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Prof. Dr. İ. Hakkı Toroslu
Co-supervisor, Computer Engineering Department, METU

Examining Committee Members:

Prof. Dr. Ahmet Coşar
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ABSTRACT

PREDICTING THE LOCATION AND TIME OF MOBILE PHONE USERS BY
USING SEQUENTIAL PATTERN MINING TECHNIQUES

Özer, Mert
M.S., Department of Computer Engineering

Supervisor : Assoc. Prof. Dr. Pınar Karagöz

Co-Supervisor : Prof. Dr. İ. Hakkı Toroslu

July 2014, 63 pages

Predicting the location of people from their mobile phone logs has become an active
research area. Due to two main reasons this problem is very challenging: the log
data is very large and there is a variety of granularity levels both for specifying the
spatial and the temporal attributes, especially with low granularity level it becomes
much more complicated to define common user behaviour patterns. For the location
prediction problem domain, we focused on 3 sub-problems and proposed 3 different
methods for these problems. The idea in all of the three methods follows these two
steps; cluster the spatial data into the regions and group temporal data into the time in-
tervals to get higher granularity level, and apply sequential pattern mining techniques
to extract frequent movement patterns to predict accordingly. We have validated our
results with real data obtained from one of the largest mobile phone operators in
Turkey. Our results are very encouraging, and we have obtained very high accuracy
results in predicting the location of mobile phone users.

Keywords: Location Prediction, Mobile Phone Users, Sequential Pattern Mining,
AprioriAll Algorithm
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ÖZ

MOBİL TELEFON KULLANICILARININ SIRALI ÖRÜNTÜ MADENCİLİĞİ
TEKNİKLERİ İLE KONUM VE ZAMAN TAHMİNİ

Özer, Mert
Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Doç. Dr. Pınar Karagöz

Ortak Tez Yöneticisi : Prof. Dr. İ. Hakkı Toroslu

Temmuz 2014 , 63 sayfa

Telefon kullanım kayıtlarından insanların konumlarının tahmini aktif bir araştırma
alanı haline gelmiştir. Kullanım kayıtlarının büyüklüğü ve mekansal ve zamansal bil-
gilerin oldukça farklı tanecik seviyelerinde incelenebilir olması bu problemin zorlaş-
masının iki ana sebebini oluşturur; özellikle küçük tanecik seviyelerinde kullanıcıla-
rın ortak davranış örüntülerini çıkarmak çok daha zorlaşır. Konum tahmini problemi
alanı için 3 tane alt problem tanımladık ve bu problemler için 3 farklı metod öner-
dik. Bütün metodlardaki temel düşünce şu iki adımı takip eder; konum bilgisini daha
büyük alanlara grupla ve zaman bilgisini daha büyük zaman aralıklarına grupla ve
daha sonra sıralı örüntü madenciliği yöntemleri uygulayarak sonuçlara göre konum
tahmininde bulun. Sonuçlarımızı Türkiye’nin en büyük mobil operatörlerinden birin-
den alınan gerçek veriler ile doğruladık. Sonuçlarımız oldukça cesaret verici ve cep
telefonu kullanıcılarının konumlarının tahminlerinde çok yüksek doğruluk değerleri
elde ettik.

Anahtar Kelimeler: Yer Tahmini, Cep Telefonu Kullanıcıları, Sıralı Örüntü Madenci-
liği, AprioriAll Algoritması
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CHAPTER 1

INTRODUCTION

In today’s world, mobile phones are commonly used devices. Basic usage information

including base station, call records, short message records, GPS records are logged

and used by mobile phone operator companies for various purposes. One of these

purposes is location prediction which helps companies to model their users’ daily life

behaviour. By modelling behaviour of their users, companies build more reasonable

advertisement strategies. These results may also be used by city administrators to

determine mass people movement patterns (in terms of location and time) around the

city.

User location prediction can be studied in terms of different levels of granularities.

Determining the exact coordinate and the time of the next location of a person is

almost impossible. Mobile phones are usually attached to the nearest base stations.

Therefore, each base station coordinate can be considered as the center of a region,

and location prediction can be made at this granularity level. In densely populated

city centers, these regions will be very small and in rural areas they will be very large.

Also due to large number of base stations in densely populated areas, the movements

of people will correspond to jumping over many areas because the number of records

during the movement potentially will not be large enough to have records for each

region that have been passed. Therefore, it is worth to cluster base stations using their

coordinates to define fewer number of regions. Moreover patterns involving high

number of very small regions are not suitable for interpreting mass people movements

in an urban area.

In this work we have empirically set the number of regions to 100 after trying some
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larger and smaller values. With this many regions we had small number of jump overs

and still the area sizes of the regions became small enough to capture the details of

the people movements. Also notice that by clustering we have obtained regions with

sizes closer to each other. Moreover different number of regions are analyzed as well.

In this work Call Detail Record (CDR) data obtained from one of the largest mobile

phone operators in Turkey has been used. A quick analysis of our data shows that

more than 80% of users’ next location is their current location. Only 20% of the data

contains different locations between two consecutive records of each user. Therefore,

although we present the results for next location prediction here, it makes more sense

to predict this change rather than predicting the next location, which will be the same

one for 80% of data. This idea comprises our second problem definition and second

proposed method; next location change prediction using spatial data.

These two approach are based on constructing the regions by clustering the base sta-

tions and then applying sequence pattern mining techniques. In order to realize this,

we follow four phases, which are preprocessing the data, clustering base stations, ex-

tracting sequence patterns mining methods and predicting the change of location for

mobile phone user.

User location change prediction can also be studied with different conducive attributes

to increase accuracy rates such as temporal attributes. As a third problem definition,

we introduced the next location change prediction using spatio-temporal data. In

this domain, we both used historical temporal information and predicted the time of

the next location change. Experiments shows that spatio-temporal sequence mining

gives more valuable prediction accuracies rather than simply using spatial attribute.

Moreover alignments on spatial and temporal attribute of the sequences augment the

probability of pattern matching. All three solutions embraces the basics of Apriori-

All algorithm. The experiments show that the methods we proposed generates both

concrete and complete location predictions.
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CHAPTER 2

RELATED WORK

In this chapter, we give information about the previous works that deal with the prob-

lem of location prediction. We also summarize various aspects of each technique.

In recent years, a variety of location prediction schemes and scientific findings about

human mobility have been presented in [5], [3], [21], [17], [7], [9], [6], [15], [22],

[20], [19], [8], [4].

Some findings about the human mobility habits and its predictability are presented in

[6] and [15]. In [6], Montjoye et al. proposes a method using both voronoi diagrams

involving base stations and spatial and temporal properties of users’ movement data

to find the minimum number of points enough to uniquely identify individuals. They

propose that four randomly chosen points are enough to characterize 95% of the users

while two of them characterize more than 50%.

In [15], Song et al. analyze the limits of predictability in human mobility. They

used the data collected from mobile phone carriers for 3-month-long of 50,000 in-

dividuals. They propose three entropy measures which is believed to be the most

fundamental quantity to analyze the limits of predictability, the random entropy, the

temporal-uncorrelated entropy and the actual entropy. They also use a probability

measure for correctly predicted user’s future movements. They find that 93% poten-

tial predictability in user mobility at best and it is not under 80% for any user.

There are other methods to use for location prediction problem rather than sequential

pattern mining such as markov models and expectation maximization algorithms. In

[17], Thanh et al. make use of Gaussian distribution and expectation maximization
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algorithm to learn the model parameters. Then, mobility patterns, where each is char-

acterized by a combination of common trajectory and a cell residence time model,

are used for making predictions. They use Gaussian mixture models to find similari-

ties in cell-residence times of mobile users. They outperform the methods that ignore

temporal characteristics of user movements. However they are in need of studying

their method in real data.

In [7], Gao et al. use both spatial and temporal data to predict users’ location. They

propose 10 models which can be categorized as spatial-based, temporal-based and

spatio-temporal. They make use of Bayes’ rules for their prediction models which

use historical data while predicting the next location. They also make use of Markov

Models to build 2 of their models. For the best model named as HPY Prior Hour-Day

Model, they managed to predict user locations with an accuracy rate of 50%. They

do not use any social network information together with spatio-temporal patterns.

In [9], Gidofalvi et al., proposes a method which use both spatial and temporal GPS

data for building Markov Model which is used for next location and time prediction

of user. In other words, they both predict the change of location and when this change

occurs. They use an Inhomogeneous Continuous-Time Markov(ICTM) model since

the prediction depends on the previous locations and time. They use both spatial and

temporal information for building the model. Their ICTM model predict the departure

time correctly with the 45 minute error and the next region correctly 67% of the cases.

Similar to our work, in [19], [8] and [4], they propose sequential pattern mining

techniques for the location prediction problem. In [19], Yavas et al. propose an

AprioriAll-based algorithm which is similar to our three methods. They extract fre-

quent user trajectories which they name user mobility patterns (UMP) from a user

move database and predict the user’s next movement accordingly. However they do

not use any spatial or temporal information while extracting UMPs or predicting. The

rules are consist of only cell ids rather than any spatial attribute. They introduce align-

ment parameters on the length of the sequences and maximum number of predictions

as ours. They claim that they get higher accuracies than the methods of Mobility

Prediction based on Transition Matrix and Ignorant Prediction.

In [8], Giannotti et al. propose methods to solve different trajectory pattern mining

4



problems. They define spatio-temporal sequences as the pairs of spatial attribute and

the time that user has spent in there. They also try to detect the popular regions

which is named as ROI. The difference with the conventional sequence pattern mining

technique is the use of trajectories (T-patterns) rather than itemsets. Their method for

mining T-patterns extract both computationally feasible and useful patterns.

In [4], Cao et al. introduces a method for discovering of periodic patterns in spa-

tiotemporal sequences. They also make use of an AprioriAll-based algorithm for

extraction of periodic patterns. The distinctive feature of these periodic patterns is

that they are not frequent in the whole time span but in some time interval, so they

change their support definition accordingly.

There are various works that try to further increase the prediction accuracies by the

help of social networks. In [5], Cho et al. proposes that general human mobility

do not have a high degree of freedom and variation as it is believed. They work

on three features of human mobility; geographic movement, temporal dynamics and

the social network. Social network is used since human mobility is partly driven

by our social relationships, e.g. we move to visit our friends. They use three main

data source where two of them are popular online location based social networks,

Gowalla and Brightkite and the other is a trace of 2 million mobile phone user’s

phone activity in Europe. They find that social relationships can explain about 10%

of human movement in cell phone data and 30% of movement in location based social

networks. However periodic movement behaviour explains about 50% to 70% of it.

They develop an expectation maximization based prediction model and they reach

40% accuracy while predicting user’s location at any time.

In [3], Boldrini et al. propose a model that integrates 3 main properties believed to

be fundemental for human mobility. First, user mobility largely depends on their

social relationships. Second, users are disposed to spend their most of time in a few

locations. Third, users mostly move shorter distances rather than the longer ones. The

main novelty of their model named Home-cell Community-based Mobility Model

(HCMM) is to integrate these three features. They incrementally improved HCMM

starting with a pure social-based model and mathematically justifying the need for

extending the features. Finally they claim that HCMM is able to regenerate the main

5



properties of human movement patterns.

In [21], Zhang et al. further improves the user mobility models of [3] and [5] by

amplifying the effect of social network information in location prediction. They also

claim that call patterns are strongly related with co-locate patterns and mainly affect

user short-time mobility. They further propose a method named NextMe which takes

social interplay into consideration as well. However this time, when the social inter-

play will affect social mobility is identified and used accordingly. They validate their

scores with the MIT Reality Mining dataset. They reach up to 60% accuracy levels

for the prediction with their NextMe method.

Rather than using social relationships or networks of the user, in [22] and [20] they

make use of the distinctive features of spatial attribute in the data. In [22], Zheng et

al. aim to extract interesting locations such as culturally significant places, shopping

malls, city centers etc., and travel sequences from multiple users’ GPS logs. They

used tree-based hierarchical (TBHG) to model user’s historical movement patterns

then introduce a HITS (Hypertext Induced Topic Search)-based inference model,

which represents one of the users’ travel to a location as a vertex. The weight of

the vertex is defined by user’s experience. Location’s interest is also defined by user’s

experience as well as the number of user’s visit. They claim that such model can

be used for location recommendation like a mobile tourist guidance. They evaluated

their method with the GPS data of the 107 users of a 1 year period.

In [20], Ying et al. proposes an algorithm which uses semantic labels for locations

rather than just using spatial attributes. They explore semantic trajectories of the

users and predict the next location of the user accordingly. Rather than using sequen-

tial pattern mining techniques, they use clustering methods for next location predic-

tion. They group users hierarchically according to their semantic trajectories by using

Maximal Semantic Trajectory Pattern Similarity (MSTP-Similarity) which they de-

fine. It was the first work which combines the semantic tags for location and spatial

attributes for next location prediction problem and their proposed location prediction

model has excellent performance.
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CHAPTER 3

BACKGROUND

In this chapter, basics of conventional algorithms used in this work are introduced. In

the first section, definition of clustering and one clustering method namely k-means

are presented. In the second section, the definition of sequential pattern mining and

the AprioriAll algorithm are presented.

3.1 Clustering

Cluster analysis groups data objects based only on information found in the data that

describes the objects and their relationships. The goal is that the objects within a

group be similar (or related) to one another and different from (or unrelated to) the

objects in other groups. The greater the similarity (or homogeneity) within a group

and the greater the difference between groups, the better or more distinct the clus-

tering [16]. Clustering methods can be categorized according to their two attributes;

nested or not and exclusive or overlapping or fuzzy. We preferred a non-nested and

exclusive clustering method for clustering the base stations since we needed each

base station to be the member of only one cluster and did not need any hierarchical

connection between clusters.

3.1.1 K-Means Algorithm

K-Means Algorithm is a non-nested and exclusive clustering method which embraces

the idea of grouping similar objects into same clusters and non-similar objects into
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different clusters. It was the first time when its name was used in [12] while the more

efficient version of it is introduced in [11]. Formally, given a data set, D, of n objects,

and k, the number of clusters to form, k-means algorithm organizes the objects into

k partitions (k <= n), where each partition represents a cluster[10]. The number

of partitions k is expected to be defined by the user. Partitioning is done according

to the centroids of the clusters. Each data object is assigned to the nearest cluster

while the concept of nearness can be defined using several distance metrics such as

Euclidian, Manhattan, Chebychev distances etc. Distance metric is chosen according

to the problem definition.

Algorithm can be divided into two steps; data assignment and relocation of centroids.

After every data object assignment to the partitions are completed, new centroids

are found by computing the means of the elements of that particular partition. This

process is iterated recursively until the members of partitions do not change or some

user defined condition is satisfied.

Algorithm 1 K-Means Algorithm
Input: Dataset D, number of clusters k

Output: Set of cluster centroids C, cluster membership vector m

1: function KMEANS(D, k, C, m)

2: Randomly choose k data points from D

3: Use these k points as initial set of cluster representatives C

4: repeat

5: Reassign points in D to closest cluster mean

6: Update m such that mi is cluster id of ith point in D

7: Update C such that cj is the mean of points in jth cluster

8: until convergence of objective function

9: end function

Usually, algorithm’s objective function is to minimize the total squared Euclidean

distance between each point and its closest centroid. It can be formulated as follows

where xi represents the ith data object and cj represents the centroid of the jth cluster;

k∑
i=1

argmin
j
||xi − cj||22 (3.1)
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Drawbacks of the algorithm can be summarized in 4 aspects. First, because of the

greedy nature of the algorithm, user defined initial centroids matter. In other words,

there is no one correct clustering output for the algorithm, it is affected by the initial

centroids. Second, choosing k can be difficult since the default algorithm do not

generate or suggest any optimal number for how many clusters there should be. Third,

standard algorithm is sensitive to outliers and last, it does not guarantee against empty

clusters.

3.2 Sequential Pattern Mining

The concept of sequential pattern mining is first introduced by Agrawal and Sirikant

in [2] as follows; Given a set of sequences, where each sequence consists of a list

of elements and each element consists of a set of items, and given a user-specified

minimum support threshold, sequential pattern mining is to find all frequent subse-

quences, i.e., the subsequences whose occurrence frequency in the set of sequences

is no less than minimum support.

In the spatio-temporal context, sequential pattern mining can be expressed as follows

similar to Agrawal and Sirikant’s definition. Given a set of sequences, where each

sequence consists of a list of elements and each element consists of a spatial and

temporal attributes, and given a user-specified minimum support threshold, spatio-

temporal sequential pattern mining is to find all frequent time ordered movement

pattern subsequences. In general, sequence of k elements is denoted in a form such

as s =< s1, s2, s3, ..., sk >. A sequence s1 is subsequence of s2 if and only if all ele-

ments of s1 is contained in s2 in the same order. The concept of minimum support is

the same as in the conventional itemset problems. Support of a sequence is the ratio of

the number of the occurence of the sequence in the whole database to the total num-

ber of sequences with the same length in the whole database. A sequence satisfying

the minimum support constraint is called a frequent sequence [18] or a large/maximal

sequence. A sequence containing k elements is represented by k-sequence.
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3.2.1 AprioriAll Algorithm

AprioriAll is a sequential pattern mining algorithm first introduced in [2] after in-

troducing Apriori algorithm in [1] which constitutes a base for the AprioriAll. It is

designed for extracting maximal sequences from a database. It consists of five phases,

namely sort phase, fitemset (frequent itemset) phase, transformation phase, sequence

phase and maximal phase. The main phase is the sequence phase while first three

phase can be considered as a preprocessing phases and the last phase as a postpro-

cessing phase.

In the first phase, database D is modified by taking sequence id and transaction time

into consideration. Transaction time is used for creating time ordered sequences.

Sequence id is used for making elements with same id appear in the same sequence.

This phase is needed for the sake of convenience of the following phases.

In the second phase, the set of all large 1-sequences are extracted. In this phase, all

fitemsets can be obtained by using conventional Apriori algorithm with the relevant

modifications in counting and support. These fitemsets are mapped to ordinal integers

so that comparing two fitemsets takes constant time.

In the third phase, each database entry or in other words transaction is modified such

that the elements that are not the member of any fitemset are eliminated in that trans-

action. If there exist no element in transaction after elimination, it is not retained in

the transformed database DT anymore. However it is still used for counting the total

number of sequences.

In the fourth phase, new candidate sequences are generated. The candidates are gener-

ated by using the previously generated fitemsets or maximal sequences. To generate

k-sequence candidates algorithm uses (k-1)-sequences. It basically joins the (k-1)-

sequences to find candidate k-sequences. After each candidate generation, algorithm

counts the occurrences of the candidates in the database. This information is used for

eliminating the sequences that fall below the predefined minimum support value.

In the fifth phase, frequent sequences that are not maximal are eliminated and a set

containing maximal sequences are generated. Algorithmic definition of the Apriori-
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All algorithm can be seen in Algorithm 2 taken from [18].

Algorithm 2 AprioriAll Algorithm
Input: Dt: transformed database of transaction sequences

minsup: minimum support parameter

Output: frequentPatterns: the set of large sequences

1: F1 = frequent 1-sequences;//Result of fitemset phase

2: for k = 2; Fk−1 6= ∅; k++ do

3: Ck = apriori-gen(Fk−1);//New candidate sequences

4: for all transaction sequence t ∈ Dt do

5: Ct = subseq(Ck, t);//Candidate sequences contained in t

6: for all candidate c ∈ Ct do c.count++

7: end for

8: end for

9: Fk = {c ∈ Ck|c.count ≥ minsup};

10: end for

11: frequentPatterns = maximal sequences in ∪kFk
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CHAPTER 4

DATA AND PROBLEM DEFINITION

In this section, we present details of data used in this work and we give the definitions

of three problems related with location prediction problem.

4.1 Call Detail Record Data

In this work we utilized the CDR data of one of the largest mobile phone operators

of Turkey. The data corresponds to an area of roughly 25000 square km with a pop-

ulation around 5 million. Almost 70% of this population is concentrated in a large

urban area of approximately 1/3 of the whole region. The rest of the region contains

some mid-sized and small towns and large rural area with a very little population.

The CDR data contains roughly 1 million user’s log records for a period of 1 month.

For each user there are 30 records per day on average. The whole area contains more

than 13000 base stations.

Each record in data represents one of the followings; voice caller, voice callee, sms

sender, sms receiver, gprs connection. Besides these cases, no record exists in the

CDR data. These records consists of 11 attributes namely, base station id #1, phone

number #1, city plate of the phone number #1, base station id #2, other phone number,

city plate of the other phone number, call time, cdr type, url, duration, call date. Defi-

nition of these attributes and example record attributes are presented in the following

subsection.
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4.1.1 Attributes

• base station id#1: unique integer representing the base station which caller, sms

sender or gprs user connected to. e.g. 17083

• phone number#1: unique string representing the caller, sms sender or gprs user.

Due to the privacy reasons, it is not a regular phone number.

e.g. 7bcfc0259b9c8a4af95177a7e79bcd28

• city plate of the phone number #1: an integer that represents the city user started

a call or a gprs connection, or sent an sms. e.g. 06

• base station id #2: unique integer representing the base station which callee

or sms receiver is connected to. It is null if the type of the record is gprs

connection. e.g. 17083

• other phone number: unique string that represents the callee or sms receiver.

Due to the privacy reasons, it is not a regular phone number. It is null if the type

of the record is gprs connection. e.g. 28119ffa652d31607a3bb573bd3d594b

• city plate of the other phone number: an integer that represents the city callee

or sms receiver is in. e.g. 06

• call time: The time that action started in a "hhmmss" format. e.g. 170251

• cdr tpye: It can be one of the following;

– mmo: voice caller

– mmt: voice callee

– msmo: SMS sender

– msmt: SMS receiver

– gprs: GPRS connection

• url: It is used only for GPRS data. It represents the url that user tries to get.

• duration: It is an integer that represents the duration of the call. It is null for

sms. e.g. 47

• call date: it is the date that action performed in a "yyyyMMdd" format. e.g.

20120907
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4.2 Problem Definition

In this section, we introduce the 3 narrower problem definitions for broader location

prediction problem namely, next location and time prediction using spatio-temporal

data, next location change prediction using spatial data and next location change and

time prediction using spatio-temporal data. For all three problems there are common

unnecessary attributes in data such as, city plate, cdr type, url, duration. These at-

tributes are eliminated since they are not used in further computations. Call time can

also be eliminated according to the problem type. We use the term action for any type

of phone activity such as voice call, sms, gprs.

4.2.1 Next Location and Time Prediction Using Spatio-Temporal Data

The aim for this problem is to predict the location and the time of the next action in the

next time interval of the user roughly. Rather than predicting exact coordinate or base

station, it is aimed to find the next region of the user. For this reason, base stations are

grouped into the regions and prediction is done accordingly. Moreover, rather than

using exact time information, predicting the time interval of the next action is aimed.

Daily user sequences are temporal ordered location and time information pair se-

quences of the user. For one time interval, there exists one location and time infor-

mation pair. The location with the most occurrence in the time interval represents the

location attribute for that particular time interval. These records are stored in the user

sequence database D′.

The problem can be formalized as follows; given a user sequence database D′ (ob-

tained from CDR database D) containing daily user sequences, the problem is to find

the region and time interval of the next action in the next time interval by using the

historical movement sequences.
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4.2.2 Next Location Change Prediction Using Spatial Data

The aim for this problem is to predict the next location of the user when he/she

changes his/her location. This problem is defined since people usually do not change

their location between two actions and this causes misleading high accuracies for the

solution of the first problem. Rather than trying to find the location of the next action,

we focused on the prediction of the location when the user changes his/her.

For this problem, daily user sequences do not contain the time information. It is

used only for temporal ordering while converting CDR database D to user sequence

database D′.

The problem can be formalized as follows; given a user sequence database D′ (ob-

tained from CDR) database D containing daily user sequences, the problem is to find

the next location of the user when he/she changes his/her location by using historical

movement sequences.

4.2.3 Next Location Change and Time Prediction Using Spatio-Temporal Data

The aim for this problem is to predict the next location and time of the user when

he/she changes his/her location. The difference is that, it is tried to predict the tem-

poral information of the next action when the user changes its location, compared to

the second problem definition. Rather than predicting exact time of the action, it is

aimed to find the time interval that action takes place in.

Daily user sequences contain both spatial and temporal information of the actions.

Different than the one in the first problem definition they contain successive repetitive

time intervals.

The problem can be formalized as follows; given a user sequence database D′ (ob-

tained from CDR database D) containing daily user sequences, the problem is to find

the next location of the user and the time of the action when he/she changes his/her

location by using historical movement sequences.
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CHAPTER 5

PROPOSED METHODS

In this section we introduce our three solution for the three problems defined in the

section 4.2.

5.1 Next Location and Time Prediction Using Spatio-Temporal Data

The method is designed for the problem of predicting the location and time of the next

action in the next time interval. Both spatial and temporal attributes of the data is used

while building the model. The method consists of 4 steps namely, preprocessing,

extracting the regions, extracting frequent patterns and prediction. Details of these

steps are given in the following subsections.

5.1.1 Preprocessing

Due to the high volume of the data and high number of attributes, which of them are

not relevant for our analysis such as city code, phone number etc., it is necessary to

apply some basic preprocessing tasks on the data. First, we filter the unnecessary

attributes. Date and time information are merged into a single column and, it is used

for sorting records in temporal order. Second information is not used. We further

combine call data records of a user on the same day into a single record. By this way,

each record, which is structured as a sequence of <base station id, time of the day>

pairs, represents a user’s daily movement. Time of the day attribute is formatted as

’hhmm’. An example preprocessing step can be seen in 5.1 and 5.2. B stands for base
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station id while R stands for region id.

Table 5.1: Before preprocessing

B17083 phone#1 06 B17083 phone#2 06 20120907 010251 mmo 47
B17083 phone#1 06 B28744 phone#3 06 20120907 071008 mmo 3
B10592 phone#1 06 B20062 phone#4 06 20120907 092231 mmo 11
B10592 phone#1 06 B37382 phone#4 06 20120907 111540 mmo 8
B10592 phone#1 06 B10593 phone#5 06 20120907 144332 mmo 14
B10592 phone#1 06 B12912 phone#6 06 20120907 170304 mmo 12

Table 5.2: After preprocessing

B17083,0102 B17083,0710 B10592,0922 B10592,1115 B10592,1443 B10592,1703

5.1.2 Extracting the Regions

In populated parts of the cities, such as downtowns, the base stations are placed very

close to each other. Under high number of base stations, it is not practical to con-

sider each station as the center of a movement region to interpret the semantics of

the movements. Therefore, in this work, we define regions by grouping the base

stations. In spatial clustering, K-Means and K-Medoids are commonly used parti-

tional algorihms[14]. To this aim, we cluster base stations according to their location

information (x and y coordinate attributes) using k-means algorithm. The aim of k-

means clustering algorithm is to partition n observations into k clusters in which each

observation belongs to the cluster with the nearest cluster mean. There are 13281

base station ids in the original data and after exploring several other k values, we

group them into 100 clusters which we name as regions. Then, base station ids in the

preprocessed data are replaced with the corresponding region ids. At the end of this

process, the largest cluster contains 656 base stations and the smallest cluster contains

only 6 base stations. Visualization of the regions can be seen in Figure 5.1, Figure 5.2

and Figure 5.3 in three different zoom levels.
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Figure 5.1: Regions in Zoom Level 1

Figure 5.2: Regions in Zoom Level 2
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Figure 5.3: Regions in Zoom Level 3

5.1.3 Extracting Frequent Patterns

In this approach we use both spatial and temporal information of each call record.

Spatial attribute is the region id and temporal attribute is the time of the day informa-

tion of the call. We do not use day information because each user’s daily sequence

corresponds to a single day and we do not take the day of the week or the month into

consideration.

Our operation of extracting frequent patterns work with four arguments, namely pre-

processed CDR data, pattern length, minimum support and time interval length. Pat-

tern length describes the length of the desired frequent patterns. Minimum support

describes the candidate frequent patterns’ required proportion in data. Time interval

length is used for discretizing time of the day. It indicates the span of discretized

time interval. Rather than using exact time information of the action, we prefer to

use discretized format for time of the day to be able to augment frequent patterns in

data. Applying discretization allows us to eliminate small time differences. Each day

is divided into predefined number of equal length time intervals. Action’s time of the

day information is replaced with the starting time of its corresponding interval. After

this change, user’s daily sequence may have more than one base station id and time of
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the day pair having the same time interval value. In order to reduce them to a single

pair, for each time interval, the most frequently observed station id is selected as the

representative of that interval.

Our extraction method can be defined as a modified version of AprioriAll algorithm.

As given in the literature, AprioriAll algoritm consists of two phases, namely; candi-

date generation and elimination. Difference is in the candidate generation. Normally

k-length candidates are generated from (k-1)-length patterns. Since this operation is

costly in time for big data and we are only interested in patterns of a given length, we

have changed the candidate generation phase. Our algorithm generates all candidates

while traversing the data. Two index pointers are used such that one of them points

the start of candidate pattern while the other one points the end of it. Count of each

candidate pattern observed is recorded for elimination phase. As in the conventional

AprioriAll algorithm’s candidate elimination phase, candidate patterns whose support

value falls below minimum support are eliminated, while the others constitute the fre-

quent pattern set. Table 5.3 demonstrates 3 sample frequent patterns for pattern length

4. In the table, the pairs separated by paranthesis represent region id and discretized

time of the day. Region id and discretized time of the day are separated by comma.

Table 5.3: Sample Frequent Patterns

Frequent Pattern (Sequence) Support
<(R91,1000), (R95,1215), (R45,1615), (R48,1800)> 4.0212e-06
<(R91,1000), (R95,1215), (R45,1615), (R70,1900)> 3.6897e-06
<(R91,1000), (R95,1215), (R45,1615), (R55,1915)> 2.5369e-06

5.1.4 Prediction

In the prediction phase, initially, traversal data of the user for whom prediction will

be performed is preprocessed and formatted same as frequent patterns. Assume that

the traversal pattern is of length (k-1) and we want to predict the next step, which is

the kth element, for this user’s traversal. Then, this (k-1) length pattern is used as the

test sequence for prediction and we search this test sequence in the frequent pattern

set that is created in the extraction phase. If patterns starting with the test sequence
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have been found, the last element of the matching pattern with the maximum support

is generated as the prediction. This process is given in Algorithm 3

Algorithm 3 Prediction Algorithm
Input: testsequence

Output: prediction

1: maximumSupport← 0

2: for all pattern ∈ frequentPatterns do

3: if testsequence == pattern[1 : k − 1] then

4: if maximumSupport < pattern.support then

5: prediction← pattern[k]

6: maximumSupport← pattern.support

7: end if

8: end if

9: end for

10: return prediction

Although we take this approach as our base method, we added two tolerance param-

eters to the prediction algorithm to improve our results. These are tolerance in time

and the multi prediction limit allowed for one instance. Under tolerance in time, pat-

terns are not fixed to some time interval value anymore. They are moved forward or

backward in time with a tolerance value. If one pattern is not in frequent pattern set,

then tolerance mechanism runs and tries to find tolerated prediction value. Assume

that we have a traversal instance

<(R91,1015), (R95,1230), (R45,1630)>

and we want to predict next location time pair for that instance but our frequent pat-

tern set does not have a pattern starting with

<(R91,1015), (R95,1230), (R45,1630)>

but has

<(R91,1000), (R95,1245), (R45,1630), (R52,1700)>

As it can be easily seen, <(R91,1000), (R95,1245), (R45,1630)> is in the range of 15

minute tolerance of <(R91,1015), (R95,1230), (R45,1630)>. If tolerance value for

time is greater than 15 minutes, then our method gives the result (R52,1700) as the

prediction.
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The second tolerance parameter, namely the multi prediction limit allowed for one

instance, is introduced to utilize the cases in which there are more than one frequent

pattern starting with traversal instance. As it can be seen in Algorithm 3, the method

returns the last element of the frequent pattern starting with traversal instance with

maximum support and does not take other possible matchings into consideration.

However by adding multi prediction limit parameter, more than one prediction value

are generated. This parameter puts a limit to the proportion of the total support of

the patterns in the prediction set, to the total support of all patterns that start with

given test sequence. All frequent patterns starting with traversal instance are sorted in

decreasing support value order and prediction set is populated by adding kth elements

of frequent patterns until the multi prediction limit is satisfied.

For example, <(R91,1000), (R95,1215), (R45,1615)> is the traversal instance and

there are frequent patterns with length 4 as given in Table 5.3. For this test se-

quence, in the single prediction method, among the matching patterns, it chooses

only (R48,1800), which has the maximum support. If the multi prediction limit is

0.5, it only gives one prediction value which is (R48,1800). However if the limit is

0.8, then it gives two predictions which are (R48, 1800) and (R70, 1900).

5.2 Next Location Change Prediction Using Spatial Data

The method is designed for the problem of predicting the location of the user when

he/she changes his/her location. Only spatial attribute of the data is used while ex-

tracting frequent patterns without any successively repetitive region ids. The method

consists of 4 steps namely, extracting the regions, preprocessing, extracting frequent

patterns and prediction. Details of these steps are given following subsections.

5.2.1 Extracting the Regions

Clustering the base stations are done in the same way with the method described in

section 5.1.2. We need to cluster base stations before preprocessing because we need

to use the region ids in the user’s daily sequence which is created in the preprocessing

step. The base stations are grouped into 100 regions for this method as well. Then,
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base station ids in the CDR data are replaced with the corresponding region ids.

5.2.2 Preprocessing

As in the first method, we filter the unnecessary attributes such as city code, phone

number etc. Date and time information are also merged into a single column and,

it is used for sorting records in temporal order. We again combine call data records

of a user on the same day into a single record but this time successive region ids are

deleted. By this way, each record, which is structured as a sequence of region ids,

represents a user’s daily location change pattern. An example preprocessing step can

be seen in 5.4 and 5.5

Table 5.4: Before preprocessing

R91 phone#1 06 R91 phone#2 06 20120907 010251 mmo 47
R91 phone#1 06 R21 phone#3 06 20120907 071008 mmo 3
R55 phone#1 06 R27 phone#4 06 20120907 092231 mmo 11
R55 phone#1 06 R27 phone#4 06 20120907 111540 mmo 8
R55 phone#1 06 R91 phone#5 06 20120907 144332 mmo 14
R55 phone#1 06 R3 phone#6 06 20120907 170304 mmo 12

Table 5.5: After preprocessing

R91 R55

5.2.3 Extracting Frequent Patterns

Except for the use of time information, basic intuition behind the extraction method

is nearly the same as that of the method described in section 5.1.3. In this approach,

the patterns are generated in order to keep only the change of region ids in a single

day. To this aim, pairs having the same region id as in the previous pair are elimi-

nated. This guarantees that there will be no successive repetition of region ids in one

frequent pattern, and predictions never have the same region id with the last region id

of traversal instance. In addition, time interval elements are also deleted.
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5.2.4 Prediction

The basic idea of the prediction that deals with spatio-temporal data is also used in

this approach. However, one of our tolerance parameters is different in this prediction

method. Since we do not have any time information, time tolerance is not applicable

to this approach and it is replaced with the tolerance in pattern length.

Tolerance in pattern length can be applied in two ways. In the first way, tolerance

in pattern length gives us opportunity to predict one traversal instance’s next region

id by examining the shorter frequent patterns. This can be possible when the shorter

frequent pattern is a subset of the exact traversal instance (order of region ids are

important). Assume that, we have the test sequence;

<R77, R91, R95, R16, R22, R41>

however, there is no exactly matching pattern. Instead, we have the following frequent

pattern,

<R77, R95, R16, R22, R41>

Since the set <R77, R95, R16, R22, R41> is a subset of <R77, R91, R95, R16, R22,

R41>, in which the second element of the larger pattern is missing, the last element

of frequent pattern that starts with <R77, R95, R16, R22, R41> can be given as the

prediction result for test sequence <R77, R91, R95, R16, R22, R41>.

Second way of tolerating the pattern length gives us opportunity to predict the next

region by examining the longer frequent patterns. This is possible when the longer

frequent pattern contains the exact traversal instance (order of region ids are impor-

tant) but also contains some additional region ids. Assume that, we have the following

test sequence;

<R77, R91, R95, R16, R22, R41>

however, there is no exactly matching pattern. Instead, we have the frequent pattern

that starts with the following,

<R77, R91, R95, R18, R16, R22, R41>

Since the set <R77, R91, R95, R18, R16, R22, R41> contains <R77, R91, R95, R16,

R22, R41> in the same order, which also has the fourth element (R18) as the dif-

ference from the traversal instance, last element of frequent pattern that starts with

<R77, R91, R95, R18, R16, R22, R41> is given as the prediction result for traversal
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instance <R77, R91, R95, R16, R22, R41>.

5.3 Next Location Change and Time Prediction Using Spatio-Temporal Data

The method is designed for the problem of predicting the location and time of the user

when it changes its location. Both spatial and temporal attributes of the data is used

while extracting the frequent patterns. The method consists of 4 steps namely, extract-

ing the regions, preprocessing, extracting frequent patterns and prediction. Details of

these steps are given following subsections.

5.3.1 Extracting the Regions

Clustering the base stations are done in the same way with the two methods described

in 5.1.2 and 5.2.2. We need to cluster base stations before preprocessing because

we need to use the region ids in the user’s daily sequence which is created in the

preprocessing step. The base stations are grouped into 100, 200, 400, 800, 1600,

3200 and 6400 regions for this method to analyze the effect of the different region

numbers. Then, base station ids in the CDR data are replaced with the corresponding

region ids.

5.3.2 Preprocessing

As in the first and second method, after preprocessing, each record, which is struc-

tured as a sequence of region ids, represents a user’s daily location change pattern.

Difference with the second method is the usage of temporal information. For this

method user’s daily sequence contains not only spatial attribute but also temporal at-

tribute. Repetitive time is allowed for this method while it is not for the first method.

An example preprocessing step can be seen in Table 5.6 and Table 5.7
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Table 5.6: Before preprocessing

R91 phone#1 06 R91 phone#2 06 20120907 010251 mmo 47
R91 phone#1 06 R21 phone#3 06 20120907 071008 mmo 3
R55 phone#1 06 R27 phone#4 06 20120907 072231 mmo 11
R55 phone#1 06 R27 phone#4 06 20120907 111540 mmo 8
R55 phone#1 06 R91 phone#5 06 20120907 144332 mmo 14
R55 phone#1 06 R3 phone#6 06 20120907 170304 mmo 12

Table 5.7: After preprocessing

R91,0102 R55,0722

5.3.3 Extracting Frequent Patterns

Basic intuition behind the extraction method is nearly the same as that of the first

proposed method. In this approach, the patterns are generated in order to keep only

the change of region ids in a single day. The difference with the second method is the

use of temporal information. This time user’s daily sequences have pairs of region

id and time information as in the first method. To this aim, pairs having the same

region id as in the previous pair are eliminated. This guarantees that there will be no

successive repetition of region ids in one frequent pattern, and predictions never have

the same region id with the last region id of traversal instance.

5.3.4 Prediction

In this method, we use both tolerance parameters, time tolerance and tolerance in

pattern length for prediction. Apart from that the prediction algorithm works the

same with the first method. For the traversal pattern with the length (k-1), we again

predict its next location by searching the frequent patterns starting with that traversal

pattern.

27



28



CHAPTER 6

EVALUATION AND EXPERIMENTAL RESULTS

In this section, first we introduce our evaluation method and evaluation metrics, and

then we give the experimental results for three methods explained in the previous

section namely, next location and time prediction using spatio-temporal data, next lo-

cation change prediction using spatial data, next location change and time prediction

using spatio-temporal data.

6.1 Evaluation

In order to asses the quality of the predictions made by the methods proposed in

the previous section we have used k-fold cross validation technique with k=5, on a

real CDR data set that has been introduced earlier. Training phase of the evaluation

process is nothing but applying the frequent pattern extraction steps of the proposed

methods on the training data, in order to generate frequent patterns.

The testing phase has two steps: In step one, the test data is processed as in the training

phase to extract all sequential patterns, except this time with no minimum support,

in order to generate all traversal patterns. For each one of the traversal patterns,

prediction algorithm introduced in the previous section has been applied to predict the

last elements of these patterns. The result of the prediction is compared against the

actual last element of the traversal pattern. These results are used in the calculations

of the evaluation metrics which is introduced below.

For the method proposed for the next location and time prediction using spatio-
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temporal data problem, we do not prefer to present detailed results. The reason for

this preference is the nature of human mobile telephone usage routines. They usually

do not change their location between two mobile telephone activities. Because of that

prediction accuracy results are misleading. Further analysis will be discussed in the

following sections.

For the method proposed for the next location change prediction using spatial data

problem, we analyze the effects of minimum support, multi prediction limit, pattern

length and length tolerance parameters.

For the method proposed for the next location change and time prediction using

spatio-temporal data problem, we analyze the effects of minimum support, multi pre-

diction limit, time interval length, time tolerance, pattern length and the cluster count

of base station ids.

6.1.1 Evaluation Metrics

This section describes the method and the metrics that we used in order to measure the

success of the proposed prediction methods. We used three different metrics, namely

p-accuracy, g-accuracy and prediction count.

Accuracy measures how much of our predictions match with exact next region id of

the test pattern. It simply can be defined as the ratio of true predictions to the all

predictions. In our case, we have two types of accuracy. The first one, which is the g-

accuracy (general accuracy), is the ratio of number of true predictions to the number

of all patterns with the same length in the test set. The second one, which is the p-

accuracy (predictions’ accuracy), is the ratio of the number of true predictions to the

number of all predictions we are able to make. The reason for using two different

accuracy calculation is due to the fact that the proposed algorithm may not be able

to generate prediction for each of the test instances, if there is no matching frequent

pattern found for the queried instance. In the first form of accuracy calculation, the

accuracy result superficially drops for such cases. For each of the methods g-accuracy

and p-accuracy metrics are used for representing and interpreting the results.

Prediction Count metric is required because of the multi prediction limit parameter.
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It quantifies the size of the prediction set when correct prediction result is in the

prediction set.

In addition to true prediction; true positive, false positive and false negative values

are calculated for the first two methods that are related with the next location and

time prediction using spatio-temporal data and next location change prediction using

spatial data problems as given in Algorithm 4

Algorithm 4 Evaluation Algorithm
1: for all prediction in predictionSet do

2: if prediction = actualNextRegionId then

3: incrementTruePositive(prediction)

4: return

5: else

6: incrementFalsePositive(prediction)

7: end if

8: end for

9: incrementFalseNegative(actualNextRegionId)

For multi prediction, since we increment false positives for each item in our prediction

set, and increment false negatives only when none of our predictions do not hold, our

results are biased through the recall, rather than precision.

Precision can be defined as the ratio of the number of true positives to the sum of the

number of true positives and false positives.

Recall can be defined as ratio of the number of true positives to the sum of the number

of true positives and false negatives. Further definitions of these metrics can be found

at [13]

6.2 Experimental Results

In this section, the results of the experiments of three proposed methods under differ-

ent parameters are given.
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6.2.1 Results for Next Location and Time Prediction using Spatio-Temporal

Data

In this subsection the effect of pattern length and minimum support on g-accuracy are

experimentally analyzed.

Pattern Length

In this set of experiments, we analyze the effect of length of the frequent patterns on

the g-accuracy of prediction. For this set of experiments, time tolerance is 75 minutes

for 15 minute time interval length, minimum support is 10−6, cluster count is 100, and

multi prediction support limit is 1.0, which means use all frequent patterns matching

with test set patterns.

Figure 6.1: Pattern Length vs g-Accuracy

As it can be seen from Figure 6.1, when the pattern length increases, prediction g-

accuracy decreases. This is due to the fact that the number of longer frequent patterns

is much fewer than the number of shorter frequent patterns. The number of frequent

patterns for various pattern lengths are given in Table 6.1.
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Table 6.1: Number of Frequent Patterns for Different Pattern Lengths

Pattern Length Number of Frequent Patterns
2 1777423
3 1706778
4 1186798
5 796505
6 539586
7 381818
8 281931
9 214897
10 168218
11 134827
12 110334

An important observation in this result is that using multi prediction, a very high g-

accuracy has been obtained for patterns with length smaller than 5. However, when

we have analyzed the number of predictions made with multi prediction method as a

potential next region we have observed that these numbers are quite high as presented

in Table 6.2.

Table 6.2: Number of Average Total Predictions Per Instance for Different Pattern
Lengths

Pattern Length Average Total Prediction Count
2 59.7937065534
3 11.8247757538
4 6.91793091885

When the total number of regions, which is 100 in our case, are considered, the num-

ber of predictions obtained from multi prediction method is not practical and useful

for real cases. For example, for length 2, the size of the prediction is almost 60 on

average. This explains the superficially high g-accuracy values for patterns shorter

than five.
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Minimum Support

In this set of experiments, we analyze the effect of change in minimum support thresh-

old on the prediction g-accuracy. For this set of experiments, time tolerance is 75

minutes for 15 minute time interval length, pattern length is 6, cluster count is 100,

and multi prediction limit is 1.0 which means use all frequent patterns matching with

test set patterns.

Figure 6.2: Minimum Support vs g-Accuracy

As it can be seen from Figure 6.2, when minimum support threshold value increases,

prediction g-accuracy drops. This is due to the fact that as minimum support threshold

increases, the number of generated frequent patterns decreases.

The most remarkable result that we found in this analysis is the ratio of the number

of the patterns (any length n) that have the same region id for nth and (n-1)th time

interval to the number of all patterns. It holds for almost 80% of patterns having

lengths greater than 4. This causes prediction for test set pattern to be the last element

of the matching key in frequent pattern, in other words causes to predict one person’s

next location as the current location for 80% of the test data. Since our first motivation

was change of location problem, we did not try to evolve this method and do not

present further results of this method in this work.
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6.2.2 Results for Next Location Change Prediction using Spatial Data

In this subsection, the effect of the pattern length, minimum support, length tolerance

and multi prediction limit on the success of the prediction are experimentally analyzed

for our second method which aims to predict the change of the location of the users.

Pattern Length

In this part, we analyze the effect of the pattern length on prediction in terms of

accuracy, precision and recall. In this set of experiments, multi prediction limit is 0.8,

the length tolerance is 2, cluster count is 100, and the minimum support is 4 ∗ 10−7.

Figure 6.3: Pattern Length vs g-Accuracy

As it can be seen from Figure 6.3, when the pattern length increases, prediction g-

accuracy drops. It is because of the decreasing number of frequent patterns as the

pattern length increases. We did not include patterns shorter than 5 since for patterns

with length 4, multi prediction method generates 7 alternatives on average. For pat-

tern length 5, our method with multi prediction limit 0.8 generated 2.3 predictions on

average for successful prediction, which is reasonable value for number of generated

predictions.
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Figure 6.4: Pattern Length vs p-Accuracy

Figure 6.4 shows the relationship between pattern length and p-accuracy. Although it

does not present a regular behaviour compared to that of Figure 6.3, it is an expected

result. Since p-accuracy is the ratio of true predictions to the number of predictions

made (instead of the total number of test patterns), it is expected not to almost linear

decline when pattern length increases. Reason of the lower g-accuracies of higher

pattern lengths in the Figure 6.3 is non-predicted instances in test data. However, in

the Figure 6.4, we do not include non-predicted patterns in p-accuracy. Prediction

count also affects it which can be seen in 6.5. When the quick reduction of prediction

count finished at the pattern length 7, p-accuracy starts to increase. It is expected to

have greater p-accuracy for the longer patterns with nearly same prediction count.
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Figure 6.5: Pattern Length vs Prediction Count

Figure 6.6: Precision vs Recall

As it can be seen from Figure 6.6, both precision and recall values increase as pat-

tern lengths increase from five to twelve. They both increase because the number of

true positives grow more than both false positives and false negatives. Reason of get-

ting much larger values of recall than precision is the bias of false positives to false

negatives.
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Minimum Support

In this set of experiments, we analyze the effect of minimum support on the predic-

tion g-accuracy. In the experiments, pattern length is 5, length tolerance is 2, multi

prediction limit is set to 0.8 and cluster count is 100.

Figure 6.7: Minimum Support vs g-Accuracy

As it can be seen from Figure 6.7, when minimum support value increases, prediction

g-accuracy drops as in our first method. Similarly, this is due to that fact that as the

minimum support increases, the number of generated frequent patterns decreases.

When compared to the first method’s minimum support vs. g-accuracy graphics, it

can be seen that g-accuracy values are much higher in the second method. There

are two reasons for it; length tolerance and eliminating successively repetitive region

ids. Length tolerance gives us ability to search test set pattern throughout different

lengths of frequent patterns. Eliminating repetitive region ids gives us less variety

in frequent patterns. These factors reduced the number of non-predicted patterns as

expected (from 2,214,700 to 1,237,313), and incremented true and false predictions

biased to true predictions.
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Figure 6.8: Minimum Support vs p-Accuracy

As can be seen in the Figure 6.8, when minimum support value increases, p-accuracy

also increases. Since p-accuracy is the prediction accuracy in the predicted test se-

quences it increases when frequent patterns with higher support values are used. Fre-

quent patterns with lower support values increase makes number of false predictions

increase eventually decrease the p-accuracy.

Figure 6.9: Minimum Support vs Prediction Count
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As can be seen in the Figure 6.9, minimum support value does not affect the number

of predictions made for one correctly predicted test sequence. However it is expected

to decrease while minimum support value increases. The reason for stable prediction

count is the multi prediction limit value. Only for this experiment multi prediction

limit is set to 0.5 to compare the effects of minimum support and multi prediction limit

on prediction count. This experiment show that multi prediction limit outweighs the

effect of minimum support on prediction count. To see the effect of only minimum

support on prediction it can be referred to Figure 6.18 where multi prediction limit is

set to 0.8.

Length Tolerance

In this set of experiments, we analyze the effect of length tolerance on the g-accuracy,

precision and recall performance of the prediction. In the experiments, multi predic-

tion limit is 0.5 and pattern length is 7. As given in Table 6.3, g-accuracy values are

lower than previous algorithm, since minimum support used in this set of experiments

is 0.0001 for the sake of execution time.

Table 6.3: Length Tolerance vs g-Accuracy

Length Tolerance g-Accuracy
0 0.199340297199
1 0.234839334017
2 0.289309194395

As it can be seen in the table, when the length tolerance increases, prediction g-

accuracy also increases. G-accuracy values increase since tolerating length feature

provides the opportunity to look up different frequent patterns with different lengths

for non-predicted test set patterns.

As seen in Table 6.4, precision values decrease when length tolerance increases. It

is due to the fact that extra frequent patterns are traversed that have different lengths

for non-predicted test set patterns. This increases the number of false positives much

more than that of true positives, since the prediction set for one test instance gets

larger for higher length tolerance values.
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Table 6.4: Length Tolerance vs Precision and Recall

Length Tolerance Precision Recall
0 0.873208275761 0.878258665055
1 0.793619440058 0.896896539759
2 0.537772714164 0.913341913657

Multi Prediction Limit

In this set of experiments, we analyze the effect of multi prediction limit on the ac-

curacy. In the experiments, length tolerance is 2, pattern length is 5 and minimum

support is 4e-7.

Figure 6.10: Multi Prediction Limit vs g-Accuracy

As it can be seen from Figure 6.10, when multi prediction limit increases, prediction

g-accuracy also increases. It is due to the fact that it enlarges the prediction set for

each test set pattern, although number of non-predicted test set patterns remains same.

Since prediction set increases, the number of false predictions that were made with

lower multi prediction limit decreases and the number of true predictions increases,

when multi prediction limit increases.
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Figure 6.11: Multi Prediction Limit vs p-Accuracy

As it can be seen from Figure 6.11, when multi prediction limit increases, prediction

p-accuracy also increases. The important thing in Figure 6.11 is the identicalness

of the curve, without taken accuracy values into consideration. This visualize that

although prediction accuracy values increase, the number of non-predicted test set

patterns remain same.

Figure 6.12: Multi Prediction Limit vs Prediction Count

In the Figure 6.12 it can be seen that when multi prediction limit increases, prediction
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count also increases. It is the expected behaviour by definition since multi prediction

limit is introduced to limit the prediction count for the prediction of one test sequence.

6.2.3 Results for Next Location Change and Time Prediction using Spatio-

Temporal Data

In this subsection the effect of minimum support, multi prediction limit, length tol-

erance, pattern length, cluster count, time interval length and time tolerance on g-

accuracy, p-accuracy and prediction count are experimentally analyzed for our third

method which aims to predict the change of the location and time of the users.

Pattern Length

For this set of experiments, length tolerance is 2, time interval length is 60, time
tolerance is 120, multi prediction limit is 0.8, cluster count is 100, and minimum
support is 4e-7.

Figure 6.13: Pattern Length vs g-Accuracy
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Figure 6.14: Pattern Length vs p-Accuracy

As it can be seen from Figure 6.13, when pattern length increases, g-accuracy de-

creases. Since it is much harder to find frequent patterns for longer patterns, g-

accuracy eventually decreases. However as can ben seen in Figure 6.14 p-accuracy do

not have a continuous increase or decrease when pattern length increases. The reason

for this different behavior is presented in the previous section.

Figure 6.15: Pattern Length vs Prediction Count
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Minimum Support

For this set of experiments, pattern length is 5, length tolerance is 2, time interval
length is 60, time tolerance is 120, cluster count is 100, and multi prediction limit is
0.8.

Figure 6.16: Minimum Support vs g-Accuracy

As it can be seen from Figure 6.16, when minimum support value increases, g-

accuracy decreases. It is an expected behaviour to have smaller g-accuracy values for

the greater minimum support values since the greater minimum support value means

the less frequent pattern which eventually causes the predicted sequence’s number

superficially drop. Consequently the g-accuracy decreases.
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Figure 6.17: Minimum Support vs p-Accuracy

As it can be seen from Figure 6.17, when minimum support value increases, p-
accuracy decreases. When compared to the effect on g-accuracy, reduction in p-
accuracy is much less than it. The reason is related with the definition of p-accuracy.
P-accuracy does not take unpredicted sequences into consideration. However still
there is a small decline in the graph, since the extracted frequent patterns are much
lower for the greater minimum support values.

Figure 6.18: Minimum Support vs Prediction Count
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As it can be seen from Figure 6.18, when minimum support value increases, predic-

tion count decreases. The reason is the same with the previous two graphs, lower

number of extracted frequent patterns.
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Length Tolerance

For this set of experiments, pattern length is 5, time interval length is 60, time toler-
ance is 120, multi prediction limit is 0.8, cluster count is 100, and minimum support
is 4e-7.

Figure 6.19: Length Tolerance vs g-Accuracy

Figure 6.20: Length Tolerance vs p-Accuracy

As it can be seen from Figure 6.19 and 6.20, when length tolerance increases g-
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accuracy and p-accuracy increases. Increasing length tolerance makes some unpre-
dicted test sequences predictable which increases the g-accuracy. True predicted with
greater length tolerance sequences also increases the p-accuracy although its increase
is much lower than the g-accuracy. Moreover, as it can be seen from 6.21 more length
tolerance makes prediction sets larger.

Figure 6.21: Length Tolerance vs Prediction Count

Multi Prediction Limit

For this set of experiments, pattern length is 5, length tolerance is 2, time interval
length is 60, time tolerance is 120, cluster count is 100, and minimum support is
4e-7.
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Figure 6.22: Multi Prediction Limit vs g-Accuracy

Figure 6.23: Multi Prediction Limit vs p-Accuracy

As it can be seen from the 6.22 and 6.23, when multi prediction limit increases g-
accuracy and p-accuracy increase. The greater multi prediction limit means the larger
prediction set for one test sequence. Therefore it increases the value of the both of
the accuracy metrics. In addition to it, prediction count increases by definition which
can be seen in 6.24.
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Figure 6.24: Multi Prediction Limit vs Prediction Count

Cluster Count

For this set of experiments, pattern length is 5, length tolerance is 2, time interval
length is 60, time tolerance is 120, multi prediction limit is 0.8 and minimum support
is 4e-7.

Figure 6.25: Cluster Count vs g-Accuracy
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Figure 6.26: Cluster Count vs p-Accuracy

As it can be seen from Figure 6.25, when cluster count increases g-accuracy decreases

slightly. It is because of the unpredicted test sequences rather than false predictions

since increasing cluster count makes frequent patterns harder to extract. However

as it can be seen Figure 6.26, p-accuracy increases when cluster count increases. It

is because of the fact that when cluster count increases movement patterns of users

can be defined more precisely which makes frequent patterns harder to find but more

accurate ones. Therefore, they usually give correct predictions when compared to the

less cluster counts. It also eventually decrease the size of prediction set in other words

prediction count which can be seen in Figure 6.27. It should also be noted that for

this analysis we used multi prediction limit as 0.5 rather than 0.8.
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Figure 6.27: Cluster Count vs Prediction Count

Time Interval Length

For this set of experiments, pattern length is 5, length tolerance is 2, time tolerance is
0, multi prediction limit is 0.8, cluster count is 100, and minimum support is 4e-7.

Figure 6.28: Time Interval Length vs g-Accuracy

As it can be seen from the Figure 6.28 and 6.29, when time interval length increases,

53



g-accuracy and p-accuracy increase. Since the larger time interval means the more

similar daily sequences and eventually higher number of frequent patterns, increase in

the values accuracy metrics is an expected behavior. We can say that prediction count

increases in general while the time interval length increases although for time interval

length 360 it decreases, but it is a negligible. As can ben seen in 6.30 the reason for

increase in the size of the prediction set is the same reason for the g-accuracy and

p-accuracy increase; higher number of frequent patterns.

Figure 6.29: Time Interval Length vs p-Accuracy
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Figure 6.30: Time Interval Length vs Prediction Count

Time Tolerance

For this set of experiments, pattern length is 5, length tolerance is 2, time interval
length is 60, multi prediction limit is 0.8, cluster count is 100, and minimum support
is 4e-7.

Figure 6.31: Time Tolerance vs g-Accuracy
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As it can be seen from Figure 6.31 and 6.32, when time tolerance increases g-accuracy
and p-accuracy increases. It is expected since the greater time tolerance gives predic-
tion model ability to search for different time intervals when it can not create pre-
diction for a fixed time interval sequences or can not predict true region id and time
interval.

Figure 6.32: Time Tolerance vs p-Accuracy

Figure 6.33: Time Tolerance vs Prediction Count

As it can be seen from Figure 6.33, when time tolerance increases prediction count

56



decreases. It is because prediction count represents the size of the prediction set

when it only gives correct prediction. Since the correct predictions increase while

unpredicted sequences decrease, prediction count decreases.
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CHAPTER 7

DISCUSSION AND CONCLUSION

In this work, we applied sequence pattern mining techniques for location prediction

problem domain. We used one of the largest mobile phone operator companies’ CDR

data. We focused on three different subproblems in the location prediction problem

space namely, next location and time prediction using spatio-temporal data, next loca-

tion change prediction using spatial data, next location change and time prediction us-

ing spatio-temporal data. The main novelties are time prediction and spatio-temporal

alignments for the prediction task. In experiments, we have evaluated our model’s

prediction quality with respect to g-accuracy, p-accuracy and prediction count and

further analyzed the effects of change of minimum support, multi prediction limit,

length tolerance, pattern length, cluster count, time interval length and time toler-

ance on prediction accuracies and count. Here are the some basic findings and most

valuable prediction results for these three methods;

• For the spatio-temporal next location prediction, it does not make sense to

present the results below or around 80% accuracy since 80% of the user’s next

location is their current location.

• For the spatial next location change prediction g-accuracies differ between 48%

and 84% for the prediction counts 2.4 and 14 for 100 regions while p-accuracies

differ between 74% and 99% for the same prediction counts. These values show

that our proposed model for this problem can generate successful accuracy val-

ues with acceptable prediction counts.

• For the spatio-temporal next location change and time prediction while it pre-

dicts nearly half of the test sequences, p-accuracies reach up to 93% for 14
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prediction count for possible 9600 ([24 x 1 hour time interval] x 400 clus-

ters) spatio-temporal prediction combination. Moreover it generates 87% p-

accuracy for 3.44 prediction count for possible 153600 ([24 x 1 hour time in-

terval] x 6400 clusters) prediction combination.

As a future work, we plan to enlarge our problem space we focoused with the fol-

lowings; next location change prediction using spatio-temporal data, next action time

prediction using temporal data, location and time prediction of the next action using

spatio-temporal data.
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