Advance Access publication on 11 December 2014

(© The British Computer Society 2014. All rights reserved.
For Permissions, please email: journals.permissions @oup.com
doi:10.1093/comjnl/bxu145

On the Origin of Recursive Procedures

GAUTHIER VAN DEN HOVE*

CWI, SWAT, Science Park 123, 1098 XG Amsterdam, The Netherlands
*Corresponding author: ghe@cwi.nl

We investigate the origin of recursive procedures in imperative programming languages. We attempt
to set the record straight, and to identify the trend that led to recursive procedures, by means of an
analysis of the related concepts and of the most reliable available documents, as far as known to
us. We show that not all of those who were involved in defining these concepts in these documents
were fully aware of the implications of their proposals. Our aim is not primarily historical, but
to contribute to a clarification of some of the concepts related to recursion. In particular, we
demonstrate that recursive procedure declarations and recursive procedure activations are logically
disjoint concepts.

Keywords: procedure; recursion; declaration and activation; self-application; call by name

Received 27 June 2014; revised 17 October 2014
Handling editor: Manfred Broy

1. INTRODUCTION

It is well-known that the first programming language in which
recursive procedures were included is J. McCarthy’s LISP.
However, he did not consider them explicitly in his first drafts
of the language, and it is only around January 1959, that is, two
or three months before the first implementation of LISP was
completed, that he added, before the define primitive, a label
primitive to the language, on a suggestion from N. Rochester
[1, p. 179]. Something similar seems to have happened, about
one year later, for the other major programming language
designed in the late 1950s, namely ALGOL 60. McCarthy,
now convinced of the importance of recursion, suggests in
August 1959 to introduce it explicitly in the language, arguing
that this feature has ‘proved convenient’ in LISP [2], but his
proposal does not draw much attention. A few months later, in
January 1960, during the discussions to finalize the language,
a proposal from the American members of the committee
to add a recursive declarator to the language is rejected
[3, p. 112]. Finally, in February 1960, P. Naur, editor of the
Report, decides, on a suggestion from A. van Wijngaarden and
E. W. Dijkstra, but without consulting the other committee
members, to add a sixteen-word sentence to it, to make it
clear that the declaration of recursive procedures is explicitly
allowed. We have two written accounts of that event, by its
primary actors. The first one was written by Naur two decades
later 3, pp. 112-113]:

The last substantial change of language concept was the admission
of recursive procedure activations. This took place as follows.

[...] [O]n about 1960 February 10, [...] I had a telephone call
from A. van Wijngaarden, speaking also for E. W. Dijkstra. They
pointed to an important lack of definition in the draft report,
namely the meaning, if any, of an occurrence of a procedure
identifier inside the body of the declaration other than in the left
part of an assignment. They also made it clear that preventing
recursive activations through rules of the description would be
complicated because of the possibilities of indirect activations
through procedures and their parameters. They proposed to clarify
the matter by adding a sentence to section 5.4.4: ‘Any other
occurrence of the procedure identifier within the procedure body
denotes activation of the procedure’. I got charmed with the
boldness and simplicity of this suggestion and decided to follow
it in spite of the risk of subsequent trouble over the question.

The second one is from Dijkstra, and was written four decades
later [4, p. 5]:

A major milestone of ALGOL 60 was its introduction of recursion
into imperative programming. [...] Its inclusion was almost an
accident and certainly a coup. When the ALGOL 60 Report was
nearing completion and circulated for final comments, it was
discovered that recursion was nowhere explicitly excluded, and,
just to be sure that it would be in, one innocent sentence was added
at the end of the section 5.4.4.

At first sight, these two accounts seem to tell the same
story: recursion had been rejected by the majority of the
ALGOL 60 committee members, and has finally been included,
surreptitiously, by the sole will of a few people; J. McCarthy
was surprised that it had been included [5, p. 160], and
F. L. Bauer even considered that it had been added to the

SECTION A: COMPUTER SCIENCE THEORY, METHODS AND TOOLS
THE COMPUTER JOURNAL, VoL. 58 No. 11, 2015

GTOZ ‘62 4000100 U0 189Nnb Aq /B10°seulnolploxo’ julwooy/:dny wouy papeojumoq

http://comjnl.oxfordjournals.org/

ON THE ORIGIN OF RECURSIVE PROCEDURES 2893

language because of an ‘Amsterdam plot’ [3, p. 130], and
did not implement it [6, p. 6]. One could then comment
on this ‘plot’, by criticizing van Wijngaarden and Dijkstra’s
undemocratic attitude which resulted in an additional burden
for those who implemented the language, or by interpreting it
as a typical example of their supposedly theoretically inclined
minds, or by explaining that it was prophetic because recursion
later proved to be an important tool.

On a closer look, however, there are a number of differences
between these two records. The first one is that Dijkstra’s
comments are about ‘recursion’, whereas Naur speaks of
‘recursive procedure activations’. The second one, which
seems even more important, is that Naur explains that the
added sentence introduced a °‘substantial change’, whereas
Dijkstra claims that it was an ‘innocent sentence’. In other
words, these two accounts apparently contradict each other.
To understand what actually happened, it is first necessary to
define a few terms carefully, that is, without introducing a
petitio principii.

2. DEFINITIONS

Some definitions can be given without a detailed discussion:
they are not problematic for our discussion, and do not lie at
its heart. A function is a mathematical concept: it defines a
mapping between the value of a number of arguments and a
value. A procedure, or algorithm, is a computational concept:
in its most general sense, it is a program text, that can be
called with a number of arguments, and that eventually returns
to the point immediately following that from which it was
called. It specifies a number of steps by which a certain task,
for example the calculation of the value of a function, can be
performed mechanically. An activation of a procedure is an
execution instance of that procedure: it is created when the
execution of the procedure begins, and terminated when the
end of the procedure is reached. If the procedure is executed
on a computer, its activation uses a portion of the computer’s
memory to record the data used by the procedure.

The word recursion is, like any word, ambiguous.1 Its
original meaning stems from the word ‘recur’, which comes
from the Latin word ‘recurrere’ meaning ‘to run (currere)
again (re-)’. With this meaning, any iterative process can be
called ‘recursive’, which explains that some of the early ACM
algorithms (for instance, 10-13 and 44) were described as
being ‘recursive’ although they are iterative. This is obviously
not the meaning that is used in the above discussion.

Its second meaning was introduced by H. Grassmann
in 1861,2 and formalized by R. Dedekind, who called it
‘recursion’, in 1888,> and by G. Peano in 1889.* It designates

ISee [7], especially pp. 309-311.

2[8], for example Sections 2.7, 2.15 and 2.18, 4.56 and 4.57.

3[9], p- ix, and Sections 71 and 126.

4[10], for example Section 1, axioms 1 and 6, definition 18, and Section 4,
definitions 1 and 2.

a definition in which (a) at least one of the designata (the
defined objects) is explicitly given, and in which (b) the
definiendum (the defined symbol) is used in the definiens
(the definition), with the meaning of the definiendum. Giving
a particular instance of the defined objects has long been
considered as an improper way of defining,®> and circular
or self-referential definitions have also long been considered
incorrect,® but by combining both methods with a conditional,
it becomes possible to build effective definitions. This meaning
is now well established:” recursion is a method of definition
that corresponds to the method of induction for proofs, itself
introduced by F. Maurolico in 15578 and further formalized
by B. Pascal in 1654.° (Earlier occurrences of both of these
methods can be found,'? but they are of less interest because
they did not influence later mathematicians.)

A third meaning of the word has been introduced by
K. Godel in 1931 in the study of decidable functions [21,
pp- 179-180], and he generalized it in 1934, on a suggestion
from J. Herbrand, to include functions such as the famous one
designed by W. Ackermann [22, pp. 26-27]: a function is said
to be ‘recursive’ if it is possible to define it by using a certain
given set of simple rules, one of them involving recursion in
the second sense of the word. This definition formalizes the
fact that it is possible to arrange the calculation of the function
value in such a way that each step comes closer to the result,
and became one of the ways to give a precise meaning to
the intuitive notion of ‘computable’.!! This is clearly not the
appropriate meaning for the above discussion: any procedure
is ‘recursive’ in that sense.

A fourth meaning of the word ‘recursion’ designates a
certain thought process by which a procedure is designed
in such a way that its execution is restarted on a subset of
its input data, and eventually returns to the point following
that from which it was restarted. This restarted execution
proceeds independently of any previously started executions
of the procedure, and when it returns only its results are kept.
It is that thought process that C. A. R. Hoare used to design
the Quicksort algorithm, before he knew about the possibility
of defining procedures that are recursive in the second sense.
That mental process is thus facilitated by, but does not require,
the possibility of defining recursive procedures [23, p. 76]. It
is also because of this meaning that Quicksort is said to be
a recursive algorithm, even when it is implemented without

5See, for example, [11], 287¢-289d, [12], 5d—e.

6See, for example, [13], 79b—d, [14], 209d-210a, [15], b. 6, c. 4,
142a33-bs.

7See, for example, [16], p. 217, or [17], p. 131.

8118], for example p. 7, propositio 152,

9[19], p. 7, Consequence douziesme.

10See, for example, in 1321, [20].

11171 demonstrates p. 307 that neither Godel nor Turing used the work
‘recursive’ to mean ‘computable’ after the discovery of Turing machines in
1936, and argues pp. 312315 that this third meaning of the word ‘recursive’
should be abandoned, in favor of the word ‘computable’.

SECTION A: COMPUTER SCIENCE THEORY, METHODS AND TOOLS
THE COMPUTER JOURNAL, VoL. 58 No. 11, 2015

GTOZ ‘62 4000100 U0 189Nnb Aq /B10°seulnolploxo’ julwooy/:dny wouy papeojumoq

http://comjnl.oxfordjournals.org/

2894 G. VAN DEN HOVE

explicit recursion, for example for efficiency reasons. Again,
this fourth meaning is evidently not the meaning that should be
used to interpret the above quotes, because they are concerned
with the way in which procedures are expressed, and not with
the way in which they are designed. We can therefore conclude
that the correct meaning is, in this case, the second one:
a recursive procedure declaration is a procedure that is defined
recursively, in the second sense of the word.

Finally, a recursive procedure activation is, like the
procedure activation concept, a computational concept. It
designates a procedure activation that is created at a moment
when one or more activations of the same procedure exist,
that is, when one or more executions of that procedure are not
completed. Put another way, a recursive procedure activation
does not designate an activation of a recursive procedure
(if a recursive procedure has, in a given computation, only
one activation, then it is not a recursive procedure activation),
but a recursive activation of a procedure. The word ‘recursive’
in this case is thus not derived from the second meaning
of the word ‘recursion’ (circular definition), but from the
first one: the procedure ‘runs again’, where ‘again’ should
here be understood in its cumulative sense rather than in its
iterative sense. This could well be a fifth meaning of the word
‘recursion’, similar to but nevertheless different from the first
one.

The problem posed by these two definitions is that of
the relation between recursive procedure declarations and
activations: are these concepts related, and if so, how?

3. DIRECTLY AND INDIRECTLY RECURSIVE
PROCEDURE DECLARATIONS

The definitions given in the previous section are clearly not
ad hoc definitions: they are precisely what the sentence
added in last minute to the Report designates, incidentally
without using the words ‘recursion’ or ‘recursive procedure
activation’. It reads: ‘Any other occurrence of the procedure
identifier within the procedure body denotes activation of the
procedure’.12 In this sentence, the word ‘other’ means ‘other
than in the left part of an assignment statement’, the words
‘occurrences of the procedure identifier within the procedure
body’ refer to the circular references to the procedure identifier
in the procedure declaration, and the words ‘activation of
the procedure’ refer to the (recursive) procedure activations
that correspond, during the execution of the program, to
these procedure identifiers. Let us consider for example the
following definition:

fibonacci (n) =
m=0vn=1)—n,
true — fibonacci (n — 1) + fibonacci (n —2)

12124], Section 5.4.4 in fine.

The added sentence states that it is possible to express
this definition in a straightforward fashion by the following
procedure declaration:

integer procedure fibonacci (n); integer n;
fibonacci :=if n=0 Vv n=1 thenn
else fibonacci (n — 1) + fibonacci (n — 2);

In this procedure declaration, only the two last occurrences
of the identifier fibonacci have the same meaning as the
identifier present in the procedure heading: the first one,
before the assignment symbol, is used merely to indicate
to which function procedure the calculated value should be
associated; this is useful when a procedure sets the value
of a function procedure in which it is declared (as in
the next example procedure). Dynamically, the evaluation
of fibonacci (n) creates 2 x fibonacci (n+ 1) — 1 procedure
activations, of which only one, namely the first one, is a non-
recursive procedure activation.

However, we can readily note that, as is well-known,
recursive procedure declarations do not necessarily imply
recursive procedure activations. This can be demonstrated
with the following procedure declaration, in which the inner
procedure is ‘tail recursive’:

integer procedure fibonacci (n); integer n;
begin
procedure aux (m, al, a2);
value m, al, a2; integer m, al, a2;
if m = 0 then fibonacci .= al
else aux (m — 1, a2, al + a2);
aux (n, 0, 1)
end;

The procedure aux is recursive, but its parameters are passed
by value, and the recursive call is not followed by any other
operations, which means that nothing remains to be done by
the calling activation after the end of the called activation. It
is therefore possible, and in some languages even required, to
terminate the calling activation before entering the recursive
one, that is to say, to translate the procedure aux into a
loop. This leaves us with the question: do recursive procedure
activations imply recursive procedure declarations?

Let us now conduct a thought experiment, and let us assume
from now on that the event described in the introduction did not
take place. In other words, let us consider the Report without
the contentious sentence. Let us also assume that its absence
means that procedure declarations like the previous ones are
not allowed. This restriction can easily be circumvented with
‘mutual recursion’. A set of procedures py, ..., py, withn > 2,
is mutually recursive if each procedure p; can indirectly call
any of the procedures py, ..., p,. A simple example of this kind
of definition, with n = 2, is to translate the above definition into

SECTION A: COMPUTER SCIENCE THEORY, METHODS AND TOOLS
THE COMPUTER JOURNAL, VoL. 58 No. 11, 2015

GTOZ ‘62 4000100 U0 189Nnb Aq /B10°seulnolploxo’ julwooy/:dny wouy papeojumoq

http://comjnl.oxfordjournals.org/

ON THE ORIGIN OF RECURSIVE PROCEDURES 2895

the following procedure declaration:

integer procedure fibonacci (n); integer n;
begin
integer procedure aux (n); integer n;
aux:=ifn=0 vn=1thenn
else xua (n — 1) + xua (n — 2);
integer procedure xua (n); integer n;
xua ;= aux (n);
fibonacci := aux (n)
end;

This procedure declaration evidently implies recursive
procedure activations: the evaluation of fibonacci (n) creates
2 x fibonacci (n + 1) — 1 activations of the procedure aux,
of which only one is a non-recursive activation, and 2 x
fibonacci (n + 1) — 2 activations of the procedure xua, of
which only two are non-recursive activations. It seems, given
the definition of ‘recursive procedure declaration’ given above,
that these two procedures are not recursively declared, because
the identifier aux does not appear in the declaration of the
procedure aux, and likewise for the procedure xua. However,
the definition of ‘recursion’ given above does not specify
that the definiendum has to appear explicitly in the definiens,
only that it should be used in it, which means that if one
of the elements of the definiens is itself defined with the
definiendum, the definition is recursive, albeit indirectly so. For
instance, if one defines a number as ‘something that represents
a quantity’, and a quantity as ‘a number of things’, then these
two definitions, in combination with each other, are circular.
All this implies that the two procedures above do not only
imply recursive procedure activations, but are indeed also
recursively declared.

One could now object that, given that the declaration of
directly recursive procedures is, in our thought experiment,
nowhere explicitly allowed in the Report, it is at the very least
unclear whether the declaration of indirectly recursive ones
is possible. All in all, the existence of mutual recursion does
not seem to be a totally convincing reason to consider that
Naur and Dijkstra are both wrong when they claim respectively
that ‘recursive procedure activations’ and ‘recursion’ have
been added in last minute to ALGOL 60. We will therefore
strengthen the conditions of our thought experiment, and
we will assume that recursion, that is, both direct and
indirect recursion, is not permitted in ALGOL 60. This leaves
us with a new question: is it possible to have recursive
procedure activations without having recursive procedure
declarations?

4. THE POSSIBILITY OF SELF-APPLICATION

Besides mutual recursion, another way to evade the restriction
just stated is to make use of procedural parameters. Let us
consider for example the following procedure declaration:

integer procedure fibonacci (n); integer n;
begin
integer procedure aux (n, p);
integer n; integer procedure p;
aux:=ifn=0 v n=1thenn
elsep(n—1,p)+p@n—2,p);
fibonacci = aux (n, aux)
end;

This procedure uses ‘self-application’, which means that
a procedure is passed as argument to itself. Because the
procedural argument is used inside the procedure and again
passed to the two formal procedure calls, the evaluation
of fibonacci (n) will also create 2 x fibonacci (n+1) — 1
activations of the procedure aux, of which only one is a
non-recursive activation. What makes this example especially
interesting is that the procedure aux is, according to the
definition above, not recursively declared: the identifier aux
appears nowhere in the body of the procedure, neither directly
nor indirectly. The procedure aux is defined in terms of a
certain procedural parameter p, which happens, but does not
need, to be equal to aux in the subsequent procedure call.
The most convincing argument that can be given to show
that nothing requires that p be identical to aux, and that the
declaration of aux is therefore not recursive, is to demonstrate
that it can make sense to replace the parameter aux with another
procedural parameter:

integer procedure [ucas (n); integer n;
begin
integer procedure aux (n, p);
integer n; integer procedure p;
aux :=ifn=0 v n=1thenn
elsep(n—1,p)+p@n—2,p);
integer procedure xua (n, p);
integer n; integer procedure p;
xua := (if even (n) then I else —1) x
21 (n+ Dy
lucas = aux (n, xua)
end;

This procedure, in which the Boolean procedure even
is assumed to be defined, calculates the values of the
Lucas sequence U (—2,0) = 0,1, -2,4, -8, 16, —32, 64,
—128, ..., without ever activating the procedures aux and xua
recursively; this would clearly not have been possible if the
procedure aux were declared recursively. We can thus conclude
that non-recursive procedure declarations may imply recursive
procedure activations, and that recursive procedure activations
do not imply recursive procedure declarations.

The technique of self-application is now well-known, but
one could argue that we are confusing today’s evidences and
yesterday’s evidences. We can observe for example that at
about the same time McCarthy was unaware of this technique,
and that he realized only later that the label primitive,
whereby an identifier is associated with an uninterpreted
function body which can therefore contain that identifier, was

SECTION A: COMPUTER SCIENCE THEORY, METHODS AND TOOLS
THE COMPUTER JOURNAL, VoL. 58 No. 11, 2015

GTOZ ‘62 4000100 U0 189Nnb Aq /B10°seulnolploxo’ julwooy/:dny wouy papeojumoq

http://comjnl.oxfordjournals.org/

2896 G. VAN DEN HOVE

actually not necessary in LISP, because the same effect could
have been achieved by using the so-called ‘Y combinator’
[25, p. 346], which uses that technique [l, p. 179]. It is
therefore possible that those who wrote the Report were also
unaware of this possibility. However, in November 1959, two
committee members and two non-members proposed to modify
the syntax of procedure headings, to specify the kinds of
arguments of procedural parameters by means of extra commas
and parentheses [26]. A procedure proc taking one integer
parameter n and one procedural parameter p, in which the
actual procedure parameter should take two integer parameters
and one procedural parameter, itself taking a single integer
parameter, would then have the following heading:

procedure proc (n, p (,,()));
integer n; procedure p;

They noted that ‘this prevents automatically that [the pro-
cedure identifier] is inserted in place of [the actual procedure
parameter] in the corresponding procedure statement’. In other
words, this rule renders self-application syntactically impossi-
ble. In the example above, the procedure aux would have to be
specified with the following infinite string:

integer procedure aux (1, p (,(.(G(..)));
integer n; integer procedure p;

The motivation given by the authors of the proposal, namely
to avoid that a procedure ‘calls itself indefinitely’, is however
not very clear, and could make us doubt that it was self-
application that they had in mind. Further, it would have been
possible to escape this limitation with indirect self-application,
a construction analogous to mutual recursion:

integer procedure fibonacci (n); integer n;
begin
integer procedure aux (1, p ());
integer n; integer procedure p;
aux:=ifn=0 vn=1thenn
elsep(n—1)+pmn—2);
integer procedure xua (n); integer n;
xua = aux (n, xua);
fibonacci := aux (n, xua)
end;

In this example, the declaration of the procedure aux is
again, for the same reasons as those given above, not recursive:
it is defined in terms of a certain procedural parameter p, which
does not need to be equal to xua and to refer to aux itself. On
the contrary, because it explicitly refers to aux and indirectly
to itself through the procedural parameter xua, the declaration
of the procedure xua is recursive; it must therefore, in our
thought experiment in which recursive procedure declarations
are disallowed (see Section 3), be rejected.

The fact that the authors of the proposal apparently did
not see that it was possible to circumvent the limitation they
wanted to introduce shows that the two mechanisms we have
discussed, namely mutual recursion and self-application, were

not clearly envisioned by all the authors of the Report. We
must thus conclude that they were not immediately obvious
for everyone, at the sole reading of the Report. Moreover,
one could also object that self-application is still a disguised
form of indirect recursion, because it consists in dynamically
creating, with a procedure that is not formally recursive in
the program text, another procedure that becomes recursive
during the program execution. All this leads us to strengthen
the conditions of our thought experiment a second time, and to
also disallow self-application, as for example in PASCAL, in
which it is not possible to use direct self-application because
of a syntax constraint similar to the above proposal. We are
then confronted with a stronger question: is it possible to have
recursive procedure activations without recursive procedure
declarations and without self-application?

5. THE CONSEQUENCES OF THE CALL BY NAME
MECHANISM

Let us consider the following innocent-looking function
procedure declaration, which does not use any ambiguous
features of ALGOL 60, and is in particular not recursive: 13

integer procedure gips (i, n, var, val);
integer i, n, var, val;

begin
for i := [step / until n do var :=val;
gips =1

end;

It is possible, using only this procedure and a single
assignment statement, to calculate the Fibonacci numbers:

integer procedure fibonacci (n); integer n;
begin integer i, j, k, [;
gips (i, n+1)+2 4+ 1,k,if i =gips (j,
i —1,1,ifj =1 then [else (I x (n
—2xi+j+2)=(G— 1)) then0
else k + 1);
fibonacci =k
end;

The inner workings of this procedure are admittedly a bit
obscure (the numbers are calculated with a sum of binomial

coefficients ZiLSoH)/ A=t ("=17)), but it is clear that it does
not use any feature of the language that is not documented
in black and white in the Report. What it does use is the
call by name mechanism, whose semantics are specified as
follows: ‘any formal parameter [called by name] is replaced,
throughout the procedure body, by the corresponding actual
parameter’ [24, Section 4.7.3.2]. Given that the procedure
identifier gips appears in the fourth parameter passed by name
to the procedure gips, and given that this parameter is evaluated
for each possible value of n passed to fibonacci, it is clear that

Bt is inspired by the ‘general problem solver’ in [27, p. 271].

SECTION A: COMPUTER SCIENCE THEORY, METHODS AND TOOLS
THE COMPUTER JOURNAL, VoL. 58 No. 11, 2015

GTOZ ‘62 4000100 U0 189Nnb Aq /B10°seulnolploxo’ julwooy/:dny wouy papeojumoq

http://comjnl.oxfordjournals.org/

ON THE ORIGIN OF RECURSIVE PROCEDURES 2897

the procedure gips is activated recursively: for any n > 0, the
procedure gips is activated two times at the same moment, at
least once.

One could argue that this example does not correspond to
the definition of recursive procedure activations given above;
one might think that it means, implicitly, that the number of
simultaneous procedure activations varies from call to call
and is unbounded. This understanding is, however, incorrect:
recursive procedure activations are present as soon as there is
more than one activation of a given procedure, and it is then
in particular no longer possible to store the data used by the
procedure at a fixed place in the computer memory, which
was the standard way of implementing subroutines before
1960. By the way, if a program contains a call to gips with
fibonacci in one of its parameters, or a call to fibonacci with a
call to fibonacci in its parameter, the number of simultaneous
activations of the procedure gips would increase.

We can now finally conclude that the answer to our question
is, beyond any reasonable doubt, negative: recursive procedure
activations do not necessarily imply recursive procedure
declarations. Put another way, procedures can be activated
recursively even with a very restricted subset of ALGOL 60,
from which all the possibilities of recursion have been
removed. This means that the sentence added in last minute
in the Report did not add recursive procedure activations to the
language, as Naur claimed, and consequently that it did not add
any burden for those who had to implement it. This also means
that it was not even possible to implement the preliminary
language ALGOL 58, defined one-and-a-half years earlier,
without implementing recursive procedure activations, because
it used the call by name mechanism as its sole parameter
passing mode [28, Section 2.4.9].

Perhaps the most tangible proof of this is to look at
the subsets of ALGOL 60 that were defined with the
aim of simplifying the implementation of the language,
and in particular to allow compilers to establish a fixed
correspondence between identifiers and memory locations.'*
If it were because of the contentious sentence that recursive
procedure activations were present in ALGOL 60, it would
have been enough to simply remove it. On the contrary, to
define the subsets, one had to add a number of sentences to
the Report to make sure that no recursive procedure activations
are possible. These sentences disallow recursion by stating that
a procedure identifier has no meaning before the end of the
procedure declaration, 15 or disallow mutual recursion either by
requiring that procedures are declared before they are used'® or
by limiting the occurrences of identifiers in block heads,!” or
disallow self-application by requiring that all the parameters

4gee for example [29], modification to Section 5.2 and modification (e) to
Section 5.4.

15[30], p. 72, Section 8.2, rule 2, and p. 75, Section 11.1.

16[29], modification (b) to Section 4.7.

17[31], modification to Section 5.

of a formal procedure be called by value,'® or simply disallow
recursive procedure activations explicitly:

No call of the procedure itself may occur during the execution
of the statements of the body of any procedure, nor during the
evaluation of those of its actual parameters, the corresponding
formal parameters of which are called by name, nor during the
evaluation of expressions occurring in declarations inside the
procedure. 19

Recursive calls on procedures are not permitted. A recursive
call is defined as one where you have begun to set up parameters
for a call of a certain procedure or have entered it, and then the
procedure is entered again before it is exited. For example, [...]
f(x, f(y,z)) would be a recursive call on procedure f, even if both
of its parameters were called by value, since fis entered a second
time while the parameters are being set up for the first call of 120

The extreme level of detail of these sentences shows clearly
that it was, as we have shown, actually quite difficult to remove
recursive procedure activations from ALGOL 60. The last
one of these sentences also shows that the situation described
above with the gips procedure might even occur for parameters
passed by value, if the procedure activations are created before
the values of their parameters are calculated. In this case
however, the existence of recursive procedure activations is
not necessary: an alternative implementation scheme can be
chosen, in which that order is reversed.

If the sentence added in last minute did not add recursive
procedure activations to the language, did it at least add
recursion to the language? We have assumed so far, in our
thought experiment, that the answer to that question was
positive, but it is actually negative. The semantics of procedure
statements are indeed defined as follows in the Report [24,
Section 4.7.3]: (a) each of the parameters called by value
becomes a local variable, and is initialized to the value of
the corresponding actual parameter, (b) each occurrence of the
formal identifiers of the parameters called by name is replaced
by the text of the corresponding actual parameter (before
this operation, the identifiers that appear in the procedure
body must, if necessary, be renamed, to avoid unintended
identifications of originally distinct identifiers), and (c) the
modified procedure body is inserted in place of the procedure
statement and executed.

These semantics define, in particular, by means of
substitution rules and without any ambiguity, the execution
of a procedure statement ‘p(...)° in the body of a
procedure g. There are no reasons whatsoever, except the
(wrong) impression that recursive procedure declarations make
ALGOL 60 harder to implement, to believe that these rules
do not apply when p happens to be identical to ¢, as Naur
claimed when he wrote that there was an ‘important lack of
definition’ for these identifiers, because the result of the above

18[29], modification (d) to Section 4.7.
19131, 32], modification to Section 4.7.5.
201291, modification (c) to Section 4.7.

SECTION A: COMPUTER SCIENCE THEORY, METHODS AND TOOLS
THE COMPUTER JOURNAL, VoL. 58 No. 11, 2015

GTOZ ‘62 4000100 U0 189Nnb Aq /B10°seulnolploxo’ julwooy/:dny wouy papeojumoq

http://comjnl.oxfordjournals.org/

2898 G. VAN DEN HOVE

operations is no less defined in that case. If, on the contrary, the
semantics of a program had been defined by the replacement
of all the procedure statements by the corresponding procedure
bodies before the program execution, then there would have
been at least a reason to think that recursive procedure calls are
not possible, namely because this replacement process would
create an infinite program text; but such is not the case. We can
therefore conclude that the sentence was not only ‘innocent’,
but that it was even redundant with the rest of the Report. It
is thus clear that the introduction of recursion in ALGOL 60
was not at all an ‘accident’ or a ‘coup’, as Dijkstra claimed.
This conclusion has already been stated by K. Samelson,
when he wrote that the sentence was ‘superfluous’ and that
‘saying nothing about recursivity automatically introduced it
in full’, but he did not argument it, besides declaring that
‘the meaning of procedure [...] identifiers in procedure bodies
was always clear by syntactic position’ [33, p. 133]. Naur
apparently changed his mind after reading Samelson’s remarks,
and said that recursion was ‘almost the obvious thing’, while
maintaining that the contentious sentence ‘is the way [recursive
procedure activations] came in’ [5, p. 159].

It is clear that recursive procedures were, in 1960, a
controversial notion, incidentally for the same reasons that
high-level programming languages were, at the same moment,
controversial. The principal of these reasons was efficiency: in
both cases a certain loss of computing power is unavoidable.
It is, however, equally clear that recursion was present in
ALGOL 60 from its inception. While it has seemed to many
of those who were involved in its design that it was necessary
to struggle to get it included in the language, what actually
happened is that it has been necessary to struggle to exclude it
from the language; this became clear when attempts were made
to define subsets in which it was prohibited. This leaves us with
a last question: where did recursion in ALGOL 60 come from?

It appears that recursion and recursive procedure activations
have been introduced in ALGOL 60 because of the influence
of mathematics on the design of the language. Its first
declared objective was to be ‘as close as possible to standard
mathematical notation’ [28, Section 1], and indeed both
recursion and the call by name mechanism, that cannot be
implemented without recursive procedure activations, are part
of ‘standard mathematical notations’. This is obvious for
recursion, and can be seen, for the call by name mechanism,
in the natural way in which arguments are handled in
mathematics, namely by replacing, in the function definition,
the occurrences of the symbol corresponding to an argument
by the symbols of the argument itself. The same mechanism
is used in multiple summations for example, or in the
calculation of integrals. It is tempting to think that ALGOL 60
was influenced, more specifically, by lambda-calculus, for
example through McCarthy, who was part of the committee.
A. Church developed lambda-calculus about two decades
earlier, and it was defined with rules that are similar to those
of ALGOL 60 [34, Section 6]. However, McCarthy admitted

that at that time he ‘didn’t understand’ lambda-calculus besides
the lambda-notation [1, p. 176, 35, p. 190], and the first
implementations of LISP did not conform to its semantics
[1, p. 180]. There is, to the best of our knowledge, no evidence
of a direct influence of lambda-calculus on ALGOL 60:
it is, for example, never evoked in the documents of the
preparatory discussions. What happened is, most probably,
that both of them were independently influenced by ‘standard
mathematical notations’. What can thus be done, and what
has already been done by P. J. Landin, is to establish a
correspondence between them [36, 37].

6. CONCLUSION

Contrary to what their names seem to indicate, recursive
procedure declarations and recursive procedure activations
are two logically disjoint concepts: neither of them implies
the other. Both of them were introduced in ALGOL, and
from then on in imperative programming languages, because
of the influence of mathematics. Recursive declarations are,
in the end, an innate characteristic of a language in which
declarations are defined by a recursive syntax, and recursive
activations are an innate characteristic of a language whose
semantics are defined by substitution rules.

ACKNOWLEDGEMENTS

The author would like to thank K. R. Apt, M. H. van Emden,
P. Klint, B. Le Charlier and P. MclJones for their comments
and suggestions during the preparation of this article, and
the anonymous reviewers for their insightful remarks and
recommendations.

FUNDING

This research was supported by the NWO (Netherlands
Organisation for Scientific Research) Free Competition Grant
number 612.001.003.

REFERENCES

[1] McCarthy, J. (1981) History of LISP. In Wexelblat, R.L. (ed.),
History of Programming Languages, pp. 173—-185. Academic
Press, New York.

[2] McCarthy, J. (1959) On conditional expressions and recursive
functions. Commun. ACM, 2(8), 2-3.

[3] Naur, P. (1981) The European Side of the Last Phase of the
Development of ALGOL 60. In Wexelblat, R.L. (ed.), History
of Programming Languages, pp. 92-139. Academic Press,
New York.

[4] Dijkstra, E-W. (1999) Computing science: achievements and
challenges. ACM SIGAPP Appl. Comput. Rev., 7, 2-9.

SECTION A: COMPUTER SCIENCE THEORY, METHODS AND TOOLS
THE COMPUTER JOURNAL, VoL. 58 No. 11, 2015

GTOZ ‘62 4000100 U0 189Nnb Aq /B10°seulnolploxo’ julwooy/:dny wouy papeojumoq

http://comjnl.oxfordjournals.org/

ON THE ORIGIN OF RECURSIVE PROCEDURES 2899

[5] Naur, P. (1981) Transcript of Presentation. In Wexelblat,
R.L. (ed.), History of Programming Languages, pp. 147-161.
Academic Press, New York.

[6] Naur, P. (1962) The replies to the ALGOL-Bulletin 14
questionnaire. ALGOL-Bull., 15, 3-51.

[7] Soare, R.I. (1996) Computability and recursion. Bull. Symb.
Logic, 2,284-321.

[8] Grassmann, H. (1861) Lehrbuch der Arithmetik fiir hohere
Lehranstalten. Enslin, Berlin.

[9] Dedekind, R. (1888) Was sind und was sollen die Zahlen?
Vieweg, Braunschweig.

[10] Peano, G. (1889) Arithmetices Principia—Nova Methodo
Exposita. Bocca, Rome.

[11] Plato (ante 347 B. C.) Hippias Major.

[12] Plato (ante 347 B. C.) Euthyphro.

[13] Plato (ante 347 B. C.) Meno.

[14] Plato (ante 347 B. C.) Theaetetus.

[15] Aristotle (ante 322 B. C.) Topics.

[16] Kleene, S.C. (1952) Introduction to Metamathematics. North-
Holland, Amsterdam.

[17] Tennent, R.D. (1981) Principles of Programming Languages.
Prentice-Hall, Engelwood.

[18] Maurolico, F. (1557) Arithmeticorum Libri Duo. Senensem,
Venice (1575).

[19] Pascal, B. (1654) Traité du Triangle Arithmetique. Desprez,
Paris (1665).

[20] ben Gerschom, L. (1321) Sefer Maassei Choscheb, ed. and
tr. G Lange (Die Praxis des Rechners). Golde, Frankfurt
(1909).

[21] Godel, K. (1931) Uber formal unentscheidbare Sitze der
Principia Mathematica und verwandter Systeme . Monatshefte
[iir Mathematik und Physik, 38, 173—198.

[22] Godel, K. (1934) On Undecidable Propositions of Formal
Mathematical Systems. Institute for Advanced Study, Princeton.
Mimeographed lecture notes by S.C. Kleene and J.B. Rosser.

[23] Hoare, C.A.R. (1981) The emperor’s old clothes. Commun.
ACM, 24, 75-83.

[24] Backus, J.W. et al. (1960) Report on the algorithmic language
ALGOL 60. Commun. ACM, 3, 299-314.

[25] Kleene, S.C. (1936) A-definability and recursiveness. Duke
Math. J., 2, 340-353.

[26] Rutishauser, H., Ehrling, G., Woodger, M. and Paul, M. (1959)
Procedures (and functions) as input parameters. ALGOL-Bull., 8,
5-6.

[27] Knuth, D.E. and Merner, J.N. (1961) ALGOL 60 Confidential.
Commun. ACM, 4, 268-272.

[28] Perlis, AJ. et al. (1958) Preliminary report—international
algebraic language. Commun. ACM, 1(12), 8-22.

[29] Bachelor, GA. et al. (1961) SMALGOL-61. Commun. ACM, 4,
499-502.

[30] Baumann, R. et al. (1962) ALGOL-Manual der ALCOR-
Gruppe, Teil 3. Elektron. Rechenanl., 4, 71-85.

[31] AA. VV. (1963) ECMA Subset of ALGOL 60. Commun. ACM,
6, 595-597.

[32] AA. VV. (1964) Report on SUBSET ALGOL 60 (IFIP).
Commun. ACM, 7, 626-628.

[33] Samelson, K. (1981) Comments of 1978 December 1. In
Wexelblat, R.L. (ed.), History of Programming Languages,
pp. 131-134. Academic Press, New York. Appendix 7 of [3].

[34] Church, A. (1941) The Calculi of Lambda-Conversion. Prince-
ton University Press, London.

[35] McCarthy, J. (1981) Transcript of Presentation. In Wexelblat,
R.L. (ed.), History of Programming Languages, pp. 185-191.
Academic Press, New York.

[36] Landin, P.J. (1965) A Correspondence between ALGOL 60
and Church’s Lambda-Notation: part I. Commun. ACM, 8,
89-101.

[37] Landin, PJ. (1965) A correspondence between ALGOL 60
and Church’s Lambda-Notation: part II. Commun. ACM, 8,
158-165.

SECTION A: COMPUTER SCIENCE THEORY, METHODS AND TOOLS
THE COMPUTER JOURNAL, VoL. 58 No. 11, 2015

GTOZ ‘62 4000100 U0 189Nnb Aq /B10°seulnolploxo’ julwooy/:dny wouy papeojumoq

http://comjnl.oxfordjournals.org/

	1 Introduction
	2 Definitions
	3 Directly and Indirectly Recursive Procedure Declarations
	4 The Possibility of Self-Application
	5 The Consequences of the Call by Name Mechanism
	6 Conclusion

