro-
mised at the point t, then it will obtain all the private
keys SKtephj

for teph j > t. However, we do not take into
account the compromise of ephemeral session secrets
during the executions of algorithms.

Definition 4.2. A Timed-Ephemerizer protocol achieves
Type-I semantic security if any polynomial-time adversary
has only a negligible advantage in the following semantic
security game (as shown in Fig. 2), where the advantage is
defined to be |Pr[b′ = b] − 1

2 |.

In the attack game, PK∗ means all available public
keys. In more detail, the attack game between the
challenger and the adversary A performs as follows.
In this game the challenger simulates the functionality
of the time server.

The Computer Journal, Vol. ??, No. ??, ????

8 Q. Tang

1. (PKT,SKT) $
← SetupT(`);

(PKtephj
,SKtephj

) for 1 ≤ j ≤ N $
← SetupE(`);

(PKU,SKU) $
← SetupU(`)

2. (M0,M1, t∗int,PKtephi
) $
←A

(TimeExt)(SKtephj
(1 ≤ j ≤

N),SKU,PK∗)
3. b $

← {0, 1};Cb
$
← Encrypt(Mb, t∗int,PKU,PKtephi

,PKT)

4. b′ $
←A

(TimeExt)(Cb,SKtephj
for 1 ≤ j ≤ N ,SKU,PK∗)

FIGURE 2. Semantic Security against Type-I Adversary

1. The challenger runs SetupT to generate (PKT,SKT),
runs SetupE to generate (PKtephj

,SKtephj
) for 1 ≤

j ≤ N , and runs SetupU to generate (PKU,SKU).
Except for SKT, all private keys and all public
parameters are given to the adversary.

2. The adversary can adaptively query the TimeExt
oracle, for which the adversary provides a time
t and gets a timestamp TSt from the challenger.
At some point, the adversary sends the challenger
two equal-length plaintext M0,M1 on which it
wishes to be challenged, and two timestamps
(t∗int, tephi) where t∗int ∈ T and 1 ≤ i ≤ N . The only
restriction is that the TimeExt oracle should not
have been queried with t ≥ t∗int.

3. The challenger picks a random bit b ∈ {0, 1} and
gives the adversary Cb as the challenge, where

Cb = Encrypt(Mb, t∗int,PKU,PKtephi
,PKT).

4. The adversary can continue to query the TimeExt
oracle with the same restriction as in Step 2.

5. Eventually, the adversary outputs b′.

In the above attack game, the adversary is Type-
I because it has access to SKU and SKtephj

for any
1 ≤ j ≤ N . The restriction in steps 2 and 4 of the
above game, namely “the TimeExt oracle should not
have been queried with t ≥ t∗int.”, implies that the
adversary tries to recover a message before the initial
disclosure time. This coincides with the definition of
Type-I adversary.

Definition 4.3. A Timed-Ephemerizer protocol achieves
Type-II semantic security if any polynomial-time adversary
has only a negligible advantage in the following semantic
security game (as shown in Fig. 3), where the advantage is
defined to be |Pr[b′ = b] − 1

2 |.

In the attack game, PK∗ means all available public
keys. In more detail, the attack game between the
challenger and the adversaryAperforms as follows. In
this game the challenger simulates the functionalities
of both the Ephemerizer and the user.

1. The challenger runs SetupT to generate (PKT,SKT),
runs SetupE to generate (PKtephj

,SKtephj
) for 1 ≤

1. (PKT,SKT) $
← SetupT(`); (PKtephj

,SKtephj
) for 1 ≤ j ≤

N
$
← SetupE(`); (PKU,SKU) $

← SetupU(`)
2. (M0,M1, t∗int,PKtephi

) $
←A

(Decrypt)(SKT,SKtephj
for 1 ≤

j ≤ N ,SKU,PK∗)
3. b $

← {0, 1};Cb
$
← Encrypt(Mb, t∗int,PKU,PKtephi

,PKT)

4. b′ $
←A

(Decrypt)(Cb,SKT,SKtephj
for i < j ≤

N ,SKU,PK∗)

FIGURE 3. Semantic Security against Type-II Adversary

j ≤ N , and runs SetupU to generate (PKU,SKU).
The private key SKT and all public parameters are
given to the adversary.

2. The adversary can adaptively issue the following
two types of Decrypt oracle queries.

(a) D-type Decrypt oracle query: In each
oracle query, the adversary impersonates the
Ephemerizer and provides (tint, teph j) and C to
the challenger, which then uses (C,TStint ,SKU)
as input and runs the Decrypt algorithm
with the adversary to decrypt C by assuming
that the initial disclosure time is tint and the
expiration time is teph j .

(b) E-type Decrypt query: In each oracle query,
the adversary impersonates a user to the
Ephemerizer and sends teph j to the challenger,
which uses SKtephj

as the input and runs the
Decrypt algorithm with the adversary.

At some point, the adversary sends the challenger
two equal-length plaintext M0,M1 on which it
wishes to be challenged, and two timestamps
(t∗int, tephi) where t∗int ∈ T and 1 ≤ i ≤ N . In this
phase, the adversary can query for SKU and SKtephj

for any i < j ≤ N with the following restriction:
if SKU has been queried, then any E-type Decrypt
oracle query with the input teph j for any 1 ≤ j ≤ i is
forbidden.

3. The challenger picks a random bit b ∈ {0, 1} and
gives the adversary Cb as the challenge, where

Cb = Encrypt(Mb, t∗int,PKU,PKtephi
,PKT).

4. The adversary can continue to issue oracle queries
as in Step 2 with the same restriction.

5. The adversaryA outputs b′.

In the above attack game, the adversary is Type-
II because it has access to the private keys SKT,
SKU, and SKtephj

for any i < j ≤ N . In the above
game, the privilege, that the adversary can issue
the two types of Decrypt oracle queries, reflects the
fact that the adversary has complete control over
the communication link between the user and the
Ephemerizer. In practice, such an adversary can initiate

The Computer Journal, Vol. ??, No. ??, ????

From Ephemerizer to Timed-Ephemerizer: Achieve Assured Lifecycle Enforcement for Sensitive Data 9

the Decrypt algorithm with both the Ephemerizer and
the user. The first case is modeled by the E-type Decrypt
query, while the second case is modeled by the D-
type Decrypt query. The restriction in the above game,
namely “if SKU has been queried, then E-type Decrypt
oracle query with the input teph j for any 1 ≤ j ≤ i is
forbidden.”, reflects the fact that the adversary tries to
recover a message after its expiration time tephi (when
the ephemeral keys SKtephj

for any 1 ≤ j ≤ i should
have been securely deleted by the Ephemerizer). This
coincides with the definition of Type-II adversary.

Definition 4.4. A Timed-Ephemerizer protocol achieves
Type-III semantic security if any polynomial-time adversary
has only a negligible advantage in the following semantic
security game (as shown in Fig. 4), where the advantage is
defined to be |Pr[b′ = b] − 1

2 |.

1. (PKT,SKT) $
←A(`); (PKtephj

,SKtephj
)for1 ≤ j ≤ N $

←

A(`); (PKU,SKU) $
← SetupU(`)

2. (M0,M1, t∗int,PKtephi
) $
←A

(Decrypt)(SKT,SKtephj
for 1 ≤

j ≤ N ,PK∗)
3. b $

← {0, 1};Cb
$
← Encrypt(Mb, t∗int,PKU,PKtephi

,PKT)

4. b′ $
←A

(Decrypt)(Cb,SKT,SKtephj
for 1 ≤ j ≤ N ,PK∗)

FIGURE 4. Semantic Security against Type-III Adversary

In the attack game, PK∗ means all available public
keys. In more detail, the attack game between
the challenger and the adversary A performs as the
following. In this game the challenger simulates the
functionality of the user.

1. The adversary A generates (PKT,SKT) and
(PKtephj

,SKtephj
) for 1 ≤ j ≤ N . Note that

the adversary may not follow the protocol
specification to generate these parameters. The
challenger runs SetupU to generate (PKU,SKU).
The public key PKU is given to the adversary.

2. The adversary can adaptively issue the D-type
Decrypt oracle query (defined as above). At some
point, the adversary sends the challenger two
equal-length plaintext M0,M1 on which it wishes
to be challenged, and two timestamps (t∗int, tephi)
where t∗int ∈ T and 1 ≤ i ≤ N .

3. The challenger picks a random bit b ∈ {0, 1} and
gives the adversary Cb as the challenge, where

Cb = Encrypt(Mb, t∗int,PKU,PKtephi
,PKT).

4. The adversary can continue to query the Decrypt
oracle as in Step 2.

5. The adversaryA outputs b′.

In the above attack game, the adversary is Type-III
because it has access to the private keys SKT and SKtephj

for any 1 ≤ j ≤ N . In the above game, expect for the

user’s private key, the adversary is allowed to access all
other secrets. In particular, this means that an outside
adversary can compromise both the time server and
the Ephemerizer at any time. This coincides with the
definition of Type-III adversary.

5. A NEW TIMED-EPHEMERIZER PROTOCOL

In this section, we propose revise the Timed-
Ephemerizer protocol from [7] and prove its security.
The philosophy behind the proposed protocol is similar
to the blind decryption technique [3, 4]. As in the
case of the hybrid PKI-IBC protocol [5], the proposed
protocol also adopts the concept of identity-based
encryption [9, 13] to avoid publishing a large volume of
ephemeral public keys. Here are some intuitions about
the construction.

1. Encryption. Data is first encrypted jointly using the
ephemeral public key of the Ephemerizer and the
public key of the time server. This is illustrated in
the generation of the element C4 in the ciphertext,
referring to the equation (10). The ciphertext
is then re-encrypted using the public key of the
user. The ⊕ operation in generating C4 allows
the re-randomization in the decryption, while the
checksum C7 is important to achieve the security
properties against Type-I and Type-II adversaries
(technically, allowing us to answer the adversaries’
oracle queries in the proofs).

2. Decryption. In order to achieve the security
property against Type-III adversary, the ciphertext
need to be re-randomized in the decryption
algorithm. As a result, in decryption, the
ciphertext is firstly decrypted using the user’s
private key, and then re-randomized using a
random number. This is illustrated in the
generation of the element C′4 in the ciphertext,
referring to the equation (12). The re-randomized
data is then encrypted using an ephemeral public
key of the Ephemerizer and sent to the the
Ephemerizer. This additional encryption process
is used to prevent replay attacks from Type-I and
Type-II adversaries, due to the fact that the re-
randomization is simply an XOR operation.

5.1. The Proposed Construction

Let {0, 1}n be the message space of user, where n is a
polynomial in `. The polynomial-time algorithms are
defined as follows.

• SetupT(`): This algorithm generates the following
parameters: a multiplicative group G of prime
order p, a generator g of G, and a multiplicative
group G1 of the same order as G, a polynomial-
time computable bilinear map ê : G × G → G1, a
cryptographic hash function H1, and a long-term

The Computer Journal, Vol. ??, No. ??, ????

10 Q. Tang

public/private key pair (PKT,SKT) where

H1 : {0, 1}∗ → G, SKT ∈R Zp, PKT = gSKT .

The time server also publishes (G,G1, p, g, ê,H1).
Suppose that the time server possesses the identity
IDT. In addition, the time server also publishes a
time set T . Since the details how to define T will
not affect out analysis, we keep it at an abstract
level.

• TimeExt(t,SKT): This algorithm returns TSt =
H1(IDT ||t)SKT .

• SetupE(`): Suppose that the Ephemerizer
possesses the identity IDE. The Ephemerizer uses
the same set of parameter (G,G1, p, g, ê) as by the
time server and selects the supported expiration
times teph j (1 ≤ j ≤ N) where N is an integer.
The Ephemerizer generates a master key pair
(PK(0)

E ,SK(0)
E) and a hash function H2, where

SK(0)
E ∈R Zp, PK(0)

E = gSK(0)
E , H2 : {0, 1}∗ → {0, 1}n,

and sets, for 1 ≤ j ≤ N ,

PK(0)
tephj

= IDE||teph j , SK(0)
tephj

= H1(IDE||teph j)
SK(0)

E .

The Ephemerizer generates another master key
pair (PK(1)

E ,SK(1)
E) for an identity-based public

key encryption scheme E1 with the encryp-
tion/decryption algorithms (Encrypt1,Decrypt1),
and, for 1 ≤ j ≤ N , generates the ephemeral key
pairs

(PK(1)
tephj
, SK(1)

tephj
), where PK(1)

tephj
= IDE||teph j .

Suppose the message space and ciphertext space
of the encryption scheme E1 are Y and W,
respectively. The Ephemerizer keeps a set of tuples
(PKtephj

,SKtephj
, teph j) for 1 ≤ j ≤ N , where

PKtephj
= (PK(0)

tephj
,PK(1)

tephj
), SKtephj

= (SK(0)
tephj
,SK(1)

tephj
)

In addition, the Ephemerizer deletes SK(0)
E ,SK(1)

E
and publishes the long-term public keys
PK(0)

E ,PK(1)
E .

• SetupU(`): This algorithm generates a pub-
lic/private key pair (PKU,SKU) for a public
key encryption scheme E2 with the encryp-
tion/decryption algorithms (Encrypt2,Decrypt2).
Suppose the message space of E2 is X and the ci-
phertext space is D. The user publishes the fol-
lowing hash functions.

H3 : G ×G→ G, H4 : Y → G ×G ×G × {0, 1}n,

H5 : X → G ×G ×G × {0, 1}n.

• Encrypt(M, tint,PKU,PKtephj
,PKT): This algorithm

outputs a ciphertext C, where

r1, r2 ∈R Zp,X ∈R X,C1 = gr1 ,C2 = gr2 ,C3 = H3(C1||C2)r1 ,

C4 = M ⊕ H2(ê(H1(PK(0)
tephj

),PK(0)
E)r1 · ê(H1(IDT ||tint),PKT)r2) (10)

= M ⊕ H2(ê(H1(IDE ||tephj),C1)SK(0)
E · ê(H1(IDT ||tint),C2)SKT)(11)

C5 = Encrypt2(X,PKU),C6 = H5(X)⊕(C1||C2||C3||C4),

C7 = H2(X||C1||C2||C3||C4||C5||C6), C = (C5,C6,C7).

• Decrypt(C,TStint ,SKU; SKtephj
):

1. The user decrypts C5 to obtain X, and aborts
if the following inequality is true.

C7 , H2(X||(C6 ⊕ H5(X))||C5||C6)

Otherwise it computes C1||C2||C3||C4 =
H5(X)⊕C6. The user then retrieves TStint from
the time server and checks that ê(TStint , g) =
ê(H1(IDT ||tint),PKT). If so, it computes and
sends (C′,TStint) to the Ephemerizer, where
M′ ∈R {0, 1}n,

C′1 = C1,C′2 = C2,C′3 = C3,C′4 = M′ ⊕ C4, (12)

Y ∈R Y, C′5 = Encrypt1(Y,PK(1)
tephj

),

C′6 = H4(Y) ⊕ (C′1||C
′

2||C
′

3||C
′

4),

C′7 = H2(Y||C′1||C
′

2||C
′

3||C
′

4||C
′

5||C
′

6),

C′ = (C′5,C
′

6,C
′

7).

2. If the ephemeral key SKtephj
= (SK(0)

tephj
,SK(1)

tephj
)

has not expired, the Ephemerizer decrypts C′5
to obtain Y, and aborts if

C′7 , H2(Y||(C′6 ⊕ H4(Y))||C′5||C
′

6).

It then computes C′1||C
′

2||C
′

3||C
′

4 = H4(Y) ⊕ C′6,
and aborts if

ê(C′3, g) , ê(C′1,H3(C′1||C
′

2))

Finally, it sends C′′ to the user, where

C
′′

= H2(Y||C′1 ||C
′

2 ||C
′

3 ||C
′

4) ⊕ C′4 ⊕ H2(ê(C′1,SK(0)
tephj

) · ê(TStint ,C
′

2))

= H2(Y||C′1 ||C
′

2 ||C
′

3 ||C
′

4) ⊕M′ ⊕M.

3. The user recovers M = H2(Y||C′1||C
′

2||C
′

3||C
′

4) ⊕
M′ ⊕ C′′ .

Since identity-based encryption is used, only the
long-term public key PKE = (PK(0)

E ,PK(1)
E) needs to be

certified by a TTP. Instead of publishing and certifying
all the ephemeral public keys, as in the case of
[3, 4], the Ephemerizer only needs to publish teph j

The Computer Journal, Vol. ??, No. ??, ????

From Ephemerizer to Timed-Ephemerizer: Achieve Assured Lifecycle Enforcement for Sensitive Data 11

(1 ≤ j ≤ N). Compared with the protocol in [5],
the concrete difference is that the master private key
SKE = (SK(0)

E ,SK(1)
E) is only required to be ephemeral,

i.e. after generating the ephemeral private keys, the
Ephemerizer can delete SKE.

It is straightforward to verify that the soundness
property is achieved, namely the Encrypt and Decrypt
work properly. We skip the details here.

5.2. The Security Analysis

In the execution of Decrypt, the timestamp TStint is
a required input. Intuitively, before the time server
publishes the timestamp, it is infeasible for the user and
the Ephemerizer to run Decrypt to recover the message.
The following lemma formalizes this intuition.

Lemma 5.1. The proposed scheme achieves semantic
security against Type-I adversary based on the BDH
assumption in the random oracle model.

Proof sketch. Suppose an adversaryAhas the advantage
ε in the attack game depicted in Figure 2.

Game0: In this game, the challenger faithfully
simulates the protocol execution and answers the oracle
queries from A. We assume the challenger simulates
the hash function H1 as follows. The challenger
maintains a list of vectors, each of them containing
a request message, an element of G (the hash-code for
this message), and an element of the form IDT ||t. After
receiving a request message, the challenger first checks
its list to see whether the request message is already in
the list. If the check succeeds, the challenger returns the
stored element of G; otherwise, the challenger returns
gy, where y a randomly chosen element of Zp, and
stores the new vector in the list. Other hash functions
are simulated in a similar way.

On receiving a TimeExt oracle query with the input t,
the challenger answers PKy

T given that H1(IDT ||t) = gy.
Let δ0 = Pr[b′ = b], as we assumed at the beginning,
|δ0 −

1
2 | = ε.

Game1: In this game, the challenger performs in the
same way as in Game0 except for the generation of the
challenge Cb.

r∗1, r
∗

2 ∈R Zp, X∗ ∈R X, R ∈ G1, C∗1 = gr∗1 , C∗2 = gr∗2 ,

C∗3 = H3(C∗1||C
∗

2)r∗1 ,C∗4 = Mb ⊕ H2(R),

C∗5 = Encrypt2(X∗,PKU), C∗6 = H5(X∗) ⊕ (C∗1||C
∗

2||C
∗

3||C
∗

4),

C∗7 = H2(X∗||C∗1||C
∗

2||C
∗

3||C
∗

4||C
∗

5||C
∗

6), Cb = (C∗5,C
∗

6,C
∗

7).

Let δ1 be the probability that the challenger successfully
ends and b′ = b in Game1. As R ∈R G1 and H2 is
modeled as a random oracle, the equation |δ1 −

1
2 | = 0

holds.
With respect to the generation of Cb, from

Game0 to Game1, the only modification is that
ê(H1(IDE||tephi),C

∗

1)SK(0)
E · ê(H1(IDT ||t∗int),C

∗

2)SKT has been

replaced with R, where R ∈R G1. As a result, Game1

is identical to Game0 unless ê(H1(IDE||tephi),C
∗

1)SK(0)
E ·

ê(H1(IDT ||t∗int),C
∗

2)SKT has been queried to H2. Note that
SKT is not required in answering the TimeExt oracle
queries. We immediately obtain |δ1 − δ0| = ε′ where ε′

is negligible based on the BDH assumption. The lemma
now follows. �

Lemma 5.2. The proposed scheme achieves semantic
security against Type-II adversary based on the BDH and
the KE assumptions in the random oracle model given that
the public key encryption schemes E1 and E2 are one-way
permutation.

Proof sketch. Suppose an adversaryAhas the advantage
ε in the attack game depicted in Figure 3. The security
proof is done through a sequence of games [14].

Game0: In this game, the challenger faithfully
simulates the protocol execution and answers the oracle
queries fromA. Note that the challengeCb is computed
as follows.

r∗1, r
∗

2 ∈R Zp, X∗ ∈R X,

C∗1 = gr∗1 , C∗2 = gr∗2 , C∗3 = H3(C∗1||C
∗

2)r∗1 ,

C∗4 = Mb ⊕ H2(ê(H1(IDE||tephi),C
∗

1)SK(0)
E · ê(H1(IDT ||t∗int),C

∗

2)SKT),

C∗5 = Encrypt2(X∗,PKU), C∗6 = H5(X∗) ⊕ (C∗1||C
∗

2||C
∗

3||C
∗

4),

C∗7 = H2(X∗||C∗1||C
∗

2||C
∗

3||C
∗

4||C
∗

5||C
∗

6), Cb = (C∗5,C
∗

6,C
∗

7).

Let δ0 = Pr[b′ = b], as we assumed at the beginning,
|δ0 −

1
2 | = ε.

Game1: In this game, the challenger performs in the
same way as in Game0 except for the following. Before
the adversary queries SKU, given a D-type Decrypt
query with the input (C = (C5,C6,C7), tint, teph j), the
challenger answers as the following.

1. In step 4 of the game, if C = Cb, the challenger
returns C′, where

M′ ∈R {0, 1}n, C′1 = C∗1, C′2 = C∗2, C′3 = C∗3,

C′4 = M′ ⊕ C∗4, Y ∈R Y, C′5 = Encrypt1(Y,PK(1)
tephj

),

C′6 = H4(Y) ⊕ (C′1||C
′

2||C
′

3||C
′

4),

C′7 = H2(Y||C′1||C
′

2||C
′

3||C
′

4||C
′

5||C
′

6), C′ = (C′5,C
′

6,C
′

7).

2. Otherwise, the challenger first checks whether or
not there is a query with the input

X̃||C̃1||C̃2||C̃3||C̃4||C̃5||C̃6

to the oracle H2 such that

C5 = Encrypt2(X̃,PKU), C6 = C̃6, (13)

H5(X̃) ⊕ C6 = C̃1||C̃2||C̃3||C̃4, C7 = H2(X̃||C̃1||C̃2||C̃3||C̃4||C̃5||C̃6).
(14)

The Computer Journal, Vol. ??, No. ??, ????

12 Q. Tang

If the input exists, the challenger returns C′, where

M′ ∈R {0, 1}n, C′1 = C̃1, C′2 = C̃2, C′3 = C̃3,

C′4 = M′ ⊕ C̃4,C′5 = Encrypt1(Y,PK(1)
tephj

),

C′6 = H4(Y) ⊕ (C′1||C
′

2||C
′

3||C
′

4),

C′7 = H2(Y||C′1||C
′

2||C
′

3||C
′

4||C
′

5||C
′

6), C′ = (C′5,C
′

6,C
′

7).

Otherwise, the challenger rejects the quest.

The game Game1 is identical to Game0 unless the
following event Evn occurs in answering the D-type
Decrypt oracle queries.

• In the first case, there is a query with the input
(C = (C5,C6,C7), tint, teph j) such that an oracle query
to H2 with the input X̃||C̃1||C̃2||C̃3||C̃4||C̃5||C̃6 (these
values are determined by the equalities (13) and
(14)) returns C7, while the C7 is chosen before the
oracle query is made. Or,

• In the second case, there is a query with the input
(C = (C5,C6,C7), tint, teph j) such that oracle queries
to H2 with different inputs X̃||C̃1||C̃2||C̃3||C̃4||C̃5||C̃6
return C7.

As H2 is modeled as a random oracle, the probability
Pr[Evn] is negligible. Let δ1 be the probability that
the challenger successfully ends and b′ = b in Game1.
Therefore, we have |δ1−δ0| ≤ ε1 = Pr[Evn] is negligible.

Before moving forward, we first describe the
following claim. The verification of this claim can be
done straightforwardly in the random oracle model
given the encryption schemes E1 and E2 are one-way
permutations.

Claim 1. Before the adversary queries SKU, given
an E-type Decrypt query with the input (C′ =
(C′5,C

′

6,C
′

7),TStint , tephi), given that C′ is not the output
of a D-type Decrypt query, then the probability C′1 =

C∗1 is negligible, where Y = Decrypt1(C′5,SK(1)
tephi

) and
C′1||C

′

2||C
′

3||C
′

4 = H4(Y) ⊕ C′6.

Game2: In this game, the challenger performs in the
same way as in Game1 except for the following. Before
the adversary queries SKU, for any E-type Decrypt
query with the input (C′ = (C′5,C

′

6,C
′

7),TStint , tephi), the
challenger rejects the request if C′1 = C∗1, where Y =

Decrypt1(C′5,SK(1)
tephi

) and C′1||C
′

2||C
′

3||C
′

4 = H4(Y)⊕C′6, and
C′ is not one of the output of D-type Decrypt queries.

Let δ2 be the probability that the challenger
successfully ends and b′ = b in Game2. From the above
claim, we have |δ2 − δ1| = ε2 is negligible.

Game3: In this game, the challenger performs in the
same way as in Game2 except for the following. Before
the adversary queries SKU, for any E-type Decrypt
query with the input (C′ = (C′5,C

′

6,C
′

7),TStint , tephi), the

challenger returns T ∈R {0, 1}n if C′1 = C∗1 where
Y = Decrypt1(C′5,SK(1)

tephi
) and C′1||C

′

2||C
′

3||C
′

4 = H4(Y)⊕C′6,
and C′ is one of the output of D-type Decrypt queries.

The game Game3 is identical to Game2 unless the
following event Evn occurs: For some aforementioned
E-type Decrypt oracle query with the input (C′ =
(C′5,C

′

6,C
′

7),TStint , tephi), the adversary has queried H2
with the input Y||C′1||C

′

2||C
′

3||C
′

4. As the encryption
scheme E2 is one-way permutation and the hash
functions are random oracles, the probability Pr[Evn] is
negligible. Let δ3 be the probability that the challenger
successfully ends and b′ = b in Game3. Therefore, we
have |δ3 − δ2| ≤ ε3 = Pr[Evn] is negligible.

Game4: In this game, the challenger performs in
the same way as in Game3 except for answering the
Decrypt oracle queries.

• Before the adversary queries SKU, given an
E-type Decrypt query with the input (C′ =
(C′5,C

′

6,C
′

7),TStint , tephi), if C′1 , C∗1 where Y =

Decrypt1(C′5,SK(1)
tephi

) and C′1||C
′

2||C
′

3||C
′

4 = H4(Y)⊕C′6,
the challenger first checks whether or not there is
an query

Ỹ||C̃′1||C̃
′

2||C̃
′

3||C̃
′

4||C̃
′

5||C̃
′

6

to the oracle H2 such that

C′5 = Encrypt1(Ỹ,PK(1)
tephi

), C′6 = C̃′6, (15)

H4(Ỹ) ⊕ C′6 = C̃′1 ||C̃
′

2 ||C̃
′

3 ||C̃
′

4,C
′

7 = H2(Ỹ||C̃′1 ||C̃
′

2 ||C̃
′

3 ||C̃
′

4 ||C̃
′

5 ||C̃
′

6). (16)

If the input exists, the challenger proceeds. If
ê(C̃′3, g) , ê(C̃′1,H3(C̃′1||C̃

′

2)), it aborts; otherwise it
returns C′′ , where

C
′′

= H2(Ỹ||C̃′1 ||C̃
′

2 ||C̃
′

3 ||C̃
′

4) ⊕ C̃′4 ⊕ H2(ê(PK(0)
E ,H1(PK(0)

tephi
))r̃′1 · ê(TStint , C̃

′

2)).

Note that the challenger retrieves r̃′1 such that
gr̃′1 = C̃′1.

Let δ4 be the probability that the challenger
successfully ends and b′ = b in Game4. The game
Game4 is identical to Game3 unless the following event
Evn occurs in answering the E-type Decrypt oracle
queries.

• In the second case, there is a query with the input
(C′ = (C′5,C

′

6,C
′

7),TStint , tephi) such that an oracle
query to H2 with the input Ỹ||C̃′1||C̃

′

2||C̃
′

3||C̃
′

4||C̃
′

5||C̃
′

6
(these values are determined by the equalities (15)
and (16)) returns C′7, while the C′7 is chosen before
the oracle query is made. Or,

• In the second case, there is a query with
the input (C′ = (C′5,C

′

6,C
′

7),TStint , tephi) such
that oracle queries to H2 with different inputs
Ỹ||C̃′1||C̃

′

2||C̃
′

3||C̃
′

4||C̃
′

5||C̃
′

6 return C′7.

As H2 is modeled as a random oracle, the probability
Pr[Evn] is negligible. Let δ4 be the probability that

The Computer Journal, Vol. ??, No. ??, ????

From Ephemerizer to Timed-Ephemerizer: Achieve Assured Lifecycle Enforcement for Sensitive Data 13

the challenger successfully ends and b′ = b in Game4.
Therefore, we have |δ4−δ3| ≤ ε4 = Pr[Evn] is negligible.

Game5: In this game, the challenger performs in the
same way as in Game4 except that the challenge Cb is
computed as follows.

r∗1, r
∗

2 ∈R Zp, X∗ ∈R X, R ∈ G1, C∗1 = gr∗1 ,

C∗2 = gr∗2 , C∗3 = H3(C∗1||C
∗

2)r∗1 , C∗4 = Mb ⊕ H2(R),

C∗5 = Encrypt2(X∗,PKU), C∗6 = H5(X∗) ⊕ (C∗1||C
∗

2||C
∗

3||C
∗

4),

C∗7 = H2(X∗||C∗1||C
∗

2||C
∗

3||C
∗

4||C
∗

5||C
∗

6), Cb = (C∗5,C
∗

6,C
∗

7).

Let δ5 be the probability that the challenger
successfully ends and b′ = b in Game5. As R ∈R G1, the
equation |δ5 −

1
2 | = 0 holds.

With respect to the generation of Cb, from
Game4 to Game5, the only modification is that
ê(H1(IDE||tephi),C

∗

1)SK(0)
E · ê(H1(IDT ||t∗int),C

∗

2)SKT has been
replaced with R, where R ∈R G1. As a result, Game5

is identical to Game4 unless ê(H1(IDE||tephi),C
∗

1)SK(0)
E ·

ê(H1(IDT ||t∗int),C
∗

2)SKT has been queried to H2. Note that
SK(0)

E is not required in answering the oracle queries.
We immediately obtain |δ5−δ4| ≤ ε5 which is negligible
based on the BDH assumption.

In summary, we have |δ0−δ5| = ε ≤ ε1+ε2+ε3+ε4+ε5.
which are negligible. As a result, ε is negligible, and
the lemma now follows. �

Lemma 5.3. The proposed scheme achieves semantic
security against Type-III adversary in the random oracle
model given that the public key encryption schemes E1 and
E2 are one-way permutation.

Proof sketch. Suppose an adversaryAhas the advantage
ε in the attack game depicted in Figure 4.

Game0: In this game, the challenger faithfully
simulates the protocol execution and answers the oracle
queries fromA. Note that the challengeCb is computed
as follows.

r∗1, r
∗

2 ∈R Zp, X∗ ∈R X, C∗1 = gr∗1 ,

C∗2 = gr∗2 , C∗3 = H3(C∗1||C
∗

2)r∗1 ,

C∗4 = Mb ⊕ H2(ê(H1(IDE||tephi),C
∗

1)SK(0)
E · ê(H1(IDT ||t∗int),C

∗

2)SKT),

C∗5 = Encrypt2(X∗,PKU), C∗6 = H5(X∗) ⊕ (C∗1||C
∗

2||C
∗

3||C
∗

4),

C∗7 = H2(X∗||C∗1||C
∗

2||C
∗

3||C
∗

4||C
∗

5||C
∗

6), Cb = (C∗5,C
∗

6,C
∗

7).

Let δ0 = Pr[b′ = b], as we assumed at the beginning,
|δ0 −

1
2 | = ε.

Game1: In this game, the challenger performs in
the same way as in Game0 except for the following.
Given a D-type Decrypt query with the input (C =
(C5,C6,C7), tint, teph j), the challenger answers as the
following.

1. In step 4 of the game, if C = Cb, the challenger
returns C′, where

M′ ∈R {0, 1}n, C′1 = C∗1, C′2 = C∗2, C′3 = C∗3,

C′4 = M′ ⊕ C∗4, Y ∈R Y,

C′5 = Encrypt1(Y,PK(1)
tephj

),C′6 = H4(Y)⊕(C′1||C
′

2||C
′

3||C
′

4),

C′7 = H2(Y||C′1||C
′

2||C
′

3||C
′

4||C
′

5||C
′

6), C′ = (C′5,C
′

6,C
′

7).

2. Otherwise, the challenger first checks whether or
not there is a query with the input

X̃||C̃1||C̃2||C̃3||C̃4||C̃5||C̃6

to the oracle H2 such that

C5 = Encrypt2(X̃,PKU), C6 = C̃6, (17)

H5(X̃) ⊕ C6 = C̃1 ||C̃2 ||C̃3 ||C̃4, and C7 = H2(X̃||C̃1 ||C̃2 ||C̃3 ||C̃4 ||C̃5 ||C̃6). (18)

If the input exists, the challenger returns C′, where

M′ ∈R {0, 1}n, C′1 = C̃1, C′2 = C̃2, C′3 = C̃3,

C′4 = M′ ⊕ C̃4, C′5 = Encrypt1(Y,PK(1)
tephj

),

C′6 = H4(Y) ⊕ (C′1||C
′

2||C
′

3||C
′

4),

C′7 = H2(Y||C′1||C
′

2||C
′

3||C
′

4||C
′

5||C
′

6), C′ = (C′5,C
′

6,C
′

7).

Otherwise, the challenger rejects the quest.

The game Game1 is identical to Game0 unless the
following event Evn occurs in answering the D-type
Decrypt oracle queries.

• In the second case, there is a query with the input
(C = (C5,C6,C7), tint, teph j) such that an oracle query
to H2 with the input X̃||C̃1||C̃2||C̃3||C̃4||C̃5||C̃6 (these
values are determined by the equalities (17) and
(18)) returns C7, while the C7 is chosen before the
oracle query is made. Or,

• In the second case, there is a query with the input
(C = (C5,C6,C7), tint, teph j) such that oracle queries
to H2 with different inputs X̃||C̃1||C̃2||C̃3||C̃4||C̃5||C̃6
return C7.

As H2 is modeled as a random oracle, the probability
Pr[Evn] is negligible. Let δ1 be the probability that
the challenger successfully ends and b′ = b in Game1.
Therefore, we have |δ1−δ0| ≤ ε1 = Pr[Evn] is negligible.

Game2: In this game, the challenger performs in the
same way as in Game1 except that the challenge Cb is
computed as follows.

r∗1, r
∗

2 ∈R Zp, X∗,X† ∈R X,

C∗1 = gr∗1 , C∗2 = gr∗2 , C∗3 = H3(C∗1||C
∗

2)r∗1 ,

The Computer Journal, Vol. ??, No. ??, ????

14 Q. Tang

C∗4 = Mb ⊕ H2(ê(H1(PK(0)
tephi

),PK(0)
E)r∗1 · ê(H1(IDT ||t∗int),PKT)r∗2)

= Mb ⊕ H2(ê(H1(IDE||tephi),C
∗

1)SK(0)
E · ê(H1(IDT ||t∗int),C

∗

2)SKT),

C∗5 = Encrypt2(X†,PKU), C∗6 = H5(X∗) ⊕ (C∗1||C
∗

2||C
∗

3||C
∗

4),

C∗7 = H2(X∗||C∗1||C
∗

2||C
∗

3||C
∗

4||C
∗

5||C
∗

6), Cb = (C∗5,C
∗

6,C
∗

7).

The game Game2 is identical to Game1 unless the
following event Evn occurs: the adversary queries H5
with 0||X† or H2 with 0||X†|| ∗ || ∗ || ∗ || ∗ || ∗ ||∗. As E2 is
one-way and H5,H2 are random oracles, the probability
Pr[Evn] is negligible. Let δ2 be the probability that
the challenger successfully ends and b′ = b in Game2.
Therefore, we have |δ2−δ1| ≤ ε2 = Pr[Evn] is negligible.

Game3: In this game, the challenger performs in the
same way as in Game3 except that the challenge Cb is
computed as follows.

r∗1, r
∗

2 ∈R Zp, X∗,X† ∈R X, R ∈ G1, C∗1 = gr∗1 ,

C∗2 = gr∗2 , C∗3 = H3(C∗1||C
∗

2)r∗1 , C∗4 = Mb ⊕ H2(R),

C∗5 = Encrypt2(X†,PKU), C∗6 = H5(X∗) ⊕ (C∗1||C
∗

2||C
∗

3||C
∗

4),

C∗7 = H2(X∗||C∗1||C
∗

2||C
∗

3||C
∗

4||C
∗

5||C
∗

6), Cb = (C∗5,C
∗

6,C
∗

7).

Regardless of the change, the game Game3 is identical
to Game2 as X∗ ∈R X and H5,H2 are random oracles.
Let δ3 be the probability that the challenger successfully
ends and b′ = b in Game3. As R ∈R G1, the equation
|δ2 −

1
2 | = |δ3 −

1
2 | = 0 holds.

In summary, we have |δ0−δ3| = ε ≤ ε1 +ε2. which are
negligible. As a result, ε is negligible, and the lemma
now follows. �

6. FURTHER REMARKS

In this section, we first compare the concepts of
Ephemerizer (and Timed-Ephemerizer) with that of
Vanish [8]. We then present an application of
Timed-Ephemerizer in an outsourcing scenario. As
Ephemerizer protocols (instead of Timed-Ephemerizer
protocols) may be of independent interest, we provide
a formalization for Ephemerizer.

6.1. A Comparison to Vanish

Geambasu et al. [8] claim that Vanish is superior to
Ephemerizer (and Timed-Ephemerizer) in the sense
that the latter requires the Ephemerizer to be trusted
for securely delete the expired ephemeral private keys.
In contrast, with Vanish, the user needs to trust the
P2P network in the sense that a certain proportion
of the nodes would not be seized by the adversary.
This trust assumption seems valid, however, there is
no guarantee. Recently, Wolchok et al. [15] have shown
that Vanish is vulnerable to low-cost Sybil attacks.
Besides, we have the following additional concerns.

With respect to P2P nodes, it is impossible to
precisely determine the time period that a threshold
subset of nodes stay in the network. Therefore, there
is no precise guarantee on the expiration time of the
sensitive data. There are two concerns here.

1. One is that the P2P nodes leave the network sooner
than expected, which means that the sensitive data
will become unrecoverable or unavailable when
they are needed. This shortcoming has been noted
in [8], and a statement is explicitly made that Vanish
is suitable to protect sensitive data, for which the
user cares more about privacy than its availability.

2. The other is that the P2P nodes leave the network
later than expected, which means that the sensitive
data remains recoverable or available when they
should have been deleted. In this case, extra action
should be taken to delete the private key shares
and make the sensitive data unrecoverable.

In contrast, with Ephemerizer and Timed-Ephemerizer,
precise guarantee on the expiration time of sensitive
data is guaranteed, and the availability is guaranteed
as long as the Ephemerizer (and the time server) are
available.

With respect to the availability of data, the other
concern is DoS and DDoS attacks. With Vanish,
the user needs to retrieve the key shares from a
threshold subset of P2P nodes in order to recover the
symmetric key. In practice, a P2P network is easily
subjected to DoS and DDoS attacks [16, 17], so is
Vanish. Facing DoS and DDoS attacks, the availability
of the protected data could be a problem for the
underlying applications. For Ephemerizer (and Timed-
ephemerizer), the Ephemerizer (and the time server)
will be well protected because they are dedicated
(commercial) entities for providing the services. The
adversary may still try to mount DoS and DDoS attacks,
but, the risks will be much less compared with that
facing Vanish.

In summary, Ephemerizer (and Timed-Ephemerizer)
can provide assured lifecycle where the guarantees are
precise and provable from the perspective of security.
In contrast, Vanish sacrifices availability for security,
while the security guarantee relies on the underlying
P2P network. Ephemerizer (and Timed-Ephemerizer)
need dedicated third parties, namely the Ephemerizer
and the time server, in order to provide the service.
This additional infrastructure requirement may be
regarded as a disadvantage, however, the complexity
is paid back by the assured lifecycle and availability of
sensitive data.

6.2. Application Example: Outsourcing Data
Security

As an example, we consider the following data
management problem in outsourcing activities.

The Computer Journal, Vol. ??, No. ??, ????

From Ephemerizer to Timed-Ephemerizer: Achieve Assured Lifecycle Enforcement for Sensitive Data 15

Suppose Alice and Bob have signed an outsourcing
contract, in which Alice wants to outsource part of
her business to Bob. Suppose also that, during the
outsourcing process, Bob needs to frequently access a
large amount of Alice’s private data. In this scenario, in
order to protect the confidentiality of Alice’s data, Alice
and Bob need to deploy an efficient protocol which makes
Alice’s data available to Bob during the contract period
and unrecoverable after the contract ends.

There exists two straightforward solutions, referred
to as On-demand transfer and Direct encryption.

• On-demand transfer: This solution is that, Bob
requests the data from Alice whenever needed and
deletes them immediately afterwards. Clearly, this
solution may introduce terrible communication
complexity. In addition, for each request, Alice
needs to authenticate Bob before granting the
access.

• Direct encryption: This solution is asking Bob to
encrypt and store Alice’s data during the contract
period and delete the data after the contract ends.
However, clearly, this solution will put Alice’s data
in danger if Bob fails to securely delete the data
after the contract ends.

With a Timed-Ephemerizer protocol, we have the
following solution to solve the above problem.

1. Alice encrypts her data using a symmetric key K
and runs the Encrypt algorithm to encapsulate K.
Without loss of generality, suppose the ciphertexts
are CM and CK respectively. Alice lets Bob store CM
and CK.

2. When Bob needs to recover the data, he runs the
Timed-Ephemerizer protocol, more specifically the
Decrypt algorithm, to retrieve the symmetric key
K. With K, Bob can recovers the data from CM.

If we assume the plaintext data will only reside
in Bob’s volatile storage devices, Alice’s data will
be unrecoverable after the underlying ephemeral
key pair has expired and been securely deleted by
the Ephemerizer. In addition, Alice can set an
initial disclosure time for her data. In practice, the
Ephemerizer and the time server can be dedicated
(and commercial) organizations (like Verisign being
as a CA) that serve many users. Compared with
the On-demand transfer solution, the current solution
requires lower communication complexity since only a
symmetric key needs to be retrieved; while, compared
with Direct encryption solution, the current solution
provides stronger guarantee that expired data will be
unrecoverable.

It is worth noting that the above discussion assumes
that Bob is honest and wishes to protect Alice’s data.
The solution implies that Bob does not need to revoke
his key in order to stop access Alice’s data. If bob

is careless, then he might mistakenly store Alice’s
data in persistent storage devices. To prevent this, in
practice, trusted software/hardware can be employed
to guarantee that plaintext data never leaves volatile
memory. However, if Bob is dishonest then he can
always leak the information. To counter this kind
of attack, pure technical measures, such as trusted
software/hardware and Timed-Ephemerizer, may be
insufficient, and other measures such as strict non-
disclosure business agreement should be employed.
Since it is out the scope of this paper, we omit the
detailed description here.

6.3. Security Model for Ephemerizer

Formally, an Ephemerizer protocol involves the two
types of entities: users and an Ephemerizer, and
consists of the following polynomial-time algorithms.

• Setup′E and Setup′U: they are identical to SetupE
and SetupU for Timed-Ephemerizer, respectively.

• Encrypt′(M,PKU,PKtephj
): This algorithm outputs

a ciphertext C. For the message M, teph j is the
expiration time. We explicitly assume that both
teph j and C should be sent to the user.

• Decrypt′(C,SKU; SKtephj
): Interactively run between

a user and the Ephemerizer, this algorithm outputs
a plaintext M or an error symbol for the user.

With respect to Ephemerizer protocols, we distin-
guish the following two types of adversaries.

• Outsider security: This type of adversary wants to
access data after its expiration time. It represents a
malicious outside entity which has compromised
the Ephemerizer and the user after the expiration
time of the data.

• Insider security: This type of adversary represents
a malicious Ephemerizer.

Definition 6.1. An Ephemerizer protocol achieves
outsider semantic security if any polynomial time adversary
has only a negligible advantage in the following semantic
security game (as shown in Figure 5), where the advantage
is defined to be |Pr[b′ = b] − 1

2 |.

1. (PKtephj
,SKtephj

) for 1 ≤ j ≤ N $
← Setup′E(`);

(PKU,SKU) $
← Setup′U(`)

2. (M0,M1,PKtephi
) $
←A

(Decrypt′)(SKtephj
for i < j ≤

N ,SKU,PK∗)
3. b $

← {0, 1};Cb
$
← Encrypt′(Mb,PKU,PKtephi

)

4. b′ $
←A

(Decrypt′)(Cb,SKtephj
for i < j ≤ N ,SKU,PK∗)

FIGURE 5. Semantic Security against Outsider Adversary

In the attack game, PK∗ means all available public
keys. In more detail, the attack game between the

The Computer Journal, Vol. ??, No. ??, ????

16 Q. Tang

challenger and the adversaryAperforms as follows. In
this game the challenger simulates the functionalities
of both the Ephemerizer and the user.

1. The challenger runs SetupE to generate
(PKtephj

,SKtephj
) for 1 ≤ j ≤ N , and runs SetupU to

generate (PKU,SKU). All public parameters are
given to the adversary.

2. The adversary can adaptively issue the following
two types of Decrypt oracle queries.

(a) D-type Decrypt oracle query: In each
oracle query, the adversary impersonates the
Ephemerizer and provides teph j and C to the
challenger, which then uses (C,SKU) as input
and runs the Decrypt algorithm with the
adversary to decrypt C by assuming that the
expiration time is teph j .

(b) E-type Decrypt query: In each oracle query,
the adversary impersonates a user to the
Ephemerizer and sends teph j to the challenger,
which uses SKtephj

as the input and runs the
Decrypt algorithm with the adversary.

At some point, the adversary sends the challenger
two equal-length plaintext M0,M1 on which it
wishes to be challenged, and a timestamp tephi .
In this phase, the adversary can query for SKU
and SKtephj

for any i < j ≤ N with the following
restriction: if SKU has been queried, then any E-
type Decrypt oracle query with the input teph j for
any 1 ≤ j ≤ i is forbidden.

3. The challenger picks a random bit b ∈ {0, 1} and
gives the adversary Cb as the challenge, where

Cb = Encrypt′(Mb,PKU,PKtephi
).

4. The adversary can continue to issue oracle queries
as in Step 2 with the same restriction.

5. The adversaryA outputs b′.

In the above attack game, the adversary is an outsider
one because it has access to the private keys SKU and
SKtephj

for any i < j ≤ N .

Definition 6.2. An Ephemerizer protocol achieves
insider semantic security if any polynomial time adversary
has only a negligible advantage in the following semantic
security game (as shown in Figure 6), where the advantage
is defined to be |Pr[b′ = b] − 1

2 |.

In the attack game, PK∗ means all available public
keys. In more detail, the attack game between
the challenger and the adversary A performs as the
following. In this game the challenger simulates the
functionality of the user.

1. The adversary A generates (PKtephj
,SKtephj

) for 1 ≤
j ≤ N . Note that the adversary may not follow the

1. (PKtephj
,SKtephj

) for 1 ≤ j ≤ N
$
← A(`);

(PKU,SKU) $
← Setup′U(`)

2. (M0,M1,PKtephi
) $
←A

(Decrypt′)(SKtephj
for 1 ≤ j ≤

N ,PK∗)
3. b $

← {0, 1};Cb
$
← Encrypt′(Mb,PKU,PKtephi

)

4. b′ $
←A

(Decrypt′)(Cb,SKtephj
for 1 ≤ j ≤ N ,PK∗)

FIGURE 6. Semantic Security against Insider Adversary

protocol specification. The challenger runs SetupU
to generate (PKU,SKU). The public key PKU given
to the adversary.

2. The adversary can adaptively issue the D-type
Decrypt oracle query (defined as above). At some
point, the adversary sends the challenger two
equal-length plaintext M0,M1 on which it wishes
to be challenged, and a timestamp tephi .

3. The challenger picks a random bit b ∈ {0, 1} and
gives the adversary Cb as the challenge, where

Cb = Encrypt(Mb,PKU,PKtephi
).

4. The adversary can continue to query the Decrypt
oracle as in Step 2.

5. The adversaryA outputs b′.

In the above attack game, the adversary is an insider
because it has access to all the private keys SKtephj

for
any 1 ≤ j ≤ N .

7. RELATED WORK

In this section, we first briefly review some relevant
works that focus on securely deleting expired sensitive
data. We then briefly review the concept of Timed-
Release Encryption.

7.1. Ephemerizer and Similar Protocols

Perlman [3, 4] proposed two Ephemerizer protocols
without providing rigorous security proofs. One
protocol uses a blind decryption technique. The other
protocol uses a triple encryption technique, where
data is encrypted using a symmetric key which is
sequentially encrypted using the public key of the user,
the public key of the Ephemerizer, and the public key
of the user. Nair et al. [5] has shown that the second
protocol is vulnerable to attacks. In addition, Nair
et al. [5] observed that both protocols proposed by
Perlman do not provide support for fine-grained user
settings on the lifetime of the data. As a solution, Nair et
al. proposed an Ephemerizer protocol using identity-
based public-key encryption [9, 18]. However, they
have not provided any security analysis in a formal
security model. In Section 3 we show that both the first

The Computer Journal, Vol. ??, No. ??, ????

From Ephemerizer to Timed-Ephemerizer: Achieve Assured Lifecycle Enforcement for Sensitive Data 17

protocol by Perlman and the protocol by Nair et al. are
vulnerable to attacks.

Forward-secure encryption, e.g. [19], guarantees that
if an attacker learns the state of the users cryptographic
keys at some point in time, they should not be
able to decrypt data encrypted at an earlier time.
The security of a forward-secure encryption scheme
relies on the requirement that the user will securely
delete the expired private keys including backups.
Ephemerizer relaxes this requirement on the user
by shifting the key revocation responsibility to the
Ephemerizer. Informally, Ephemerizer can be regarded
as a three-party version of forward-secure encryption.

Geambasu et al. [8] introduced the concept of Vanish
for the purpose of the self-destruction of sensitive data,
which utilizes the dynamic nature of P2P networks
where peer nodes dynamically join and leave the
network. With Vanish, sensitive data is encrypted
using a symmetric key, which is then divided into
a number of shares using Shamir’s secret sharing
technique [18]. The key shares are distributed into a set
of nodes (randomly chosen) in a P2P network, and the
symmetric key becomes unrecoverable when a subset
of a P2P nodes leave the network. Compared with
Ephemerizer and Timed-Ephemerizer, Vanish cannot
provide a precisely defined expiration time. In Section
6.1, we provide a detailed comparison between them.
After [8], Wolchok et al. [15] have shown that Vanish
is vulnerable to low-cost Sybil attacks. Recently,
Wang, Yue, and Liu [20] proposed a solution similar
to [8]. Inherently,it is also vulnerable to the attacks by
Wolchok et al..

7.2. Timed-Release Encryption

The concept of Timed-Release Encryption (TRE), i.e.
sending a message which can only be decrypted after
a pre-defined release time, is attributed to May [21].
Later on, Rivest, Shamir, and Wagner further elaborate
on this concept and gave a number of its applications
including electronic auctions, key escrow, chess moves,
release of documents over time, payment schedules,
press releases [12]. Hwang, Yum, and Lee [22] extend
the concept of TRE schemes to include the Pre-Open
Capability which allows the message sender to assist
the receiver to decrypt the ciphertext before the pre-
defined disclosure time. Later on, Dent and Tang [23]
propose a refined model and comprehensive analysis
for this extended primitive.

There are two approaches to embed a timestamp in
a ciphertext. One approach, proposed in [12], is that
a secret is transformed in such a way that all kinds
of machines (serial or parallel) take at least a certain
amount of time to solve the underlying computational
problems (puzzle) in order to recover the secret. The
release time is equal to the time at which the puzzle
is released plus the minimum amount of time that
it would take to solve the puzzle. However, this

means that not all users are capable of decrypting
the ciphertext at the release time as they may have
different computing power. The other approach is
to use a trusted time server, which, at an appointed
time, will assist in releasing a secret to help decrypt
the ciphertext (e.g. [24, 12]). Using this approach,
the underlying schemes require interaction between
the server and the users, and should prevent possible
malicious behaviour of the time server. In this paper,
we will adopt the second approach because, regardless
of the computing power of all involved entities, it
can provide assured disclosure time under appropriate
assumptions.

8. CONCLUSION

In this paper we revisited the concept of Ephemerizer,
proposed by Perlman, and show that some existing
ephemerizer protocols possess vulnerabilities. We then
formalized the notion of Timed-Ephemerizer, aimed
to provide an assured lifecycle for sensitive data,
and proposed a new Timed-Ephemerizer protocol and
proved its security in the proposed security model. For
this new concept of Timed-Ephemerizer, a number of
interesting research questions remain open.

1. With respect to public key encryption schemes
[25], there are generally three levels of secu-
rity guarantees (listed from the weakest to the
strongest), namely one-wayness, IND-CPA (indis-
tinguishability against chosen plaintext attacks),
and IND-CCA (indistinguishability against cho-
sen ciphertext attacks). In our security model, we
have mainly focused on the chosen plaintext secu-
rity, although some types of adversaries can inter-
act with the challenger to obtain some information
about the plaintext data. It is an interesting work
to work out a security model and a new protocol to
achieve the strongest security, namely considering
chosen ciphertext attacks.

2. Another is to investigate more efficient and secure
protocols for Timed-Ephemerizer. Especially, note
that the random oracle paradigm has been heavily
used in the security analysis of the proposed
protocol. It is interesting to design secure protocols
without using random oracles.

3. Another interesting research question is to use
Timed-Ephemerizer as a tool to solve practical
security problems. Note that, as an application of
Ephemerizer, Perlman [26] proposes a file system
that supports high availability of data with assured
deletion.

4. Timed-Ephemerizer and most similar solutions
rely on third parties to fulfill their functionalities.
There is a practical concern that if the third parties
refuse to cooperate then the data will be breached
or lost. How to address this issue is yet another
interesting question.

The Computer Journal, Vol. ??, No. ??, ????

18 Q. Tang

REFERENCES

[1] (2006) National Industrial Security Program Operating
Manual (NISPOM). DoD 5220.22-M.

[2] Halderman, J. A., Schoen, S. D., Heninger, N., Clarkson,
W., Paul, W., Calandrino, J. A., Feldman, A. J.,
Appelbaum, J., and Felten, E. W. (2008) Lest We
Remember: Cold Boot Attacks on Encryption Keys. In
van Oorschot, P. C. (ed.), Proceedings of the 17th USENIX
Security Symposium, July 28-August 1, 2008, San Jose, CA,
USA, pp. 45–60. USENIX Association.

[3] Perlman, R. (2005) The Ephemerizer: Making Data
Disappear. Journal of Information System Security, 1, 51–
68.

[4] Perlman, R. (2005) The Ephemerizer: Making
Data Disappear. Technical Report TR-2005-140. Sun
Microsystems, Inc.

[5] Nair, S. K., Dashti, M. T., Crispo, B., and Tanenbaum,
A. S. (2007) A Hybrid PKI-IBC Based Ephemerizer
System. In Venter, H. S., Eloff, M. M., Labuschagne,
L., Eloff, J. H. P., and von Solms, R. (eds.), Proceedings
of the IFIP TC-11 22nd International Information Security
Conference (SEC 2007), 14-16 May 2007, Sandton, South
Africa, IFIP, 232, pp. 241–252. Springer.

[6] Kannan, J., Altekar, G., Maniatis, P., and Chun, B. (2011)
Making programs forget: Enforcing lifetime for sensitive
data. Proceedings of the 13th USENIX Conference on Hot
Topics in Operating Systems, May 9-11, Napa, CA, USA,
pp. 23–23. USENIX Association, Berkeley, CA, USA.

[7] Tang, Q. (2009) Timed-ephemerizer: Make assured
data appear and disappear. Public Key Infrastructures,
Services and Applications - 6th European Workshop, EuroPKI
2009, Pisa, Italy, September 10-11, 2009, Lecture Notes in
Computer Science, 6391, pp. 195–208. Springer.

[8] Geambasu, R., Kohno, T., Levy, A., and Levy, H. M.
(2009) Vanish: Increasing Data Privacy with Self-
Destructing Data. 18th USENIX Security Symposium,
Montreal, Canada, August 10-14, 2009, Proceedings.

[9] Boneh, D. and Franklin, M. K. (2001) Identity-based
encryption from the weil pairing. In Kilian, J. (ed.), 21st
Annual International Cryptology Conference, Santa Barbara,
California, USA, August 19-23, 2001, Proceedings, Lecture
Notes in Computer Science, 2139, pp. 213–229. Springer.

[10] Bellare, M. and Palacio, A. (2004) The knowledge-
of-exponent assumptions and 3-round zero-knowledge
protocols. In Franklin, M. K. (ed.), 24th Annual
International Cryptology Conference, Santa Barbara,
California, USA, August 15-19, 2004, Proceedings, LNCS,
3152, pp. 273–289. Springer.

[11] Damgård, I. (1991) Towards practical public key
systems secure against chosen ciphertext attacks. In
Feigenbaum, J. (ed.), 11th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 11-15,
1991, Proceedings, LNCS, 576, pp. 445–456. Springer.

[12] Rivest, R. L., Shamir, A., and Wagner, D. A. (1996) Time-
lock puzzles and timed-release crypto. Technical Report
Tech. Report MIT/LCS/TR-684. MIT LCS.

[13] Shamir, A. (1985) Identity-based cryptosystems and
signature schemes. Proceedings of CRYPTO ’84, Santa
Barbara, California, USA, August 19-22, 1984, Proceedings,
Lecture Notes in Computer Science, 196, pp. 47–53.
Springer.

[14] Shoup, V. (2006). Sequences of games: a tool for taming
complexity in security proofs. http://shoup.net/papers/.

[15] Wolchok, S., Hofmann, O., N. Heninger, E. F.,
Halderman, A., Rossbach, C., Waters, B., and Witchel,
E. (2010) Defeating vanish with low-cost sybil attacks
against large dhts. Proceedings of the Network and
Distributed System Security Symposium, NDSS 2010, San
Diego, California, USA, 28th February - 3rd March 2010.
The Internet Society.

[16] Naoumov, N. and Ross, K. (2006) Exploiting p2p systems
for ddos attacks. Proceedings of the 1st International
Conference on Scalable Information Systems, Infoscale 2006,
Hong Kong, May 30-June 1, 2006 47. ACM.

[17] Rhea, S., Godfrey, B., Karp, B., Kubiatowicz, J.,
Ratnasamy, S., Shenker, S., Stoica, I., and Yu, H.
(2005) OpenDHT: a public DHT service and its uses.
Proceedings of the ACM SIGCOMM 2005 Conference on
Applications, Technologies, Architectures, and Protocols
for Computer Communications, Philadelphia, Pennsylvania,
USA, August 22-26, 2005, pp. 73–84. ACM.

[18] Shamir, A. (1979) How to share a secret. Commun. ACM,
22, 612–613.

[19] Bellare, M. and Yee, B. (2003) Forward-security in
private-key cryptography. The Cryptographers’ Track at
the RSA Conference 2003, San Francisco, CA, USA, April
13-17, 2003, Proceedings, pp. 1–18.

[20] Wang, G., Yue, F., and Liu, Q. (2013) A secure self-
destructing scheme for electronic data. J. Comput. Syst.
Sci., 79, 279–290.

[21] May, T. C. (1993) Time-release crypto.
[22] Hwang, Y., Yum, D., and Lee, P. (2005) Timed-release

encryption with pre-open capability and its application
to certified e-mail system. In Zhou, J., Lopez, J., Deng, R.,
and Bao, F. (eds.), Information Security, 8th International
Conference, ISC 2005, Singapore, September 20-23, 2005,
Proceedings, Lecture Notes in Computer Science, 3650,
pp. 344–358. Springer.

[23] Dent, A. W. and Tang, Q. (2007) Revisiting the
security model for timed-release encryption with pre-
open capability. In Garay, J. A., Lenstra, A. K.,
Mambo, M., and Peralta, R. (eds.), Information Security,
10th International Conference, ISC 2007, Valparaı́so, Chile,
October 9-12, 2007, Proceedings, Lecture Notes in
Computer Science, 4779, pp. 158–174. Springer.

[24] Cathalo, J., Libert, B., and Quisquater, J.-J. (2005)
Efficient and non-interactive timed-release encryption.
In Qing, S., Mao, W., Lopez, J., and Wang, G. (eds.),
Information and Communications Security, 7th International
Conference, ICICS 2005, Beijing, China, December 10-13,
2005, Proceedings, Lecture Notes in Computer Science,
3783, pp. 291–303. Springer-Verlag.

[25] Bellare, M., Desai, A., Pointcheval, D., and Rogaway, P.
(1998) Relations among notions of security for public-
key encryption schemes. In Krawczyk, H. (ed.), 18th
Annual International Cryptology Conference, Santa Barbara,
California, USA, August 23-27, 1998, Proceedings, Lecture
Notes in Computer Science, 1462, pp. 26–45. Springer.

[26] Perlman, R. (2005) File system design with assured
delete. 3rd International IEEE Security in Storage Workshop
(SISW 2005), December 13, 2005, San Francisco, California,
USA, pp. 83–88. IEEE Computer Society, Washington,
DC, USA.

The Computer Journal, Vol. ??, No. ??, ????

