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Corso Stati Uniti 4, 35127 Padova, Italy 2Swiss Plasma Center (SPC), EPFL

Lausanne, Switzerland, 3UCSD, La Jolla, USA, 4CCFE, Culham Science Centre,

Abingdon OX14 3DB, UK, 5York Plasma Institute, University of York, York, UK,
6DIFFER - Dutch Institute for Fundamental Energy Research, De Zaale 20, 5612 AJ

Eindhoven, the Netherlands, 7Institute for Ion Physics and Applied Physics,

Innsbruck, Austria, 8Jozef Stefan Institute, Ljubljana, 9DTU, Copenhagen,

Denmark, 10Max-Plank-Institut fur Plasmaphysik, Garching, Germany

E-mail: nicola.vianello@igi.cnr.it

Abstract. A set of Ohmic density ramp experiments addressing the role of parallel

connection length in modifying Scrape Off Layer (SOL) properties has been performed

on the TCV tokamak. The parallel connection length has been modified by varying

the poloidal flux expansion fx. It will be shown that this modification does not

influence neither the detachment density threshold, nor the development of a flat

Scrape Off Layer (SOL) density profile which instead depends strongly on the increase

of the core line average density. The modification of the SOL upstream profile, with

the appearance of what is generally called a density shoulder, has been related to

the properties of filamentary blobs. Blob size increases with density, without any

dependence pn the parallel connection length both in the near and far SOL. The

increase of the density decay length, corresponding to a profile flattening, has been

related to the variation of the divertor normalized collisionality Λdiv [1, 2], showing

that in TCV the increase of Λdiv is not sufficient to guarantee the SOL upstream profile

flattening.
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1. Introduction

Plasma Wall Interaction (PWI) is a subject of intense study in the context of fusion

energy research for the understanding of heat load, sputtering levels, lifetime of the

Plasma Facing Components (PFC) and amount of tritium retention in wall structures.

Plasma flux towards the first wall or towards the divertor plate is determined by the

competition between losses parallel and perpendicular to the magnetic field in the Scrape

Off Layer (SOL). The understanding of these transport mechanisms in different plasma

regimes is essential, and has already had clear impact in future machine design [3]. All

operational scenarios expected in future machines like ITER or DEMO require high

values of Greenwald fraction and partial or complete detachment. In high density

scenarios, even without reaching detachment conditions, the L-Mode SOL exhibits

a modification of the density profile, with a general broadening (also named profile

shoulder) as observed in a variety of different devices [4, 5, 6, 7]. While this is a well

established behavior for the L-Mode regime, H-Mode behavior is less clear, even though

preliminary results suggest that a similar mechanism occurs also in high power operation

[8, 9, 10].

Since the early observations SOL profile broadening [4], its happening has been

attributed to an enhancement of cross field advective transport. In addressing this

topic it has to be considered that SOL transport is dominated by the radial outward

propagation of intermittent convective structures, named filaments or blobs [11], which

convey particles and energy towards the first wall and can be responsible for up to 50

% of the fluctuation induced radial transport [11].

Basic models for filaments [12] describe their propagation as the result of a

combination of plasma polarization, due to the∇B drift, and parallel closure. Originally

the proposed scheme, dubbed the sheath connected regime, considered the filament

circuit closed through the divertor plates with the main potential drop at the sheath

entrance. This model has been refined, with different closures, including the possibility

for the filament to be electrical disconnected from the divertor plates which leads the

ion cross-field inertia providing the closure mechanism for the blob, termed the inertial

regime [13, 14, 15, 16]. Furthermore it has been suggested that electrical connection

could be also established through the plasma background [17]. Experimental verification

of existence of these two regimes has been obtained for example in the simple magnetized

plasma TORPEX [18].

An important consequence is that filaments in the different regimes exhibit different

velocity scaling properties with respect to filament size [1]. One of the theoretical

frameworks describing this transition has been proposed in [1], where the filament

parameter space has been described in the Λ−Θ plane, where:

Λ =
L‖

cs
νei

Ωi

Ωe

Θ =

(

δbR
1/5

L
2/5
‖ ρ

4/5
s

)5/2

(1)

with L‖ the parallel connection length, cs the ion sound speed, νei the electron-ion
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collision frequency, Ωi, Ωe the ion and electron gyrofrequency respectively, δb the blob

size and ρs the ion sound gyroradius, and R is the major radius. The two quantities

represent respectively a normalized collisionality and a normalized blob-size: at constant

blob-size, the increase of collisionality implies the transition from sheath-limited to

inertial regime, which is physically associated to the electrical disconnection of the

filaments from the target.

Recently the development of a SOL density profile shoulder observed in L-Mode

high density discharges in AUG and JET has been associated with the aforementioned

transition from sheath-limited to inertial regime [2]. Indeed in the inertial regime,

velocity scales as the square root of blob size δb, vr ∼
√
δb and larger blobs with

larger velocity has been advocated as the cause of increasing convective radial transport

in the higher density regime. More recent results from JET [19] revealed that the

shoulder tends to disappear whenever the strike point is moved from the horizontal

to the vertical target and that nitrogen seeded discharges exhibit a flatter profile only

at very large values of Λdiv, defined as the parameter Λ introduced in Equation (1)

computed with the typical values at the separatrix, in the mentioned case close to the

separatrix. Furthermore the development of a SOL density shoulder has been observed

to strongly depend on the plasma current Ip [5, 20, 21]: flat profiles observed at certain

levels of the core average density disappear whenever the plasma current is increased.

Consequently it is clear that a unified picture of the process is presently lacking although

the enhancement of convective filamentary transport is a generally accepted result.

Within this framework, intense experimental activity has been carried out in the

TCV tokamak [22], exploiting the flexibility of this device to test shoulder formation

against variation of magnetic geometry. Shoulder formation and blob properties have

been investigated in a series of L-Mode density ramps performed at different poloidal

flux expansion values, in order to address the role of parallel connection length in the

process of SOL profile flattening. This paper will show that SOL shoulder formation

does not depend on the value of parallel connection length within the achieved variation

of L‖. As far as fluctuations are concerned, we will show that the density decay length

in the far SOL depends on the blob size consistently with other devices, whereas no

relation is found in the near SOL. Blob size is shown to strongly depend on density with

no dependence on the parallel connection length. The dependence of the density decay

length on the divertor collisionality Λdiv is weaker than in ASDEX or JET and high

level of Λdiv is found to be a necessary but not sufficient conditions in order to obtain a

flatter density profile.

The paper is organized as follows: in section 2 the experimental setup and available

diagnostics will be presented; in section 3 the main experiment, consisting of Ohmic

discharges at different flux expansion will be described, focusing on the behavior of

target profiles in section 4 and upstream profiles in section 5 and providing differences

in terms of filament properties in section 6. In section 7 we provide a unified picture of

the observed behavior within the framework proposed in [1] and finally, in section 8, we

draw the conclusions.
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2. Experimental setup

The Tokamak à Configuration Variable (TCV) is a medium size tokamak located at the

Swiss Plasma Center, Switzerland. It is a conventional aspect ratio tokamak (major and

minor radii R = 0.88m and a = 0.25m respectively) with a highly elongated vacuum

vessel and a completely open divertor. TCV features 16 independently powered poloidal

field coils, resulting in unique shaping capabilities, with the ability to accommodate

highly elongated plasmas (up to 2.8) and triangularity in the range -0.7≤ δ ≤ 1. The

near-complete coverage of TCV surfaces with graphite tiles allows extreme flexibility in

power load deposition, making TCV an ideal test-bed for the study of different magnetic

configurations and divertor geometries.

In recent years great efforts have been devoted in TCV to increase the diagnostic

equipment for divertor studies. A new 32-chords divertor spectroscopy system (DSS)

[23] has been installed for extracting information on recombination and electron

temperature from Balmer series spectra. This information can be combined with

radiation measurements estimated from Bolometry [24] and absolute extreme ultraviolet

(AXUV) bolometric camera sightlines [25]. An array of wall-mounted Langmuir probes

(LPs) [26] covers the inner and outer wall as well as the floor. The cylindrical tips have

diameters of 4 mm and are embedded into the tiles except at the floor where they have

a dome-shaped head protruding from the tile shadow by 1 mm. Among the available

114 LPs, only 48 can currently be used simultaneously. They have been operated in

swept mode to obtain density and temperature profiles at the wall. The set of LPs has

been extended by the installation of a fast reciprocating probe [27]. The probe head,

described in detail elsewhere [27], is equipped with 10 graphite electrodes 1.5 mm in

diameter. The electrodes are arranged in such a way to provide a double probe for

density and temperature profiles, two Mach probes for parallel flow investigations, a

pin for fast ion saturation current measurements with the remaining probes collecting

floating potential in order to infer radial and poloidal electric field fluctuations from the

local floating potential gradient. The radial separation between the floating potential

pins is 1.57 mm whereas the poloidal separation between the pins are 4 mm and 10

mm respectively. The fast movement of the probe head is 20 cm which is reached

within 90 ms with a maximum speed of 2.2 m/s. The acquisition frequency of the

system is 2.5 MHz with a bandwidth for ion saturation current and floating potential of

approximately 5 MHz. The Line of Sights (LOS) of bolometry and the location of the

Langmuir probes and of the reciprocating manipulator used throughout the paper are

shown in Figure 1 to provide an idea of the spatial resolution of the diagnostic setup.

The combined information provide a comprehensive set of measurements suited for the

divertor investigation.

As an example of the mechanism we will investigate in the paper, Figure 2 shows

upstream density profiles, as obtained by the reciprocating probe in 3 similar L-mode

LSN discharges, at three levels of core line-averaged density. The SOL profiles are

normalized to the density value at the separatrix and a clear flattening of the profile is
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obtained as the density is increased in accordance with previous TCV observation [6].

3. Experimental scenarios: flux expansion scan

The establishment of a flatter SOL profile is basically determined by a modification of the

ratio of perpendicular to parallel losses Γ⊥/Γ‖, under the assumption of small variation of

the source term in the particle balance equation. Furthermore the effective collisionality

Λ defined in Equation (1) is directly proportional to L‖, and any variation of the parallel

connection length should reflect immediately on Λ. In addition, the modification of the

parallel connection length was demonstrated to influence blob dynamics in the simple

magnetized torus TORPEX [28]. Starting from these motivations a set of experiments

has been conceived in order to investigate the dependence of the SOL shoulder formation

process on the parallel connection length L‖. A series of density ramp discharges were

carried out in Ohmically heated L-mode plasmas. The poloidal flux expansion is defined

as

fx =
Bu

θB
t
φ

Bt
θB

u
φ

(2)

with u and t denoting upstream and target quantities, and θ and φ the poloidal and

toroidal component respectively, has been varied in between the shots from fx ≈ 2 to

fx ≈ 11. From the geometrical point of view the increase of the flux expansion causes

an increase of the flux tube volume [29] through changes in the the parallel connection

length between upstream and the target as well as an increase of the plasma-wetted

area. Examples of the configuration variation from smaller to larger flux expansion

are shown in Figure 3. As we can observe from panel (a) of Figure 3, the value L‖

from the midplane to the outer target almost doubles throughout the SOL when the

flux expansion is increased. The computation of the parallel connection length from the

primary X-point to the LFS target, shown in panel (b) of the same Figure 3, reveals that

the increase of L‖ is even larger in the divertor region with a ratio between larger and

smaller fx up to a factor of 3.In the following sections we will provide detailed analysis

on the effect of core plasma density ramps on divertor (cfr. section 4) and upstream

(cfr section 5) profiles highlighting any differences caused by the modification of the flux

expansion.

4. Divertor modification

The effect of increasing the flux expansion on target profiles has been previously

studied in [30, 31]. In the present paper we extend these experimental observations

through simultaneous modification of the upstream and target plasmas, with a focus

on filamentary properties. In Figure 4 we report results from the identical core plasma

density ramp performed in two different shots at two different flux expansions. In panels

(a) and (b) of Figure 4 the brightness from three bolometer LoS observing the outer

divertor leg as a function of line average density are shown. The radiation starts moving
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from the target at lower core density for the larger flux expansion but the maximum of

the radiation reaches the chord looking closer to the X-point at the same density value.

Panels (c) and (d) of the same Figure 4 show the spatially integrated total ion flux to the

outer strike point, still as a function of line average density. The ion flux increases almost

linearly for both flux expansion cases, thus diverging from the theoretically predicted

square dependence expected in high-recycling regime [32] indicated in the same panels

with grey dashed line. At high values of line-averaged density (〈ne〉 ≈ 7 × 1019m−3)

both shots exhibit a drop in the total collected ion flux, indicating the typical rollover

on target density during density ramps. Actually the ion flux rollover density for both

the values of flux expansions (or L‖) remains approximately constant, confirming that

increasing flux expansion does not substantially modify rollover density threshold as in

the reverse Bφ cases at higher current [31].

Apart from the effect on the total ion current we can provide detailed experimental

evidences of the effect on target density profiles shown in Figure 5. Panels (b) and (e)

show the LFS target density profiles at two levels of line-averaged density for two values

of flux expansion. At lower density (Figure 5 (b)) the profiles obtained at different fx
are almost identical. Increasing the density (Figure 5 (c)) causes a broadening of the

profiles for both the values of flux expansion although at larger values of fx the density

value is lower all along the profile.

5. Upstream profile modification

At the midplane SOL density profiles are reconstructed using double probe mounted

on a multi-pin probe head on the reciprocating manipulator [27]. In Figure 5 (a) and

(b) we provide these profiles at two levels of density for the two flux expansions. We

observe that the density profiles in the SOL are unaffected by the modification of the

flux expansion for both the values of density considered, and the flatter profile observed

between 1.025 . ρΨ . 1.06 in panel (d) appears as a pure consequence of density

increases. In the bottom panels of the same Figure 5, (c) and (f), we compare the

values of Λdiv computed according to Equation (1) with density and temperature taken

at the LFS target and L‖ estimated as the parallel connection length from the primary

X-point to the LFS target. A strong variation in the Λdiv profiles is observed between the

two flux expansion cases and the profile lies well above the value of Λdiv = 1 identified in

[2] as the threshold for the appearance of shoulder in the SOL profile. But even though

Λdiv reaches very high values all along the SOL width, and differences exist between the

two flux expansion cases, no evidence of a very broad and flat density profile is observed

in neither of the two cases and profile differences are observed only as a function of

density.

The SOL density profile dependence is confirmed on a statistical basis in Figure 6

where the density decay length λn =
(

|∇ne|
ne

)−1

is shown for both the near and far SOL

(respectively defined as being between 1 ≤ ρΨ ≤ 1.025 and 1.025 < ρΨ ≤ 1.06) as a

function of flux expansion, subdividing the data in ranges of core line average density
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(panel (a) and (b) respectively). Clearly in both the near and far SOL the decay length

does not exhibit any clear trend with flux expansion, confirming that upstream profiles

are unaffected by the increase of L‖. The same exercise has been repeated on the same

database by computing the dependence of λn on line average density, still distinguishing

the near and far SOL. The results are shown in panel (c) and (d) of Figure 6. The near

SOL decay length clearly increases with density, without any clear distinction within

the various ranges of flux expansion: the maximum near SOL λn value reached around

30-40 mm which is close to the average value observed in the far SOL (cfr. Figure 6 (d)).

In the latter region the trend is less clear and the profiles seem to be rather constant

with density. It is worth mentioning that these results confirm on a stronger statistical

basis the observations reported in [6]. Indeed by considering Fig. 3 of reference [6]

we observe that also in those experiments the process of shoulder formation was most

strongly correlated with the increasing of the density decay length in the near SOL region

(marked in the aforementioned Fig. 3 from 0 (separatrix) to 0.25) whereas the region

in the far SOL (from 0.5 to 1 in their system of reference) exhibits a less pronounced

variation of the λn with the increase of the line-averaged density.

6. Filaments characteristics as a function of density and L‖

Analysis was performed on fluctuations in the signal collected using the fast probe

in order to investigate modification of filamentary structures. The analysis has been

performed using standard conditional average sampling technique (CAS) as described,

for example, in [11]. We have used subsamples of 3-4 ms with a peak amplitude for blob

identification larger than 2.5 times the rms value. The chosen length gives sufficiently

robust statistics on filaments with the number of detected structure of the order of

∼ 30-70, depending on the different conditions. The blob size is computed from the

FWHM size, τb, of the conditionally sampled ion saturation current Isat, multiplied by

v⊥ =
√

v2r + v2p, according to :

δb = τbv⊥ (3)

where vr and vp are the radial and poloidal components of the velocity respectively.

Given the configuration of the probe head, the radial velocity fluctuations have

been estimated from the poloidal electric field using the floating potential gradient.

Concerning the poloidal propagation, the small radial separation of the pins and the

lack of information on the fast temperature gradient prevent us from using E × B

estimate. Instead we use the cross-correlation between the conditionally sampled

floating potentials at different poloidal positions, similarly to what is done for ion

saturation currents in [7]. The results of this analysis for 4 cases are shown in Figure 7:

3 of these cases were obtained at the same core density (≈ 5 × 1019m−3) but different

flux expansion (fx = 2.1, 4.3, 11.9 respectively), whereas the last one is obtained at

higher core density in a small flux expansion case. The asymmetrical shape of the

ion saturation current structure can be recognized in all cases, and this is consistent
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with the shape already reported for example in [33]. The increase of flux expansion,

and consequently of the parallel connection length, does not change significantly the

filament properties: indeed the blob size, averaged in the region 1.025 ≤ ρΨ ≤ 1.06 is

rather constant as a function of Λdiv (estimated as an average over the same region)

for three shots within the fx scan, as shown in Figure 7 panel (e). On the other hand,

increasing the density significantly increases the filament size (orange point in Figure 7

(e)), without substantial modification of its radial velocity (see panel (b) of the same

figure): this increase is achieved at the lower values of Λdiv explored within the scan

shown in Figure 7. This definitively proves that Λdiv is not a sufficient parameter to

guarantee filament size increase or profile flattening whereas the density seems to play

a major role.

The dependence of the filament size on the level of core density and the lack of

relation with the flux expansion are also confirmed on a statistical basis. Indeed, blob

size is investigated as a function of core density, subdividing in ranges of flux expansion,

as well as a function of flux expansion, dividing in ranges of density. The results are

shown in Figure 8 for both the near and far SOL, still defined as the region before

and after 1.025 in normalized poloidal flux. The filament size does not exhibit any

dependence on flux expansion, and thus on the parallel connection length and this is

true in both regions of the SOL as seen from panel (a) and (b). The size increases

instead as a function of line average density in particular in the near SOL (panel (c) of

the same Figure 8), and this is true for all flux expansions ranges.This is in line with

previous observations [34] which demonstrated the tendency of the density fluctuations

to increase with line average density. The trend in the far SOL is less clear with a

slight tendency towards an increase for very high values of density (panel (d)). Probe

measurements do not allow for estimates of blob size independently of their velocity.

Given the observed dependency on density, we have analyzed all the quantities defining

the blob size, given in Equation (3), as a function of density both in the near and far

SOL. The results are shown in Figure 9, still distinguishing in classes of flux expansion.

The increase of blob size in the far SOL is given mainly by the increase of τb which more

than doubles from smaller to larger density. The poloidal velocity is fairly constant in

this region, whereas the radial velocity exhibits a moderate reduction (of the order of

30-35% from the larger to the smaller value in density) The order of magnitude of the

radial velocity between 2 and 3 km/s is of the order of 5×10−2 of the local ion sound

speed cs, slightly higher than what reported in [35], even though in this publication a

large scatter in the estimates of vr is shown. It is worth mentioning that measurements

at the wall performed both at JET [36] and in the past on TCV [6] reveal an opposite

tendency of the shape τb with the density. In the near SOL, the radial velocity of the

filaments is fairly constant or at most slightly decreases with density with increments of

τb (Figure 9 (a)), similar to the Far SOL region. This increment is partially compensated

by the decrease in amplitude of the poloidal velocity (Figure 9 (c)). The fact that the

poloidal velocity varies with density in the SOL has been previously observed as for

example in C-Mod [37].
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6.1. Fast camera measurements

Filamentary properties and dynamics have also been investigated with fast cameras.

Measurements have been made using a fast framing camera, mounted with a tangential

view into the TCV vessel at the midplane, to complement the analysis of filamentary

structures made by the midplane probe. The camera model was a Photron SA4 camera

operated at a 100 kHz frame rate. The camera views almost an entire half of the TCV

torus. However, due to shadowing by the viewing port window, the outboard side of

the plasma is obscured. This means that obtaining information on the radial geometry

and/or motion of filamentary structure is not possible with the camera view. However,

filaments, being field aligned, wrap around the plasma torus and pass close to the port

window, allowing for high spatial resolution imaging of their poloidal geometry and

motion. In this sense the measurements made on the camera are not directly comparable

to the probe measurements, but are complementary.

To extract filamentary structures from the data obtained by the fast camera, a

background subtraction is applied. The pixel-wise minimum of the 19 preceding frames

is subtracted from the current frame. The resulting image samples only the fast-varying

component of the movie, but also displays a significant noise component. To reduce the

impact of this salt-noise (positive definite random noise) a Gaussian blur is applied with

σ = 1. The structures analysed in the subsequent analysis are much larger than this

blur radius and as such the blur has no impact on the results drawn here. This has been

confirmed by varying σ, which did not vary the results presented herein, but successfully

mitigated the effect of the noise. Figure 10 shows the image processing steps outlined

on an example frame from the fast camera.

To extract the structure of a typical filament from the processed movies, a cross-

correlation technique has been applied. This proceeds by calculating the correlation

of the time-series from a selected pixel in the image with all other pixels in the image

frame. This results in a 2D image of the cross-correlation which can be interpreted as

the structure of a typical fluctuation that produces a signal on the selected pixel. In

other words, when the selected pixel is lit by a fluctuation in the light emission from the

plasma, this technique extracts the most probable spatial structure of such a fluctuation

as observed by the camera. Furthermore a time-delay, τ , can be introduced into the

cross-correlation which then provides a measurement of the structure of a fluctuation τ

before/after it appears on the selected pixel. This technique can thus be used to generate

images of the structure and flow of a typical fluctuation that lights up the selected pixel.

To ensure that the measurements made are statistically significant, the cross-correlation

has been calculated over a series of 2500 frames (25 ms in time) from plasmas in both

a scan in flux-expansion and a scan in density. Figure 11 (left most plot) shows the

result of this cross-correlation measurement applied to the medium flux-expansion case.

The structure of the cross-correlation (shown in color) is a band extending across the

image which follows the path of the toroidal magnetic field. It is relatively localised in

the vertical (approximately poloidal) direction and can therefore be associated with the
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structure of a filament. The flow pattern derived from the time-delayed cross-correlation

shows a motion of the filament vertically in the camera view, which corresponds to a

poloidal rotation of the filament.

To compare the filament structure and motion across scans in flux-expansion and

density a vertical cut of the cross-correlation image has been taken at τ = -10, 0 and 10

µs respectively. The position of this cut is indicated by the blue line in figure 11, left.

Comparing the shape of the cross-correlation along this line at τ =0 (red lines in figure

11 centre and right plots) shows that neither flux-expansion or varying electron density

has a detectable impact on the poloidal width of the filaments. The poloidal velocity can

be inferred by the difference in the location of the peaks in the correlation at τ = -10 and

τ = 10 µs. In the case of varying flux-expansion, no significant change in the poloidal

velocity is observed across the scan, indicating that flux-expansion does not impact the

poloidal features of filaments in the plasmas studied here. By contrast, increasing the

line-averaged density leads to a reduction in the poloidal velocity (characterised by a

shifting of the blue and black curves towards one another) by approximately a factor

of 2. These results therefore suggest that increasing the line-averaged density slows the

filament poloidal rotation velocity, consistent with the observation obtained from the

probe in the near SOL region shown in Figure 9 (c) in the same flux expansion range

(the lower one).

7. Λdiv and Θ scaling

As mentioned above, it has been suggested that the flattening of the SOL density profile

and the modification of filamentary properties are intimately connected: the behavior of

these quantities has been recently reconciled through the scaling properties with respect

to the divertor normalized collisionality [2]. To test whether this scaling is recovered

also in the TCV experimental data we have computed the density decay length in the

far and near SOL as a function of Λdiv and Θ: the latter has been estimated using the

local divertor parameters (density, temperature and L‖). The results of this analysis

are shown in Figure 12 where the color code indicates the parallel connection length.

Clearly, the density decay length in the near SOL does not depend neither on Θ nor

Λdiv (panel (a) and (b) respectively), and neither on the parallel connection length.

Despite the large scatter encountered in the data, we can observe instead that λn in

the far SOL tends to increase whenever Θ and Λ are larger then 1, although none of

the two conditions are sufficient to ensure SOL profile flattening. In order to link the

experimental observation with the theoretical framework described in [1], we consider in

Figure 13 (a) the Λ−Θ plot for the points collected in the far SOL, where density decay

length and filament behavior are found to be connected. According to the definitions

given in [1] the orange and blue points should be in the so called resistive balloning and

resistive X-point regimes, where the blobs are electrically disconnected from the target.

The size-velocity scaling properties in these two cases are expected to be different [38].

In the same Figure 13, panel (b), we show the same λn vs Λdiv plot classifying the points
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according to the scheme shown in panel (a) of the same figure. Clearly whenever the

blobs are in the sheath-connected regime (SC), i.e. electrically connected to the plates,

the upstream profile exhibits a steep gradient without shoulder. The larger values of λn

are obtained whenever the blob is in the resistive X-point (RX) regime with few cases in

the Resistive Balloning(RB) regime. However, whenever Λdiv is increased even further,

a regime without any clear tendency towards a flat density profile is obtained. This

confirms that the blob electrical disconnection from the target, estimated from purely

the value of Λdiv, does not guarantee the SOL profile flattening in TCV.

8. Conclusion

A set of experiments has been carried out on the TCV tokamak in order to address the

role of the parallel connection length in determining SOL density profiles and its relation

with filamentary dynamics. Parallel connection length has been varied by modifying

the flux expansion, while keeping current and on-axis toroidal field constant. It has

been observed that increasing the flux expansion slightly changes the density threshold

for which the radiation front starts moving towards the X-point, without affecting the

density threshold where detachment, as inferred from target integral density roll-over,

is observed (cfr. Figure 4). The upstream near SOL density decay length, computed

for 1 . ρΨ . 1.03 is found to increase strongly with the line average density, and it is

largely unaffected by variation of the flux expansion. In the far SOL (ρΨ ≥ 1.03), λn

does neither depend on the line average density nor on L‖.

The observed modification of the SOL upstream density profiles with increasing

density has been related to modification of filamentary blobs and divertor collisionality.

We showed clearly that varying the parallel connection length at the same density

increases Λdiv without affecting blob size or upstream density profile, whereas increasing

line average density causes an increase of blob size both in the near and in the far SOL.

The growth of the blob size is not accompanied by an increase of the radial speed

(which instead is slightly reduced) or poloidal velocity of the filaments in the far SOL.

On the other hand, probe measurements suggest a reduction of the poloidal speed in

the near SOL with increasing density. Fast camera measurements confirm reduction

of the poloidal speed with density, although the present setup does not allow for the

adjustment of the radial location of the fast camera observation. It is found that the

near SOL decay length does not depend on Θ (and thus on blob size) neither on Λdiv or

L‖. However, flattening of the SOL density profile has been observed to depend on Θ

and Λdiv in the far SOL. Specifically crossing the threshold of Λdiv > 1, suggested in [2]

as the condition for establishment of shoulder formation, is found to be a necessary but

not sufficient condition. Flat profiles are not observed for blobs in the Sheath-connected

regime.

Consequently present experiments allowed establishing that increasing the parallel

connection length through flux-expansion is not a viable tool to modify upstream

density profiles and blob dynamics. The process of shoulder formation in TCV appears
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actually more complicated with respect to the framework proposed for AUG and JET

[2], although it should be mentioned that the same framework seems less robust for

the H-mode cases [8]. On the other hand, some ingredients, for example effects of

neutrals which could be different in a carbon machine with a complete open divertor

with respect to the AUG or JET cases, are still missing in the present description and

will be investigated in forthcoming experimental campaigns.
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[35] Theodorsen A, Garcia O E, Horaček J, Kube R and Pitts R A 2016 Plasma Physics and Controlled

Fusion 58 044006

[36] Walkden N R, Wynn A, Militello F, Lipschultz B, Matthews G, Guillemaut C, Harrison J, Moulton

D and Contributors J 2017 Nuclear Fusion 57 036016

[37] Agostini M, Terry J L, Scarin P and Zweben S J 2011 Nuclear Fusion 51 053020

[38] Walkden N R, Easy L, Militello F and Omotani J T 2016 Plasma Physics and Controlled Fusion

58 115010

Figures



16

0.6 0.8 1.0 1.2
R [m]

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8
Z 

[m
]

Shot # 51084

Figure 1: Poloidal cross section of the TCV tokamak and equilibrium at the smaller flux

expansion explored. The blue dots indicate the position of the Langmuir probes, the

red dashed line the LoS of the Bolometry. The orange box at the midplane indicates

the position of fast probe reciprocation
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The dashed grey line indicate the theoretically expected trend ∝ 〈ne〉2 derived from the

2-point model
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Figure 7: (a) Conditional averaged structure on ion saturation current (b)

Corresponding pattern on radial E×B velocity (c) Cross-correlation between poloidally

separated conditionally averaged sampled floating potentials. The CAS method has been

applied looking to current peaks above 2.5 the standard deviation. (d) Density profiles

normalized to the density at the separatrix as a function of normalized poloidal flux.

(e) Λdiv as a function of normalized poloidal flux (f) Blob size as a function of Λdiv

computed in the shaded region shown in panel (d) and (e)



23

10

20

30

b[
s]

(a)1.000 < 1.025 (c)1.000 < 1.025

5 10
fx

10

20

30

b[
s]

(b)1.025 < 1.060

2 4 6 8 10
ne[1019m 3]

(d)1.025 < 1.060

0 4 6 10

ne[1019m 3]
0 3 7 11

fx

Figure 8: Blob size in ρs dimension as a function of flux expansion in the near (a) and

far (b) SOL. The color code refers to ranges in density. Blob size in ρs dimension as a

function of line average density in the near (c) and far (d) SOL. The color code refers

to ranges in flux expansion.



24

0

5

10

15

b[
s]

(a)1.000 < 1.025

0

5

10

15

b[
s]

(d)1.025 < 1.060

1

2

3

4

v r
[km

/s]

(b)

1

2

3

4
v r
[km

/s]
(e)

2 4 6 8 10
ne[1019m 3]

4

2

0

2

4

v p
[km

/s]

(c)

2 4 6 8 10
ne[1019m 3]

0

1

2

3

v p
[km

/s]

(f)

0 3 7 11

fx
0 3 7 11

fx

Figure 9: Left: FWHM of Ion saturation current structure (a), Radial velocity of

filaments (b) and poloidal velocity of the filaments (c) as a function of line average

density computed at radial position 1 ≤ ρΨ < 1.03. The color codes refers to classes in

flux expansion. Right: same as left but computed for 1.03 ≤ ρΨ < 1.06.
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Figure 10: Image processing steps employed to extract the fluctuating component of the

fast-camera movies studied here. Left: An example of raw data taken from a movie.

Centre left: The fluctuating component extracted by a background subtraction. Centre

right: Application of a Gaussian blur to reduce the grainy salt-noise in the image. Right:

The background light emission as calculated by the background subtraction.

Figure 11: Left: Cross-correlation at zero time delay (color) and flow pattern (arrows)

calculated from a 2500 frame series in shot 51134 at a density of 6×1019m−3. Centre

and Right: The cross-correlation along a vertical line at x = 85 (blue dashed line in the

left hand side figure) across a flux-expansion scan (centre) and a density scan (right).

Also shown (color-coded) are the time delayed cross-correlations at τ = -10 and τ = 10

µs.
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Figure 12: Density decay length as a function of Θ computed in the near (a) and far (c)

SOL. Density decay length as a function of Λdiv computed in the near (b) and far (d)

SOL. The color is proportional to the parallel connection length. In the panel (b) and

(d) we have indicated with a grey dashed line the trend observed in AUG and JET [2].
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