
Evaluating and comparing fault-based testing
strategies for general Boolean specifications: A
series of experiments

This is the Accepted version of the following publication

Sun, CA, Zai, Y and Liu, Huai (2015) Evaluating and comparing fault-based
testing strategies for general Boolean specifications: A series of experiments.
Computer Journal, 58 (5). 1199 - 1213. ISSN 0010-4620

The publisher’s official version can be found at
https://academic.oup.com/comjnl/article-lookup/doi/10.1093/comjnl/bxu055
Note that access to this version may require subscription.

Downloaded from VU Research Repository https://vuir.vu.edu.au/33044/

Evaluating and Comparing Fault-Based Testing

Strategies for General Boolean Specifications: A

Series of Experiments

Chang-ai Sun, Yimeng Zai
School of Computer and Communication Engineering
University of Science and Technology Beijing, China

Huai Liu
Australia-India Research Centre for Automation Software Engineering

RMIT University, Melbourne VIC Australia
Email: casun@ustb.edu.cn, huai.liu@rmit.edu.au

August 6, 2014

Abstract

A great amount of fault-based testing strategies have been proposed
to generate test cases for detecting certain types of faults in Boolean spec-
ifications. However, most of the previous studies on these strategies were
focused on the Boolean expressions in the disjunctive normal form, even
the irredundant disjunctive normal form — little work has been conducted
to comprehensively investigate their performance on general Boolean spec-
ifications. In this study, we conducted a series of experiments to evalu-
ate and compare eighteen fault-based testing strategies using over four
thousand randomly generated fault-seeded Boolean expressions. In the
experiments, a testing strategy is regarded as effective and efficient if it
can detect most of the seeded faults using a small number of test cases.
Our experimental results show that if a testing strategy is highly effec-
tive and efficient when testing the Boolean expressions in the irredundant
disjunctive normal form, it also shows high effectiveness and efficiency on
general Boolean expressions. It is found that one family of fault-based
testing strategies, namely MUMCUT, normally deliver the best perfor-
mance among all the eighteen strategies. Our study provides an in-depth
understanding and insight of fault-based testing for general Boolean ex-
pressions.

keywords: software testing; Boolean specification; test case genera-
tion; fault-based testing.

1

1 Introduction

Software testing is a widely used quality assurance approach, the basic idea of
which is to select a limited number of test cases as inputs, and then observe
whether the outputs of the program under test are as expected, with a fault
being reported when unexpected outputs are detected. In most situations, the
number of possible inputs for a program may be extremely large, so it is im-
possible to conduct the exhaustive testing. In order to make testing efficient,
various strategies have been proposed to select part of program inputs as test
cases such that software failures can still be effectively detected [29].

Decisions and conditions, which determine different execution paths of the
program under test, are the crucial part in software specifications [33]. Boolean
expressions are commonly used to describe these decisions and conditions. For
instance, assume a branch statement written in C is “if ((i > 0) && (j < 10)) i
= i + m; else j = j - m”, its condition is “(i > 0) && (j < 10)”. We treat “i > 0
” and “j < 10” as Boolean variables “a1” and “a2”, respectively, then we have
the Boolean expression “a1 ∧ a2” for this condition. Boolean expressions are
conceptually simple, and it is not very difficult to automatically generate test
cases based on them. Nevertheless, it is still extremely expensive to exhaustively
test a Boolean expression when it involves multiple Boolean variables. Given
that an expression contains n Boolean variables, there will be 2n distinct test
cases. When n is large, it is almost infeasible to conduct exhaustive testing [13].

For decades, a lot of efforts have been made on how to efficiently test Boolean
specifications [18, 40, 38, 6, 7]. Weyuker et al. [40] proposed a family of test
case generation strategies, namely, MIN, ONE, MANY-A, MANY-B, MAX-A,
and MAX-B. They evaluated the effectiveness of these strategies using mutation
analysis technique [2]. A mutant was generated by seeding a single fault into
a Boolean expression. Five types of faults were considered in their study. The
experimental results show that the test sets (a test set refers to a set of test cases)
generated by these strategies have different sizes and different effectiveness on
detecting certain types of faults. For example, MAX-B is able to detect most
of seeded faults, while it requires the largest number of test cases; on the other
hand, MIN requires the fewest test cases, while its fault-detection effectiveness
is the lowest among all strategies.

It has been widely accepted that testing cannot prove that a program is fault-
free, but it is possible to guarantee the absence of certain types of faults. Fault-
based testing [28] aims at designing test cases especially for some specific faults:
If a program passes all these test cases, the program can be regarded as free
of the specific fault types. Chen and Lau [6] investigated seven types of faults
in Boolean expressions, and proposed three strategies, namely MUTP, MNFP,
and CUTPNFP. These fault-based testing strategies significantly increase the
efficiency of testing: They not only guarantee the detection of all seven fault
types, but also reduce the size of the test set as compared with MAX-B. Yu
et al. [41] further developed several methods for implementing the MUMCUT
strategy (the integration of MUTP, MNFP, and CUTPNFP).

Among the existing test case generation strategies for Boolean specifications,

2

most of them assumed that the Boolean specifications under test are in the
irredundant disjunctive normal form (IDNF). In reality, developers may write
Boolean specifications in any form, which indicates that faults can be introduced
into a specification of any form, and some constraints may exist among Boolean
variables [19]. To be practical, there should not be any restriction on the form
of a Boolean specification. As observed in our previous work [7], a single fault
in a general Boolean expression can give rise to a very large number of faults
in the equivalent expression of IDNF. So far, little work has been conducted to
evaluate the effectiveness of the IDNF-oriented testing strategies on detecting
faults in general Boolean expressions [33].

In this paper, we conduct a series of experimental studies to comprehensively
evaluate the fault-detection effectiveness and efficiency of fault-based test case
generation strategies on general Boolean specifications. The paper is organised
as follows. In Section 2, we introduce the underlying concepts of test case
generation for Boolean specifications. In Section 3, we discuss the design of
experiments and the threats to validity of our study. In Section 4, we report the
evaluation results and provide a comparative analysis. We discuss the related
work in Section 5 and conclude the paper in Section 6.

2 Preliminaries

2.1 Notation and terminology

A Boolean expression has a Boolean value of either TRUE (normally also de-
noted by ‘1’) or FALSE (‘0’). There are two main components for Boolean
expressions, namely Boolean variables and Boolean operators. A Boolean vari-
able has the value of either 1 or 0. The mostly used Boolean operators include
AND (normally also denoted by ‘·’), OR (‘+’), and NOT (‘̄ ’). Boolean expres-
sions can also include some parentheses to change the precedence of operators
or association of Boolean variables.

A Boolean expression can be represented in various forms. One popularly
used form is disjunctive normal form (DNF), which can also be called sum-of-
products form, for example, ab̄ + bc. In a Boolean expression, a literal refers to
the occurrence of a Boolean variable or its negation, such as a, b̄, b, and c in the
above example. The product of literals is called a term, such as ab̄ and bc in
the above example. A DNF expression f is in IDNF if and only if removing any
Boolean literal or conjunction from the expression could potentially change the
value of f . A test case for a Boolean expression refers to the value assignment
to all involved variables. For example, a test case for ab̄+ bc is 010, which refers
to a=0, b=1, and c=0.

Test cases for a Boolean expression can be categorised into true points (which
cause the expression to produce the value ‘1’) and false points (which cause the
expression to produce the value ‘0’). True points can be further categorised
into unique true points (UTPs) and overlapping true points (OTPs). Suppose
that a Boolean expression in IDNF is denoted by p1 + p2 + · · · + pm, where pi

3

(i = 1, 2, · · · ,m) refers to the ith term of the expression. The unique true points
for pi refer to the test cases that cause pi to be 1 but all other terms to be 0.
The overlapping true points refer to the true points that are not unique for any
term. False points can be further categorised into near false points(NFPs) and
remaining false points (RFPs). A test case is referred to as a near false point
for the jth literal of pi if it causes pij to be 1 but the whole Boolean expression
to be 0, where pij is a term that is obtained by negating the jth literal of pi.
The remaining false points refer to the false points that are not the near false
points for any literal. Consider the Boolean expression a(b+c)+bc, its DNF
representation is ab+ac+bc and there are three terms, namely ab, ac, and bc.
Its unique true points are {110, 011, 101}; its overlapping true points are {111};
its near false points are {010, 001, 100}; and its remaining false points are {000}.

2.2 Test case generation strategies

In recent years, various test case generation strategies for Boolean expressions
have been developed [33]. They can be further grouped into syntactic and
semantic strategies [23]. The former usually restricts Boolean expressions under
test to be a certain form, for instance DNF or IDNF. In this study, we are
going to evaluate and compare the fault-detection effectiveness and efficiency of
those syntactic fault-based test case generation strategies when they are used
for general Boolean expressions. Therefore, semantic strategies [13, 1] will not
be included for experiments. Some researchers [3, 20] recently proposed to use
the modern satiability solvers to reduce the test case generation effort. However,
their approach is effectively based on mutation testing technique [15]. Mutation-
based testing is actually a “special” case of fault-based testing: The former
generates test cases based on a large number of mutants; while the latter is based
on certain types of faults, which imply a large number of faulty versions. In a
word, this mutation-based testing strategy is not a general fault-based one, so we
did not include it in our experiments. Next, we briefly introduce representative
fault-based test case generation strategies. All of them are illustrated by the
Boolean expression a(b+c)+bc.

Weyuker et al. [40] proposed the basic meaningful impact strategy for gen-
erating test cases from Boolean expressions. The intuition underlying their ap-
proach is that given a Boolean expression, a test set should be chosen such that,
if possible, each literal occurrence in the expression demonstrates its meaningful
impact on the outcome. They developed six algorithms based on this strategy,
as listed in the following.

• ONE:

– Select one unique true point for each term;

– Select one near false point for each literal.

For the example expression, its unique true points are 110, 101, and 011;
for the term ab, its near false points are 100 and 010; for the term ac, its

4

near false points are 100 and 001; for the term bc, its near false points are
010 and 001. Therefore, its ONE test suite is {110, 011, 101, 010, 001,
100}.

• MIN:

– Select one unique true point for each term;

– Construct the minimum set of near false points for covering all liter-
als. Note that different literals may have common near false points,
so it is possible to use fewer near false points to cover all literals.

One possible MIN test suite for the example expression is {110, 011, 101,
001}.

• MANY-A:

– Select max {dlog2 Nue , 1} unique true points for each term, where
Nu is the number of unique true points for the term;

– Select max {dlog2 Nne , 1} near false points for each literal, where Nn

is the number of near false points for the literal.

For the example expression, there is only one unique true point for each
term; thus, three unique true points (namely 110, 101, and 011) are se-
lected. For each literal, only one near false point is available for selection
and finally three near false points (namely 010, 001, and 100) are selected.
The MANY-A test suite for the example expression is {110, 011, 101, 010,
001, 100}.

• MANY-B:

– Select max {dlog2 Nue , 1} unique true points for each term, where
Nu is the number of unique true points for the term;

– Select max {dlog2 Nne , 1} near false points for each literal, where Nn

is the number of near false points for the literal;

– Select max {dlog2 Noe , 1} overlapping true points, where No is the
number of overlapping true points for the Boolean expression;

– Select max {dlog2 Nre , 1} remaining false points, where Nr is the
number of remaining false points for the Boolean expression.

For the example expression, three unique true points (namely 110, 101, and
011) and three near false points (namely 010, 001, and 100) are selected;
only one overlapping true point (namely 111) and only one remaining
false point (namely 000) are selected. Thus, the MANY-B test suite for
the example expression is {110, 011, 101, 010, 001, 100, 111, 000}.

• MAX-A:

– Select all unique true points;

5

– Select all near false points.

For the example expression, its MAX-A test suite is {110, 011, 101, 010,
001, 100}.

• MAX-B:

– Select all unique true points;

– Select all near false points;

– Select max {dlog2 Noe , 1} overlapping true points, where No is the
number of overlapping true points for the Boolean expression;

– Select max {dlog2 Nre , 1} remaining false points, where Nr is the
number of remaining false points for the Boolean expression.

For the example expression, its MAX-B test suite is {110, 011, 101, 010,
001, 100, 111, 000}.

Chen and Lau [6] investigated seven types of faults, namely ENF (Expression
Negation Fault), LNF (Literal Negation Fault), Term Omission Fault (TOF),
Operator Reference Fault (ORF), Literal Omission Fault (LOF), Literal In-
sertion Fault (LIF), and Literal Reference Fault (LRF). They found that the
MAX-B strategy guarantees the detection of all the seven types of faults, but it
requires a large amount of test cases. Chen and Lau proposed three fault-based
test case generation strategies, namely MUTP (multiple unique true points),
MNFP (multiple near false points), and CUTPNFP (corresponding unique true
point and near false point pair), as presented in the following.

• MUTP: for each term, select the unique true points that can cover both
0 and 1 values of every variable not appearing in the term.

For the example expression, its MUTP test suite is {110, 101, 011}.

• MNFP: for each literal, select the near false points that can cover both 0
and 1 values of every variable not appearing in the term containing the
literal.

For the example expression, its MNFP test suite is {010, 100, 001}.

• CUTPNFP: for each term and each literal in the term, select a pair of
unique true point and near false point that only differ in the corresponding
value of the literal.

For the example expression, its CUTPNFP test suite is {110, 010, 100,
101, 001, 011}.

The integration of MUTP, MNFP, and CUTPNFP, namely MUMCUT [8],
guarantees the detection of all seven types of faults while using fewer test cases
than MAX-B. In other words, MUMCUT is more efficient than MAX-B. Yu et
al. [41] proposed several methods for automatically generating MUMCUT test

6

sets using the techniques of greedy heuristics, divide-and-conquer, and incremen-
tal expansion. In their methods, the MUMCUT test set can be constructed by
incrementally generating test cases by means of MUTP, MNFP, and CUTPNFP.
Four different methods are proposed according to different permutation orders,
namely MUMCUT-CUN, MUMCUT-UCN, MUMCUT-UNC, MUMCUT-NCU,
where the letters ‘U’, ‘N’, and ‘C’ represent MUTP, MNFP, and CUTPNFP,
respectively. For the example expression, all these four strategies produce the
same test suite, namely {110, 010, 100, 101, 001, 011}.

In our previous work [36], we investigated the fault-detection capabilities
of MUMCUT when it is used to test general Boolean expressions, and we dis-
covered some patterns of faults in general Boolean expressions that cannot be
detected by MUMCUT. We also investigated the reason why such faults can-
not be detected by the existing fault-based strategies [34]. Based on the in-
vestigations on undetected faults, we proposed some guidelines for extending
MUMCUT such that more faults can be detected. The basic intuition of these
extension guidelines is that the test cases should have certain degree of diver-
sity. The concept of diversity has been widely used in other test case selection
methods [9, 5, 21]. The details of the MUMCUT extensions proposed in our
previous work are presented as follows. Without loss of generality, these ex-
tensions are based on the version of MUMCUT-CUN. Assume that the test set
of MUMCUT is denoted as TS = {ts1, ts2, ..., tsm}, and the remaining points
TR = {t1, t2, ..., tr} where m < 2n, r = 2n−m, and n is the number of Boolean
variables within the Boolean expression under test.

• MUMCUT-NCases:

– Set TSNCases = ∅;
– Select the point where all Boolean variables have the value of 1, and

the point where all Boolean variables have the value of 0, and add
these points to the set TSNCases;

– If n > 2, then select n − 2 points ti from TR and add them to
the set TSNCases, where ti should satisfy the following constraint:
maxj=1..m(|ti − tsj |) ≥ maxk=1..r∧k 6=i(maxj=1..m(|tk − tsj |)), where
|ti − tsj | denotes the number of Boolean variables in ti and tsj with
different values;

– Return TS
⋃
TSNCases.

For the example expression, its MUMCUT-NCases test suite is {110, 011,
101, 010, 001, 100, 111, 000}.

• MUMCUT-M2NFP:

– For any two literals (jth1 and jth2) in pi, select the pair near false
points (denoted as 2NFP) that can cover both 0 and 1 values of
every variable not appearing in pi. 2NFP is an extension of one
literal near false point, and formally, a test case is referred to as
2NFP for the jth1 and jth2 literals of pi if it caused pi,j1j2 to be 1 but

7

the whole Boolean expression to be 0, where pi,j1j2 is a term that is
obtained by negating the jth1 and jth2 literal of pi. The above strategy
is referred to as M2NFP, which is an extension of MNFP with respect
to pair literals, and the resulting test set is denoted as TSM2NFP .

– Return TS
⋃
TSM2NFP .

For the example expression, its MUMCUT-M2NFP test suite is {110, 011,
101, 010, 001, 100}.

• MUMCUT-MS2NFP:

– Select any two successive literals (jth1 and jth2) in pi, select the suc-
cessive pair near false points (denoted as S2NFP) that can cover
both 0 and 1 values of every variable not appearing in pi. S2NFP is
the same to 2NFP except that the former requires that two literals
must successively occur in the term. The strategy is referred to as
MS2NFP, and the resulting test set is denoted as TSMS2NFP .

– Return TS
⋃
TSMS2NFP .

For the example expression, its MUMCUT-MS2NFP test suite is {110,
011, 101, 010, 001, 100}.

• MUMCUT-NCases&M2NFP: Merge the test set of MUMCUT-NCases
into the one of MUMCUT-M2NFP.

For the example expression, its MUMCUT-NCases&M2NFP test suite is
{110, 011, 101, 010, 001, 100, 111, 000}.

• MUMCUT-NCases&MS2NFP: Merge the test set of MUMCUT-NCases
into the one of MUMCUT-MS2NFP.

For the example expression, its MUMCUT-NCases&MS2NFP test suite
is {110, 011, 101, 010, 001, 100, 111, 000}.

It is expected that the fault-detection effectiveness could be improved by
enhancing the diversity among selected test cases [34]. However, the fault-
detection effectiveness and efficiency of the above extensions to MUMCUT have
not yet been evaluated, which is to be reported later in this paper.

3 Experimental Design

In this section, we first state the research questions targeted in the study, then
explain how the experiment is designed and implemented according to research
questions, and finally discuss the threats to validity of our study.

8

3.1 Research questions

In this study, we attempt to answer the following basic research questions about
fault-based test case generation strategies on general Boolean expressions.

• RQ1: How effective is a fault-based test case generation strategy in de-
tecting faults in general Boolean expressions?

The fault-detection effectiveness is a major metric for evaluating a testing
method. Normally, the more faults a testing method can detect, the more
effective it is. In this study, we evaluate the fault-detection effectiveness
of a testing method via mutation analysis technique [2]. Given a Boolean
expression in the general form, a set of mutants can be generated, each
of which is related to a seeded fault. A mutant m is said to be killed by
a test case t if t causes m to produce a value different from that of the
original expression. The fault-detection effectiveness is measured by the
number of killed mutants (that is, the number of detected faults).

• RQ2: Which is the most efficient strategy for testing general Boolean
expressions?

In reality, if a testing method requires a high cost (such as a large number
of test cases, too many computing resources required, etc.), its high fault-
detection effectiveness may become meaningless. As an extreme example,
the exhaustive testing has the highest fault-detection effectiveness, but it is
practically infeasible. We expect that a good testing method should have a
high fault-detection efficiency, meaning that it can detect a large number of
faults at low cost. In this study, we evaluate the fault-detection efficiency
of a testing method by the ratio between the number of detected faults
and the number of used test cases. Through our study, we will recommend
the most efficient testing method for general Boolean expressions.

• RQ3: To what extent do our proposed extensions improve the fault-
detection effectiveness of MUMCUT for testing general Boolean expres-
sions, and what is the cost for such improvement?

As mentioned above, some faults in the general Boolean expressions cannot
be detected by MUMCUT [36], and hence some extensions were proposed
to improve its fault-detection effectiveness [34]. However, their improve-
ments are not evaluated yet. Through this study, we want to answer
whether these extensions are able to improve the fault-detection effective-
ness without significantly increasing the number of used test cases.

3.2 Experimental settings

We conducted a series of experiments to answer the above research questions.
The settings of our experiments are described as follows.

The main purpose of this study is to evaluate and compare the effectiveness
and efficiency of various fault-based test case generation strategies on general

9

Boolean expressions. In most previous studies, Boolean specifications extracted
from a real-life software were used as the subjects of experiments. Though
real-life examples are important for empirical studies, a few real-life Boolean
specifications cannot guarantee that the full picture would be given. Techni-
cally speaking, an extremely large amount of Boolean expressions should be
used for getting a statistically reliable conclusion. However, in practice, em-
pirical studies with lots of real-life examples are time-consuming and labor-
intensive. In our study, the subjects are the general Boolean expressions that
were generated by an FSM (finite state machine)-based parameterised genera-
tor [35]. The structure of the generated Boolean expressions can be adjusted
through the parameters, including max term number (TN), max term length
(TL), max literal number (LN), and max operator number (OP). We found the
transformation of general Boolean expressions to their IDNF representation is
very time-consuming when LN was larger than ten. In our experiments, we
set TN to nine, TL to five, LN to nine, and OP to seven, just because of the
limitation of experimental environments (i.e. low computing capacity). A total
of 1000 expressions were generated in a random manner, which guarantees a
large number of subjects without any human bias.

Common faults that might occur during the programming process have been
carefully investigated and summarized [31, 32]. The described typical program-
ming errors involve missing or extra literals/variables, and the use of incorrect
operators and operands. Some researchers have recently introduced ten fault
types for general Boolean expressions, including ENF, SA0, SA1, VNF, ASF,
ORF, VRF, MVF, CCD, and CDF [24, 10]. However, these terminologies are a
bit confusing. For instance, VNF (Variable Negation Fault) is quite misleading:
It is unsure whether it refers to the negation of all occurrences of a variable
or one occurrence of a variable. A very precise definition of every fault type is
provided in [32]. In this study, we used ten types of faults for general Boolean
expressions in our previous work [7]. We described the ten types of faults (il-
lustrated by the previous example ab̄+ bc, except for the POF fault) as follows.

• ENF (expression negation fault): The whole or part of the expression is

mistakenly negated. For example, ab̄ + bc.

• TNF (term negation fault): A term is mistakenly negated. For example,
ab̄ + bc.

• TOF (term omission fault): A term is mistakenly omitted. For example,
ab̄.

• ORF (operator reference fault): An operator is mistakenly replaced by
another type of operator. For example, a + b̄ + bc.

• LNF (literal negation fault): A literal is mistakenly negated. For example,
ab + bc.

• LOF (literal omission fault): A literal is mistakenly omitted. For example,
a + bc.

10

• LIF (literal insertion fault): Another literal is mistakenly inserted into a
term. For example, ab̄c + bc.

• LRF (literal reference fault): A literal is mistakenly replaced by another
literal. For example, ab̄ + ac.

• POF (parentheses omission fault): A pair of parentheses are mistakenly
omitted. For example, (a + b) c might be mistakenly implemented as a+bc.

• PIF (parentheses insertion fault): A pair of parentheses are mistakenly
inserted into the expression. For example, a

(
b̄ + bc

)
.

We adopted the mutation analysis technique [2] to construct the faulty ver-
sions (namely mutants) for each Boolean expression. For each mutant, only
one fault (namely a single syntactical change) was mimicked. This single fault
assumption is due to the two hypotheses behind mutation analysis, namely the
competent programmer hypothesis and the coupling effect [14, 30]. The first
hypothesis states that competent programmers tend to develop programs close
to the correct version, which implies that the faults made by competent pro-
grammers are merely a few simple faults. The second hypothesis states that
test data that can detect simple types of fault are sensitive enough to detect
more complex types of faults. Even one single fault assumption was applied, the
number of literal related mutants (including LNF, LOF, LIF, and LRF) is still
very large. To control the number of mutants, we used the following strategy, as
illustrated by the fault type LNF. For each term in the expression, if the number
of literals is equal to or larger than three, three mutants will be generated by
negation of first, middle, and last literal in the term; Otherwise, mutants will
be generated by negation all possible literals (when a term has only one literal,
its mutant corresponds to a TOF fault). Note that for LIF and LRF, only the
Boolean variable that does not occur in the current term will be used. Table 1
reports the number of mutants generated based on each type of fault.

In this study, we attempt to comprehensively evaluate and compare most
of the existing fault-based testing strategies for Boolean specifications. The
strategies under study include ONE, MIN, MANY-A, MANY-B, MAX-A, MAX-
B, MUTP, MNFP, CUTPNFP, MUMCUT-CUN, MUMCUT-UCN, MUMCUT-
UNC, and MUMCUT-NCU. At the same time, we like to have an insight into
the performance improvement made by the extensions of MUMCUT and the
cost incurred by the improvement. Therefore, MUMCUT-NCases, MUMCUT-
M2NFP, MUMCUT-MS2NFP, MUMCUT-NCases&M2NFP, and MUMCUT-
NCases&MS2NFP are also included in our study.

Our experiments were conducted through the following procedure.

1. Choose a type of fault, and a test case generation strategy.

2. Generate mutants based on the fault type. In our study, the number of
mutants is exchangeable to the number of faults.

3. Generate test cases using the testing strategy under study.

11

Table 1: Number of mutants generated
Type of Number of Number of

fault original expressions mutants
ENF 100 314
TNF 100 416
TOF 100 294
ORF 100 714
LNF 100 778
LOF 100 269
LIF 100 238

LRF 100 342
POF 100 88
PIF 100 549

All faults 1000 4002

4. Use the test cases (generated in Step 3) to test mutants (generated in
Step 2). When a test case cause a mutant to produce an output different
from that of the original expression, the mutant is said to be killed (in
other words, a fault is detected). After all test cases are executed on all
mutants, record the total number of killed mutants (in other words, the
number of detected faults).

3.3 Threats to Validity

The threats to validity of our study are discussed as follows.
The threat to internal validity is related to how the experiments were de-

signed and implemented. Firstly, in our study, mutation operators were used
to simulate possible faults of general Boolean expressions. Although mutation
analysis has been widely used to evaluate the effectiveness of various testing tech-
niques [2], the mimicked faults (namely mutants) are possibly different from the
real-life faults. Secondly, the limited number of sample expressions may threat
the validity of evaluations. In our experiments, some strategies were adopted
to control number of mutants, and some parameters (such as the maximum
number of literals) are concerned when the tool was used to produce expression
samples, which may not cover all possible cases. Also, it is possible that ran-
domly generated Boolean expressions can show difference when compared with
real-life ones. Thirdly, mutation analysis are restricted to simple mutants that
are created by making a single syntactical change because of the single fault
assumption [14, 30]. However, multiple faults in a single expression are possi-
ble yet rare. Fourthly, the occurrences of different types of realistic faults are
varying, while faults mimicked by means of mutation operators were randomly
generated. Such a distribution difference may result in a deviation of the effec-
tiveness evaluation result of the test case generation strategies when they are

12

used in practice [37]. Finally, the threat to internal validity is also related to
the implementations. We used a tool [35] to generate Boolean expressions and
mutants as the subjects. The programs that implement test case generation
methods were developed based on previous source code, and have been cross
checked by different individuals. We are confident that our experiments were
correctly implemented.

The threat to external validity is related to the subjects. In most situations,
Boolean literals in an expression may represent complex concepts or computa-
tions; this actually indicates that the application of fault-based test generation
strategies to realistic software involves three steps, namely abstracting Boolean
expressions, generating test cases using the strategies, and converting (or re-
fining) the derived test cases into test data. Accordingly, it would be a good
idea to collect an extremely large number of Boolean expressions from code or
models and use them as base for the experiments. However, it is very expensive
in both time and labor and thus infeasible. In our study, instead of adopting
real-life specifications, we used Boolean expressions that were randomly gen-
erated by a mature tool [35] and a large amount of Boolean expressions were
automatically generated at a low cost. We are confident that these randomly
constructed Boolean expressions comprehensively reflect various attributes and
features of general Boolean specifications without human bias.

The threat to construct validity is related to the measurement. In our study,
we used the number of killed mutants to measure the fault-detection effective-
ness. This measurement has been widely acknowledged as a fair metric for
evaluating a testing method. In addition, we measured the fault-detection ef-
ficiency using the ratio of the number of killed mutants to the number of test
cases. This metric is straightforward and intuitively appealing.

There is little threat to conclusion validity in our study. A large number
of Boolean expressions have been used as the subjects, and ten types of faults
have been considered. Our experiments provided a huge amount of data, which
helped us obtain a statistically reliable conclusion. Statistical tests were also
conducted to validate the statistical significance of our experimental results.
Finally, constraints may exist in Boolean expressions [40, 19]. An interesting
question is to investigate the impact of constraints on fault-based test case gen-
eration strategies, which requires to simulate possible constraints by introducing
variable dependencies in randomly generated Boolean expressions, and thus is
left for our future work.

4 Experimental Results

4.1 RQ1: Fault-detection effectiveness

The experimental results about the fault-detection effectiveness (measured by
the percentage of the number of detected faults over the total number of seeded
faults) are summarised in Figures 1 and 2. Figure 1 shows how effectively these
strategies are in detecting each type of fault; while Figure 2 shows the fault-

13

30%

40%

50%

60%

70%

80%

90%

100%

ENF TNF TOF ORF LNF LOF LIF LRF POF PIF

F
au

lt
-d

et
ec

ti
o

n
 e

ff
ec

ti
ve

n
es

s

Fault type

Figure 1: Fault-detection effectiveness on each fault type

detection effectiveness of each fault-based testing strategy. In these figures,
box-plots are used to represent the statistical distribution of fault-detection
effectiveness. For each box, the upper and lower bounds denote the third and
first quartile of the fault-detection effectiveness, respectively, while the middle
line inside the box represents the median value. The top and bottom whiskers
out of the box denote the maximum and minimum values, respectively, and a
square dot represents the mean value of the fault-detection effectiveness.

Based on the detailed experimental data and Figure 1, we can have the
following observations.

• ENF is the easiest fault type to be detected. Among all 18 strategies, 13
can detect all faults. Even for the worst case (MUTP), 91.4% of ENF
faults can be detected.

• LOF is the most difficult fault type to be detected. No testing strategy
can detect over 99% of LOF faults, and only 31.6% of LOF faults are
detected for the worst case (MUTP).

• The difficulty for detecting LIF seems to be similar to that of LOF. The
value range for the fault-detection ratios on LIF is from 34.45% to 100%,
just marginally higher than that of LOF (from 31.6% to 98.51%).

14

30%

40%

50%

60%

70%

80%

90%

100%

F
ai

lu
re

-d
et

ec
ti

o
n

 e
ff

ec
ti

ve
n

es
s

Testing strategy

Figure 2: Fault-detection effectiveness of each testing strategy

Kapoor and Bowen [24] conjectured that ENF might be the weakest one
among eight fault types for general Boolean expressions; in other words, the de-
tection of any other fault type can also guarantee the detection of ENF. Though
this conjecture has been proven wrong by Chen et al. [10], our observation with
respect to ENF demonstrated that ENF at least can be revealed very easily as
compared with other fault types. Lau and Yu [27] proved that LIF and LOF
are the strongest fault types for Boolean specifications in the IDNF. Our ex-
perimental results showed that even for general Boolean specifications, LIF and
LOF are still the most difficult fault types to be detected.

To further analyse the fault-detection effectiveness, we also conducted Bon-
ferroni means separation tests on all testing strategies. Bonferroni test is an
approach for multiple comparisons, based on which, we could verify whether the
performance difference between the testing techniques under study is statisti-
cally significant. Generally speaking, Bonferroni test is a conservative approach
that prevents data from being mistakenly identified as statistically significant.
This approach has been widely used to quantify how various software engineering
techniques are different from one another [16]. After the tests, these strategies
are ranked and classified into different groups, as summarised in Table 2. The
strategies in the same group imply that their difference in fault-detection ef-
fectiveness is not statistically significant. Note that one strategy can belong to

15

Table 2: Bonferroni mean separation tests on the fault-detection effectiveness
for all testing strategies

Testing Fault-detection effectiveness
strategy on all types of fault

A B MAX-B 99.80%
A B MAX-A 99.70%
A B MUMCUT-NCases&M2NFP 99.65%
A B MUMCUT-NCases&MS2NFP 99.50%
A B MUMCUT-M2NFP 99.48%
A B MUMCUT-NCases 99.45%
A B MUMCUT-MS2NFP 99.43%
A B MUMCUT-NCU 99.40%
A B MANY-B 99.38%
A B MUMCUT-UNC 99.38%
A B MUMCUT-CUN 99.35%
A B MUMCUT-UCN 99.33%
A B MANY-A 99.20%

B C ONE 96.30%
C D CUTPNFP 84.86%
C D MIN 82.66%

D MUTP 69.24%
D MNFP 68.44%

different groups. For example, the ONE strategy is in Group B, which implies
that its fault-detection effectiveness is not significantly different from the 13 best
strategies in Group A (from MAX-B to MANY-A in Table 2, also in Group B).
On the other hand, the ONE strategy is also in Group C, so its fault-detection
effectiveness cannot be statistically distinguished from CUTPNFP and MIN,
which, however, are significantly different from the 13 best strategies.

Based on Figure 2 and Table 2, we can make the following observations.

• MAX-B is the best method in terms of fault-detection effectiveness.

• The testing strategies of MANY-A, MANY-B, MAX-A, MUMCUT-CUN,
MUMCUT-UCN, MUMCUT-UNC, MUMCUT-NCU, MUMCUT-NCases,
MUMCUT-M2NFP, MUMCUT-MS2NFP, MUMCUT-NCases&M2NFP,
and MUMCUT-NCases&MS2NFP have similar fault-detection effective-
ness to MAX-B. All these 13 strategies have fault-detection effectiveness
larger than 99% when considering all types of faults.

• The ONE testing strategy has a “not-so-bad” fault-detection effectiveness
(fault-detection ratio larger than 96% when considering all types of faults).

16

However, the MIN strategy always has lower fault-detection effectiveness
than the ONE strategy.

• It is hard to distinguish the fault-detection effectiveness of MUTP and
MNFP.

Intuitively speaking, for almost all test case generation strategies, there is
a trade-off between the number of used test cases and the number of detected
faults. MAX-B always uses the most test cases (demonstrated in previous stud-
ies [40, 6]) among all 18 strategies, so it is not surprising at all that MAX-B
can detect the most faults. The MIN strategy was proposed to minimise the
number of test cases of the ONE strategy. Though both strategies guarantee the
coverage of unique true points and near false points for all terms and literals,
ONE always has a larger number of test cases as well as a larger number of de-
tected faults than MIN. Each of MUTP, MNFP, and CUTPNFP was proposed
to detect certain types of faults in IDNF Boolean specifications. They must be
collectively used (that is, MUMCUT) for delivering a similar fault-detection ef-
fectiveness as MAX-B. Therefore, it is understandable that neither of them can
provide a high fault-detection effectiveness on general Boolean specifications.

4.2 RQ2: Fault-detection efficiency

The experimental results for fault-detection efficiency is summarized in Fig-
ure 3, in which we use box-plots to represent the statistical distribution of fault-
detection efficiency (measured by the ratio of the number of detected faults to
the number of used test cases). Similar to Figures 1 and 2, the upper, mid-
dle, and lower lines of each box denote the third quartile, median value, and the
first quartile of the fault-detection efficiency, respectively; while the top whisker,
bottom whisker, and square dot represent the max, min, and mean value, re-
spectively. As pointed out in Section 3.1, the main aim of the research related
to RQ2 is to find the most efficient testing strategy in the sense of detecting
most faults using a small number of test cases. As shown in Section 4.1, some
of the testing strategies are not able to detect most of the faults, so we elimi-
nated them when studying the fault-detection efficiency — we only included the
results for the 13 best testing strategies (from MAX-B to MANY-A in Group
A in Table 2). Bonferroni analysis was also performed to rank and group these
strategies in terms of their fault-detection efficiency, as summarised in Table 3.

From the experimental data, we can have the following observations.

• In general, the four basic MUMCUT methods (MUMCUT-CUN, MUMCUT-
UCN, MUMCUT-UNC, and MUMCUT-NCU) have the highest fault-
detection efficiency among all testing strategies.

• Among all four basic MUMCUT methods, MUMCUT-UCN is generally
the most efficient testing strategy, though its efficiency is not significantly
higher than other three.

17

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%
F

ai
lu

re
-d

et
ec

ti
o

n
 e

ff
ec

ti
ve

n
es

s

Testing strategy

Figure 3: Fault-detection efficiency of the 13 best testing strategies

Table 3: Bonferroni mean separation tests on the fault-detection efficiency for
the 13 best testing strategies

Testing Fault-detection efficiency
strategy on all types of fault

A MUMCUT-UCN 21.15%
A MUMCUT-CUN 21.08%
A MUMCUT-UNC 19.86%
A MUMCUT-NCU 19.67%
A B MUMCUT-MS2NFP 17.20%
A B MUMCUT-NCases 16.87%
A B MUMCUT-NCases&MS2NFP 14.56%
A B MUMCUT-M2NFP 13.91%
A B MANY-A 13.51%
A B MUMCUT-NCases&M2NFP 12.25%
A B MANY-B 11.46%

B C MAX-A 4.78%
B C MAX-B 4.49%

18

Table 4: Overall performance improvement of MUMCUT extensions
Testing strategy Improvement of Improvement of

fault-detection fault-detection
effectiveness over efficiency over
MUMCUT-CUN MUMCUT-CUN

MUMCUT-NCases 0.101% -0.199%
MUMCUT-M2NFP 0.126% -0.340%

MUMCUT-MS2NFP 0.075% -0.184%
MUMCUT-Ncases&M2NFP 0.301% -0.419%

MUMCUT-Ncases&MS2NFP 0.151% -0.309%

• MAX-B always has the lowest fault-detection efficiency among all the
ranked strategies, and the efficiency of MAX-A is just marginally higher
than that of MAX-B.

Based on the above observations, we can conclude that though MAX-B de-
tects the most faults, its efficiency is very low. On the other hand, MUMCUT
should be used for consistently delivering a high fault-detection efficiency in
testing general Boolean specifications. In particular, MUMCUT-UCN is recom-
mended to be the best choice.

4.3 Performance improvement and cost of MUMCUT ex-
tensions

As mentioned above, some faults in the general Boolean expressions cannot be
detected by MUMCUT [36], and hence some extensions were proposed to im-
prove its fault-detection effectiveness [34]. However, their improvements are not
evaluated yet. Through this study, we want to answer whether these exten-
sions are able to improve the fault-detection effectiveness without significantly
increasing the number of used test cases.

We have provided a comprehensive comparison of all fault-based testing
strategies for general Boolean expressions in terms of the fault-detection ef-
fectiveness and efficiency. We further analyse to what extent our MUMCUT
extensions [34] can improve the performance over the original MUMCUT-CUN,
as summarised in Table 4, where the performance improvements in terms of
fault-detection effectiveness and efficiency are given in the 2nd and 3rd columns,
respectively.

Generally speaking, the five MUMCUT extensions (MUMCUT-NCases, MUMCUT-
M2NFP, MUMCUT-MS2NFP, MUMCUT-NCases&M2NFP, and MUMCUT-
NCases&MS2NFP) have marginally higher fault-detection effectiveness than
MUMCUT-CUN. Among them, MUMCUT-Ncases&M2NFP has the highest
fault-detection effectiveness. However, the marginal improvement of the fault-
detection effectiveness is actually at the cost of much more test cases. As shown
in Table 4, all MUMCUT extensions have lower efficiency than MUMCUT-CUN.

19

Such observations reinforce that there is a trade-off between the fault-detection
effectiveness and the number of test cases, and the MUMCUT methods fairly
balance the trade-off.

5 Related Work

In this section, we introduce closely related work in fault-based testing of Boolean
expressions.

5.1 Fault classes and their detection hierarchy

Since testing can manifest the presence of faults, an exhaustive testing is ex-
pected to be adequate to detect all possible faults. However, it is prohibitively
expensive to realize complete adequacy testing [15]. Fault-based testing is a
relative adequacy testing technique, which first assumes certain types of faults,
and then designs test suites to detect these faults [28]. Boolean expressions play
an important role in software specifications, and numerous efforts have been
reported on how to efficiently test different types of faults present in Boolean
specifications [33].

One category of research efforts have been made to identify the detection
hierarchy of fault classes of Boolean specifications under some form. Fault class
A is said to subsume fault class B, if and only if the test suite that can detect
A must be able to detect B, denoted as A ⇒ B. That is, TS(A) ⊇ TS(B)
where TS(A) and TS(B) denote test suite that can guarantee the detection of
fault class A and B, respectively. If this subsumption relation exists, one just
needs to focus on test case generation for fault class A without considering the
detection of fault class B. Therefore, understanding such a detection relationship
is important, because it may be helpful to not only explain the experimental
results, but also reduce the testing cost.

A pioneering work in this direction was done by Kuhn [25], who first reported
the hierarchy of several fault classes where Boolean specifications are assumed
to be DNF. Kuhn’s hierarchy identifies the following subsumption relationships:
(1) V RF ⇒ V NF ; and (2) V NF ⇒ ENF . Here, VRF (Variable Reference
Fault) refers to that a variable vi is substituted by the other one vj , where
vi 6= vj . VRF is further classified as MCF (Missing Condition Fault) and
ICF (Incorrect Condition Fault). Tsuchiya and Kikuno [39] further extended
Kuhn’s hierarchy by analysing the relationship between VRF and MCF, namely
(1) MCF ⇒ V NF , when the fault happens to the same variable; (2) V RF ⇒
MCF when the fault happens to the same variable and the faulty term has
more than one variable. The identified hierarchy only considers variable related
faults, which means all occurrences of a missing or referenced variable in the
expression. However, it is possible that a fault is only related to a literal, namely
one occurrence of a variable.

Lau and Yu [27] extended the previous work to include the relationships
between term and literal related fault classes. They established a hierarchy,

20

which shows the following relationships: (1) LIF ⇒ LRF ⇒ LNF ⇒ TNF ⇒
ENF ; (2) LIF ⇒ TOF ⇒ ORF [+] ⇒ ENF ; (3) LOF ⇒ ORF [·] ⇒ TNF ;
(4) TOF ⇒ LNF ; and (5) LOF ⇒ LNF . Here, ORF[+] refers to that a
binary Boolean operator “+” (OR) immediately following a term is replaced by
“·” (AND), and ORF[·] refers to that a binary Boolean operator “·” immediately
following a literal is replaced by “+”.

The above hierarchies assume that Boolean specifications are represented
to be in DNF or IDNF. Okun et al. [31] extended the hierarchy to include
clause related fault classes, and the proposed hierarchy applies to arbitrary
expressions. A clause is either a Boolean variable or a relational expression. The
proven relationships include: (1) CRF (Clause Reference Fault)⇒ CNF (Clause
Negation Fault); and (2) CNF ⇒ ENF. Kapoor and Bowen [24] attempted to
extend the hierarchy to general Boolean specifications. They studied ten types of
faults and proposed a hierarchy of fault classes for general Boolean specifications.
However, their hierarchy was then proven by Chen et al. [10] to be incorrect. As
a result, the correct relationships include: (1) CDF ⇒ SA1; (2) CCF ⇒ SA0;
and (3) V RF ⇒ V NF .

A Boolean specification can be represented in different forms (such as DNF,
IDNF, and general form), and faults that may be committed by program-
mers may involve Boolean variables, Boolean operators, Boolean literals, or
terms [33]. Kaminski et al. [23] summarized common types of faults. However,
most fault classes are hypothesized with respect to a given representation form,
which calls for different analysis of the fault hierarchy, and affects the develop-
ment of test case generation strategies. Recently, Paul and Lau [32] proposed a
set of uniform definitions of fault classes, and they can be applied irrespective
of the syntactic nature of Boolean expressions.

5.2 Test case generation strategies

The other category of research efforts have been made to develop efficient test
case generation strategies for Boolean specifications [33]. The basic issue is on
how to generate and select an efficient set of test cases so that the size of se-
lected test cases is as small as possible, while they can detect faults as many
as possible. Various test case generation strategies for Boolean specifications
have been proposed, and they are grouped into syntactic and semantic [23].
The syntactic strategies normally require Boolean specifications under test to
be in a specific form, and most notable ones include the family of basic mean-
ingful impact strategies [40], MUMCUT [6], and MUMCUT extensions [34].
The semantic strategies do not require the Boolean expression to be in a par-
ticular form, and typical ones include sensitive strategies [18], MC/DC [13],
BRO strategies [38], and the predicate coverage criteria such as predicate cov-
erage (PC), clause coverage (CC), multiple condition coverage (MCC), active
clause coverage (ACC), general active clause coverage (GACC), correlated ac-
tive clause coverage (CACC), restricted active clause coverage (RACC), inactive
clause coverage (ICC), general inactive clause coverage (GICC), and restricted
inactive clause coverage (RICC) [1]. Kaminski et al. [23] analyzed the sub-

21

sumption hierarchy among most test strategies, which covers the family of basic
meaningful impact strategies [40], the family of MUMCUT [6], and the predicate
coverage criteria [1].

A recent trend is to study the testing of general Boolean specifications. In
our previous work [36], we evaluated the fault detection capability of MUM-
CUT strategy when it is used for general Boolean expressions, and reported five
patterns of faults that cannot be detected by MUMCUT. We further analysed
why the five patterns of faults cannot be detected by MUMCUT, and proposed
extensions [34]. We further investigated the effectiveness of MUMCUT using
randomly generated Boolean expressions [7], but have not compared MUMCUT
with other testing methods. In this work, we took one step further to evalu-
ate and compare the effectiveness of representative fault-based (syntactic) test
case generation strategies when they are used for general Boolean expressions.
The evaluation and comparison covered more test case generation strategies (in-
cluding meaningful impact strategies, MUMCUT and MUMCUT variants, and
MUMCUT extensions proposed in [34]), and covered more types of faults (ten
types are considered, while only eight types are considered in [36]). Further-
more, the evaluation and comparison took a large size of randomly generated
Boolean expressions as the subjects, which is different from those reported in
existing literature.

One single fault assumption has been widely adopted in fault-based testing.
However, a single fault in a general Boolean expression can give rise to a very
large number of faults in the equivalent expression of IDNF, as observed in
our previous work [7]. Lau et al. [26] investigated the detection conditions
of combinations of two single faults in the expressions of IDNF, in which one
is related to term and the other is related to literal, and evaluated the fault
detection capability of some test case generation strategies (including ONE,
MAX-A, MAX-B, and MUMCUT) using 38 double fault expressions. They
found that all such faulty expressions, except two, can be detected by these
strategies for single fault detection. Unlike their evaluation, our experiments
actually covered multiple faults and also combinations of literal, terms, and
operators related faults, and compared the fault detection capability of more
test strategies that were designed for single fault detection using a large number
of randomly generated expressions as subjects.

Gargantini and Fraser [20] proposed a test case generation approach for gen-
eral Boolean expressions. The approach is actually a mutation-based method,
and aims at detecting all ten types of faults investigated in previous stud-
ies [24, 10]. The generated test set is required to be capable of killing all possible
mutants that are constructed by seeding certain types of faults into the Boolean
expression under test. Unlike some other strategies such as MUMCUT, it is not
theoretically proven that this approach can guarantee the detection of all faulty
versions corresponding to certain fault types. The case study was conducted
based on the mutants generated from 19 Boolean specifications [40], which are
from only one subject program.

In some situations, constraints may exist among Boolean variables in a
Boolean expression, and thus possibly result in some invalid test cases. Gar-

22

gantini [19] illustrated this issue by providing several interesting examples, and
proposed three strategies to handle the constraints, including (1) generating test
cases without considering constraints and then removing invalid test cases; (2)
modeling constraints as Boolean predicates, including predicates as further con-
joint to the original expression, and generating test cases for the derived expres-
sion; (3) using a constraint solving technique to generate only valid test cases.
The proposed strategies were evaluated and compared using seven Boolean ex-
pressions with variable dependencies selected from the specification of TCAS
II [40]. In this study, we did not explicitly address constraints of Boolean ex-
pressions; however, a large number of sample expressions may partially cover
some constraints that are treated as conjoints. In our future work, we will fur-
ther investigate the impact of constraints on all fault-based test case generation
strategies.

5.3 Evaluation and comparison of test strategies

Numerous studies were conducted to compare different test case generation
strategies for Boolean expressions. For instance, Feng et al. [17] evaluated the
subsumption relations among four types of testing strategies, including the test-
ing strategy based on the ONE criterion, partition testing, decision table-based
testing, and fault-based testing. Their study was based on two subject pro-
grams, and did not involve many Boolean expression-oriented testing strategies,
such as MUMCUT, MAX-B, etc. Chen et al. [11] investigated the effectiveness
of two IDNF-oriented testing strategies on general Boolean specifications, and
proposed some extensions for the two strategies under study. However, their
study only involved ONE and MUMCUT, and was conducted based on only
one subject program. Similarly, Yu et al. [41] compared the performance of
MUMCUT with MAX-A and MAX-B using a set of 80 Boolean expressions (20
from the specification of TCAS II [40], 20 from an LRU subject program, and
40 random). As compared with these previous studies, our work is the first one
to evaluate and compare the effectiveness of a full family of fault-based test case
strategies on a large amount of general Boolean specifications.

All fault-based test case generation strategies under evaluation have been
implemented. Chen et al. [4] developed the BEAT (Boolean expression fault-
based test case generator) system, which can be used to generate test cases from
Boolean expression according to MUTP, MNFP, CUTPNFP, MUMCUT-CUN,
MUMCUT-UCN, MUMCUT-UNC, and MUMCUT-NCU. Cheng [12] reported
the implementation of MUMCUT extensions proposed in [34]. Arcaini et al. [3]
proposed to improve the performance of test case generation for Boolean expres-
sion by using SAT/SMT solvers, which may be beneficial to the implementation
of test case generation strategies. They also published a set of random Boolean
expressions and a tool that can be used to generate test cases for ten types of
faults proposed in [24, 10]. To support the evaluation of test case generation
strategies for Boolean expressions, we developed a finite state machine-based
parameterised generator [35], which can be used to generate a large size of
general Boolean expressions, and the structure characteristics of the generated

23

Boolean expressions are adjustable. Similarly, Jenkins et al. [22] developed a
fault evaluator to aid experimental evaluation of fault-based testing techniques
for Boolean expressions.

6 Conclusion

Boolean expressions are widely used for describing conditions and decisions in
software specifications. Many strategies have been proposed to generate test
cases for detecting different types of faults in Boolean expressions. Most of
the existing fault-based testing strategies are based on Boolean expressions in
IDNF. However, any form can be used to represent a Boolean specification. In
this paper, we evaluated and compared the effectiveness and efficiency of various
fault-based test case generation strategies on general Boolean specifications.

In our experimental studies, we used a large amount of randomly generated
Boolean expressions as the subjects. As compared with the subjects used in
previous studies [40, 20, 11], these randomly generated expressions may reflect
more aspects of Boolean specifications in the general form, and thus can give us
a more comprehensive picture of the fault-detection effectiveness and efficiency
of the testing strategies under investigation. On the other hand, it is pos-
sible that randomly generated Boolean expressions can show difference when
compared with real-life ones. Our study showed that among all investigated
strategies, four basic MUMCUT methods, five MUMCUT extensions, MANY-A,
MANY-B, MAX-A, and MAX-B have the highest fault-detection effectiveness.
Though these strategies detect a similar number of faults, MUMCUT-UCN uses
the fewest test cases, and thus delivers the highest fault-detection efficiency.
Another interesting observation from the experiments is that the extensions
marginally improve the fault-detection effectiveness of the basic MUMCUT,
while significantly increasing the number of used test cases. This further im-
plies that there does exist the trade-off between fault-detection effectiveness and
the testing cost. In summary, MUMCUT is the most efficient test case genera-
tion strategy, not only for Boolean specifications in IDNF, but also for general
Boolean specifications. Therefore, MUMCUT is recommended to practitioners
as the best fault-based testing strategy.

In our future work, we would like to take a step further towards the applica-
tion of fault-based testing strategies in practice. Up to now, various fault-based
testing strategies have been proposed to test Boolean expressions using fewer
test cases, and their effectiveness has been comprehensively evaluated via a se-
ries of experiments presented in this work. However, conditions or decisions in
a real-life program usually involve relational or arithmetical expressions which
are defined on non-Boolean variables. How these strategies can be employed to
select test cases for execution has not been well addressed, and calls for further
efforts. In this context, we would like to further investigate their adoption in
unit testing. This usually involves the abstraction of predicates as a Boolean
expression, generation of abstract tests using the existing fault-based testing
strategies, and refinement of abstract tests into applicable ones via constraint

24

solver techniques. Additionally, constraints may happen to Boolean expressions
as demonstrated by some of Boolean expressions of TCAS II [40], we are inter-
ested to know the impact of constraints on all fault-based test case generation
strategies.

References

[1] P. Ammann and J. Offutt. Introduction to software testing. Cambridge
University Press, Cambridge, UK, 2008.

[2] J. H. Andrews, L. C. Briand, and Y. Labiche. Is mutation an appropriate
tool for testing experiments? In Proceedings of the 27th International Con-
ference on Software Engineering (ICSE 2005), pages 402–411, St. Louis,
MO, USA, 15-21 May 2005. ACM, New York, NY, USA.

[3] P. Arcaini, A. Gargantini, and E. Riccobene. Optimizing the automatic test
generation by sat and smt solving for boolean expressions. In Proceedings
of 26th IEEE/ACM International Conference on Automated Software En-
gineering (ASE 2011), pages 388–391, Lawrence, KS, USA, 6-10 November
2011. IEEE Computer Society, Los Alamitos, California, USA.

[4] T. Y. Chen, D. D. Grant, M. F. Lau, S. P. Ng, and V. R. Vasa. Beat: A
web-based boolean expression fault-based test case generation tool. Inter-
national Journal of Distance Education Technologies, 4(2):44–56, 2006.

[5] T. Y. Chen, F.-C. Kuo, R. G. Merkel, and T. H. Tse. Adaptive random
testing: The ART of test case diversity. Journal of Systems and Software,
83(1):60–66, 2010.

[6] T. Y. Chen and M. F. Lau. Test case selection strategies based on Boolean
specifications. Software Testing, Verification and Reliability, 11(3):165–180,
2001.

[7] T. Y. Chen, M. F. Lau, K. Y. Sim, and C.-A. Sun. On detecting faults for
boolean expressions. Software Quality Journal, 17(3):245–261, 2009.

[8] T. Y. Chen, M. F. Lau, and Y. T. Yu. Mumcut: A fault-based strategy for
testing boolean specifications. In Proceedings of the 6th Asia Pacific Soft-
ware Engineering Conference (APSEC 1999), pages 606–613, Takamatsu,
Japan, 7-10 December 1999. IEEE Computer Society, Los Alamitos, Cali-
fornia, USA.

[9] T. Y. Chen and Y. T. Yu. Constraints for safe partition testing strategies.
The Computer Journal, 39(7):619–625, 1996.

[10] Z. Y. Chen, T. Y. Chen, and B. W. Xu. A revisit of fault class hierarchies in
general boolean specifications. ACM Transactions on Software Engineering
and Methodology, 20(3):13:1–13:11, 2011.

25

[11] Z. Y. Chen, B. W. Xu, and C. H. Nie. Comparing fault-based testing strate-
gies of general boolean specifications. In Proceedings of the 31st Annual In-
ternational Computer Software and Applications Conference (COMPSAC
2007) - Volume 01, pages 621–622, Beijing, China, 24-27 July 2007. IEEE
Computer Society, Los Alamitos, California, USA.

[12] Q. Cheng. Performance Analysis and Improvements of MUMCUT for Gen-
eral Boolean Specifications. University of Science and Technology Beijing,
Beijing, China, 2011. Master Thesis.

[13] J. J. Chilenski and S. P. Miller. Applicability of modified condition/decision
coverage to software testing. Software Engineering Journal, 9(5):193–200,
1994.

[14] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on test data selec-
tion: Help for the practicing programmer. Computer, 11(4):34–41, 1978.

[15] R. A. DeMillo and J. A. Offutt. Constraint-based automatic test data
generation. IEEE Transactions on Software Engineering, 17(9):900–910,
1991.

[16] S. Elbaum, A. G. Malishevsky, and G. Rothermel. Test case prioritization:
A family of empirical studies. IEEE Transactions on Software Engineering,
28(2):159–182, 2002.

[17] X. Feng, D. L. Parnas, T. H. Tse, and T. O’Callaghan. A comparison of
tabular expression-based testing strategies. IEEE Transactions on Software
Engineering, 37(5):616–634, 2011.

[18] K. A. Foster. Sensitive test data for logic expressions. ACM SIGSOFT
Software Engineering Notes, 9(2):120–125, 1984.

[19] A. Gargantini. Dealing with constraints in boolean expression testing. In
Proceedings of 3rd Workshop on Constraints in Software Testing, Verifica-
tion, and Analysis (CSTVA 2011), pages 322–327, Berlin, Germany, 21-25
March 2011. IEEE Computer Society, Los Alamitos, California, USA.

[20] A. Gargantini and G. Fraser. Generating minimal fault detecting test suites
for general boolean specifications. Information and Software Technology,
53(11):1263–1273, 2011.

[21] H. Hemmati, A. Arcuri, and L. Briand. Achieving scalable model-based
testing through test case diversity. ACM Transactions on Software Engi-
neering and Methodology, 22(1):6:1–6:42, 2013.

[22] W. Jenkins, S. Vilkomir, and W. Ballance. Fault evaluator: A tool for ex-
perimental investigation of effectiveness in software testing. In Proceedings
of IEEE International Conference on Progress in Informatics and Comput-
ing (PIC 2000), pages 1077–1083, Shanghai, China, 10-12 December 2010.
IEEE Computer Society, Los Alamitos, California, USA.

26

[23] G. Kaminski, W. Gregory, and P. Ammann. Reconciling perspectives
of software logic testing. Software Testing, Verification and Reliability,
18(3):149–188, 2008.

[24] K. Kapoor and J. P. Bowen. Test conditions for fault classes in boolean
specifications. ACM Transactions on Software Engineering and Methodol-
ogy, 16(3):10:1–10:12, 2007.

[25] D. R. Kuhn. Fault classes and error detection capability of specification-
based testing. ACM Transactions on Software Engineering and Methodol-
ogy, 8(4):411–424, 1999.

[26] M. Lau, Y. Liu, and Y. Yu. Detecting double faults on term and literal in
boolean expressions. In Proceedings of the Seventh International Conference
on Quality Software (QSIC 2007), pages 117–126, Portland, Oregon, USA,
11-12 October 2007. IEEE Computer Society, Los Alamitos, California,
USA.

[27] M. F. Lau and Y. T. Yu. An extended fault class hierarchy for specification-
based testing. ACM Transactions on Software Engineering and Methodol-
ogy, 14(3):247–276, 2005.

[28] L. J. Morell. A theory of fault-based testing. IEEE Transactions on Soft-
ware Engineering, 16(8):844–857, 1990.

[29] G. J. Myers. The Art of Software Testing. John Wiley & Sons Inc., New
York, NY, USA, 1979.

[30] J. Offutt. Investigations of the software testing coupling effect. ACM
Transactions on Software Engineering and Methodology, 1(1):5–20, 1992.

[31] V. Okun, P. E. Black, and Y. Yesha. Comparison of fault classes
in specification-based testing. Information and Software Technology,
46(8):525–533, 2004.

[32] T. Paul and M. Lau. Redefinition of fault classes in logic expressions. In
Proceedings of International Conference on Quality Sofware (QSIC 2012),
pages 144–153, Xian, China, 27-29 August 2012. IEEE Computer Society,
Los Alamitos, California, USA.

[33] C.-A. Sun and Q. S. Cheng. A survey on fault-based testing techniques for
boolean expressions. Chinese Journal of Computer Science, 40(3):16–23,
2013.

[34] C.-A. Sun, Y. Dong, R. Lai, K. Y. Sim, and T. Y. Chen. Analyzing and
extending mumcut for fault-based testing of general boolean expressions.
In Proceedings of the 6th IEEE International Conference on Computer and
Information Technology (CIT 2006), page 184, Seoul, Korea, 20-22 Septem-
ber 2006. IEEE Computer Society, Los Alamitos, California, USA.

27

[35] C.-A. Sun and K. Y. Sim. An FSM-based parameterized generator for
general boolean expressions. In Proceedings of International Computer En-
gineering Conference (ICENCO 2004), pages 119–126, Cairo, Egypt, 29-30
December 2004. Cairo University, Cairo, Egypt.

[36] C.-A. Sun, K. Y. Sim, T. Tse, and T. Chen. An empirical evaluation and
analysis of the fault-detection capability of mumcut for general boolean
expressions. In Proceedings of International Computer Symposium (ICS
2004), pages 926–932, Taipei, Taiwan, 15-17 December 2004. TTU CSE
Extenics and Fuzzy System Laboratory, Taipei, Taiwan.

[37] C.-A. Sun, G. Wang, K.-Y. Cai, and T. Y. Chen. Distribution-aware mu-
tation analysis. In Proceedings of 9th IEEE International Workshop on
Software Cybernetics (IWSC 2012), pages 170–175, Izmir, Turkey, 16-20
July 2012. IEEE Computer Society, Los Alamitos, California, USA.

[38] K. C. Tai. Theory of fault-based predicate testing for computer programs.
IEEE Transactions on Software Engineering, 22(8):552–562, 1996.

[39] T. Tsuchiya and T. Kikuno. On fault classes and error detection capability
of specification-based testing. ACM Transactions on Software Engineering
and Methodology, 11(1):58–62, 2002.

[40] E. J. Weyuker, T. Goradia, and A. Singh. Automatically generating test
data from a Boolean specification. IEEE Transactions on Software Engi-
neering, 20(5):353–363, 1994.

[41] Y. T. Yu, M. F. Lau, and T. Y. Chen. Automatic generation of test cases
from Boolean specifications using the mumcut strategy. The Journal of
Systems and Software, 79(6):820–840, 2006.

28

	Liu, Huai - n2006048079 Evaluating and Comparing.pdf
	Due Diligence Record LogKeely.pdf
	Iyer-Raniga, Usha- n2006046404- A greenhouse gas.pdf
	Abstract
	Introduction
	Method
	Unit of assessment and system boundary
	Inventory
	Impact assessment

	Results
	Discussion
	Limitations
	Exclusion of travel
	Partition methodology
	Stadium life time and attendance
	Exclusion of upstream construction processes

	Conclusion
	Acknowledgement
	Funding
	References

