
ETH Library

Covering pairs in directed acyclic
graphs

Journal Article

Author(s):
Beerenwinkel, Niko; Beretta, Stefano; Bonizzoni, Paola; Dondi, Riccardo; Pirola, Yuri

Publication date:
2015

Permanent link:
https://doi.org/10.3929/ethz-b-000095959

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
The Computer Journal 58(7), https://doi.org/10.1093/comjnl/bxu116

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000095959
http://rightsstatements.org/page/InC-NC/1.0/
https://doi.org/10.1093/comjnl/bxu116
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

c© The British Computer Society 2014. All rights reserved.
For Permissions, please email: journals.permissions@oup.com

Advance Access publication on 5 November 2014 doi:10.1093/comjnl/bxu116

Covering Pairs in Directed Acyclic
Graphs†

Niko Beerenwinkel1, Stefano Beretta2, Paola Bonizzoni3,
Riccardo Dondi4 and Yuri Pirola3,∗

1Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
2Istituto di Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Segrate, Italy

3Dip. di Informatica Sistemistica e Comunicazione, Univ. degli Studi di Milano-Bicocca, Milan, Italy
4Dip. di Scienze Umane e Sociali, Univ. degli Studi di Bergamo, Bergamo, Italy

∗Corresponding author: pirola@disco.unimib.it

The Minimum Path Cover (MinPC) problem on directed acyclic graphs (DAGs) is a classical
problem in graph theory that provides a clear and simple mathematical formulation for several
applications in computational biology. In this paper, we study the computational complexity of three
constrained variants of MinPC motivated by the recent introduction of Next-Generation Sequencing
technologies. The first variant (MinRPC), given a DAG and a set of pairs of vertices, asks for
a minimum-cardinality set of (not necessarily disjoint) paths such that both vertices of each pair
belong to the same path. For this problem, we establish a sharp tractability borderline depending on
the ‘overlapping degree’ of the instance, a natural parameter in some applications of the problem.
The second variant we consider (MinPCRP), given a DAG and a set of pairs of vertices, asks for a
minimum-cardinality set of (not necessarily disjoint) paths ‘covering’ all the vertices of the graph
and such that both vertices of each pair belong to the same path. For this problem, we show that,
while it is NP-hard to compute if there exists a solution consisting of at most three paths, it is possible
to decide in polynomial time whether a solution consisting of at most two paths exists. The third
variant (MaxRPSP), given a DAG and a set of pairs of vertices, asks for a single path containing
the maximum number of the given pairs of vertices. We show that MaxRPSP is W[1]-hard when
parameterized by the number of covered pairs and we give a fixed-parameter algorithm when the

parameter is the maximum overlapping degree.

Keywords: minimum path cover; sequence reconstruction; paired-end reads; computational complexity

Received 19 March 2014; revised 29 August 2014
Handling editor: Iain Stewart

1. INTRODUCTION

The Minimum Path Cover (MinPC) problem is a well-known
problem in graph theory. Given a directed acyclic graph
(DAG), MinPC asks for a minimum-cardinality set � of paths
such that each vertex of G belongs to at least one path of
�. The problem can be solved in polynomial time with an
algorithm based on a proof of the well-known Dilworth’s
theorem for partially ordered sets, which allows to relate the
size of a minimum path cover to that of a maximum matching
in a bipartite graph obtained from the input DAG [2].

The MinPC problem has important applications in several
fields ranging from bioinformatics [3–5] to software testing

†A preliminary version of this paper appeared in [1].

[6, 7]. In particular, in bioinformatics, mainly thanks to the
advent of the Next-Generation Sequencing techniques, the
MinPC problem is widely applied to the reconstruction of
nucleotide sequences starting from a large set of their short
fragments (called short reads) [3, 4]. More precisely, each
fragment is represented by a single vertex and two vertices are
connected if the alignments of the corresponding reads on the
genomic sequence overlap. In [4], the paths on such a graph
represent putative RNA transcripts and a minimum-cardinality
set of paths ‘covering’ all the vertices represents a set of
protein isoforms which likely originated the observed reads.
Instead, in [3], the paths of the graph represent the genomes
of putative viral quasispecies and a minimum-cardinality set of
paths covering the whole graph represents the likely structure

Section A: Computer Science Theory, Methods and Tools
The Computer Journal, Vol. 58 No. 7, 2015

1674 N. Beerenwinkel et al.

of a viral population. In these applications, the aim is that
of reconstructing ‘complete’ (hence, as long as possible)
sequences that possibly share some substrings. Hence, it is
often assumed that paths start from a source vertex, end at a
sink vertex and possibly share some vertices. In the rest of the
paper, we will implicitly make this assumption.

Recently, the availability of new kinds of data have
motivated the definition of new constrained variants of graph
problems in different fields, such as, for example, in the context
of social network analysis [8, 9].

Reconstructing sequences via Minimum Path Cover is
particularly effective on relatively small regions of the
sequences to reconstruct, since on long regions there is not
enough information for establishing if two distant fragments
were originated from the same sequence. In order to solve (or
lessen the impact of) this issue, a particular kind of reads, called
paired-end reads, could considerably help. In fact, paired-end
reads are pairs of reads obtained from the same sequence at
a fixed distance, typically larger than the fragments length.
Hence, in a ‘valid’ path cover, for each paired-end read, there
must exist at least a path which contains the two vertices
representing the associated reads.

However, the most widely used methods for sequence
reconstruction in bioinformatics [4, 10] do not take fully
advantage of the constraints imposed by paired-end reads
during the reconstruction process and they only use them to
validate (or discard) the reconstructed sequences.

Recent approaches are trying to incorporate the new addi-
tional constraints carried by paired-end or longer sequences
into the problem formulation, in order to exploit it for the
reconstruction of the sequences [5, 11, 12]. For example, in
CLASS [11], complete sequences are first exhaustively enu-
merated and then a smallest set of them satisfying all the
constraints derived from paired-end or long reads is selected
using a greedy set-cover approximation algorithm. Clearly, this
method is both computationally intensive (since it requires
a nearly exhaustive enumeration of the transcripts) and also
approximate (since it employs the approximation algorithm
for set cover). As a consequence, both its applicability to
real large datasets and the accuracy of its results are lim-
ited. BRANCH [5] overcomes these limits by considering
only constraints derived from long reads (or previously found
transcripts), which are modeled as subpath constraints (i.e. sub-
paths that must be contained in some path of the solution). For
this scenario, the authors present a polynomial-time algorithm
that reduces the constrained path cover problem to MinPC
by ‘contracting’ the subpath constraints in single vertices.
However, by not considering paired-end reads, the accuracy
of BRANCH degrades with the length of the reconstructed
sequences (unless there are many long subpath constraints,
obviously). Recently, Rizzi et al. [12] extended the reduction
used by BRANCH in order to correctly handle also the cases
where a constraint is a subpath of another constraint. More-
over, they also begin a preliminary study of the computational

complexity of the MinPC problem when constraints derived
from paired-end reads are introduced.

In this paper, we present a systematic study of the
computational complexity of some variants of the MinPC
problem where constraints deriving from paired-end reads are
introduced. Similar constrained variants have been also studied
in the past by Ntafos and Hakimi in the context of software
testing [7]. More precisely, in that context, each procedure to
be tested is modeled by a graph where vertices correspond
to single instructions and two vertices are connected if the
corresponding instructions are executed sequentially. The test
of the procedure should check each instruction at least once,
hence a minimum path cover of the graph represents a
minimum set of execution flows that allows one to test all the
instructions. Moreover, since there are pairs of vertices that a
feasible solution must include, Ntafos and Hakimi proposed
and formalized the concept of required pairs. In particular,
one of the problems they introduced is the Minimum Required
Pairs Cover (MinRPC) problem where, given a DAG and a set
of required pairs, the goal is to compute a minimum set of paths
covering all the required pairs, i.e. a minimum set of paths such
that, for each required pair, at least a path contains both vertices
of the pair.

It is easy to see that the concept of required pairs introduced
by Ntafos and Hakimi correctly models the constraints deriving
from paired-end reads in the sequence reconstruction problems
we presented before. However, note that MinRPC asks for
a solution that covers only the required pairs, while, in
the sequence reconstruction problems, we are interested in
solutions that also cover all the vertices. For this reason, we
consider a variant of the MinPC problem, called Minimum Path
Cover with Required Pairs (MinPCRP), that, given a DAG
and a set of required pairs, asks for a minimum set of paths
covering all the vertices and all the required pairs. Clearly,
MinPCRP is closely related to MinRPC. In fact, as we show
in Section 2, the same reduction used in [7] to prove the NP-
hardness of MinRPC can be applied to our problem, leading to
its intractability.

In this paper, we continue the analysis of [7] by studying
the complexity of path covering problems with required
pairs. More precisely, we study how the complexity of these
problems is influenced by two parameters relevant for the
sequence reconstruction applications in bioinformatics: (i) the
minimum number of paths covering all the vertices and all
the required pairs and (ii) the maximum overlapping degree
(defined later). In the bioinformatics applications we discussed,
the first parameter—the number of covering paths—is often
small, thus an algorithm exponential in the size of the solution
could be of interest. The second parameter we consider in this
paper, the maximum overlapping degree, can be informally
defined as follows. Two required pairs overlap when there
exists a path that connects the vertices of the pairs, and the path
cannot be split in two disjoint subpaths that separately connect
the vertices of the two pairs. Then, the overlapping degree of

Section A: Computer Science Theory, Methods and Tools
The Computer Journal, Vol. 58 No. 7, 2015

Covering Pairs in Directed Acyclic Graphs 1675

a required pair is the number of required pairs that overlap
with it. In the sequence reconstruction applications, as the
distance between two paired-end reads is fixed, the maximum
overlapping degree is small compared with the number of
vertices, hence it is a natural parameter for investigating the
computational complexity of the problem.

First, we investigate how the computational complexity of
MinRPC is influenced by the maximum overlapping degree.
We show that MinRPC is APX-hard (hence also NP-hard)
when the maximum overlapping degree is bounded by 1, while
it is polynomial time solvable when the maximum overlapping
degree is 0. Note that MinPCRP is already NP-hard if the
maximum overlapping degree is 0. In fact, this can be easily
obtained by modifying the reduction presented in [7] to hold
also for restricted instances of MinPCRP with no overlapping
required pairs.

Then, we investigate how the computational complexity
of MinPCRP is influenced by the number of paths that com-
pose a solution. We prove that it is NP-complete to decide
if there exists a solution of MinPCRP consisting of at most
three paths (via a reduction from the 3-Coloring problem).
We complement this result by giving a polynomial-time algo-
rithm for computing a solution with at most two paths, thus
establishing a sharp tractability borderline for MinPCRP when
parameterized by the size of the solution. These results signif-
icantly improve the hardness result that Ntafos and Hakimi [7]
presented for MinRPC (and that holds also for MinPCRP),
where the solution contains a number of paths which is poly-
nomial in the size of the input. Some of these results have been
independently obtained by Rizzi et al. [12].

A natural heuristic approach for solving MinPCRP is the
one which computes a solution by iteratively adding a path that
covers a maximum set of required pairs not yet covered by a
path of the solution. This approach leads to a natural combina-
torial problem, the Maximum Required Pairs with Single Path
(MaxRPSP) problem, that, given a DAG and a set of required
pairs, asks for a path that covers the maximum number of
required pairs. We investigate the complexity of MaxRPSP
and we show that it is not only NP-hard, but also W[1]-hard
when the parameter is the number of covered required pairs.
This result shows that it is unlikely that the problem is
fixed-parameter tractable when parameterized by the number
of required pairs covered by a single path. We refer the reader
to [13, 14] for an in-depth presentation of the theory of fixed-
parameter complexity. We consider also the MaxRPSP prob-
lem parameterized by the maximum overlapping degree and,
differently from MinPCRP, we give a fixed-parameter algo-
rithm for this case. This positive result shows a gap between
the complexity of MaxRPSP and the complexity of MinPCRP
when parameterized by the maximum overlapping degree.

The rest of the paper is organized as follows. First, in
Section 2 we give some preliminary notions and we introduce
the formal definitions of the problems we are interested in. In
Section 3, we investigate how the computational complexity of

MinRPC is influenced by the maximum ‘overlapping degree’,
while in Section 4, we investigate the computational com-
plexity of MinPCRP when the solution consists of a constant
number of paths, and in Section 5, we investigate the compu-
tational complexity of MaxRPSP. We conclude in Section 6 by
presenting some final remarks and some open problems.

2. PRELIMINARIES

In this section, we introduce the basic notions used in the rest
of the paper and we formally define the three combinatorial
problems we are interested in.

We denote an undirected graph as G = (V, E), where V is
the set of vertices and E is the set of (undirected) edges, and a
directed graph (or digraph) as D = (N , A), where N is the set
of vertices and A is the set of (directed) arcs. We denote an edge
of G = (V, E) as {v, u} ∈ E, where v, u ∈ V . Moreover, we
denote an arc of D = (N , A) as (v, u) ∈ A, where v, u ∈ N .

Given a directed graph D = (N , A), a path π from vertex
v to vertex u, denoted as vu-path, is a sequence of vertices
〈v1, . . . , vn〉 such that (vi , vi+1) ∈ A, v = v1 and u = vn . We
say that a vertex v belongs to a path π = 〈v1, . . . , vn〉, denoted
as v ∈ π , if v = vi for some 1 ≤ i ≤ n. Given a path π =
〈v1, . . . , vn〉, we say that a path π ′ = 〈vi , vi+1, . . . , v j−1, v j 〉,
with 1 ≤ i ≤ j ≤ n, is a subpath of π . Given a set N ′ ⊆ N of
vertices, a path π covers N ′ if every vertex of N ′ belongs to π .

In the paper, we consider a set R of pairs of vertices in N .
We denote each pair as [vi , v j], to avoid ambiguity with the
notations of edges and arcs.

Now, we are able to define the combinatorial problems we
are interested in.

Problem 1. Minimum Required Pairs Cover (MinRPC)
Input: a DAG D = (N , A), a source s ∈ N , a sink t ∈ N and
a set R = {[vx , vy] | vx , vy ∈ N , vx
= vy} of required pairs.
Output: a minimum cardinality set � = {π1, . . . , πn} of
directed st-paths such that every required pair [vx , vy] ∈ R
belongs to at least one st-path πi ∈ �, i.e. vx , vy belongs to πi .

Problem 2. Minimum Path Cover with Required Pairs
(MinPCRP)
Input: a DAG D = (N , A), a source s ∈ N , a sink t ∈ N and
a set R = {[vx , vy] | vx , vy ∈ N , vx
= vy} of required pairs.
Output: a minimum cardinality set � = {π1, . . . , πn} of
directed st-paths such that every vertex v ∈ N belongs to at
least one st-path πi ∈ � and every required pair [vx , vy] ∈ R
belongs to at least one st-path πi ∈ �, i.e. vx , vy belongs to πi .

Problem 3. Maximum Required Pairs with Single Path
(MaxRPSP)
Input: a DAG D = (N , A), a source s ∈ N , a sink t ∈ N and
a set R = {[vx , vy] | vx , vy ∈ N , vx
= vy} of required pairs.
Output: an st-path π that covers a set R′ = {[vx , vy] | vx , vy ∈
π} ⊆ R of maximum cardinality.

Section A: Computer Science Theory, Methods and Tools
The Computer Journal, Vol. 58 No. 7, 2015

1676 N. Beerenwinkel et al.

(a)

(b)

FIGURE 1. Examples of two overlapping required pairs [u′, v′] and
[u′′, v′′]. In (a) the required pairs are alternated, while in (b) [u′′, v′′]
is nested in [u′, v′].

For simplicity, in the rest of the paper, we assume that the
source s and the sink t of the DAG are given (otherwise, it
is easy to find them). Moreover, we also assume that all the
paths (unless otherwise specified) start from s and end at t .
Two required pairs [u′, v′] and [u′′, v′′] in R overlap if there
exists a path π in D such that the four vertices appear in π in
one of the following orders (assuming that the vertex u′ appears
before u′′ in π), where v′ and u′′ are two distinct vertices of G
(see Fig. 1):

(i) 〈u′, u′′, v′, v′′〉 (the two required pairs are said to be
alternated);

(ii) 〈u′, u′′, v′′, v′〉 (the required pair [u′′, v′′] is said to be
nested in [u′, v′]).

Note that, according to this definition, the required pairs [x, y]
and [y, z] do not overlap.

Moreover, we define the overlapping degree of a required
pair [u′, v′] ∈ R as the number of required pairs in R that
overlap with [u′, v′].

Given a DAG D and a set R of required pairs, the
compatibility relation C ⊆ R2 on the set R is defined as
follows. A pair of required pairs ([u′, v′], [u′′, v′′]) belongs to
C if there exists a path π that covers both [u′, v′] and [u′′, v′′]
and v′ appears strictly before v′′ in π or [u′, v′] is nested in
[u′′, v′′]. Note that if there exists a path that covers two required
pairs r ′, r ′′, then either (r ′, r ′′) or (r ′′, r ′) is in C. This definition
of compatibility among required pairs and the one proposed
by [12] are closely related. However, note that, according to our
definition, the compatibility relation is irreflexive (a required
pair is not compatible with itself), while according to theirs is
symmetric. Given a subset R′ of R, we denote the restriction of
C to the elements in R′ as C(R′). We say that a subset C ⊆ R
of required pairs is a chain if C(C) is a strict total order (i.e. for
each r ′, r ′′ ∈ C with r ′
= r ′′, at least one of (r ′, r ′′) and (r ′′, r ′)
belongs to C(C)). Finally, we recall that a binary relation is a
strict partial order if it is irreflexive and transitive. Please note
that, in general, the compatibility relation C is not transitive
(hence, it is not a strict partial order).

The compatibility relation can be also considered as the
arc set of a digraph (that we call the compatibility digraph)
having as vertex set R. Such a digraph is clearly acyclic.
We call compatibility graph the undirected graph obtained by
discarding the edge orientation of the compatibility digraph.
In the following, for simplicity, we will interchangeably
consider the compatibility relation as a binary relation or as
the associated digraph.
Hardness of MinRPC and MinPCRP. As mentioned in
Section 1, one of the problems we are interested in, namely
MinRPC, was initially defined in the context of program
testing [7] and its NP-hardness was proved. From this result,
we can immediately derive the NP-hardness of MinPCRP.
Indeed, MinRPC can be easily reduced to MinPCRP by
ensuring that each vertex of the graph D (input of MinRPC)
belongs to at least one required pair. Otherwise, if this
condition does not hold for some vertex v, we can modify
the graph D by contracting v (that is, removing v and adding
an edge (u, z) to A, for each u, z ∈ N such that (u, v),
(v, z) ∈ A). This implies that, since in the resulting instance
of MinRPC all the vertices belong to some required pair,
a feasible solution of that problem covers every vertex of
the graph. Then, a solution of MinRPC is also a solution of
MinPCRP, which implies that MinPCRP is NP-hard.

Both MinRPC and MinPCRP on directed graphs (not
necessarily acyclic) are as hard as MinRPC and MinPCRP,
respectively, on DAGs. In fact, since each strongly connected
component can be covered with a single path, we can
replace each of them with a single vertex, obtaining a
DAG and without changing the size of the solution. Finally,
MinRPC and MinPCRP on general graphs (with the additional
requirement that the covering paths are simple) are as hard
as the Hamiltonian path problem, which is NP-complete [15,
probl. GT39].

3. A SHARP TRACTABILITY BORDERLINE FOR
MINRPC

In this section, we consider the tractability of MinRPC when
the maximum overlapping degree of the instance is bounded.
We show in Section 3.1 that MinRPC is APX-hard (hence also
NP-hard) when the maximum overlapping degree is bounded
by 1, while in Section 3.2 we show that MinRPC admits a
polynomial time algorithm when the maximum overlapping
degree is 0.

3.1. APX-hardness of MinRPC when the maximum
overlapping degree is bounded by 1

We will show the APX-hardness of MinRPC when the
maximum overlapping degree is bounded by 1 by giving an
L-reduction (for details on L-reductions we refer the reader
to [16]) from the Minimum Vertex Cover problem on Cubic

Section A: Computer Science Theory, Methods and Tools
The Computer Journal, Vol. 58 No. 7, 2015

Covering Pairs in Directed Acyclic Graphs 1677

graphs (MinVCC). We recall that a graph is cubic when each
vertex is adjacent to exactly three other vertices. Given an
undirected cubic graph G = (V, E), the MinVCC problem
asks for a minimum cardinality set V ′ ⊆ V such that for each
edge {vi , v j } ∈ E , vi ∈ V ′ or v j ∈ V ′.

We start by showing how to transform (in polynomial time)
an instance G = (V, E) of MinVCC into an instance 〈D =
(N , A), R〉 of MinRPC such that its maximum overlapping
degree is bounded by 1.

First, we define the vertex set N :

N = {vi, j,q , v′
i, j,q | {vi , v j } ∈ E, 1 ≤ q ≤ 4}

∪ {vi, j
i,q | {vi , v j } ∈ E, 1 ≤ q ≤ 2} ∪ {s, t}

We define the arc set A by means of a set of paths (see
Fig. 2). Note that the paths may share some arcs.

For each edge {vi , v j } ∈ E, we define two (dis-
joint) paths πi, j and π ′

i, j connecting the sequence of ver-
tices 〈s, vi, j,1, . . . , vi, j,4, t〉 and 〈s, v′

i, j,1, . . . , v
′
i, j,4, t〉, respec-

tively.
For each vertex vi ∈ V , we define four paths in D. Let

{vi , v j }, {vi , vh}, {vi , vk} ∈ E , with j < h < k, be the three
edges of G incident to vi . We define a path:

πi = 〈s, vi, j
i,1 , v

i, j
i,2 , v

i,h
i,1 , v

i,h
i,2 , v

i,k
i,1, v

i,k
i,2, t〉

Moreover, we define three paths, called additional paths:

(i) π i
i, j = 〈s, v′

i, j,1, v
i, j
i,1 , v

i, j
i,2 , vi, j,4, t〉;

(ii) π i
i,h = 〈s, v′

i,h,1, v
i,h
i,1 , v

i,h
i,2 , vi,h,4, t〉;

(iii) π i
i,k = 〈s, v′

i,k,1, v
i,k
i,1, v

i,k
i,2, vi,k,4, t〉.

The paths defined above will be used later (see Lemmas 3.2
and 3.3) to construct a solution of MinRPC over instance
〈D = (N , A), R〉.

Finally, we define the set R of required pairs as follows:

R = {[v′
i, j,1, vi, j,4], [vi, j,2, vi, j,3], [v′

i, j,2, v
′
i, j,3] |

{vi , v j } ∈ E} ∪ {[vi, j
i,1 , v

i, j
i,2] | vi ∈ V, {vi , v j } ∈ E}

Figure 2 represents an extract of a directed subgraph of D
associated with an undirected subgraph (constructed from a
vertex vi ∈ V) of G.

It is easy to see that, given a graph G, the corresponding
instance 〈D, R〉 can be constructed in polynomial time. Next,
we show that 〈D, R〉 has maximum overlapping degree 1.

Lemma 3.1. Instance 〈D, R〉 has a maximum overlapping
degree 1.

Proof. Note that the only overlapping required pairs in R
are, fixed an edge {vi , v j } ∈ E , [vi, j

i,1 , v
i, j
i,2] and [v′

i, j,1, vi, j,4].
Hence, the maximum overlapping degree in D is 1.

Now, we are able to prove the two main results of the
reduction.

Lemma 3.2. Given an undirected cubic graph G = (V, E)

and a vertex cover V ′ ⊆ V of G, we can compute in
polynomial time a feasible solution � of the associated
instance 〈D = (N , A), R〉 of MinRPC such that |�| =
3|E | + |V ′|.

Proof. Consider a vertex cover V ′ for G = (V, E). In the
following, we compute (in polynomial time) a set � of 3|E | +
|V ′| paths on D that covers all the required pairs in R. Set � is
constructed as follows.

(1) For each vertex vi /∈ V ′, add to � the three additional
paths π i

i, j , π i
i,h and π i

i,k , where v j , vh , vk are the three
vertices adjacent to vi .

(2) For each vertex vi ∈ V ′, add to � the path πi .
(3) For each edge {vi , v j } ∈ E , add to � the two paths πi, j

and π ′
i, j .

(4) For each edge {vi , v j } ∈ E such that vi , v j ∈ V ′ and
i < j , add to � the path π i

i, j .

It is easy to see that � covers each required pair in R. Indeed,
each required pair [vi, j,2, vi, j,3], [v′

i, j,2, v
′
i, j,3] is covered in

step (3). Each pair [vi, j
i,1 , v

i, j
i,2] is covered in step (2) if vi ∈ V ′

or in step (1) if vi /∈ V ′. Each required pair [v′
i, j,1, vi, j,4] ∈ R

is covered by a path added in step (1) if vi /∈ V ′ or v j /∈ V ′,
while it is covered by a path added in step (4) if vi ∈ V ′ and
v j ∈ V ′. Note that, since V ′ is a vertex cover, at least one of
vi , v j belongs to V ′.

For each edge {vi , v j } ∈ E , steps (1) and (4) add exactly
one path containing the vertices v′

i, j,1 and vi, j,4. Hence, they
add |E | paths to �. Step (2) adds |V ′| paths, while step (3)
adds 2|E | paths. As a consequence, we have that � is a feasible
solution of MinRPC and that |�| = 3|E | + |V ′|.

Lemma 3.3. Let G = (V, E) be an undirected cubic graph
and let 〈D = (N , A), R〉 be the associated instance of
MinRPC. Then, given a set of paths � of D = (N , A) which is
a solution of MinRPC where |�| = 3|E | + d, we can compute
in polynomial time a vertex cover V ′ ⊆ V for G such that
|V ′| ≤ d.

Proof. Note that by construction some required pairs in R,
namely [vi, j,2, vi, j,3], [v′

i, j,2, v
′
i, j,3] can only be covered by the

paths πi, j and π ′
i, j , respectively. A fortiori, all these paths must

belong to �. Moreover, note that by construction each required
pair [v′

i, j,1, vi, j,4] can be covered by at most two paths, namely

π i
i, j and π

j
i, j . Hence, at least one of π i

i, j and π
j

i, j must be in
�. Now, we show that we can restrict ourselves to solutions
where exactly one of π i

i, j and π
j

i, j is in �. If both π i
i, j and

π
j

i, j are in �, then we can compute in polynomial time a

Section A: Computer Science Theory, Methods and Tools
The Computer Journal, Vol. 58 No. 7, 2015

1678 N. Beerenwinkel et al.

FIGURE 2. Example of the directed (acyclic) subgraph of D = (N , A) associated with a subgraph of a cubic graph G = (V, E) w.r.t. vertex
vi ∈ V . Gray boxes highlight the pairs of paths representing the arcs incident to vi and the paths representing the two vertices vi (bottom)
and v j (top). The required pairs (not shown) are [v′

i, j,1, vi, j,4], [vi, j,2, vi, j,3], [v′
i, j,2, v′

i, j,3], [v′
i,h,1, vi,h,4], [vi,h,2, vi,h,3], [v′

i,h,2, v′
i,h,3],

[v′
i,k,1, vi,k,4], [vi,k,2, vi,k,3], [v′

i,k,2, v′
i,k,3], [vi, j

i,1 , v
i, j
i,2] and [vi, j

j,1, v
i, j
j,2].

solution �′ such that at most one of π i
i, j , π

j
i, j belongs to �′

and such that |�′| ≤ |�| as follows. Set �′ is computed by
replacing one of π i

i, j , π
j

i, j , respectively, with the path πi , π j ,

respectively. We assume w.l.o.g. that π i
i, j is replaced with πi .

Clearly, |�′| ≤ |�|. Moreover, � covers each required pair
in R, hence the same property holds for �′, since the required
pair [v′

i, j,1, vi, j,4] is covered by the path π
j

i, j and the required

pair [vi, j
i,1 , v

i, j
i,2] is covered by πi .

Hence, in what follows, we assume that �, for each
{vi , v j } ∈ E , contains exactly one of π i

i, j , π
j

i, j . Note that the

set � contains the 2|E | paths πi, j , π ′
i, j , |E | paths π

j
i, j , and d

paths πi .
Define the vertex cover V ′ ⊆ V as {vi | πi ∈ �}. By

construction |V ′| ≤ d. We claim that V ′ is a vertex cover of

G. Suppose, on the contrary, that V ′ is not a vertex cover of
G. Then, there exists an edge {vi , v j } ∈ E such that neither vi

nor v j are in V ′. It follows that neither πi nor π j are in �. By

hypothesis, the set � covers the required pair [vi, j
i,1 , v

i, j
i,2], hence

� must contain both the paths π i
i, j and π

j
i, j which are the only

paths different from πi and π j that cover the pair [vi, j
i,1 , v

i, j
i,2].

Since we assumed that � does not contain both π i
i, j and π

j
i, j ,

it follows that one of the required pair [vi, j
i,1 , v

i, j
i,2], [vi, j

j,1, v
i, j
j,2] is

not covered by �. This fact contradicts the hypothesis that �

is a solution of MinRPC, hence V ′ is a vertex cover of G and
the lemma holds.

Theorem 3.1. MinRPC is APX-hard even when the input
instance has maximum overlapping degree bounded by 1.

Section A: Computer Science Theory, Methods and Tools
The Computer Journal, Vol. 58 No. 7, 2015

Covering Pairs in Directed Acyclic Graphs 1679

Proof. First, note that by Lemma 3.1 the maximum overlap-
ping degree of 〈D, R〉 is 1. Since in a cubic graph |E | = 3

2 |V |
and the cardinality of a vertex cover V ′ is at least 1

2 |V |, it
follows by Lemmas 3.2 and 3.3 that we have designed an L-
reduction. Since MinVCC is APX-hard [17], it follows that
MinRPC is APX-hard even when the input instance has maxi-
mum overlapping degree bounded by 1.

3.2. A polynomial time algorithm for MinRPC without
overlapping pairs

We will show that MinRPC can be solved in polynomial time
when the instance does not contain overlapping required pairs
(i.e. when the maximum overlapping degree is 0). We obtain
this result by first proving that, whenever the compatibility
relation of the required pairs is a strict partial order, we can
compute in polynomial time a minimum-cardinality set of
paths which covers all the required pairs. Then, the result
follows from the fact that the compatibility relation of a set of
non-overlapping required pairs is always a strict partial order.

Let 〈D, R〉 be an instance of MinRPC and C be the
compatibility relation on R. The basic idea on which the
polynomial-time algorithm is built is that a chain C of C
corresponds to a path πC in D that covers all the required pairs
in C , as proved in the following lemma.

Lemma 3.4. Let 〈D, R〉 be an instance of MinRPC. Then,

there exits a path πC in D covering a subset C ⊆ R of required
pairs if and only if C is a chain of the compatibility relation C
on R.

Proof. The existence of πC implies the existence in the
compatibility digraph of an arc between each (unordered) pair
of required pairs of C . The orientation of each arc is given by
the order of the vertices on πC (according to the definition of
the compatibility relation), but, since the compatibility digraph
is acyclic, we have that C(C) is a total order (and C is a chain).

Let C be a chain of C. Since C is a chain, given two vertices
v′, v′′ which belong to two different required pairs of C , there
exists a path between v′ and v′′ (either from v′ to v′′ or from v′′
to v′). Consider the nodes 〈vi1 , vi2 , . . . , vil 〉 that appear in some
required pair of C , sorted according to a topological order of
D. Connect them to build a path πC from s (the source of D)
to t (the sink of D). Such a path exists since, by the previous
observation, there exists a path between each pair of vertices
vi j , vi j+1 . By construction, πC covers all the pairs in C .

In particular, note that the previous proof gives a
polynomial-time algorithm for computing a path πC which
covers a subset C of required pairs forming a chain of the
relation C. Moreover, the previous result shows that MinRPC
can be optimally solved in polynomial time whenever C
is a total order (since in that case there exists a unique
chain containing all the required pairs). This result can be

generalized for computing an optimal solution in polynomial
time whenever C is a strict partial order, as shown in the
following theorem.

Theorem 3.2. Let 〈D, R〉 be an instance of MinRPC and C
be the compatibility relation of R. If C is a strict partial order,
then a minimum-cardinality set � of paths of D covering all
the required pairs in R can be computed in polynomial time.

Proof. Since C is a strict partial order, we can compute in
polynomial time a minimum-cardinality set C of k chains
{C1, . . . , Ck} covering the partially ordered set (poset) 〈R, C〉
using the classical MinPC algorithm on DAGs [2]. By
Lemma 3.4, we can then compute in polynomial time a set
� of k paths of D associated with the chains C1, . . . , Ck .
By construction, these paths cover all the required pairs in
R. The set � has minimum-cardinality because, otherwise,
by Lemma 3.4 there would exist another set of k′ < k
chains covering the poset 〈R, C〉, contradicting the minimum-
cardinality of C .

Since the compatibility relation of a set of pairwise non-
overlapping required pairs is a strict partial order, then we have
the following corollary.

Corollary 3.1. An instance 〈D, R〉 of MinRPC with
maximum overlapping degree equal to 0 can be solved in
polynomial time.

Proof. We claim that the compatibility relation C of R is a
strict partial order when the maximum overlapping degree is
0. The result then follows from Theorem 3.2. By definition,
the compatibility relation is irreflexive, thus we only have to
show that C is transitive. Let ri = [v1

i , v2
i], r j = [v1

j , v
2
j], rk =

[v1
k , v2

k] be three required pairs such that {(ri , r j), (r j , rk)} ⊆
C. We have to prove that (ri , rk) belongs to C. Since (ri , r j) ∈ C
and since ri and r j do not overlap, there exists a path πi, j

connecting v1
i to v2

j and covering both ri and r j . Similarly,

there exists a path π j,k connecting v2
j to v2

k and covering rk .
The concatenation of πi, j and π j,k is a path which covers ri

and rk . Moreover, v2
i is strictly before v2

k on this path, thus
(ri , rk) ∈ C.

4. A SHARP TRACTABILITY BORDERLINE FOR
MINPCRP

In this section, we investigate the computational complexity
of MinPCRP and we give a sharp tractability borderline for
k-PCRP, the restriction of MinPCRP where we ask whether
there exist k paths that cover all the vertices of the graph and
all the set of required pairs. First, we show that 3-PCRP is
NP-complete (Section 4.1). This result implies that k-PCRP

Section A: Computer Science Theory, Methods and Tools
The Computer Journal, Vol. 58 No. 7, 2015

1680 N. Beerenwinkel et al.

FIGURE 3. Example of graph D = (N , A) associated with graph G = (V, E), in which grey boxes represent subgraphs Di ′, j ′ , . . . , Di ′′, j ′′ . The
central grey box shows the subgraph Di, j = (Ni, j , Ai, j) associated with the edge {vi , v j } ∈ E .

does not belong to the class XP,1 so it is probably hopeless
to look for an algorithm having complexity O(nk), and hence
for a fixed-parameter algorithm in k. The same results hold
also for k-RPC, the restriction of MinRPC where we ask
whether there exist k paths that cover all the required pairs. We
complement this result by giving a polynomial time algorithm
for 2-PCRP (Section 4.2), thus defining a sharp borderline
between tractable and intractable instances of MinPCRP.

4.1. Hardness of 3-PCRP

In this section, we show that 3-PCRP is NP-complete.
We prove this result via a reduction from the well-
known 3-Coloring (3C) problem which, given an undirected
(connected) graph G = (V, E), asks for a coloring c : V →
{c1, c2, c3} of the vertices of G with exactly three colors, such
that, for every {vi , v j } ∈ E , we have c(vi)
= c(v j).

Starting from an undirected graph G = (V, E) (instance of
3C), we construct a corresponding instance 〈D = (N , A), R〉
of 3-PCRP as follows. For each edge {vi , v j } ∈ E with i < j ,
we define a graph Di, j = (Ni, j , Ai, j). The vertex set Ni, j is

{si, j , ni, j
i , ni, j

j , f i, j , t i, j }. The set Ai, j of arcs connecting the
vertices of Ni, j is (see central grey box of Fig. 3):

Ai, j = {(si, j , ni, j
i), (si, j , ni, j

j), (si, j , f i, j),

(ni, j
i , t i, j), (ni, j

j , t i, j), (f i, j , t i, j)}

The whole graph D = (N , A) is constructed by concat-
enating the graphs Di, j (for all 1 ≤ i < j ≤ n) according
to the lexicographic order of their indices i, j . The sink t i, j

of each graph Di, j is connected to the source of the graph
which immediately follows Di, j . A distinguished vertex s is
connected to the source of the first subgraph Di ′, j ′ , while
the sink of the last subgraph Di ′′, j ′′ is connected to a second
distinguished vertex t . Figure 3 depicts such a construction.

The set R of required pairs is defined as
⋃

1≤i≤n Ri , where

Ri = {[ni, j
i , ni,h

i] | {vi , v j }, {vi , vh} ∈ E}.

1We recall that the class XP contains those problems that, given a
parameter k, can be solved in time O(n f (k)).

The following lemmas prove the correctness of the
reduction.

Lemma 4.1. Let G = (V, E) be an undirected (connected)

graph and let 〈D = (N , A), R〉 be the corresponding instance
of 3-PCRP. Then, given a 3-coloring of G we can compute in
polynomial time three paths of D that cover all its vertices and
every required pair in R.

Proof. Consider a 3-coloring of G and let {V1, V2, V3} be the
tri-partition of V induced by the 3-coloring. We show how to
compute in polynomial time three paths π1, π2, π3 that cover
all the vertices of D and every required pair in R. For each
vi ∈ Vc, path πc passes through vertices ni, j

i of subgraphs
Di, j for every v j ∈ V such that {vi , v j } ∈ E , while for
each subgraph Dp,q such that vp, vq /∈ Vc, πc passes through
vertices f p,q . Note that each πc is well-defined, since there
does not exist a pair of vertices ni, j

i , ni, j
j associated with the

same color c (otherwise {V1, V2, V3} is not a 3-coloring of G).
We show that π1, π2, π3 cover every vertex of N . Note that

for each {vi , v j } ∈ E , since vi and v j have different colors,

by construction one of the paths π1, π2, π3 passes through ni, j
i

(say πc1), while another one passes through ni, j
j (say πc2). As a

consequence, by construction we have that πc3 passes through
f i, j . The only vertices that might be not covered are si, j and
t i, j , for {vi , v j } ∈ E . However, these vertices are articulation
points, hence all the three paths necessarily pass through them.

Now, we show that every required pair in Ri is covered. By
construction, the vertices ni, j

i of D associated with the same
vertex vi of G belong to the same path πc, where c is the color
of vi . Therefore, all the required pairs in each Ri are covered
by one of the three paths.

Lemma 4.2. Let G = (V, E) be an undirected graph and let
〈D = (N , A), R〉 be the corresponding instance of 3-PCRP.
Then, given three paths in D that cover all its vertices and
every required pair in R, we can compute in polynomial time a
3-coloring of G.

Proof. Consider three paths π1, π2, π3 of D that cover all the
vertices of D and every required pair in R, and we show how

Section A: Computer Science Theory, Methods and Tools
The Computer Journal, Vol. 58 No. 7, 2015

Covering Pairs in Directed Acyclic Graphs 1681

to compute in polynomial time a corresponding 3-coloring of
the graph G.

First, we prove a property of the three paths π1, π2, π3.
We show that, given a vertex vi ∈ V , there exists at least
one path among π1, π2, π3 that covers all the required pairs
in Ri . Consider a vertex vi ∈ V . Since G is connected, it
follows that there exists at least one vertex adjacent to vi ,
w.l.o.g. v j , such that {vi , v j } ∈ E . Now, consider the subgraph
Di, j . By construction, a solution of MinPCRP must contain
three different paths, each one passing through one of the
vertices ni, j

i , ni, j
j , f i, j . Now, assume that path π1 passes

through ni, j
i . Obviously, π2 and π3 cannot pass through ni, j

i .

As a consequence, since π1 is the only path that covers ni, j
i

and since Ri contains a pair [ni, j
i , ni,h

i] for each h
= j such

that {vi , vh} ∈ E , it follows that all the vertices ni,h
i with

{vi , vh} ∈ E must belong to π1. It follows that, given a vertex
vi ∈ V , there exists one path in {π1, π2, π3} that covers all the
required pairs in Ri .

Now, we define the 3-coloring of G, where C = {c1, c2, c3}
is the set of colors. If a vertex ni, j

i is covered by a path πx ,
1 ≤ x ≤ 3, then we assign the color cx to vertex vi . The
coloring is well-defined since, as noted above, a single path
covers all the vertices ni, j

i of D associated with the same vertex
vi of G. The coloring is also feasible, that is c(vi)
= c(v j)

when {vi , v j } ∈ E , since, by construction, vertices ni, j
i and

ni, j
j are covered by different paths (hence c(vi)
= c(v j)).

Since 3-PCRP is clearly in NP, the following result is a
consequence of the previous lemmas and of the NP-hardness
of 3C [15].

Theorem 4.1. 3-PCRP is NP-complete.

Proof. The NP-hardness of 3-PCRP follows directly from
Lemmas 4.1 and 4.2 and from the NP-completeness of 3C [15].
3-PCRP is in NP, since, given three paths π1, π2, π3, we can
verify in polynomial time that π1, π2, π3 cover all the vertices
of D and that every required pair in R is covered by some path
in {π1, π2, π3}.

The reduction can be easily modified in order to show that
also 3-RPC, that is the restriction of MinRPC where we ask
whether there exist k paths that cover all the required pairs, is
NP-complete for any k > 2.

Corollary 4.1. 3-RPC is NP-complete.

Proof. We obtain this result by modifying the reduction from
3C to 3-PCRP presented above. Let G = (V, E) be the
undirected graph given as input to 3C and let 〈D = (N , A), R〉
be the corresponding instance of 3-PCRP. First, we can assume
that G does not contain vertices with degree 1 (i.e. vertices
with only one edge incident to them). Otherwise, these vertices

can be removed from G since they can be always easily
colored with a color different to that of their single adjacent
vertex. As a consequence, we can assume that all the vertices
ni, j

i and ni, j
j of N belong to some required pair of R. Now,

construct the instance of 3-RPC 〈D = (N , A), R̂〉, where
R̂ := R ∪{[si, j , f i, j] | {vi , v j } ∈ E}. We claim that there exist
three paths covering all the vertices in N and all the required
pairs in R if and only if there exist three paths covering all the
required pairs in R̂. Note that a set of paths covering all the
vertices of D also covers the required pairs in R̂ \ R. Hence,
if there exist 3 paths covering all the vertices in N and all the
required pairs in R, then the same paths cover all the required
pairs in R̂. Conversely, if there exist three paths covering all the
required pairs of R̂, then the same paths cover all the required
pairs of R. Moreover, since all the vertices ni, j

i , ni, j
j and f i, j

of N belong to some required pair of R̂ and since vertices si, j

and t i, j are articulation points, we have that these paths cover
also all the vertices of N .

Finally, we also have that 3-RPC is clearly in NP. As
a consequence, by Lemmas 4.1 and 4.2 and by the NP-
completeness of 3C [15], we have that 3-RPC is NP-hard.

4.2. A polynomial time algorithm for 2-PCRP

In this section, we give a polynomial time algorithm for
computing a solution of 2-PCRP. Note that 1-PCRP can be
easily solved in polynomial time, as there exists a solution of
1-PCRP if and only if the reachability relation of the vertices
of the input graph is a total order.

The algorithm for solving 2-PCRP is based on a polynomial-
time reduction to the 2-Clique Partition problem, which, given
an undirected graph G = (V, E), asks whether there exists a
partition of V in two sets V1, V2 both inducing a clique in G.
Computing the existence of a 2-Clique Partition over a graph
G is equivalent to computing if there exists a 2-Coloring of
the complement graph G ′ (hence deciding if G ′ is bipartite),
which is well known to be solvable in polynomial time [15,
probl. GT15]. To perform this reduction we assume that given
〈D = (N , A), R〉, instance of 2-PCRP, every vertex of the
graph D belongs to at least one required pair in R. Otherwise,
we add to R the required pairs [s, vi] for all vi ∈ N that do not
belong to any required pair. Therefore, a solution that covers
all the required pairs in R covers also all the vertices, hence
it is a feasible solution of 2-PCRP. Moreover, note that this
transformation does not affect the solution of 2-PCRP, since
all the paths start from s and cover all the nodes of the graph,
including the additional required pairs.

The algorithm computes, if exists, a solution for an
instance 〈D = (N , A), R〉 of 2-PCRP by computing a 2-
Clique Partition of the compatibility graph of R. We recall
that the compatibility graph is the graph obtained from the
compatibility digraph discarding the edge orientation. Given
the compatibility relation C, we denote as Ĉ the set of edges of

Section A: Computer Science Theory, Methods and Tools
The Computer Journal, Vol. 58 No. 7, 2015

1682 N. Beerenwinkel et al.

the compatibility graph (i.e. the set {{r ′, r ′′} | (r ′, r ′′) ∈ C}).
Since the computation of the compatibility graph and of a
2-Clique Partition can be performed in polynomial time, the
algorithm solves 2-PCRP in polynomial time.

The algorithm is based on the following property.

Lemma 4.3. Given an instance 〈D = (N , A), R〉 of 2-PCRP
and the compatibility graph G = (R, Ĉ) of R, then there exists
a path π that covers a set R′ of required pairs if and only if R′
is a clique of G.

Proof. If there exists a path π which covers all the required
pairs in R′, then, by definition of the compatibility relation, R′
is clearly a clique of G.

We claim that, if R′ is a clique of G, then C(R′) is a total
order. First, note that, for each pair r ′, r ′′ ∈ R′, we have
that either (r ′, r ′′) or (r ′′, r ′) is in C(R′). Moreover, since
the compatibility digraph is acyclic, then also (R′, C(R′)) is
acyclic. As a consequence, C(R′) is transitive and, by the
irreflexivity of C, we conclude that C(R′) is a total order. By
Lemma 3.4, since R′ is a chain of C, there exists a path π

covering the required pairs in R′.

From Lemma 4.3, it follows that, in order to compute the
existence of a solution of 2-PCRP over the instance 〈D =
(N , A), R〉 (in which every vertex of D belongs to at least
one required pair in R), we have to compute if there exists a
2-Clique Partition of the corresponding graph G. Since the 2-
Clique Partition problem can be solved in polynomial-time [15,
probl. GT15], we can conclude that 2-PCRP can be decided in
polynomial time.

5. PARAMETERIZED COMPLEXITY OF MAXRPSP

In this section, we consider the parameterized complexity of
MaxRPSP. We show that, although MaxRPSP is W[1]-hard
(hence unlikely fixed-parameter tractable) when parameterized
by the number of required pairs covered by a single
path (Section 5.1), the problem becomes fixed-parameter
tractable if the maximum overlapping degree is the parameter
(Section 5.2).

5.1. W[1]-hardness of MaxRPSP parameterized by the
optimum

In this section, we investigate the parameterized complexity of
MaxRPSP when parameterized by the size of the solution, that
is the maximum number of required pairs covered by a single
path, and we prove that the problem is W[1]-hard (note that
this result implies the NP-hardness of MaxRPSP). This result
shows that it is unlikely that the problem is fixed-parameter
tractable, when parameterized by the number of required pairs
covered by a single path. For details on the theory of fixed-
parameter complexity, we refer the reader to [13, 14].

We prove this result via a parameterized reduction from
the h-Clique problem to the decision version of MaxRPSP
(k-RPSP), parameterized by the sizes of the respective
solutions. Given an undirected graph G = (V, E) and an
integer h, h-Clique asks to decide if there exists a clique C ⊆ V
of size h. On the other hand, given a DAG D, a set R of
required pairs, and an integer k, the k-RPSP problem consists
of deciding if there exists a path in D that ‘covers’ k required
pairs. We recall that h-Clique is known to be W[1]-hard [18].

First, we start by showing how to construct an instance
of k-RPSP starting from an instance of h-Clique. Given an
(undirected) graph G = (V, E) with n vertices v1, . . . , vn , we
construct the associated DAG D = (N , A) as follows. The set
N of vertices is defined as:

N = {vz
i | vi ∈ V, 1 ≤ z ≤ h} ∪ {s, t}

Informally, N consists of two distinguished vertices s, t and of
h copies v1

i , . . . , vh
i of every vertex vi of G.

The set of arcs A is defined as:

A = {(vz
i , v

z+1
j) | {vi , v j } ∈ E, 1 ≤ z ≤ h − 1}

∪ {(s, v1
i), (vh

i , t) | vi ∈ V }

Informally, we connect every two consecutive copies
associated with vertices that are adjacent in G, the source
vertex s to all the vertices v1

i , with 1 ≤ i ≤ n, and all the
vertices vh

i , with 1 ≤ i ≤ n, to the sink vertex t .
The set R of required pairs is defined as:

R = {[vx
i , v

y
j] | {vi , v j } ∈ E, 1 ≤ x < y ≤ h}

Informally, for each edge {vi , v j } of G there is a required
pair [vx

i , v
y
j], 1 ≤ x < y ≤ h, between every two different

copies associated with vi , v j .
By construction, the vertices in N (except for s and t) are

partitioned into h independent sets Iz = {vz
i | 1 ≤ i ≤ n},

with 1 ≤ z ≤ h, each one containing a copy of every vertex
of V . Moreover, the arcs of A only connect two vertices of
consecutive subsets Iz and Iz+1, with 1 ≤ z ≤ h − 1. Figure 4
presents an example of directed graph D associated with an
undirected graph G.

Now, we are able to prove the main properties of the
reduction.

Lemma 5.1. Let G = (V, E) be an undirected graph and
〈D = (N , A), R〉 be the associated instance of k-RPSP.
Then: (1) starting from an h-clique in G we can compute in
polynomial time a path π in D that covers

(h
2

)
required pairs

of R; (2) starting from a path π in D that covers
(h

2

)
required

pairs we can compute in polynomial time an h-clique in G.

Proof. (1) Starting from an h-clique C in G we show how to
compute a path π in D that covers

(h
2

)
required pairs of R.

Section A: Computer Science Theory, Methods and Tools
The Computer Journal, Vol. 58 No. 7, 2015

Covering Pairs in Directed Acyclic Graphs 1683

FIGURE 4. Example of DAG D = (N , A) associated with an instance G = (V, E) of the h-Clique problem. Each gray box highlights an
independent set Iz composed of one copy of the vertices in V . Edges (vz

1, vz+1
j), (vz

i , vz+1
j) and (vz

n, vz+1
i) are some of the directed edges in A

associated with edges {v1, v j }, {vi , v j }, {vi , vn} ∈ E .

Let C = {vi1, . . . , vih } be a clique of G and let 〈vi1 , . . . , vih 〉
be an arbitrary ordering of C . Let πC = 〈s, v1

i1
, . . . , vh

ih
, t〉 be

a sequence of vertices obtained by selecting the vertex vz
iz

for
each independent set Iz , with 1 ≤ z ≤ h (in addition to vertices
s and t). Since C is a clique of G, by construction of D, every
pair of vertices (vz

iz
, vz+1

iz+1
) is connected by an arc, hence πC is

a path of D. Moreover, the path πC covers exactly
(h

2

)
required

pairs of R because, by construction of R, there exists a pair
between every two copies of vertices which are adjacent in G.
More precisely, since the clique C has all the possible edges
among its h vertices, the number of required pairs covered by
the path πC is

(h
2

)
.

(2) Let π be a path in D that covers a set R′ ⊆ R of
(h

2

)

required pairs, then we show how to compute in polynomial
time an h-clique C in G. Note that, by construction of D, the
path π must contain exactly one vertex vz

i , 1 ≤ i ≤ n and
1 ≤ z ≤ h, for each independent set Iz of D. By construction
of set R, each vertex vz

i of π appears in at most h − 1 required
pairs of R′. Hence, the total number of required pairs covered
by the path π , which contains exactly h inner vertices vz

i , is at

most h(h − 1)/2 = (h
2

)
. Let C be the set {vi | vz

i ∈ π \ {s, t}}.
We claim that C is an h-clique. First, we prove that C contains
h vertices. Suppose to the contrary that C has less than h
vertices. Then, there exist two vertices vx

i ′ and v
y
i ′′ of π that

correspond to the same vertex vi of C , that is i ′ = i ′′ = i . Since
[vx

i , v
y
i] /∈ R, it follows that each vx

i , v
y
i appears in at most

h − 2 required pairs of R′. As a consequence, the total number
of required pairs covered by the path π is strictly less than

(h
2

)
,

violating the initial hypothesis that π covers
(h

2

)
required pairs

of R. Hence C contains h vertices. As all the internal vertices of
π (i.e. all its vertices but s and t) represent distinct vertices of
G, then all the required pairs covered by π represent distinct

edges of G. The only undirected graph with h vertices and
(h

2

)

edges is the complete graph, hence C is an h-clique of G.

The W[1]-hardness of k-RPSP easily follows from
Lemma 5.1 and from the W[1]-hardness of h-Clique when
parameterized by h [18].

Theorem 5.1. k-RPSP is W [1]-hard when parameterized by
the number of required pairs covered by a path.

Proof. The result follows from Lemma 5.1 and from the W[1]-
hardness of h-Clique when parameterized by h [18].

5.2. An FPT algorithm for MaxRPSP parameterized
by the maximum overlapping degree

In this section, we propose a fixed-parameter algorithm
(FPT) for the MaxRPSP problem, where the parameter is the
maximum overlapping degree. For the rest of the section, let
〈D = (N , A), R〉 be an instance of the MaxRPSP problem.

For ensuring its correctness, the algorithm will consider the
required pairs in R in an order resulting from the topological
ordering of the compatibility digraph of R. For ease of
exposition, given such a fixed order, we represent the i th
required pair of the ordering as [v1

i , v2
i] and, whenever no

confusion arises, we will refer to that required pair as i-pair.
The parameterized algorithm is based on dynamic program-

ming. In fact, we can decompose a path π , starting at s, ending
at a vertex v and covering k required pairs, into two subpaths:
the first one—π1—starts at s, ends at a vertex v′, and covers k1
required pairs, while the other one—π2—starts at v′, ends at
v and covers the remaining k2 = k − k1 required pairs (using
vertices of π1, possibly). The key point to define the recurrence
is that, for each required pair r , it suffices to keep track of the

Section A: Computer Science Theory, Methods and Tools
The Computer Journal, Vol. 58 No. 7, 2015

1684 N. Beerenwinkel et al.

set of required pairs overlapping r and covered by the path.
To this aim, for each required pair [v1

i , v2
i], we define the set

OP([v1
i , v2

i]) as the set of vertices v such that v belongs to a
required pair that overlaps [v1

i , v2
i] and such that v2

i is reach-
able from v. By a slightly abuse of the notation, we consider
that OP([v1

i , v2
i]) always contains vertex v1

i .
The recurrence relies on the following observation. Let π

be a path covering a set R′ ⊆ R of required pairs and let
N (R′) be the set of vertices belonging to the required pairs
in R′. Consider two overlapping required pairs [v1

i , v2
i] and

[v1
j , v

2
j] in R′, with j < i . Then, either [v1

j , v
2
j] is nested in

[v1
i , v2

i] (hence the fact that π covers the pair [v1
j , v

2
j] can be

checked by the recurrence looking only at the required pairs
that overlap with [v1

i , v2
i]) or pairs [v1

i , v2
i] and [v1

j , v
2
j] are

alternated. In the latter case, since [v1
i , v2

i] is in R′, we only
have to consider the vertices in the set N (R′) ∩ OP([v1

i , v2
i]) ∩

OP([v1
j , v

2
j]). Moreover, let pi be the number of required pairs

that overlap the required pair [v1
i , v2

i]. Then |OP([v1
i , v2

i])| is at
most 2pi . Hence, the cardinality of set N (R′)∩OP([v1

i , v2
i])∩

OP([v1
j , v

2
j]) is bounded by 2 max(pi , p j). Furthermore, given

two sets S and S′ of vertices such that S ⊆ OP([v1
i , v2

i]) and
S′ ⊆ OP([v1

j , v
2
j]), we say that S is in agreement with S′ if

S ∩ (OP([v1
i , v2

i]) ∩ OP([v1
j , v

2
j])) = S′ ∩ (OP([v1

i , v2
i]) ∩

OP([v1
j , v

2
j])). Informally, when S and S′ are in agreement,

they must contain the same subset of vertices of OP([v1
i , v2

i])∩
OP([v1

j , v
2
j]).

Let P([v1
i , v2

i], S) denote the maximum number of required
pairs covered by a path π ending at vertex v2

i and such that
the set S ⊆ OP([v1

i , v2
i]) is covered by π . In the following,

we present the recurrence to compute P([v1
i , v2

i], S). For ease
of exposition, we only focus on vertices that appear as second
vertices of the required pairs. In fact, paths that do not end
at such vertices are not able to cover new required pairs.
Furthermore, for simplicity, we consider the source s as the
second vertex of a fictitious required pair (with index 0) [⊥, s]
which does not overlap any other required pair. Such a fictitious
required pair does not contribute to the total number of required
pairs covered by the path.

The recurrence is:

P([v1
i , v2

i], S) = max{P([v1
j , v

2
j], S′) + |Ov([v1

i , v2
i], S, S′)|}

(1)
for each [v1

j , v
2
j] and S′ such that:

(i) [v1
j , v

2
j] not nested in [v1

i , v2
i] and j < i;

(ii) S′ in agreement with S;
(iii) there exists a path from v2

j to v2
i covering all vertices

in S \ S′

and where Ov([v1
i , v2

i], S, S′) = {[v1
h, v2

h] | [v1
h, v2

h] is nested
in [v1

i , v2
i]∧v1

h ∈ S ∧v2
h ∈ S \ S′}. Note that each required pair

is assumed to be nested in itself.

The base case of the recurrence is P([⊥, s], ∅) = 0.
The correctness of the recurrence derives from the following

two lemmas.

Lemma 5.2. If P([v1
i , v2

i], S) = k, then there exists a path π

in D ending at v2
i , such that every vertex in S belongs to π and

the number of required pairs covered by π is k.

Proof. We prove the lemma by induction on the index i .
It is easy to see that the base case holds. Assume that
the lemma holds for index values less than i , we prove
that the lemma holds for i . Let P([v1

i , v2
i], S) = k. By

Equation (1), there exists a vertex v2
j with j < i , such that

P([v1
j , v

2
j], S′) = k1 for some set S′ in agreement with S.

Assume that |Ov([v1
i , v2

i], S, S′)| = k2, with k1 + k2 = k. By
induction hypothesis, since P([v1

j , v
2
j], S′) = k1, there exists

a path π ′ ending at v2
j , covering every vertex in S′, and such

that π ′ covers k1 required pairs. Furthermore, the k2 covered
required pairs have at least one vertex in S \ S′, hence the
vertices of such required pairs belong to a path π ′′ which starts
at v2

j and ends at v2
i (path π ′′ exists by hypothesis). But then,

the path obtained by the concatenation of π ′ and π ′′ covers
k1 + k2 required pairs.

Lemma 5.3. Let π be a path in D ending at v2
i and covering

k required pairs. Let S be the set of all the vertices belonging
to required pairs covered by π and overlapping [v1

i , v2
i]. Then

P([v1
i , v2

i], S) ≥ k.

Proof. We prove the lemma by induction on the index i . It is
easy to see that the base case holds. Assume that the lemma
holds for index values less than i , we prove that the lemma
holds for i . Let π be a path, ending at v2

i , that covers k
required pairs and let S be the set of vertices that belong to
the required pairs covered by π and overlapping [v1

i , v2
i]. We

claim that P([v1
i , v2

i], S) ≥ k. Consider the rightmost vertex
v2

j of π such that v2
j belongs to a required pair covered by

π and not nested in the i-pair. Decompose path π into two
parts: one—π ′—from s to v2

j , and the other one—π ′′—from

v2
j to v2

i . Let S′ be the set of vertices that belong to the

required pairs covered by π and overlapping [v1
j , v

2
j]. Let k′

be the number of required pairs covered by π ′ and k′′ be the
number of the remaining required pairs covered by π (that is,
k = k′ + k′′). First, note that k′′ = |Ov([v1

i , v2
i], S, S′)|. By

induction hypothesis P([v1
j , v

2
j], S′) = k1 for some k1 ≥ k′.

Moreover, by construction, S′ is in agreement with S and the
subpath of π from v2

j to v2
i covers all the vertices in S \ S′.

As a consequence, by Equation (1), P([v1
i , v2

i], S) is at least
k1 + k′′ ≥ k′ + k′′ = k, which concludes the proof.

Let p be the maximum number of overlapping required pairs
in 〈D, R〉 (that is, p = maxi {pi }). Then, the cardinality of

Section A: Computer Science Theory, Methods and Tools
The Computer Journal, Vol. 58 No. 7, 2015

Covering Pairs in Directed Acyclic Graphs 1685

the subsets S of each entry P([v1
i , v2

i], S) is bounded by 2p.
As a consequence, for computing each entry P([v1

i , v2
i], S)

there must be considered at most 22p subsets S′ and at
most |R| required pairs [v1

j , v
2
j]. Assume that the DAG D

has been pre-processed in order to query the reachability of
two vertices in constant time (for example, by computing
the transitive closure of its adjacency matrix) and that each
set OP([v1

i , v2
i]) has been pre-computed and represented as

a sorted list, where each element of the list is a vertex, and
elements are sorted according to a topological ordering of the
DAG. Clearly, such a pre-processing step can be performed
in polynomial time. For each entry and for each choice of S′
and [v1

j , v
2
j], the first condition of the dynamic programming

recurrence (Equation (1)) can be checked in time O(1), the
second condition can be checked in time O(p), and the third
condition can be checked in time O(p|R|) (the existence of the
path can be checked in time O(p) by checking that consecutive
elements of S \ S′ in a topological order of D are reachable,
while the cardinality of Ov([v1

i , v2
i], S, S′) can be computed

in time O(p|R|) by enumerating all the |R| required pairs and
checking in time O(p) if they belong to Ov([v1

i , v2
i], S, S′)).

Then, each entry P([v1
i , v2

i], S) requires time O(p22p|R|)
to be computed, and, since there exist O(22p|R|) entries,
the recurrence can be computed in time O(p42p|R|2). From
Lemmas 5.2 and 5.3, it follows that an optimal solution for
MaxRPSP can be obtained by looking for the maximum of the
values P([v1

i , v2
i], S). Hence, the overall time complexity of

the algorithm is bounded by O(p42p|R|2) (plus a polynomial
pre-processing time.

6. CONCLUSIONS

In this paper, we studied three constrained variants of the well-
known MinPC problem on DAGs, namely Minimum Required
Pair Cover (MinRPC), Minimum Path Cover with Required
Pairs (MinPCRP), and Maximum Required Pairs with a Single
Path (MaxRPSP). These problems are motivated by relevant
applications in software testing and in bioinformatics. More
precisely, we complemented the computational complexity
results by Ntafos and Hakimi [7] on MinRPC by identifying a
sharp tractability borderline for this problem depending on the
maximum overlapping degree of the instance. Furthermore, we
extended the analysis on MinPCRP by establishing a second
tractability borderline depending on the size of the solution
(i.e. the number of paths). Some of these results have been
independently obtained by Rizzi et al. [12]. Finally, we showed
that, albeit MaxRPSP is W[1]-hard when parameterized by
the optimum, there exists a fixed-parameter algorithm for the
problem when the parameter is the maximum overlapping
degree.

Our results do not rule out the existence of constant-factor
approximation algorithms for the problems we proposed. For
this reason, and since these algorithms would have a significant

impact on the bioinformatics applications motivating these
problems, an analysis in that direction could be of great
interest.

FUNDING

This work was supported by Università degli Studi di Milano-
Bicocca (Fondo di ateneo 2011 ‘Metodi algoritmici per
l’analisi di strutture combinatorie in bioinformatica’ to S.B.,
P.B. and Y.P.); Ministero dell’Istruzione, dell’Università e
della Ricerca (PRIN 2010-2011 ‘Automi e Linguaggi Formali:
Aspetti Matematici e Applicativi’ code H41J12000190001 to
P.B., R.D. and Y.P., ‘Flagship InterOmics’ code PB05 to S.B.,
‘HIRMA’ code RBAP11YS7K to S.B.); and European Union
Seventh Framework Programme (‘MIMOmics’ code 305280
to S.B.).

REFERENCES

[1] Beerenwinkel, N., Beretta, S., Bonizzoni, P., Dondi, R. and
Pirola, Y. (2014) Covering Pairs in Directed Acyclic Graphs.
Proc. LATA 2014, Madrid, Spain, March 10–14, pp. 126–137.
Springer, Switzerland.

[2] Fulkerson, D.R. (1956) Note on Dilworth’s decomposition
theorem for partially ordered sets. Proc. Amer. Math. Soc., 7,
701–702.

[3] Eriksson, N., Pachter, L., Mitsuya, Y., Rhee, S.-Y., Wang, C.,
Gharizadeh, B., Ronaghi, M., Shafer, R.W. and Beerenwinkel,
N. (2008) Viral population estimation using pyrosequencing.
PLoS Comput. Biol., 4, e1000074.

[4] Trapnell, C., Williams, B.A., Pertea, G., Mortazavi, A., Kwan,
G., van Baren, M.J., Salzberg, S.L., Wold, B.J. and Pachter,
L. (2010) Transcript assembly and quantification by RNA-Seq
reveals unannotated transcripts and isoform switching during
cell differentiation. Nat. Biotechnol., 28, 516–520.

[5] Bao, E., Jiang, T. and Girke, T. (2013) BRANCH: boosting
RNA-Seq assemblies with partial or related genomic sequences.
Bioinformatics, 29, 1250–1259.

[6] Gabow, H., Maheshwari, S. and Osterweil, L. (1976) On two
problems in the generation of program test paths. IEEE Trans.
Softw. Eng., SE-2, 227–231.

[7] Ntafos, S. and Hakimi, S. (1979) On path cover problems in
digraphs and applications to program testing. IEEE Trans. Softw.
Eng., SE-5, 520–529.

[8] Wu, B.Y. (2012) On the maximum disjoint paths problem on
edge-colored graphs. Discrete Optim., 9, 50–57.

[9] Bonizzoni, P., Dondi, R. and Pirola, Y. (2013) Maximum disjoint
paths on edge-colored graphs: approximability and tractability.
Algorithms, 6, 1–11.

[10] Guttman, M. et al. (2010) Ab initio reconstruction of cell type-
specific transcriptomes in mouse reveals the conserved multi-
exonic structure of lincRNAs. Nat. Biotechnol., 28, 503–510.

[11] Song, L. and Florea, L. (2013) CLASS: constrained transcript
assembly of RNA-seq reads. BMC Bioinf., 14, 1–8.

Section A: Computer Science Theory, Methods and Tools
The Computer Journal, Vol. 58 No. 7, 2015

1686 N. Beerenwinkel et al.

[12] Rizzi, R., Tomescu, A. and Mäkinen, V. (2014) On the
complexity of minimum path cover with subpath constraints for
multi-assembly. BMC Bioinf., 15, S5.

[13] Downey, R. and Fellows, M. (1999) Parameterized Complexity.
Springer, New York.

[14] Niedermeier, R. (2006) Invitation to Fixed-Parameter Algo-
rithms. Oxford University Press, Oxford.

[15] Garey, M. and Johnson, D. (1979) Computer and Intractability:
A Guide to the Theory of NP-Completeness. W. H. Freeman, San
Francisco.

[16] Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V.,
Marchetti-Spaccamela, A. and Protasi, M. (1999) Com-
plexity and Approximation: Combinatorial Optimization
Problems and their Approximability Properties. Springer,
Berlin.

[17] Alimonti, P. and Kann, V. (2000) Some APX-completeness
results for cubic graphs. Theor. Comput. Sci., 237, 123–134.

[18] Downey, R.G. and Fellows, M.R. (1995) Fixed-parameter
tractability and completeness II: on completeness for W [1].
Theor. Comput. Sci., 141, 109–131.

Section A: Computer Science Theory, Methods and Tools
The Computer Journal, Vol. 58 No. 7, 2015

