
– 1 –

Password management: distribution, review
and revocation

Lanfranco Lopriore
Dipartimento di Ingegneria dell’Informazione, Università di Pisa, via G. Caruso 16, 56126 Pisa, Italy

E-mail: l.lopriore@iet.unipi.it

Abstract — We consider the problem of access privilege management in a classical protection
environment featuring subjects attempting to access the protected objects. We express an access
privilege in terms of an access right and a privilege level. The privilege level and a protection
diagram associated with each given object determine whether a nominal access privilege for
this object corresponds to an effective, possibly weaker access privilege, or is revoked. We
associate a password system with each object; the password system takes the form of a hierar-
chical bidimensional one-way chain. A subject possesses a nominal access privilege for a given
object if it holds a key that matches one of the passwords in the password system of this object;
the protection diagram determines the extent of the corresponding effective access privilege.
The resulting protection environment has several interesting properties. A key reduction mech-
anism allows a subject that holds a key for a given object to distribute keys for weaker access
rights at lower privilege levels. A subject that owns a given object can review or revoke the
passwords for this object by simply modifying the protection diagram. The memory require-
ments to represent a protection diagram are negligible; as far as password storage is concerned,
space-time trade-offs are possible.

Keywords: access privilege, one-way chain, one-way function, password, review, revocation.

1. INTRODUCTION

In a classical protection model, a set U of active entities, called subjects, attempt to access

a set O of passive entities, the protected objects [1]. Objects are typed, and the type T of a given

object G states the set V = {vl0, vl1, …, vlv-1} of the values that the object can assume, the set P

= {op0, op1, …, opp-1} of the operations that can be applied to these values, and a set R = {ar0,

ar1, …, arr-1} of access rights, where quantities v, p and r are specific to T. The configuration

of the protection system is a triple (U, O, M) where M is an access matrix featuring a row for

every subject in U and a column for every object in O [2]. Element M[S, G] of the access matrix

specifies the access rights held by subject S on object G. Typical subjects might be processes,

and typical objects might be files. Examples of access rights for files are own, read, write, and

execute. For each operation in P, the definition of type T states the access rights in R that are

necessary to execute this operation successfully. This means that each operation includes a test

for the presence of specific access rights in specific positions of the access matrix. If this test is

successful, the actions involved in the execution of the operation can be accomplished, other-

wise an exception of violated protection is raised and execution of the operation fails. The

owner of object G (i.e. a subject that possesses the own access right for G) is allowed to modify

– 2 –

the column of the access matrix corresponding to G, e.g. to revoke the access rights held by the

other subjects.1

1.1. Access privilege specification

In a system of this type, a basic problem is to implement the access matrix, i.e. to specify

the relations existing between subjects and objects by defining the access rights that each sub-

ject holds on the objects [3]. A classical solution is based on the concept of a capability [4].

This is a pair (G, AR), where G is the name of an object and AR is an access privilege expressed

in terms of a set of access rights. A subject that holds capability (G, AR) can access object G to

perform the operations permitted by the access rights in AR.

Capabilities should be segregated in memory, so that their internal representation is inac-

cessible to subjects [5]. This is necessary to prevent a subject from tampering with an existing

capability to amplify the access rights it contains, or even forging a capability from scratch.

Several solutions have been devised to the capability segregation problem. Special memory

segments, which we shall call the capability segments, can be reserved for capability storage

(in contrast, data segments will be reserved for storage of ordinary information items) [6], [7],

[8]. This solution leads to segment proliferation. The resulting programming paradigm is often

unnatural, e.g. the representation of a data structure must include a capability segment storing

the capabilities for the data segments. Alternatively, capability segregation can be obtained by

taking advantage of a tagged memory system that associates a 1-bit tag with each memory cell;

the value of the tag of a given cell indicates whether this cell contains a capability or an ordinary

information item [9], [10]. In this approach, the instruction set of the processor includes special

instructions for capability processing; if one of these instructions is executed on a memory cell

tagged to contain an ordinary information item, an exception of violated protection is raised

and execution fails. Contrary to hardware standardization [11], ad-hoc memory modules are

necessary to support cell tags (e.g. a 65-bit cell is used to store a 64-bit memory word).

In a different approach, a set of passwords is associated with each protected object, and

each password corresponds to a subset of all access rights [12], [13], [14], [15], [16]. In order

to access an object to perform a given operation, a subject presents a key for this object. The

access is successful only if the key matches one of the passwords associated with the object,

1 A subject may also be a protected object. For instance, a process that creates a child process will receive the own
access right for the child process. As a result, the parent process will be entitled to kill the child process and to
control its properties, e.g. priority. If in turn the child process creates new processes, the protection system may
include mechanisms for the automatic inheritance of the ownership of these processes by the parent process. In an
alternative protection system design, the child process will have to transfer ownership of the new processes to the
parent process by explicit actions of access right copy.

– 3 –

and this password includes the access right required by that operation; if this is not the case, an

exception of violated protection is raised and the object access fails.

Keys are protected from forging by the password length; if passwords are large and ran-

domly distributed, the probability of guessing a valid key is vanishingly low [17]. (Random

distribution of passwords is an essential requirement; if passwords are not random, the pass-

word length may not be a determining factor to prevent key forging.) Thus, keys do not need to

be segregated in memory; instead, they can be freely mixed with ordinary data. This simplifies

software composition in memory. Furthermore, no need for special hardware is connected with

the necessity to store cell tags.

1.2. Access right distribution

A subject S that holds a set of access rights for a given object G should be in a position to

distribute these access rights, in full or in part, to other subjects. In a capability environment, a

result of this type is obtained by a simple action of a capability copy (and indeed, simplicity in

access right distribution was one of the original motivations for the introduction of the capabil-

ity concept [4]).

In a password-based protection system, subject S that possesses a key k for object G can

distribute the access privilege corresponding to this key to another subject by simply transmit-

ting a copy of the key. A related problem is that of key reduction. Subject S should be given the

ability to transmit only a subset of the access rights corresponding to key k. This means that a

mechanism of the protection system should allow S to convert k into a weaker key k’. The key

reduction problem can be easily solved by associating an object manager with each given ob-

ject. In a situation of this type, subject S transmits key k to the object manager that verifies the

validity of k and then generates a key k’ matching a weaker password; k’ is returned to S. Of

course, the presence of an object manager tends to complicate the overall object structure, and

is contrary to a main requirement of a protection system design, i.e. simplicity in access right

management.

1.3. Access right review and revocation

A subject that granted an access privilege to another subject should be allowed to revise

the grant and revoke the access privilege from the recipient. Revocation should extend to all

the subjects that received the privilege being revoked from the first recipient, recursively. Rev-

ocation should be reversible, so that after a given access privilege has been revoked, it should

be possible to confirm this access privilege and restore its validity.

– 4 –

Several solutions to the revocation problem have been proposed with reference to capabil-

ity-based protection environments [18]. These include a reference monitor associated with the

given object that manages the access permissions held by all subjects on this object [19], [20];

a propagation graph for each capability that keeps track of all successive transferals of this

capability throughout the system [21]; and short-lived capabilities, whose validity must be re-

newed periodically, and are implicitly revoked if renewal is lacking [22]. These solutions tend

to subvert the main advantage of the capability-based protection model, i.e. simplicity in access

right transmission between subjects [23].

In a password-based protection environment, a subject that receives a key is free to transmit

this key further, and this key diffusion process may well extend to any transition depth. This

means that access rights tend to propagate throughout the system. A simple solution to the rev-

ocation problem is to modify one or more passwords associated with the given object, so that

the corresponding keys lose their validity. This solution does not meet the requirement to limit

revocation to a subset of the access rights associated with the given password.

This paper presents a model of a password management system that has been designed by

taking the following requirements into account:

• A simple mechanism for access privilege distribution should permit effective forms of key

reduction, so that a subject that holds a given access privilege can transmit this privilege

only in part.

• Password review and revocation should be fully supported, so that the extent of a given

password can be restricted to a subset of the original access rights. The consequence of a

password review should extend to all keys matching the reviewed password. It should be

possible to reverse the effect of a password review and restore full password validity.

• The memory requirements for storage of the passwords and the information items related

to password management should be kept to a minimum.

The rest of this paper is organized as follows. Section 2 presents our protection model with

special reference to access privileges and passwords. The concept of a protection diagram is

introduced expressing a relation between the nominal access privilege connected with a pass-

word and the effective access privilege granted by possession of a key matching that password.

Section 3 presents the password system with special reference to password generation and man-

agement. Section 4 discusses the protection model from a number of salient viewpoints, which

include the verification, review and revocation of access rights, and the memory requirements

for storage of the passwords and the protection diagram. Section 5 gives concluding remarks.

– 5 –

2. THE PROTECTION MODEL

Let T be an object type, and let op0, op1, … be the operations that can be applied to the

objects of type T. Furthermore, let ar0, ar1, …, arr-1 be the access rights, and let pl0, pl1, …, plc-1

be the privilege levels defined by T, where quantities r and c are specific to T. Privilege levels

are involved in password validation, review and revocation, as will be illustrated shortly.

The access rights are ordered from the weakest ar0 to the strongest arr-1. Possession of

access right ari implies possession of every weaker access right ari’, i’ < i. Similarly, the privi-

lege levels are ordered from the lowest pl0 to the highest plc-1.

An access privilege for an object G of type T is the specification of an access right and a

privilege level. Let Pnom = (ari, plj), 0 ≤ i ≤ r – 1, 0 ≤ j ≤ c – 1, be a nominal access privilege

expressed in terms of access right ari and privilege level plj. Pnom grants its holder an effective

access privilege Peff = (ar*, plj) expressed in terms of access right ar* and the same privilege

level plj, where ar* is not stronger than ari. The actual extent of ar* is stated for object G by a

relation existing between the access rights and the privilege levels. This relation is specific to

G, and is expressed by a diagram, which is associated with G and is called the protection dia-

gram of G.

The protection diagram is defined in a two-dimensional Cartesian coordinate system. In

the protection diagram, the horizontal axis refers to the access rights, from ar0 to arr-1, and the

vertical axis refers to the privilege levels, from pl0 to plc-1. The protection line is a polygonal

chain whose vertices are access privileges that we call the limit privileges, with the constraint

that at least one limit privilege must be associated with each access right. Figure 1 shows ex-

amples of protection diagrams featuring four access rights, ar0 to ar3, and five privilege levels,

pl0 to pl4. The protection line divides the protection diagram into two regions: a validity region

that includes the protection line and corresponds to higher privilege levels, and a downgrade

region that corresponds to lower privilege levels.

In the example of Figure 1a, the limit privileges are (ar0, pl1), (ar1, pl2), (ar2, pl2), and (ar3,

pl4). The protection line connects the corresponding points of the protection diagram. The va-

lidity region occupies the upper-left part of the diagram and includes the protection line; the

downgrade region occupies the lower-right part. In Figure 1b, the limit privileges are (ar0, pl4),

(ar1, pl3), (ar1, pl2), (ar2, pl2), and (ar3, pl1). The validity region occupies the upper-right part

of the diagram and includes the protection line; the downgrade region occupies the lower-left

part. In Figure 1c, the protection line is horizontal and connects limit privileges (ar0, pl4), (ar1,

pl4), (ar2, pl4), and (ar3, pl4). The validity region degenerates into the protection line. Finally,

– 6 –

in Figure 1d the protection line is horizontal and connects limit privileges (ar0, pl0), (ar1, pl0),

(ar2, pl0), and (ar3, pl0). In this case, the validity region occupies the whole protection diagram.

For the given nominal access privilege, the protection line and the two protection regions

determine the corresponding effective privilege. Let us refer again to nominal privilege Pnom =

(ari, plj) and the corresponding effective privilege Peff = (ar*, plj). If Pnom is in the validity region

(including the protection line), nominal access right ari is effective, that is, ar* = ari and con-

sequently Peff = Pnom; a subject S that possesses Pnom is granted access right ari. If Pnom is in the

downgrade region, access right ari is downgraded to the strongest access right ar* at protection

level plj that is weaker than ari and is included in the validity region. If ari cannot be down-

graded into the validity region, then access privilege Pnom grants no access right at all; in a

situation of this type, we say that Pnom is revoked.

In the example of Figure 1a, nominal access privilege (ar1, pl3) is in the validity region,

and is effective; a subject that possesses this access privilege is granted access right ar1. Nom-

inal privilege (ar3, pl3) is in the downgrade region, and the corresponding effective privilege is

Figure 1. Protection diagrams featuring four access rights and five privilege levels, in a variety of configurations
of the protection line.

– 7 –

(ar2, pl3); a subject that possesses (ar3, pl3) is granted access right ar2. Similarly, nominal priv-

ilege (ar2, pl1) is in the downgrade region, and the corresponding effective privilege is (ar0, pl1).

Finally, nominal privilege (ar1, pl0) is in the downgrade region and cannot be downgraded into

the validity region, so it is revoked (this access privilege grants no access right at all). In the

example of Figure 1b, nominal privileges (ar3, pl3) and (ar3, pl1) are in the validity region, and

are effective. Nominal privilege (ar1, pl1) cannot be downgraded into the validity region, and is

revoked. In the example of Figure 1c, all nominal privileges are revoked except those defined

in terms of the highest privilege level, pl4, which are effective. Finally, in the example of Figure

1d, the validity region occupies the entire protection diagram, so all nominal privileges are

effective.

In every given object type, the strongest access right arr-1 is called the own access right;

possession of this access right for a given object makes it possible to delete the object and to

modify its protection line (that is, to modify the position of the limit privileges in the protection

diagram).2 Access privilege (arr-1, plc-1) corresponding to the own access right at the highest

privilege level is called the owner privilege. A subject that creates a new object (the object

owner) is granted the owner privilege for this object. When an object is created, a protection

diagram is associated with that object, and the shape of the protection line is determined as part

of the object initialization.

An important property is that, in the protection diagram, all privileges at privilege level

plc-1 are always in the validity region; it follows that the owner privilege is always effective.

Consequently, a subject that creates an object is always in a position to delete this object and to

modify its protection line; as will be shown shortly, an action of this type corresponds to a form

of review or revocation of access privileges.

3. THE PASSWORD SYSTEM

Let us refer again to type T, where ar0, ar1, …, arr-1 are the access rights, pl0, pl1, …, plc-1

are the privilege levels, and Pnom = (ari, plj), 0 ≤ i ≤ r – 1, 0 ≤ j ≤ c – 1, are the nominal access

privileges. We shall refer to the generic operation op defined by T, arop being the access right

necessary to execute this operation successfully. In our protection model, for each object G of

type T, a password system is associated with G featuring a password for each nominal access

privilege, for a total of r ∙ c passwords. In order to access G to execute operation op successfully,

2 In an alternative design, the two actions, to modify the protection line and to delete the object, are kept separated,
and correspond to different access rights, namely own and delete. This can be useful if one wants to propagate the
ability to delete the object without being allowed to modify its protection line, for instance.

– 8 –

a given subject S must present a key k matching a password in the password system, say pass-

word wi,j. Implementation of operation op includes the actions necessary to determine the ef-

fective access privilege Peff = (ar*, plj) corresponding to the nominal access privilege Pnom =

(ari, plj) associated with wi,j; to this aim, op uses the protection diagram of G. Execution of

operation op will terminate successfully only if ar* is stronger than or equal to access right arop;

if this is not the case, execution terminates with failure.

A related problem is the generation of the set of passwords for object G. We solve this

problem by taking advantage of one-way chains.

3.1. Password generation

Function F is one-way if it is easy to compute but hard to invert [24]. This means that given

a value x it is computationally easy to compute F(x), but given a value y it is computationally

unfeasible to find a value x such that y = F(x). We shall denote i successive applications of F by

Fi, e.g. F2(x) = F(F(x)). A one-way chain [25] is a collection of values (v0, v1, …, vn-1) such that

each vi except the last value vn-1 is the result of applying a one-way function F to the next value,

i.e. vi = F(vi+1) = Fn-1-i(vn-1) for 0 ≤ i < n – 1. Value vn-1 is called the seed of the chain. A hierar-

chical bidimensional one-way chain consists of two levels of chains, where each value of the

chain at the first level (the primary chain) is the seed of a chain at the second level (a secondary

chain).

In our model, the password system of object G of type T is configured as a hierarchical

bidimensional one-way chain (Figure 2). To set up the password system, password wr-1,c-1, cor-

responding to owner privilege (arr-1, plc-1), is chosen at random and is the seed of the primary

chain. A one-way function PF, called the primary function, is used to generate the successive

passwords in the primary chain, which are associated with access right arr-1 in the direction of

w0,c-1 ← ∙∙∙ ← wi,c-1 ← ∙∙∙ ← wr-2,c-1 ← wr-1,c-1
 ↓

w0,c-2 ← ∙∙∙ ← wi,c-2 ← ∙∙∙ ← wr-2,c-2 ← wr-1,c-2
 ↓
 ∙∙∙
 ↓

w0,j ← ∙∙∙ ← wi,j ← ∙∙∙ ← wr-2,j ← wr-1,j
 ↓
 ∙∙∙
 ↓

w0,0 ← ∙∙∙ ← wi,0 ← ∙∙∙ ← wr-2,0 ← wr-1,0

Figure 2. The password system featuring a primary chain whose seed is the password wr-1,c-1 of the owner priv-
ilege, and a secondary chain for each privilege level, whose seed is the corresponding element of the primary
chain.

– 9 –

decreasing privilege levels, i.e. wr-1,c-2 = PF(wr-1,c-1), wr-1,c-3 = PF(wr-1,c-2) = PF2(wr-1,c-1), …, wr-1,0

= PF(wr-1,1) = PFc-1(wr-1,c-1).

Each given password wr-1,j of the primary chain is the seed of the secondary chain associ-

ated with the corresponding privilege level, plj. The secondary chain features r values, one value

for each access right. A further one-way function, the secondary function SF, is used to setup

the secondary chains, so that for privilege level plj we have wr-2,j = SF(wr-1,j), wr-3,j = SF(wr-2,j)

= SF2(wr-1,j), …, w0,j = SF(w1,j) = SFr-1(wr-1,j).

As pointed out in Section 1.1, the fact that passwords are generated at random is essential

to prevent password forging. In our password system, randomness is a salient requirement for

password wr-1,c-1, and is automatically extended to all the passwords in the password system by

the mechanism of the password chains.

3.2. Password distribution

As seen in Section 1, the problem of access privilege distribution consists in allowing a

subject that holds an access privilege for a given object to grant this access privilege to a dif-

ferent subject. A salient feature of password-based protection systems is simplicity in access

privilege distribution. In a system of this type, a subject S that holds a key k for a given object

is in a position to distribute the corresponding access privilege to another subject S’, by simply

transmitting a copy of k to S’.

In our protection system, subject S may even distribute an access privilege weaker than the

privilege in the original key. Key reduction is the action of transforming a key for a given access

privilege into a key for a reduced privilege. Key reduction can take place in the direction of a

weaker access right, a lower privilege level, or both. Key reduction is obtained by taking ad-

vantage of the structure of the password system and the password chains. In detail:

• A subject that holds key k matching password wr-1,j for access privilege (arr-1, plj) expressed

in terms of the strongest access right arr-1 and privilege level plj, can derive a key k’ match-

ing password wr-1,j’ for access privilege (arr-1, plj’) expressed in terms of the same access

right arr-1 and a lower privilege level plj’, j’ < j . To this aim, the subject will apply primary

one-way function PF iteratively j – j’ times, i.e. k’ = PFj-j’(k). This is a consequence of the

fact that wr-1,j’ = PFj-j’(wr-1,j).

• A subject that holds key k matching password wi,j for access privilege (ari, plj) expressed

in terms of access right ari and privilege level plj can derive a key k’ matching password

wi’,j for access privilege (ari’, plj) expressed in terms of a weaker access right ari’, i’ < i,

and the same privilege level plj. To this aim, the subject will apply secondary one-way

– 10 –

function SF iteratively i – i’ times, i.e. k’ = SFi-i’(k). This is a consequence of the fact that

wi’,j = SFi-i’(wi,j).

3.3. Password review and revocation

As a consequence of the inherent simplicity of key distribution, in a password-based pro-

tection environment access privileges tend to spread throughout the system. A related problem

is to allow the owner of a given object to control the extent of the effective access privilege

granted by each password on that object, in contrast with the nominal access privilege corre-

sponding to that password (password review). The object owner should be even in a position to

revoke the nominal access privilege, so that the password can no longer be used for successful

object access (password revocation).

In our design, the object owner can change the position of the limit privileges in the pro-

tection diagram, thereby modifying the protection line and the configuration of the validity

region and the downgrade region. So doing, the object owner can enforce specific access priv-

ilege management strategies, by reviewing or revoking each given password, independently of

the subjects that hold this password. In the following, we shall say that a password is effective,

downgraded or revoked if this is the case for the corresponding nominal access privilege.

For instance, in the protection diagram of Figure 1d, the protection line is horizontal and is

placed at privilege level 0. Consequently, all nominal access privileges, and the corresponding

passwords, are effective. In a situation of this type, a subject that holds a key matching a pass-

word corresponding to a given access privilege can exercise the full access right included in

this access privilege. By moving the protection line to a high privilege level, e.g. pl4 (see Figure

1c), the object owner revokes all the passwords corresponding to nominal access privileges at

lower privilege levels. A subject that holds a key matching one of these passwords cannot use

this key for successful object access. If the protection line is that of Figure 1a, high privilege

levels are necessary to exercise strong access rights. For instance, access privilege (ar3, pl3) is

below the protection line. This access privilege is downgraded to (ar2, pl3); a subject that holds

a key matching password w3,3 can use this key to execute a given operation only if this operation

requires access right ar2 or lower. Finally, if the protection line is configured as shown in Figure

1b, the access privileges defined in terms of strong access rights are effective even at low priv-

ilege levels, e.g. (ar3, pl1) and the corresponding password w3,1.

– 11 –

4. DISCUSSION

4.1. Access right verification

Let us refer again to object G of type T, let op be an operation defined by T, and let arop be

the access right required for successful execution of op. The password system of G is stored as

part of the object internal representation. Now suppose that subject S tries to execute operation

op on G. To this aim, S presents a key k to op. The actions involved in the execution of op

include key verification, which will be conceptually structured as follows:

 Key k is compared with the passwords in the password system of object G. If no matching

password is found, execution of operation op terminates with failure; otherwise, let wi,j be

the matching password, and let Pnom = (ari, plj) be the corresponding nominal access privi-

lege, which is expressed in terms of access right ari and privilege level plj.

 The protection diagram of object G is used to determine whether Pnom is revoked. If this is

the case, execution of operation op terminates with failure; otherwise, let Peff = (ar*, plj)

be the effective access privilege corresponding to Pnom.

 Access right ar* is compared with access right arop (it should be recalled that access rights

are ordered hierarchically, so that every given access right includes all weaker access

rights). If ar* < arop, execution of op terminates with failure; otherwise, access right veri-

fication is successful and the actions involved in the execution of op are subsequently ac-

complished.

4.2. Password review and revocation

As seen in Section 3.3, in our protection system a subject that owns a given object can

review or revoke every password defined for that object by simply modifying the shape of the

protection line. This mechanism results to possess a number of interesting properties:

• Password review can be limited to a subset of all passwords. This is an inherent property

of the protection diagram. For instance, in the protection diagram of Figure 1a, access priv-

ilege (ar3, pl3) is downgraded to (ar2, pl3); this means that password w3,3 grants access right

ar2 instead of the nominal ar3. In contrast, access privilege (ar1, pl3) is effective, and the

extent of password w1,3 is unaltered; this password grants access right ar1.

• Similarly, password revocation can be limited to a subset of all passwords. In the example

of Figure 1b, all the access privileges in the downgrade region are revoked, and conse-

quently, the corresponding passwords cannot be used for successful object access, e.g.

password w1,1 corresponding to access privilege (ar1, pl1). On the other hand, the passwords

for the access privileges in the validity region maintain their access right strength, e.g.

– 12 –

password w3,3 corresponding to access privilege (ar3, pl3).

• Two or more passwords corresponding to the same access right at different privilege levels

can be revoked independently of each other. In the example of Figure 1a, password w1,3

corresponding to access privilege (ar1, pl3) for access right ar1 at privilege level pl3 is in

the validity region and is effective, whereas password w1,0 corresponding to access privi-

lege (ar1, pl0) for the same access right ar1 at privilege level pl0 is in the downgrade region

and is revoked.

• The effects of a review or revocation are transitive [21], that is, they propagate to all the

keys matching a given password independently of the subjects that hold these keys and the

propagation paths followed by the keys to reach these subjects. If a given password is re-

voked or downgraded to a given extent, all keys matching this password are automatically

revoked or downgraded to the same extent. In fact, a copy of a given key is indistinguish-

able from the original, and keys have no memory of the consecutive copy actions.

• The effects of a review or revocation are temporal [21], that is, they can be reversed through

the same mechanism used for the revocation. With reference to Figure 1c, password w2,2

corresponds to a nominal access privilege in the downgrade region, and is revoked. If the

protection line is moved to privilege level pl2, for instance, the nominal access privilege

will be in the validity region, and the validity of w2,2 will be restored to its full extent.3

In Table 1, we compare the different implementations of the access matrix, which have

been introduced in Section 1: capabilities, passwords and the password systems proposed in

this paper. A number of salient properties of these implementations are considered: segregation

(i.e. the method used to prevent forging), reduction (i.e. the ability to transmit only a subset of

the access rights), review and revocation. As seen in Section 1, in capability systems, segrega-

tion can be obtained by taking advantage of capability segments or tagged storage; whereas a

suitable password length is sufficient to prevent password forging if passwords are randomly

distributed. In their original formulation, capabilities cannot be reviewed; whereas the extent of

a password can be modified by changing the set of access rights associated with that password.

3 The merits of temporal revocation are debatable. Consider a key that has been distributed by subject S to a
recipient subject S’, and suppose that S’ distributes this key further. Revocation involves all the copies of the
original key, independently of their present location in memory and the distribution path followed by each of them.
Again, this is a consequence of the fact that keys have no memory of the consecutive copy actions, and a key copy
is indistinguishable from the original. Now suppose that subject S decides to restore validity of the key distributed
to S’. So doing, it may well be the case that S unintentionally restores an unknown key copy resulting from recur-
sive propagation. Of course, an alternative is to carry out a new action of key distribution to S’, e.g. for a key for
the same access right at a different privilege level, corresponding to a password in the validity region. Indeed, the
main merit of temporal revocation is to avoid the cost of this type of repeated activities of key distribution [21].

– 13 –

Password reduction requires the intervention of an object manager. In contrast, in a password

system, reduction and review are supported natively by one-way functions and the protection

diagram. Finally, as far as revocation is concerned, complicated ad-hoc mechanisms have been

proposed for capability systems, and a password replacement can be used for password invali-

dation; in a password system, similar effects can be obtained by simply modifying the shape of

the protection line in the protection diagram.

4.3. Considerations concerning performance

The protection line

 As seen in Section 2, the shape of the protection line is completely determined by the

coordinates of the limit privileges; at least one, and at most two limit privileges correspond to

each access right (two limit privileges are necessary to delimit a vertical protection line seg-

ment). In a possible representation for up to 16 privilege levels, we shall reserve one byte for

each access right. The two 4-bit nibbles of the i-th byte encode the privilege levels of the two

limit privileges for the i-th access right; if only one limit privilege corresponds to a given access

right, the two nibbles will specify the same privilege level.

Let us refer to a protection diagram featuring four access rights, ar0 to ar3, and five privi-

lege levels, pl0 to pl4; in this case, the shape of the protection line can be encoded in 4 bytes.

Examples are given in Figures 1a to 1d; in these examples, the corresponding hexadecimal

configurations are 11 22 22 44, 44 32 22 11, 44 44 44 44 and 00 00 00 00, respectively. We

may conclude that the memory requirements to represent a protection line are negligible.

As seen in Section 3.3, access right revocation for a given object is simply obtained by

modifying the shape of the protection line of this object. The cost of the revocation process is

Table 1. Properties of different implementations of the access matrix.

Capabilities
 Segregation: capability segments; tagged storage
 Reduction: modification of the access right field
 Review: not supported
 Revocation: reference monitor; propagation graph; short-lived capabilities; etc.

Passwords
 Segregation: password length and random distribution
 Reduction: object manager
 Review: modification of the corresponding set of access rights
 Revocation: password modification

Password systems
 Segregation: password length and random distribution
 Reduction: application of the one-way functions
 Review: modification of the protection diagram
 Revocation: modification of the protection diagram

– 14 –

that of determining of the new position of each limit privilege in the protection diagram and

expressing this new position in terms of the chosen form of protection line representation. This

cost will be paid for each object involved in the revocation. Let us refer, for instance, to the

protection line of Figure 1d, and suppose that we are aimed at revoking all access rights at

privilege levels lower than pl4. The resulting protection line is that of Figure 1c. In our repre-

sentation of the protection line, a result of this type will be obtained by replacing hexadecimal

quantity 00 00 00 00 with hexadecimal quantity 44 44 44 44.

Passwords

The passwords in the password system of a given object will be evaluated when this object

is initialized. These passwords will be stored in a password array that is part of the internal

representation of the object. As seen in Section 4.1, the password system is used when an action

of access right verification takes place, to find the password wi,j matching a given key k. To this

aim, a sequential search in the password array will check the array elements until the matching

password is found. The expected number of comparisons is (r ∙ c +1) / 2, r and c being the

number of access rights and the number of privilege levels, respectively.

In an alternative approach, a key has the form of a triple (k, i, j), that is, key value k and the

indexes i and j of the matching password wi,j. In this case, a single comparison is necessary in

the password array, at element (r ∙ i + j) (here, we hypothesize that passwords are stored in the

password array by privilege levels); if the value of this element does not match quantity k, key

verification fails. The memory requirements for storage of quantities i and j are negligible, e.g.

a single byte for up to 16 access rights and 16 privilege levels.

If memory is an extremely scarce resource, we shall store a single password instead of the

entire password system, i.e. password wr-1,c-1 corresponding to the seed of the primary chain

(see Section 3.1 and Figure 2). In this case, verification of the validity of a given key requires

recalculation of several passwords, which will be accomplished by using primary one-way

function PF and secondary one-way function SF. Specifically, we shall use PF to evaluate pass-

words wr-1,c-2, wr-1,c-3, …, to find the seed wr-1,j of the j-th secondary chain; then, we shall use SF

to evaluate passwords wr-2,j, wr-3,j, …, to find the value of password wi,j. The expected number

of password evaluations is (c + r) / 2.

A space-time trade-off is possible, by using the password array to permanently store only

the passwords wr-1,c-1, wr-1,c-2, …, wr-1,0 that form the primary chain of the password system. In

this case, verification of the validity of a key matching password wi,j will require recalculation

of the first r – i – 1 passwords in the j-th secondary chain, whose seed is password wr-1,j in the

– 15 –

primary chain. In this case, the expected number of password evaluations decreases to r / 2.

One-way functions

The total number of one-way functions is a parameter of the system design. If a single (PF,

SF) pair of one-way functions is used throughout the system (see Section 3.1), all the subjects

know these functions, and a subject that holds a given key is always in a position to reduce this

key. This means that when a subject receives a key, it can transform this key into a key for a

reduced privilege, and distribute the new key instead of the original key. Alternatively, we can

have several one-way functions, e.g. one (PF, SF) pair for each subject (in a protection system

where subjects are processes, this means that each process has its own one-way functions). In

this case, when a given subject S creates a new object, the password system of this object is

generated by using the one-way functions of this subject. If S distributes a key for the new

object, the recipient subject S’ will not be able to reduce the key, either in the direction of a

weaker access right or in the direction of a lower privilege level, as it does not possess the

original one-way functions. Implications follow in terms of access right review. In particular,

the original object owner S has tighter control over revocation, as follows from the fact that

only those keys originally distributed by S will exist throughout the system.

Multiple one-way functions can be obtained as follows. A function H is a parametric one-

way function if given a value z and a parameter p, it is computationally unfeasible to find a

value x so that z = H(x, p) [26]. An example of practical implementation is H(x, p) = G(Ex(p))

where G is a hash function and Ex(p) denotes the encryption of p using a symmetric encryption

cipher E with key x. Thus, a parametric one-way function corresponds to a family of one-way

functions, a function for each value of the parameter. In an implementation of our protection

system reserving a (PF, SF) pair for each subject, the parametric one-way function will be

known to all subjects, and a pair of parameters, corresponding to PF and SF, will be reserved

for each subject.

We wish to point out that the implementation of the password system based on one-way

functions is an essential feature of our protection system design. In particular, we generate only

one initial random password, and all the other passwords are produced by application of the PF

and SF functions. This mechanism is the basis of key reduction. If all passwords were generated

at random, for instance, key reduction would require intervention of the object owner; a subject

possessing a given key k and wishing to generate a key k’ matching a weaker password would

have to interact with the owner, which verifies validity of k and returns the weaker key. As seen

in Section 1.2, this is a complication of the overall key distribution mechanism that we have

– 16 –

been aimed at avoiding.

Of course, it may well be the case that a subject receives two or more keys for the same

object from independent sources. This is not a security hole; indeed, in a one-way chain, pos-

session of an arbitrary number of values cannot be used to calculate a previous value. One could

argue that using two arbitrary PF and SF functions could reduce the overall system security

unless these functions are guaranteed not to affect password randomness. On the other hand, if

we use a single parametric one-way function H = G(Ex(p)) with different values for parameter

p, and if symmetric cipher E is secure against known plaintext attacks, it is not necessary that

function G has any cryptographic property since the required strength is guaranteed by E [26].

5. CONCLUDING REMARKS

We have considered the problem of access privilege management in a classical protection

environment featuring subjects attempting to access the protected objects. We express an access

privilege in terms of an access right and a privilege level. The privilege level and a protection

diagram associated with each given object determine whether a nominal access privilege for

this object corresponds to an effective, possibly weaker access privilege, or is revoked.

We associate a password system with each object. The password system takes the form of

a hierarchical bidimensional one-way chain: a primary chain contains the passwords for the

strongest access right at the different privilege levels; a secondary chain for each privilege level

contains the passwords for the access rights at that privilege level. A subject possesses a nomi-

nal access privilege for a given object if it holds a key matching one of the passwords in the

password system of that object; the protection diagram determines the extent of the correspond-

ing effective access privilege.

The following is a brief summary of the main results we have obtained:

• A subject that holds a key for a given object is free to distribute this key to other subjects,

which acquire the corresponding access privilege. A key reduction mechanism allows a

subject that holds a key for the strongest access right at a given privilege level to distribute

keys for the same access right or weaker access rights, at the same privilege level or at

lower privilege levels. Furthermore, a subject that holds a key for an access right which is

not the strongest access right can distribute keys for weaker access rights at the same priv-

ilege level.

• A subject that owns a given object can review or even revoke the passwords for this object

by simply modifying the protection diagram. Review and revocation can be limited to a

– 17 –

subset of all the passwords. Two or more passwords for the same access right at different

privilege levels can be revoked independently of each other. We have shown that the effects

of a password review or revocation are transitive and temporal.

• The memory requirements to represent a protection diagram are negligible. As far as pass-

word storage is concerned, space-time trade-offs are possible. If we store all the passwords

of the password system as part of the internal representation of the given object, a single

comparison is necessary to ascertain the validity of a given key. Alternatively, we can store

only the passwords in the primary chain, or even a single password, i.e. the seed of the

primary chain, at the cost of recalculating several passwords to validate a key.

ACKNOWLEDGMENTS

The author thanks the anonymous reviewers for their insightful comments and constructive

suggestions.

This work has been partially supported by the TENACE PRIN Project (Grant no.

20103P34XC_008) funded by the Italian Ministry of Education, University and Research.

REFERENCES

[1] Samarati, P. and de Capitani di Vimercati, S. (2001) Access control: policies, models, and
mechanisms, in: Focardi, R. and Gorrieri R. (eds.), Foundations of Security Analysis and Design.
Springer, Berlin, Heidelberg, pp. 137–196.

[2] Harrison, M. A. and Ruzzo, W. L. (1976) Protection in operating systems. Communications of
the ACM, 19, 8, 461–471.

[3] Seitz, L., Pierson, J. M. and Brunie, L. (2003) Key management for encrypted data storage in
distributed systems. Proceedings of the Second IEEE International Security in Storage Workshop,
Washington, DC, USA, October 2003. IEEE Computer Society, Washington, DC, USA.

[4] Levy, H. M. (1984) Capability-Based Computer Systems. Digital Press, Bedford, Mass, USA.

[5] de Vivo, M., de Vivo, G. O. and Gonzalez, L. (1995) A brief essay on capabilities. SIGPLAN
Notices, 30, 7, 29–36.

[6] England, D. M. (1974) Capability concept mechanisms and structure in System 250. Proceedings
of the International Workshop on Protection in Operating Systems, IRIA, Paris, pp. 63–82. IRIA,
Paris.

[7] Klein G. et al. (2009) seL4: formal verification of an OS kernel. Proceedings of the 22nd ACM
Symposium on Operating Systems Principles, Big Sky, MT, USA, pp. 207–220. ACM, New
York, NY, USA.

[8] Wilkes, M. V. and Needham, R. M. (1979) The Cambridge CAP Computer and Its Operating
System. North Holland, New York, USA.

– 18 –

[9] Houdek, M. E., Soltis, F. G. and Hoffman, R. L. (1981) IBM System/38 support for capability-
based addressing. Proceedings of the 8th Annual Symposium on Computer Architecture,
Minneapolis, Minnesota, USA, pp. 341–348. IEEE Computer Society Press, Los Alamitos, CA,
USA.

[10] Neumann, P. G. and Feiertag, R. J. (2003) PSOS revisited. Proceedings of the 19th Annual
Computer Security Applications Conference, Las Vegas, NV, USA, pp. 208–216. IEEE, Los
Alamitos, CA, USA.

[11] Meyer, M. (2004) A novel processor architecture with exact tag-free pointers. IEEE Micro, 24, 3,
46–55.

[12] Castro, M. D., Pose, R. D. and Kopp, C. (2008) Password-capabilities and the Walnut kernel. The
Computer Journal, 51, 5, 595–607.

[13] Chase, J. S., Levy, H. M., Lazowska, E. D. and Raker-Harvey, M. (1992) Lightweight shared
objects in a 64-bit operating system. Proceeding of the Conference on Object-Oriented
Programming Systems, Languages, and Applications, Vancouver; in: SIGPLAN Notices, 27, 10,
397–413.

[14] Heiser, G., Elphinstone, K., Vochteloo, J., Russell, S. and Liedtke, J. (1998) The Mungi single-
address-space operating system. Software — Practice and Experience, 28, 9, 901–928.

[15] Lopriore, L. (2013) Password capabilities revisited. The Computer Journal, first published online
November 11, doi:10.1093/comjnl/bxt131

[16] Pose, R. (2001) Password-capabilities: their evolution from the Password-Capability System into
Walnut and beyond. Proceedings of the Sixth Australasian Computer Systems Architecture
Conference, Gold Coast, Australia, pp. 105–113. IEEE Computer Society, Washington, DC,
USA.

[17] Anderson, M., Pose, R. D. and Wallace, C. S. (1986) A password-capability system. The
Computer Journal, 29, 1, 1–8.

[18] Lopriore, L. (2013) Protection structures in multithreaded systems. The Computer Journal, 56, 4,
478–496.

[19] Miller, M. S., Yee, K.-P. and Shapiro, J. (2003) Capability Myths Demolished. Technical Report
SRL2003-02, Systems Research Laboratory, Johns Hopkins University. Available at
http://srl.cs.jhu.edu/pubs/SRL2003-02.pdf

[20] Shapiro, J. S., Smith, J. M. and Farber, D. J. (1999) EROS: a fast capability system. Proceedings
of the Seventeenth ACM Symposium on Operating Systems Principles, Kiawah Island Resort,
SC, December 1999; in: Operating Systems Review, 34, 5, 170–185.

[21] Gligor, V. D. (1979) Review and revocation of access privileges distributed through capabilities.
IEEE Transactions on Software Engineering, SE-5, 6, 575–586.

[22] Leung, A. W. and Miller, E. L. (2006) Scalable security for large, high performance storage
systems. Proceedings of the Second ACM Workshop on Storage Security and Survivability,
Alexandria, Virginia, USA, pp. 29–40. ACM, New York, NY, USA.

[23] Lopriore, L. (2012) Encrypted pointers in protection system design. The Computer Journal, 55,
4, 497–507.

– 19 –

[24] Lamport, L. (1981) Password authentication with insecure communication. Communications of
the ACM, 24, 11, 770–772.

[25] Hu, Y.-C., Jakobsson, M. and Perrig, A. (2005) Efficient constructions for one-way hash chains.
Proceedings of the Third International Conference on Applied Cryptography and Network
Security, New York, NY, USA; in: Lecture Notes in Computer Sciences, 3531, Springer-Verlag,
Berlin, Heidelberg.

[26] Trappe,W., Song, J., Poovendran, R. and Ray Liu, K. J. (2003) Key management and distribution
for secure multimedia multicast. IEEE Transactions on Multimedia, 5, 4, 544–557.

