
1

A Multi-Objective Load Balancing System for Cloud

Environments

Fahimeh Ramezania,1, Jie Lua, Javid Taherib, Albert Y. Zomayac

a Decision Support and e-Service Intelligence Lab

Centre for Quantum Computation & Intelligent Systems

School of Software, Faculty of Engineering and Information Technology

University of Technology Sydney, NSW 2007, Australia

b Department of Computer Science, Karlstad University, Karlstad, Sweden

c Centre for Distributed and High Performance Computing, School of Information Technologies,

University of Sydney, NSW 2006, Australia

Abstract

Virtual Machine (VM) live migration has been applied to system load balancing in cloud environments for the pur-

pose of minimizing VM downtime and maximizing resource utilization. However, the migration process is both time-

and cost-consuming as it requires the transfer of large size files or memory pages and consumes a huge amount of

power and memory for the origin and destination Physical Machine (PM), especially for storage VM migration. This

process also leads to VM downtime or slowdown. To deal with these shortcomings, we develop a Multi-objective

Load Balancing (MO-LB) system that avoids VM migration and achieves system load balancing by transferring extra

workload from a set of VMs allocated on an overloaded PM to other compatible VMs in the cluster with greater

capacity. To reduce the time factor even more and optimize load balancing over a cloud cluster, MO-LB contains a

CPU Usage Prediction (CUP) sub-system. The CUP not only predicts the performance of the VMs but also deter-

mines a set of appropriate VMs with the potential to execute the extra workload imposed on the VMs of an over-

loaded PM. We also design a Multi-Objective Task Scheduling optimization model using Particle Swarm Optimiza-

tion (MOTS-PSO) to migrate the extra workload to the compatible VMs. The proposed method is evaluated using a

VMware-vSphere based private cloud in contrast to the VM migration technique applied by vMotion. The evaluation

results show that the MO-LB system dramatically increases VM performance while reducing service response time,

memory usage, job makespan, power consumption, and the time taken for the load balancing process.

Keywords: Cloud computing, Particle swarm optimization, Virtual machine migration, Task scheduling.

1 Corresponding author, Tel: +61 9514450, Email addresses: Fahimeh.Ramezani@uts.edu.au, Jie.Lu@uts.edu.au,

Javid.Taheri@kau.se, albert.zomaya@sydney.edu.au

mailto:Fahimeh.Ramezani@uts.edu.au
mailto:Jie.Lu@uts.edu.au
mailto:Javid.Taheri@kau.se

2

1. Introduction

Cloud computing delivers scalable on-demand services include Software as a Service (SaaS), Platform as

a Service (PaaS), and Infrastructure as a Service (IaaS) over the Internet. A cloud provides the IaaS, PaaS,

and/or SaaS through its own virtualized resources, which are created over its underlying physical re-

sources. Typically, a cloud virtualized resource is a set of specification and configuration files called a

Virtual Machine (VM) [1, 2].

Due to the dynamic nature of cloud environments, the workload of VMs fluctuates dynamically,

leading to imbalanced loads and the utilization of virtual and physical cloud resources. VM migration is

used in this situation to relax the workload by moving a VM from an overloaded Physical Machine (PM)

to an under-loaded PM. In addition, VM migration is applied when IaaS customers ask to scale up their

assigned VMs, while the original host PM has no idle resources available [3]. VM migration by the sus-

pend/resume strategy or live migration is the process of copying the complete state of a VM from one PM

to another for stronger computation power, larger memory, fast communication capability, or energy

saving [4]. In suspend/resume VM migration, the execution of the VM is suspended during the migration

process; applications are halted until the VM is fully migrated to the destination host [5-8]. VM downtime

in this method equals the VM migration time plus the time taken to suspend and resume the VM. Using

the stop-and-copy process in live migration, the running instance of a VM is migrated between hosts. VM

downtime is thus much less in stop-and-copy (~10-120 seconds depending on the load) than sus-

pend/resume (~180-600 seconds depending on the load).

We believe that if a VM has small size, it is reasonable to migrate the VM to a new physical host.

However, when the VM is large, VM migration is not the optimal solution. The live VM migration pro-

cess results in dirty memory as a result of the pre-copy process, utilizes a large amount of memory in the

primary PM and new host PM, causes the VM to slow down during the migration process, carries the risk

of losing last customer activities, and is cost- and time-consuming. The resume/suspend migration strate-

gy not only has live migration shortcomings but also causes lengthy VM downtime.

In this study, a Multi-Objective Load Balancing (MO-LB) system is developed to eliminate the need

for VM migration to solve the problem of an over-utilized PM, and to scale up a VM that is located on a

PM with no available resources. To do this, the MO-LB system reduces the workload of a set of VMs —

that deliver SaaS or PaaS and are located on an over-utilized PM— and transfers their extra workload to a

set of compatible VM instances located on underutilized PMs. A compatible VM is a VM with the same

3

OS as the primary VM, and has the required application/software stack to execute the scheduled tasks.

Cloud providers need to solve such problems as this in the shortest possible time to satisfy the Service

Level Agreement (SLA). Therefore, a prediction sub-system is developed to predict CPU usage by VMs

which is able to predict PM hotspots before low performance occurs. It also creates the opportunity to

predict a set of compatible under-loaded VMs that can execute the workload that has accumulated in the

task queues of a set of primary VMs allocated on a possible over-utilized PM. This helps the hypervisor

layer to make an accurate decision and solve the problem before it arises. We also develop a multi-

objective optimization sub-system for transferring these accumulated tasks from the primary VMs to the

destination VMs with minimum task transfer time, task execution cost/time, power consumption, and task

queue length.

In summary, the contribution of this paper is to develop an MO-LB system that eliminates VM mi-

gration to achieve system load balancing through the creation of two sub-systems: (1) a CPU usage pre-

diction sub-system, and (2) a Multi-Objective Task Scheduling sub-system. The efficiency of the pro-

posed solution is evaluated by comparison with vMotion in both live and storage VM migration using a

VMware-vSphere based private cloud and HTCondor functionality. The evaluation parameters are

makespan, execution time, memory usage, and total time taken for load balancing.

The rest of this paper is organized as follows. Works related to load balancing methods are de-

scribed in Section 2. In Section 3, a conceptual model and the main algorithm for the MO-LB system are

proposed. This model is completed by the developed VM workload prediction and the multi-objective

task scheduling optimizing sub-systems presented in Section 4 and Section 5 respectively. The model is

evaluated in Section 6. Lastly, the conclusion and future works are explained in Section 7.

2. Related Works on Load Balancing in Cloud Environments Using VM Migration

Techniques

Virtualization technique has improved utilization and system load balancing by enabling database [9-

12] and VM migration, which has resulted in significant benefits for cloud computing [13]. Several meth-

ods have been proposed to migrate a VM from one physical host to another with more available resources

for optimizing cloud utilization. These methods are categorized in two main classes: (1) suspend /resume

strategy, and (2) live migration.

 The suspend/resume VM migration approach has three steps: pause the original VM, copy the VM’s

related data (memory pages and processor state) to a new host PM, and then resume the VM on the desti-

4

nation host [5-7]. Using this method, applications running on the VM need to be stopped and are not made

available until the migration process has been completed and all the data have been transferred to the new

destination. Moreover, this method results in long VM downtime. To reduce downtime, the ZAP system

[14] only transfers a process group, but it still uses a stop-and-copy strategy. In contrast, live migration, in

which a running instance of VM is migrated between hosts in a local area network, eliminates the stop-and-

copy process and minimizes VM downtime. Jun and Xiaowei [15] developed a VM live migration policy

for the IPv6 network environment. In this migration method, the VM does not provide new services but

continues its work and then stops after completing its old services. A pre-copy migration method is applied

by the vMotion component of VMware vSphere in [16], and Xen hypervisor in [17] for live migration.

Using this method, VM’s run-time memory state files are pre-copied (migrated) from the source host to the

destination host while the VM is still working. This method generates a huge amount of dirty memory and

takes a long time, because it is necessary to transfer a large amount of data. In addition, the dirty memory

generation rate in some cases is faster than the pre-copy speed, in which case live migration will be pro-

longed. To overcome these drawbacks, Jin et al. [4] suggested using the pre-copy based model from VM

live migration in combination with an optimized algorithm that reduces the speed of changing memory by

controlling the CPU scheduler of the VM monitor. To ease the VM migration process, Nicolae et al. [18]

developed a repository check pointing strategy called BlobCR that frequently stores live snapshots of the

entire VM instances disk. There are also several VM live migration techniques that consider power con-

sumption reduction as well as downtime and migration time. Liao et al. [19] developed a live VM mapping

framework to map VMs onto a set of PMs without significant system performance degradation, while at

the same time reducing power consumption. Sallam and Li [3] also suggested a multi-objective VM migra-

tion technique that considers power and memory consumption, thus making live VM migration more bene-

ficial for cloud providers.

Lin et al. [20] believed that load balancing strategies that focus on VM migration for optimizing on-

demand resource provisioning needed to be improved. They proposed a threshold-based dynamic resource

allocation approach for load balancing in the cloud environment that dynamically allocates the VMs

among the cloud’s applications based on their load changes. Atif and Strazdins [21] also developed a simi-

lar cloud utilization optimization framework for Application as a Service (AaaS). They used virtual ma-

chine monitor facilities (which have traditionally been used for live migration) to create sets of homoge-

nous clusters of computing frames (VMs). They used these clusters to schedule or migrate application tasks

5

over a set of homogenous VMs based on estimated task execution time to optimize resource utilization and

enhance application performance. However, this method cannot be used when a determined homogenous

cluster has high utilization and is in an overloaded state. The reviewed literature related to this study is

summarized in Table 1.

The fundamental drawback of these load balancing approaches is that the majority attempt to migrate

the VM [4, 15, 17, 19]. In our previous work [22], we proposed a Task-Based System Load Balancing

using a Particle Swarm Optimization (TBSLB-PSO) conceptual model to overcome these shortcomings.

The TBSLB-PSO achieves system load balancing by migrating tasks from primary VMs on an overload-

ed PM to a set of compatible VM instances located on under-loaded PMs, instead of migrating VMs in

their entirety. However, although VM migration has been eliminated by TBSLB-PSO, this model is not

applicable to VMs that are delivered as IaaS because cloud providers do not have access to the applica-

tions running on these VMs.

Using the MO-LB system, not only is the need for VM migration eliminated: the system is also appli-

cable to VMs that deliver different types of cloud services. A CPU utilization prediction sub-system is

also added to the previous model to determine primary VMs, PM hotspots and new destination VMs, for

the purpose of executing tasks located in the task queues of the primary VMs. The MOTS-PSO sub-

system of MO-LB is also improved so that it is compatible with real cloud environments and has four

objective functions, while the TBSLB-PSO is not applicable in real cloud environments and has two ob-

jective functions. The MO-LB system reduces the amount of dirty memory produced, as well as the con-

sumption of load balancing time and power, compared to VM migration. Furthermore, the proposed sys-

tem is not restricted to distributing the extra workload over a set of VMs in predefined clusters, because

the new destination VMs are determined dynamically over the entire local cloud environment.

Table 1. Summary of reviewed literature related to load balancing in cloud environments

References Key Development

1- Suspend/resume VM migration

ZAP system in [14] Applied suspend/resume VM migration strategy that only transfers a process group

2- Live VM migration

Jun and Xiaowei [15] Developed a VM live migration policy for the IPv6 network environment

vMotion in [16] and Xen in [17] Applied a pre-copy migration method for live migration

Jin et al. [4] Combined the pre-copy based model and an optimized algorithm that reduces the speed of

file:///D:/Fahimeh/Thesis-5%2011%202015.docx%23_Toc434590552

6

changing memory

Nicolae et al. [18] Developed a repository check pointing strategy called BlobCR for live migration

Liao et al. [19] Developed a live VM mapping framework with minimum system performance degrada-

tion while reducing power consumption

Sallam and Li [3] Developed a bi-objective VM migration technique that considers power and memory

consumption

3- Other load balancing techniques

Lin et al. [20] Developed a threshold-based dynamic resource allocation approach for load balancing

Atif and Strazdins [21] Developed a cloud utilization optimization framework for AaaS to optimize load balanc-

ing

3. The Multi-Objective Load Balancing System

VM migration (live and storage migration) is applied by a hypervisor (or Virtual Machine Monitor

(VMM)) such as VMware EXSi to manage cloud resources and balance the load over PMs [4, 15, 17, 19].

VM migration has important applications in dynamic resource management for cloud-based systems and

large data centers. In these environments, a group of VMs can begin to compete for resources provided by

a single PM. A hotspot occurs when the performance of VMs degrades because the PM is unable to re-

spond to the resource demand. The opposite situation, when resources on a PM are underutilized, is

termed a cold spot. This happens when the running VMs consume only a tiny fraction of the resources

provided by the hosting PM. Both hotspots and cold spots can be handled by moving one or more VMs

from an overloaded PM to another PM with available physical resources. In hotspot mitigation, the se-

lected VMs are moved to a less loaded PM. Server consolidation is the strategy for handling cold spots by

regrouping VMs from lightly-loaded hosts to a smaller subset of PMs, thus freeing up the remaining PMs

for resource-hungry VMs [23, 24]. VM migration is also applied to scale up VMs that are delivered as

IaaS based on customer demand when the original host PM has no idle resource availability [3].

 Cloud providers benefit from VM migration for small VMs as the entire process is completed in se-

conds. However, VM migration for large VMs results in dirty memory, utilizes a large amount of memory

in the primary PM and destination PM, causes the VM to slow down during the migration process, and

carries the risk of losing last customer activities. Therefore, the need for a replacement solution that can

achieve higher cloud utilization, increase the performance of primary VMs, and as a result allow cloud

providers to deliver higher QoS at lower cost has been recognized.

7

The main goal of this study is to find a way to reduce the need for VM migration, especially for

large VMs in two particular situations: (1) the primary PM is over-utilized/overloaded; (2) a VM that is

delivered as IaaS needs to be scaled up and there is no available capacity on the host PM.

The first step is to create clusters of PMs with a set of VMs that are applied to deliver PaaS or IaaS,

and another set of VMs to deliver AaaS/SaaS, in which cloud service providers distribute jobs/DAGs

(Directed Acyclic Graph) of applications. Instead of conducting VM migration when the host PM be-

comes overloaded, the solution is to reduce the load of the set of VMs that deliver AaaS/SaaS, or stop

them from working. Their extra workload is then allocated to compatible VMs that are allocated on the

other PM and have the resources available to execute the workload. This solution is similar to job/task

scheduling, which is widely applied in cloud and grid environments. Using this solution, the load of the

PM is reduced and there is no need to migrate some of its allocated VMs (see Figure 2). In the second

situation where VM migration is required, the same solution is suggested. Then, the resources allocated to

the VMs that are no longer working or have fewer jobs to do are allocated to the VM that needs more

resources. Therefore, this VM can be scaled up and does not need to be migrated (see Figure 3).

HTCondor [25] and Pegasus-WMS [26] are two examples of systems that can be used to implement

this idea. In both systems, a central management system periodically polls the status of all its “workers”.

Workers, in turn, are designed to collect and report the latest status (e.g., the number of available CPUs

and amount of available memory) of the machine/VM in which they reside. This work was empirically

tested using HTCondor v8.2. The central management system can also “kill” and “reinitiate” jobs should

Figure 1: VM migration using vMotion

Storages

PMs

Hypervisors

VMs

8

it need to empty a higher-capacity VM to accommodate another job with greater requirements. Regardless

of this capability, MO-LB implicitly assigns jobs to the “right” size VM so that it is not necessary to later

reassign jobs. Because VMs are provided by a cloud infrastructure, we can also assume that MO-LB will

spin-up larger size VMs as needed, or at least, replace several small VMs with a larger VM by destroying

and/or resizing existing VMs.

The MO-LB system has four main parts: (1) Global Blackboard (GB), (2) CPU Usage Prediction (CUP)

sub-system, (3) Multi-Objective Task Scheduling sub-system applying PSO (MOTS-PSO sub-system),

Figure 3: MO-LB to scale up a VM that delivers IaaS



Storages

PMs

Hypervisors

VMs

Figure 2: MO-LB solution for resolving the problem of an overloaded PM

 

Storages

PMs

Hypervisors

VMs

9

and (4) Decision Maker Centre (DMC). The first three parts communicate with each other and report to

the DMC of the MO-LB system to conduct load balancing. An overview of the MO-LB system is given

in Figure 4.

The first element is the GB on which all Virtual Machine Monitors (VMMs) and task schedulers

share their data and information about VM features, jobs and scheduled tasks in a cluster. This data in-

cludes the number of CPUs, free memory and bandwidth allocated to VMs. Additional information about

the VMs provided for SaaS and PaaS includes the number of tasks to be executed, the task execution

time, and the resources required for the tasks (number of processors required, CPU and memory usage).

In addition, this blackboard contains online information about PMs (physical resources), such as the

number and speed of their processors (CPUs), the amount of free memory and hard disk they have, their

situation (idle or active), and their associated VMM. The information about SLA constraints is also gath-

ered on this blackboard to monitor QoS criteria. The stored variables on GB are summarized in Table 2.

The second element of the MO-LB framework is the CUP sub-system which predicts the two situa-

tions that are targeted in this study. Based on the predicted situations, the DMC determines whether the

MO-LB system or VM migration should be applied to solve the problem. If the VMs on an overloaded

PM are small, the DMC suggests VM migration, otherwise, the MO-LB system is applied. In the first

situation, where the primary PM has become overloaded, the CUP sub-system applies blackboard data

and information related to the VMs’ CPU usage to predict which VMs are likely to reach maximum utili-

zation and exhibit low performance, thereby predicting hotspots in the PM. Based on the prediction result

of the CUP sub-system, some VMs on the overloaded PM that deliver SaaS/PaaS are determined as pri-

mary VMs to reduce their workload. In the second situation where a VM that is delivered as IaaS needs to

be scaled up, the CUP determines a set of VMs that deliver SaaS/PaaS in the neighborhood of the targeted

Figure 4: Overview of the MO-LB system

DMC CUP Sub-system

MOTS-PSO Sub-system

GB

10

VM as the set of primary VMs. This method also determines a set of compatible high performance VMs

that can be used to execute the extra workload imposed on the set of primary VMs.

The MOTS-PSO sub-system is developed as the third main element of the MO-LB framework. The

MOTS-PSO sub-system applies all the information supplied by the other two parts of the framework (GB

and CUP) to determine the optimal pattern for scheduling extra tasks from the primary VMs to a set of

compatible destination VMs. The MOTS-PSO sub-system considers the minimization of task transfer

time, task execution cost, power consumption in the corresponding data center, and task queue length in

the destination VMs to find the optimal solution. The DMC of the MO-LB system then transfers those

tasks and their corresponding data to the pre-determined set of VMs based on the optimal suggested task

scheduling pattern.

The main algorithm of MO-LB is summarized as Algorithm 1. The proposed MO-LB framework illus-

trated in Figure 5 shows how MO-LB sub-systems communicate with each other and perform the steps of

the MO-LB algorithm. The CUP and MOTS-PSO sub-systems referred to above are described in detail in

Section 4 and Section 5 respectively.

Algorithm1. The MO-LB main algorithm

Input: All variables on the global blackboard (Summarized in Table 2).

[Begin MO-LB algorithm]

1. Monitor MO-LB blackboard data to collect VM information including: VM tasks, memory and CPU usage, the

amount of virtual resources (CPU and memory), etc.

2. Predict VM CPU usage by applying CUP sub-system to determine primary over-utilized VMs on an overloaded

PM, the PM host spots, and destination under-loaded VMs (Algorithm 2).

3. If VM is small and its host PM is also overloaded, then migrate it and go to Step 7.

Else

4. Predict a set of compatible VMs as the new possible destinations for the determined tasks by applying CUP sub-

system (Algorithm 2).

5. Determine set of tasks that have accumulated in the task queue of each primary VM.

6. Determine the optimal task scheduling pattern to reschedule tasks onto new determined destination VMs by apply-

ing MOTS-PSO sub-system (Algorithms 3), and transfer tasks and their corresponding data to the determined

VMs.

7. Update the blackboard and scheduler information to include the current properties of PMs and VMs.

[End MO-LB algorithm]

11

4. CPU Usage Prediction Sub-System

Most researches in the area of VM workload prediction have applied prediction methods such as neural

networks, pattern recognition and linear regression to forecast the workload of VMs or their CPU usage in

the cloud environment [27]. These methods predict the future workload of VMs by applying their previ-

ous workload patterns in time slot t, determined on the basis of related historical data [28]. We also apply

linear regression in the developed CPU Usage Prediction (CUP) sub-system to predict CPU utilization

patterns by VMs that are allocated on a PM, using historical data.

Considering the fluctuation in CPU usage and the fact that it might increase suddenly and decrease

soon after, CPU usage should be checked frequently at specific times to estimate a VM’s upcoming CPU

usage and workload [27]. Therefore, we monitor CPU usage trends and fluctuations over a small period of

 Step 1: Gather and update data including:

 VM CPU utilization

 Primary VMs

 Tasks that need to be transferred

 List of possible destination VMs
 PM hot spots

PM criteria (total/current)

CUP outputs

 Number of processors (CPUs)

 The amount of Memory

 Bandwidth

 CPU usage information

 The number of tasks in the queue

 Task execution/transfer time

 Resources required for task

VM information

 CPU (number and

speed of proces-

sors)

 Memory

 Hard disk

 Bandwidth

 Idle or active

 Host VMM

 …

 CPU

 Memory

 VM performance

SLA information

VMM

Guest VMs

VMM

Guest VMs

VMM

Guest VMs

Step 2: Determine the primary over-utilized VMs

Step 4: Predict a set of compatible VMs as new desti-

nations for extra workload

MO-LB Decision Maker Center (DMC)

Step 3: Migrate VM if it is small and its host PM is

overloaded

Otherwise

Step 5: Determine the tasks that need to be transferred

 Step 7: Update data on GB including properties of

current PMs and VMs

MOTS-PSO Sub-system

 Step 6: Determine optimal task scheduling pattern and

transfer the tasks.

CUP Sub-system

Global Blackboard (GB)

Figure 5: The MO-LB framework

4
5

9

10

8

7

1

6

3

2

12

time (e.g., every two minutes) to forecast the VM’s workload level for the next interval. The CUP is run

every two minutes because the applied hypervisor is set to balance the load over PMs every five minutes.

This time can be changed by the cloud provider, based on the primary settings of the hypervisor.

The CPU usage usually fluctuates dramatically and it is difficult to estimate its overall increasing or de-

creasing trend (see Figure 6a). Therefore, the cumulative average of CPU usage that is calculated every 20

seconds is used to estimate its trend during time slot as follows:

Where variables and are in seconds,
 is the total amount of CPU utilization of and is

the integer division. Then, the corresponding continuous chart to
 is produced (see Figure 6b).

The polynomial fitting tool in MATLAB is then applied to determine the overall trend of
 as

shown in Figure 6c.
 has an increasing trend if the derivative of its fitted line (

) is

positive in :

a b c

Figure 6: Estimating the CPU utilization trend in time slot Ts

However, the
 can be increasing while the CPU utilization of the VM is low. This study there-

fore assumes that this VM will be overloaded if the cumulative average of the CPU usage of

(
) during time slot has an increasing trend (see Equation 2) and the CPU utilization of the

VM at the end of the time slot exceeds 80% i.e:

0

20

40

60

80

100

0 10 20 30 40

time (second)

CPU Utilization

0

20

40

60

80

100

10 20 30 40 50 60 70 80

time (second)

Fitted Line: f(x) = 0.7*x+32

0

10

20

30

40

50

10 20 30 40 50 60 70

time (second)

Cumulative Average of CPU Utilization

13

where ct is the current time, t is a given period of time (e.g., two minutes), and time slot is the number

of seconds between . The CUP algorithm is summarized as follows.

Algorithm2. The CUP algorithm (Steps 2 and 4 of the MO-LB algorithm)

Input: All variables in Table 2.

[Begin CUP algorithm]

6.1. Monitor MO-LB blackboard data to calculate the value of the following variables:



 ,

 and

6.2. determine the following information based on CUP rules:

 The primary VMs as a result of their high CPU utilization

 The PMs that are at risk of becoming overloaded

 The primary set of VMs that is targeted to stop working or that has a reduced workload

 A set of compatible VMs as the new destination for the extra workload imposed on the primary VMs

[End CUP algorithm]

5. Multi-Objective Task Scheduling Optimization Sub-System

MOTS-PSO is designed as part of the MO-LB framework to find an optimal solution to the schedul-

ing of tasks from primary VMs to a set of new destination VMs (Step 6 of the MO-LB algorithm). This

optimization model has four conflicting objectives, namely: task transfer time, task execution cost/time,

length of VM task queue, and power consumption. In our previous work [29], a four-objective optimiza-

tion model that considers the same aspects of task scheduling was developed. The objective function for-

mulas in [29] were designed for a simulation cloud environment (i.e. CloudSim [30]) and the model has

been evaluated using the CloudSim toolkit. In this paper, however, we have changed the objective func-

tion formulas to make them compatible with real cloud infrastructures, such as the VMware-vSphere

based clouds used in this work. This study focuses on scheduling Bag-of-Tasks (BoT) applications for

SaaS. In BoT applications, the completion of one task does not affect the completion of other tasks, and

only one task is executed on a computer processor (CPU) at a time. BoT applications are used for data

mining, massive searches, parameter sweeps, simulations, fractal calculations, computational biology, and

computer imaging [31, 32].

To formulate the MOTS-PSO objective functions, the following variables are defined:

14

Table 2. MOTS-PSO variables

Symbol Definition

n The number of tasks that have accumulated in the task queue of a primary VM ()

 Set of tasks that has accumulated in the task queue of

 The taski file size (MB)

 The taski output file size (MB)

 The taski input file size (MB)

 The maximum level of memory required to execute task i (MB)

 The number of CPUs required to execute task i

 The amount of CPU usage of task i (GHz)

 The total execution time of task i on (Hour)

 The total task execution time on (Hour)

m The number of VMs

 Virtual Machine k, k={1, 2, …, m}

 The amount of memory allocated to (MB ≈ 0.001 GB)

 The number of CPUs allocated to

 The number of available CPUs allocated to

 The amount of available memory allocated to

 The number of active CPUs on

 The bandwidth of (Mb/s)

 The CPU computing speed of (GHz)

 The amount of available memory on

The number of available CPUs on

NPM The number of PMs in cloud

NaPM The number of active PMs in cloud

 = The set of indices of VMs located on zth PM

cp The number of cloud providers

 Maximum capacity of provider p

 = The set of VMs belonging to the pth provider

 The cost of one CPU for the pth provider (AUD/hour)

 1 if task i is assigned to and 0, otherwise

15

 Set of underloaded VMs that are compatible with

5.1. The MOTS-PSO Objective Functions

In this study, the available resources in VMs that are determined to be possible destinations for the

extra workload of a primary VM will be fewer than their allocated resources. Based on this fact, the ob-

jective functions of MOTS-PSO are formulated and explained below.

5.1.1. Task Transfer Time

When a task is assigned to a VM for execution, the input data of the task and the output data of its

prerequisite tasks are uploaded to the VM from the corresponding storage node to the VM. Therefore, to

transfer a task from one VM to another, the task and the output data produced by its prerequisite tasks

should be transferred from the primary VM () to the destination VM () for execution. In this

case, the total task transfer time for both the computing and data intensive tasks is estimated as follows,

where the coefficient 1/8 is used to convert Megabit (Mb) to Megabyte (MB) where 1 Mb equals 1/8 MB:

5.1.2. Task Execution Cost and Time

The task execution cost (AUD per hour) for provider p is calculated as follows:

where is the cost of one CPU for the pth provider in AUD per hour, and is the estimated

execution time (in hours) of the tasks assigned to each belonging to provider p.

The execution time of task i on can be estimated by dividing the total amount of CPU usage of

task i () by the CPU speed of the corresponding VM (
) i.e:

However, the CPU speed of the VM is not consistent during the task execution time in a VMware-

vSphere based cloud environment with VMware-ESXi hypervisor. In this environment, the CPU speed

changes based on the number of active CPUs because the VMware-ESXi divides the CPU speed of

16

(
) by the number of its active CPUs. To determine the execution time of a set of tasks sched-

uled to , therefore, the number of active CPUs during the execution time of these tasks should be

estimated.

To estimate this number, we first determine the total number of tasks that are scheduled to as:

The integer division of
 divided by

 is calculated as follows, where
 is the number of

available CPUs allocated to :

This value is used to estimate how many tasks (i.e.

) will be executed while all the CPUs of

 are active and the CPUs’ speed is equal to

 .

The remainder after the division of
 by

 (i.e. modulo) is calculated in Equation 9 to estimate

how many CPUs will be used to execute the rest of the tasks. In this situation, the CPU speed of is

divided by the number of its activate CPUs as calculated in Equation 10.

where
 is the number of CPUs in that were busy before tasks were scheduled to it and is

estimated as:

http://en.wikipedia.org/wiki/Remainder
http://en.wikipedia.org/wiki/Division_(mathematics)

17

For example, when we have 13 tasks scheduled to with four CPUs, three of which are available,

then
 . This means that 4*3=12 tasks will be executed while all the CPUs of are

busy, and the CPU speed is

. In this example,

 . This means that one of

these tasks will be executed while the number of busy CPUs in is

 , and CPU speed equals

 (see Figure 7).

 is then estimated in hours by applying the aforementioned assumptions as follows:

The value of has been empirically determined.

We assume the same price for all CPUs in a VM, therefore task execution sequence and scheduling

schema in each VM are not considered in this function. For instance, in a VM with three CPUs, the cost

of assigning three tasks to three different CPUs will be the same as the cost of assigning the execution of

three tasks to one CPU (see Equation 5). The total task execution cost for all providers is determined as:

In situations where minimizing the execution time of tasks is more important than cost, the task exe-

cution time must be estimated. To do this, the value of coefficient in Equation 5 for all providers

is considered equal to 1; Equation 13 is then an estimation for the total task execution time in hours.

5.1.3. Power Consumption

t0

t1

VM1

CPU1 CPU2 CPU3 CPU4

Figure 7: Task scheduling pattern

t2

t3

t4

t5

t6

t7

t8

t9

t10

t11

 t12

t13

18

Several power-aware multi-objective task scheduling models have been proposed for multi-core

processors, grid and cloud environments [33, 34]. A variety of linear and non-linear objective functions

have been suggested in these models to estimate power consumption based on task scheduling patterns,

by considering the fact that energy will be reduced when the PM is either off or in idle mode [32, 35, 36].

It has also been proved by Buyya et al. [35, 37] that an idle server consumes around 70% of the power

consumed by a fully utilized server. Previous studies show that having fewer active CPUs and PMs leads

to lower power consumption in a cluster. Considering this fact, the ratio of active PMs and CPUs to all

available PMs and CPUs has been minimized in this study to reduce power consumption. By applying

this as an objective function, the optimization model avoids the selection of VMs on idle PMs as the des-

tination for scheduled tasks and consequently reduces the power consumed in the corresponding cloud

cluster. To calculate this ratio, we first determine the power consumption for each fully utilized PM (i.e.

all of its CPUs are active) as follows, based on the fact that the power consumed by the PM is linear with

the number of busy/active CPUs [38] and increases by this number:

where
 is the amount of power that consumes when all of its CPUs are idle,

 is the number

of CPUs of fully utilized that are active, and is the amount of extra power consumed above

 for every active CPU of . Using this, the value of is:

For a cluster with homogenous PMs, the value of and are the same for every PM. Therefore, the

total amount of consumed power in this cluster can be determined as follows:

then

where is the total number of CPUs in the cluster and can be calculated by counting the number of

CPUs allocated to each VM i.e.

 . Using this is calculated as:

19

By applying the same logic, the value of the power consumed by the active PMs and CPUs in this cluster

is calculated as follows:

where
 is the number of active CPUs in . To calculate

 , the number of CPUs of that

are already busy is calculated by applying Equation 11, and the number of activated CPUs is considered.

The number of tasks assigned to may be less than the number of available CPUs in , or it may

exceed this number, therefore the number of activated CPUs in after a task has been scheduled is

equal to the minimum value of the total number of tasks assigned to and the total number of availa-

ble CPUs in this VM. The total number of active CPUs in can be estimated as:

 is the number of active PMs in all iterations and is estimated on the basis that will be activated

if at least one of its allocated VMs is active. The activation status of VMs is determined according to the

current number of busy CPUs (
 and the number of tasks assigned to them. is already acti-

vated if at least one of its CPUs is busy before a task is scheduled to it. The current status of is then

calculated as:

In the situation where all CPUs of are idle (available), will be activated by having at least one

task assigned to it, and the status of is determined by the following formula:

where

 is the number of tasks assigned to the available CPUs of . By applying Equations 21

and 22, the number of active VMs located on is calculated as follows:

and the number of active PMs is determined using the following formula:

20

Using Equations 18 and 19, the ratio of consumed power in the cluster for each task scheduling pat-

tern can be calculated as:

As a result, the following formula is developed as an objective function in our task scheduling model to

control power consumption in the cluster:

where

 . For instance, for one of our servers in this study (Altix XE320 [39]) with

 , [40], and 16 CPUs, the value of is equal to 0.1.

5.1.4. Length of VM Task Queue

For each possible best solution of the multi-objective task scheduling pattern, extra tasks will be al-

located to the task queue of if the number of tasks assigned to exceeds the number of its CPUs

(see Figure 8). In this model, we consider another objective function to optimize the task scheduling pat-

tern by minimizing the length of the VM task queues. This will reduce the makespan of the corresponding

jobs to the tasks, and consequently reduce response time, as fewer tasks will be located in queues and in

waiting mode.

 Figure 8: A sample task scheduling pattern between VMs

The following objective function is proposed to minimize the number of tasks in queues that will be

created in any possible optimal task scheduling pattern:

t1

CPUs

VMs

t3 t5 t2 t4

t6

t11

t13

t7

t9

t8

t12

t10

t14

t15

Queues

21

where i is the task index, and the value of
 and

 is the portion of remaining memory and

CPU capacity of respectively after has received each scheduled task, calculated as:

where the values of

 and

 are the total amount of memory and number of

CPUs required to execute the tasks previously assigned to prior to task i.

To calculate , the formula proposed in [41-43] is improved by considering changes in the capacity

of available VMs after the assignation of new tasks. Equation 27 indicates that scheduling task i to

 —which reduces the amount of available CPU and memory of the corresponding VM— negatively

affects ’s performance and the execution time of its tasks. In this formula, if

 and/or

 , the implication is that there is no available memory or CPU to

execute extra tasks, thus the suggested solution will increase the number of accumulated tasks in the task

queue of and create a long task queue for this VM. This study prevents the suggested solution from

being chosen as an optimal task scheduling solution by assigning a big penalty value to the value of .

Using this, will not be minimized and the probability of choosing the corresponding task scheduling

solution as an optimal solution will be reduced. To increase the value of , a small value is assigned to

 and/or

 . This is achieved as follows: if
 and/or

 are equal to zero, the

value of 10
-3

 will be added to them, and if each of them has a negative value, they will be converted to

 and/or

 then multiplied to a small value (-10
-3

). This method for panelizing solu-

tions with negative values for
 and/or

 has been determined to not only penalize solu-

tions that do not achieve optimal resource utilization and increase the task queue length of the corre-

sponding VMs, but also to enable the system to rank these suggested solutions. For example, we assume

in a solution that
 (i.e. we have two more CPUs required to execute task i), and in another

solution
 . Although the task scheduling pattern suggested in both solutions will increase

the task queue length of the corresponding VM, the first solution is better than the second solution as it

requires fewer extra CPUs. Therefore, we change the value of
 in first solution to

22

 , and in the second solution to

 . Considering this fact that

 , the value of in the first solution is less than the value obtained in the second solution. There-

fore, the first solution has a higher rank than the second solution in terms of minimizing .

Since the values of
 and

 are multiplied by each other, using this will increase the

value of dramatically whenever one of them equals zero or has a negative value. Therefore, the proba-

bility of this pattern being chosen as a possible optimal solution will decrease. This prevents the assigna-

tion of tasks to VMs that do not have available resources. The following formula is then used as an opti-

mization objective function in our proposed model to minimize VM task queue length and optimize the

load balance:

5.1.5. The Multi-Objective Problem

The multi-objective optimization problem for task scheduling applied by the MO-LB system is de-

fined as follows, based on the determined objective functions:

Problem:

Subject to

5.2. The MOTS-PSO Algorithm

23

The task scheduling optimization model is an NP-Complete problem in cloud computing, and the

supremacy of PSO for such optimization problems in the cloud and grid environment has been proved in

[41, 42, 44, 45]. In addition, the efficiency of MOPSO for solving multi-objective task scheduling prob-

lems has been examined in [29] in comparison with the multi-objective genetic algorithm. It has been

shown in [29] that MOPSO is the most efficient and reliable algorithm for solving these problems be-

cause it not only determines the optimal task scheduling pattern with the highest QoS, but also obtains the

solution in the shortest possible time. In light of these results, MOPSO is applied in this study to find the

optimal schema for transferring tasks from primary VMs to the selected destination VMs. For small num-

bers (e.g., 20 Tasks and 10 VMs) the convergence time of MOTS-PSO is less than 0.3 seconds. For in-

dustry sized deployments (e.g., 100 Tasks and 20 VMs), and for very large numbers of tasks and VMs

(e.g., 1000 Tasks and 50VMs), the computation can be parallelized by processing MOTS-PSO in parallel

for smaller groups of tasks and VMs. In this situation, the tasks and VMs are categorized in several sets

with a small number of tasks and VMs. MOTS-PSO is then run in parallel for each set and the time con-

sumed for task scheduling does not increase.

In this section, the preliminary definition of the PSO method is first described. The MOTS-PSO al-

gorithm is then explained to complete Step 6 of the MO-LB algorithm and solve the formulated task

scheduling optimization problem.

5.2.1. Particle Swarm Optimization

In the majority of optimization problems, the objective functions are in conflict with each other and

there is no unique solution for them. Therefore, the goal is to find good trade-off solutions that represent

the best possible compromises among the objectives [46]. A multi-objective optimization problem is de-

fined as follows:

where is the vector of decision variables;
 are the objective

functions. Let particle represent a solution to (1). A solution dominates if

 for all j=1,..,k and for at least one j=1,…,k. A feasible solution is

called Pareto optimal (non-dominated) if there is no other feasible solution that dominates it. The set

of all objective vectors corresponding to the Pareto optimal solutions is called the Pareto front

24

(P*). Thus, the aim is to determine the Pareto optimal set from the set F of all the decision variable vec-

tors (particles) [47-51].

Particle Swarm Optimization (PSO) is a population-based search algorithm based on a simulation of

the social behavior of birds which was originally proposed by Kennedy and Eberhart [52]. Although orig-

inally adopted for balancing weights in neural networks, PSO soon became a very popular global opti-

mizer, mainly in problems in which the decision variables are real numbers [53, 54]. In PSO, particles are

flown through hyper-dimensional search space. Changes to the position of the particles within the search

space are based on the socio-psychological tendency of individuals to emulate the success of other indi-

viduals. The position of each particle is changed according to its own experience and that of its neighbors.

Let denote the position of particle i, at iteration t. The position of is changed by adding a ve-

locity to it, i.e.:

 (36)

The velocity vector reflects the socially exchanged information and, in general, is defined in the fol-

lowing way:

where is the cognitive learning factor and represents the attraction a particle has to its own success;

is the social learning factor and represents the attraction a particle has to the success of the entire swarm;

W is the inertia weight, which is employed to control the impact of the previous history of velocities on

the current velocity of a given particle; is the personal best position of the particle i; is the

position of the best particle of the entire swarm; and are random values [46, 49, 50] .

5.2.2. The MOTS-PSO Algorithm

The MOTS-PSO algorithm specifies the most appropriate VMs to which the tasks of the primary

VMs can be allocated, and finds the optimal task scheduling schema by applying the PSO algorithm

adopted from [55] and modified to MOPSO to support multi-objective problems. This algorithm applies

the data and information determined in Table 2, and the output variables obtained by Steps 1, 2, 4 and 5

of the MO-LB algorithm as its input variables.

In this stage, CUP output variables are generated as input variables for MOTS-PSO: a set of primary

VMs, and a set of destination VMs as which have available memory and CPUs

for executing extra tasks. For each primary VM () in the MOTS-PSO algorithm, a set of compatible

25

VMs from are chosen as new destinations for the extra workload (
). The set of tasks to be

transferred from are determined as
 . Lastly, the MOPSO algorithm is applied to

find the best solution for the multi-objective task scheduling optimization problem (see Section 5.1) to

schedule tasks in
 to VMs in

 . All particle positions determined by

MOPSO by applying Equations 36 and 37 are vectors with continuous values, but their corresponding

discrete values are needed to determine the index of VMs chosen for task execution. The Smallest Posi-

tion Value (SPV) rule is proposed in [56] to modify the PSO algorithm and enable the continuous PSO

algorithm to be applied to all classes of sequencing problems such as the task scheduling problem, which

are NP-hard. By using the SPV rule, permutation can be determined through the position values of the

particle so that the positions of each particle are updated at each iteration k in the PSO algorithm and the

fitness value of the particle can be computed with that permutation. The feasibility of PSO using the SPV

rule to determine the optimal solution is proved in [56]. In addition, the SPV rule is widely applied to

convert the vector of the particles’ continuous position vector to discrete vectors [41, 56-59]. Given this

knowledge, the SPV rule is applied in this study. First a new sequence vector is

generated by applying the SPV rule based on continuous vector . For example, the

smallest position value for continuous vector is -1 2 0. There-

fore, the dimension 5 is assigned as . The second smallest position value is -0.99, so = 2, and so on.

For a task scheduling problem with n tasks and m VMs, discrete vectors is gener-

ated by applying the following equation [57]:

 For example, for continuous vector in a task scheduling

problem with six tasks and three VMs, and . Based on this

solution (), tasks 1, 2, 3, 4, 5 and 6 are assigned to VMs with indices 2, 2, 1, 1, 0 and 0 respectively.

Ultimately, in MOTS-PSO algorithm, the current value of VM properties (CPU, memory, etc.) will be

updated on the GB. In summary, the following steps should be conducted for each primary VM by the

MOTS-PSO algorithm to complete Step 6 of the MO-LB system:

Algorithm3. The MOTS-PSO algorithm (Step 6 of the MO-LB algorithm)

Input: All variables in Table 2, and variables created in Steps 1, 2, 4 and 5 of the MO-LB algorithm.

[Begin MOTS-PSO algorithm]

26

7.1. Choose a VM from a set of primary VMs suggested by the CUP algorithm as .

7.2. Choose a set of compatible VMs as
 form the new candidate destination VMs

() determined by the CUP algorithm.

7.3. Determine the set of tasks to be transferred from the primary VMs as

7.4. Apply the PSO method to find the Pareto optimal schema to assign the determined tasks (
) to the specified

VMs (
) minimizing task transfer time, task execution cost/time, length of VM task queue, and power

consumption as follows:

7.4.1. Create an initial population array of every particle i () with random positions and velocities on n di-

mensions in the search space.

7.4.2. Initialize an archive in which members are non-dominated solutions (n dimensions particles/genes whose

position/pattern is a Pareto optimal solution)

7.4.3. Determine the value of

 and
 based on to calculate the value of eve-

ry fitness function.

7.4.4. For each particle, calculate fitness functions fTransferTime, fExecution, fTaskQueue and fPowerConsumption by applying

Equations 31, 32, 33 and 34.

7.4.5. For each particle, evaluate the desired optimization fitness functions.

7.4.6. Update the archive content by deleting dominated members from the archive and storing the Pareto opti-

mal (non-dominated) solutions in the archive.

7.4.7. Sort archive members based on the number of optimized objective functions and their determined weight.

7.4.8. Compare each particle’s fitness evaluation with its personal best fitness function value (. If the

current value is better than , then set equal to the current value, and the best position pi

equal to the current location in n-dimensional space.

7.4.9. Choose from top sorted members in the archive as the best global position.

7.4.10. Change the velocity and position of the particle according to Equations 36 and 37.

7.4.11. Convert continuous position values vector of to discrete vector using SPV rule to determine

the allocated VM for every arrival task.

7.4.12. If a criterion is met (usually a sufficiently good fitness or a maximum number of iterations) then

7.4.12.1. Output the best particle position in n-dimensional space as the optimal task migration

schema

Else

7.4.12.2. Go to Step 7.4.3

7.5. Calculate and update the current VM properties according to the optimal task scheduling solution.

7.6. Transfer tasks and their corresponding data to the destination VMs

27

 [End MOTS-PSO algorithm]

6. Evaluation Results

We compare the efficiency of the MO-LB system with the VMware-ESXi auto load balancing sys-

tem which is based on VM migration, by implementing those systems in a VMware-vSphere based pri-

vate cloud. HTCondor [25] is also applied to implement the suggested solution and submit tasks to the

destination VMs. HTCondor is a software system that creates a High-Throughput Computing (HTC) en-

vironment. When a user submits a job to HTCondor, HTCondor finds an available machine on the net-

work and begins to run the job on that machine. It can checkpoint the job and migrate jobs to a different

machine. HTCondor implements ClassAds, a clean design that simplifies the user’s submission of jobs.

ClassAds work in a fashion similar to ‘want ads’ in classified advertising. All machines in the HTCondor

pool advertise their resource properties, both static and dynamic, such as available RAM memory, CPU

type, CPU speed, virtual memory size, physical location, and current load average, in a resource offer

advertisement (ad). A user specifies a resource request ad when submitting a job. The request defines

both the required and desired properties of the resource for running the job. HTCondor acts as a broker by

matching and ranking resource offer ads with resource request ads, making certain that all requirements in

both ads are satisfied. During this match-making process, HTCondor also considers several layers of pri-

ority values: the priority the user has assigned to the resource request ad, the priority of the user who

submitted the ad, and the preference of the machines in the pool to accept certain types of ads over others

[60]. In this study, the destination machines are determined on the basis of the optimal solution suggested

by the MOTS-PSO sub-system. To achieve this, the names of the selected machines are detailed in the

submit file of their corresponding jobs, and HTCondor sends the jobs to the specified machines.

6.1. Environment Description

The cloud environment is designed to have two data-stores, four PMs, twenty VMs, two cloud pro-

viders and 200 arrival computation, memory and data intensive tasks that are independent. We

ered in Equation 5, therefore the objective function fExcecution (Equation 32) is ap-

plied as an estimation of the task execution time. The information about VMs and tasks is summarized in

Tables 3 and 4. To evaluate the proposed model, several computational, memory and data intensive tasks

are generated, using C++ programming language, as examples of the different types of task that are exe-

cuted in a BoT as part of the workflow applications, such as Pegasus workflow applications. In this study,

28

the computationally intensive tasks multiply large matrices. The memory intensive tasks consume

memory by inserting and deleting data to and from memory blocks. The data intensive tasks transfer large

images between primary and destination VMs. The PMs are homogenous and each has a different type of

VM (see Table 5).

Table 3. Properties of VMs

VM Id

CPU speed in GHz

(VMCPUSpeed)

Available memory in MB

(VMm)

Bandwidth

in Mb/s (VMbw)

Number of

CPUs (VMc)

OS

1-4 2.6 4096 1024 4 Ubuntu Linux

5-8 2.6 4096 1024 2 Ubuntu Linux

9-12 1.3 2048 1024 2 Ubuntu Linux

13-16 1.3 1024 1024 1 Ubuntu Linux

17-20 1.3 512 1024 1 Ubuntu Linux

Table 4. Properties of tasks

Task Id

File Size in

kB (DF)

Output Size

in Byte (DO)

Input size

in MB (DI)

Required

CPUs (tc)

CPU usage

in GHz (tcu)

Total memory

usage in MB

Max level of memory

usage in MB (tm)

Computationally Intensive Tasks

1-20 8.7 47 0 1 186.372 2055.06 125.828

21-40 8.5 46 0 1 21.186 985.616 62.912

41-60 8.5 47 0 1 67.166 754.924 62.912

61-80 8.5 46 0 1 8.261 471.848 73.4

81-100 8.5 47 0 1 21.759 524.26 62.912

101-120 8.5 46 0 1 2.263 125.82 41.94

Memory Intensive Tasks

121-140 9.2 170 0 1 41.097 11534.304 943.716

141-160 9.2 169 0 1 38.367 9940.468 859.832

161-180 9.2 170 0 1 38.372 1992.268 167.772

Data Intensive Tasks

181-200 8.5 46 1.4 1 2.833 377.484 125.828

Table 5. Resource allocation in the cluster

PM Id VMs

1

29

2

3

4

6.2. Scenario development

In this study, we evaluate the MO-LB system in cases when VM migration is required, i.e. (1) a host

PM is likely to be overloaded (PM hotspot), or (2) a VM needs to be scaled up. The hotspot situation

occurs when all the resources in the host PM are allocated to VMs, and all VMs are using their maximum

capacity to execute their allocated tasks. In this case —irrespective of whether the VMs are used for SaaS,

PaaS or IaaS— the PM is at risk of being overloaded. The current solution for this problem, conducted by

the Auto Load Balancer (ALB) of VMware-ESXi, is to migrate a set of VMs from the overloaded PM to

other PMs that have more available resources [3-7, 14-18]. The second situation investigated in this study

occurs when VMs that are delivered as IaaS exhibit low performance and their client asks for VM scale-

up when no capacity is available in their host PM. In this case, VMware-ESXi migrates the VMs to PMs

that have the capacity and scales up these VMs [3-7, 14-18].

In contrast, the MO-LB solution for the first situation is to select a set of VMs that deliver SaaS or

PaaS and are located on the overloaded PM, stop these VMs from working, and transfer their tasks in

progress and all the tasks that have accumulated in their task queues to compatible VMs with available

capacity located on other PMs. This reduces resource utilization on the overloaded PM and eases the ten-

sion between its allocated VMs. In the second situation —where a VM that delivers IaaS is performing

poorly and needs to be scaled up— MO-LB applies the same process. The resources allocated to the se-

lected VMs are released and allocated to the poorly performing VM, which is thus scaled up.

The ALB of VMware-ESXi reacts after a number of VMs start to exhibit low performance and the

PM utilizes more than the determined threshold of its capacity. However, the prediction model applied in

the MO-LB system predicts VM performance and reacts before the corresponding PM meets the prede-

fined utilization threshold.

In this study, the MO-LB system is compared to VMware-ESXi in both live and storage migration.

In live migration, the execution state and active memory of a VM is migrated to a new ESX host. Live

storage VM migration involves changing both the host and the data store. In this case, the disk files of the

VM are also migrated.

30

6.3. Implementation

To implement the MO-LB system, we first randomly schedule the determined tasks to the VMs in

our private cloud by applying HTCondor functionality for one week to create historical data of CPU us-

age
 as the historical input data for the CUP sub-system. The CUP algorithm (Algorithm 2) is

implemented using MATLAB.

6.3.1. Implementing the MO-LB System

To evaluate the MO-LB system, we apply a PM with the lowest capacity compared to other PMs to

give us the ability to overload this PM. To emulate a situation in which a PM will be overloaded, random

tasks are chosen from the list of computationally intensive tasks in Table 4 and scheduled to the VMs

located on , as illustrated in Table 6.

Table 6. List of tasks scheduled to VMs located on

VM ID Tasks

1

5

In addition, a random set of tasks is scheduled to other VMs in the cluster. The CUP algorithm also

checks the performance of every VM every two minutes (as previously described). After two minutes, the

CUP algorithm specifies a list of possible overloaded and underloaded VMs in the cluster as follows:

Table 7. CUP results

VM ID

 Number of available CPUs (

)

1 and then Overloaded 0

5 and then Overloaded 0

3 and then Under-loaded 2

6 and then Under-loaded 2

7 and then Under-loaded 2

9 and then Under-loaded 1

10 and then Under-loaded 1

11 and then Under-loaded 1

31

As can be seen from Table 7, CUP suggests that and , located on , are poorly per-

forming VMs, which means that is at risk of becoming overloaded. and from the

list of high performance VMs are compatible with and have 2, 1 and 1 available CPUs respectively.

 and are compatible with with 2, 2 and 1 available CPUs respectively. In this situa-

tion, the VM with the lowest number of scheduled tasks is selected to cease executing, and all the tasks

scheduled to this VM (pending and executing tasks) are transferred to reduce the tension between VMs on

the overloaded PM. The executing tasks on this VM will resume and continue their execution on the des-

tination VM from where they left off, using the HTCondor check point mechanism. The VMs that have

lower numbers of scheduled tasks are chosen to cease executing so that fewer tasks need to be transferred.

The tasks that have accumulated in the task queue and all the tasks scheduled to are determined

as
 and

 . The MOTS-PSO algorithm

(Algorithm 3) is then used to schedule
 and

 to their compatible VMs. The scheduling results are

illustrated in Tables 8 and 9.

Table 8. Optimal suggested pattern for scheduling
 to

Tasks

Task CPU usage (GHz) 67.166 67.166 21.186 21.186 21.186 21.186 67.166

VMs

Table 9. Optimal suggested pattern for scheduling
 to

Tasks

Task CPU usage (GHz) 67.166 67.166 67.166 21.186 21.186

VMs

The optimal values for the objective functions fTransferTime, fExcecution, fTaskQueue and fPowerConsumption of

MOTS-PSO for the optimal pattern to schedule
 to

 are 0 seconds, 2.42 hours (02:25:12), 2.58

and 1 respectively. The corresponding values to these objective functions determined for scheduling

to
 are 0 seconds, 1.12 hours (01:07:12), 7.20 and 1 respectively.

The execution of tasks and on are stopped, and
 and

 are scheduled according

to the suggested optimal patterns to their specified destinations. Following the execution of these tasks,

32

the related data about the evaluation measurements are determined and summarized in Table 10. Each set

of tasks (e.g.,
) is considered as a job, and each sub-set of this set of tasks that is scheduled to a differ-

ent destination VM (i.e.{ and {) is considered as a sub-job. The value of

job makespan for
 is calculated as the maximum makespan among these sub-jobs on their corre-

sponding VM (i.e. and). The job makespan for set q is calculated as:

where

 is the maximum time taken by the claimed CPUs of to execute sub-job p

of job q, and is calculated as:

where

 is the task execution time on ith available CPU on .The value of

 for each VM is determined by monitoring the VM performance and checking its task

log files.

The job execution time for each set is the summation of the execution time of its sub-jobs on their

destination VMs. It can be seen from the results that the estimated execution time calculated as objective

function fExcecution for the tasks scheduled to and is close to their corresponding real time con-

sumption of 02:19:06 and 01:00:23 respectively.

In total, the 07:39:29 hours taken for all jobs to be executed with 01:34:00 hours makespan which is

the maximum value among and (see Table 10).

Table 10. MO-LB implementation results

VM ID Scheduled Tasks Sub-job Execution Time Sub-job Makespan

Executing tasks by

1 04:16:00 01:34:00

 Job1 execution time = 04:16:00 Jmakespan1= 01:34:00

Scheduling
 to

3 01:26:44 00:43:20

9 00:21:30 00:21:30

11 00:30:52 00:30:52

 Job2 execution time = 02:19:06 Jmakespan2= 00:43:20

Executing tasks by before transferring its tasks

33

5 00:04:00 00:02:00

 Job3 execution time = 00:04:00 Jmakespan3= 00:02:00

Scheduling
 to

6 00:19:42 00:14:55

7 00:31:30 00:16:30

10 00:10:11 00:10:11

 Job4 execution time = 01:00:23 Jmakespan4= 00:16:30

Total 07:39:29 01:34:00

6.3.2. Implementing VMware Auto Load Balancer

After implementing the MO-LB model, the cluster is set to apply the VMware ALB. The tasks are

scheduled to VMs in the same order as scheduled in Section 6.3.1, and and allocated on

 start to use all the resource capacity of their host. After five minutes, when has

 in its task queue and is executing and , and has

 in its task queue and is executing and , is migrated to by the hypervisor

in approximately three seconds. In this state, has approximately 100 Mb active memory which is

migrated to the new host. In the same situation, the live storage migration of with 290 GB (296960

Mb) disk file size and 100 Mb active memory takes approximately 5.5 minutes. Before migration,

the CPU speed of and were less than the guaranteed speed; therefore, it takes longer than ex-

pected for the executing tasks to be completed. In addition, is slowed down during the storage mi-

gration time, which also affects the execution time of its allocated task.

The two sets of tasks that are scheduled to and are considered as two jobs. The value of

the execution time and makespan of these jobs on each VM is determined after the completion of their

corresponding tasks by and before and after live and storage migration. These values are calcu-

lated on the basis of the logic explained in Section 6.3.1 and summarized in Table 11.

As can be seen from the results, 7:55:46 hours in total is taken by and to execute the jobs

with 2:41:06 total makespan when storage migration is applied. In live migration, the jobs are completed

after 2:38:16 when 7:48:25 hours in total has been taken for their execution.

Table 11. Implementation results using the VMware ALB

VM ID Location Scheduled Tasks Job Execution Time Job Makespan

VM storage migration

34

1

 Before migration

6:51:06 2:05:49

 After migration

5

 Before migration

1:04:40 0:35:17

 After migration

Total 7:55:46 2:41:06

VM live migration

1

 Before migration

6:46:45 2:04:30

 After migration

5

 Before migration

1:01:40 0:33:46

 After migration

Total 7:48:25 2:38:16

6.4. Evaluation Results Analyses

The final results of implementing the two approaches are summarized in Table 12.

Table 12. Comparison of results

Time (Seconds and Hours)
Power

(kw)

Memory (MB)

MOTS-PSO

time

Total execu-

tion time

Total makespan

(Max Path)

Task

transfer

time

VM

migration

time

VM

transferred

memory

Task

size

Transferred

data

VM

Storage

Migration

NA
28546

(7:55:46)

9666

(2:41:16)
NA 330

(0:5:30)
31.71 297059 0.1536 0

VM Live

Migration
NA

28102

(7:48:25)

9486

(2:38:06)
NA 3

(0:0:3)
31.22 100 0.1536 0

MO-LB 0.5

(00:00:0.5)

27569

(7:39:29)

5640

(1:34:00)
0 NA 30.63 NA 0.1536 0

When the ALB was applied in the defined scenario, was migrated after became overload-

ed and its allocated VMs experienced tension and low performance for a period of time. This affected the

execution time of tasks on both VMs and it took longer for these VMs to complete their jobs. In contrast,

the amount of execution time with the application MO-LB was reduced by 3.4% and 1.9% compared to

VM storage and live migration respectively, as a result of executing tasks by VMs on another PM with

lower resource utilization. In addition, makespan was reduced dramatically (41.6% and 40.5% compared

to VM storage and live migration respectively) by MO-LB, as the tasks were distributed over eight VMs,

and this method benefits from parallel task execution. Furthermore, 100 Mb more memory was trans-

ferred for the ALB during live VM migration compared to the MO-LB system. The ALB also consumed

297059 Mb (GB) more memory on both the original and destination PMs and data-stores for 5.5

minutes compared to the MO-LB system, and used more bandwidth due to VM migration.

35

The additional amount of power consumed per hour by an active CPU can be estimated using Equa-

tion 19 where and (see Section 5.1.3):

In this study it is assumed that the total execution time is the summation of time taken by each task

to reach completion and that each task applies one CPU during execution. Therefore, it can be assumed

that the power of only one CPU is applied during the total execution time of tasks. Using this calculation,

the additional amount of power consumed by applying the ALB using storage migration to execute all

scheduled tasks (—which takes 28546 seconds or 7.93 hours—is:

The additional amount of power consumed by the ALB using live migration to execute during

28102 seconds (7.80 hours) is also calculated as:

In the MO-LB system, the number of activated PMs was not changed because the model applies

VMs on active PMs. Therefore, the additional power consumption by the MO-LB system for executing

 —which takes 27569 seconds or 7.65 hours—can be estimated as follows:

This shows that the proposed method has the lowest power consumption.

In addition, it takes 330 seconds for the ALB to perform VM storage migration, and three seconds

for VM live migration. In contrast, the MO-LB system achieves load balancing in at most 0.5 second,

which is the time taken by the MOTS-PSO algorithm to find the optimal scheduling pattern. The task

transfer time taken in the MO-LB system is near zero. The time taken for load balancing is reduced by

99.8% and 83.3% using the MO-LB system compared to VM storage and live migration respectively.

In summary, the MO-LB system achieves lower execution time, job makespan, memory transfer,

bandwidth, and power consumption compared to live and storage migration strategies applied by

VMware-ESXi. In addition, the MO-LB system takes less time to conduct load balancing over PMs com-

pared to the ALB of VMware-ESXi.

36

7. Conclusion and Future Works

Several VM migration techniques have been applied for load balancing and optimizing resource uti-

lization in cloud environments, including suspension/resumption and live migration. Live migration has

been developed to migrate running VMs, and achieves lower VM downtime compared to the sus-

pend/resume strategy. However, live migration for large VMs is not an optimal solution because it con-

sumes time, bandwidth, power, and memory space in both origin and destination PMs and data-stores. In

addition, the live migration process carries the risk of losing last user activities.

In this study, an MO-LB system has been proposed instead of VM migration for load balancing. The

MO-LB system distributes accumulated tasks in the task queue of the primary VMs over a set of compat-

ible VMs with lower utilization. This method includes a CPU Utilization Prediction (CUP) method that

not only forecasts primary VMs, but also determines a set of VMs as candidate destinations for arrival

tasks to primary VMs. A Multi-Objective Task Scheduling optimization model using Particle Swarm

Optimization (MOTS-PSO) was designed to transfer tasks to the selected destination VMs, minimizing

task transfer time, task execution cost/time, length of VM task queue, and power consumption. In addi-

tion, the primary VMs were not slowed down by the application of the MO-LB system. We evaluated the

proposed model by applying a VMware-vSphere based private cloud in comparison with the ALB of

VMware-ESXi which applies VM live and storage migration. The evaluation results show that the MO-

LB system achieved a reduction in makespan, execution time, memory usage, power consumption, and

total time taken for load balancing compared to the ALB in both live and storage VM migration. As a

result, the proposed method dramatically increased VM performance and reduced service response time.

This method can be applied in the hypervisor layer to optimize resource management and load balancing,

boosting the Quality of Service (QoS) expected by cloud customers.

When the CPU speed of the destination VM is lower than the CPU speed of the primary VM, how-

ever, the task execution time and consequently power consumption will be increased. In our future work,

therefore, we will add extra constraints to our MOTS-PSO problem to consider scheduling tasks to VMs

that have a CPU speed equal to or more than the CPU speed of the primary VM. Using this strategy, there

would not be even a slight increase in total execution time and power consumption. In addition, the solu-

tion will be improved to cover scheduling scientific workflows (such as Pegasus applications), and the

application of this solution to solve the problem of cold spot PMs will be evaluated. This future study will

also consider heterogeneous cloud environments as its research direction, and the prediction sub-system

37

of the developed model will be improved. We will also consider different amounts of CPU utilization by

task (to obtain a better estimation of task execution time.

Acknowledgment

The work presented in this paper was supported by the Australian Research Council (ARC) under

Discovery Project DP140101366.

References

[1] Celesti, A., Fazio, M., Villari, M. and Puliafito, A. (2012) Virtual machine provisioning through satellite

communications in federated Cloud environments. Future Generation Computer Systems, 28(1), 85-93.

[2] Buyya, R., Broberg, J. and Goscinski, A. (2011) Cloud Computing, Principles and Paradigms. John Wiley &

Sons, Hoboken, NJ.

[3] Sallam, A. and Li, K. (2014) A multi-objective virtual machine migration policy in cloud systems. The Computer

Journal, 57(2), 195-204.

[4] Jin, H., Gao, W., Wu, S., Shi, X., Wu, X. and Zhou, F. (2011) Optimizing the live migration of virtual machine by

CPU scheduling. Journal of Network and Computer Applications, 34(4), 1088-1096.

[5] Kozuch, M. and Satyanarayanan, M. (2002) Internet suspend/resume. Proceedings of the 4th IEEE Workshop on

Mobile Computing Systems and Applications, Callicoon, USA, 20-21 June, pp. 40-46. IEEE- Los Alamitos,

California.

[6] Sapuntzakis, C. P., Chandra, R., Pfaff, B., Chow, J., Lam, M. S. and Rosenblum, M. (2002) Optimizing the

migration of virtual computers. Proceedings of the 5th symposium on Operating systems design and implementation,

Boston, USA, 8-11 December, pp. 377-390. ACM- New York, NY, USA.

[7] Whitaker, A., Cox, R. S., Shaw, M. and Gribble, S. D. (2004) Constructing services with interposable virtual

hardware. Proceedings of the 1st Symposium on Networked Systems Design and Implementation (NSDI), San

Francisco, USA, 29-31 March, pp. 169-82. ACM- New York, NY, USA.

[8] Hines, M. R. and Gopalan, K. (2009) Post-copy based live virtual machine migration using adaptive pre-paging

and dynamic self-ballooning. Proceedings of Proceedings of the 2009 ACM SIGPLAN/SIGOPS international

conference on Virtual execution environments, Washington, DC, USA, 11-13 March, pp. 51-60. ACM- New York,

NY, USA.

[9] Barker, S., Chi, Y., Moon, H. J., Hacigümüş, H. and Shenoy, P. (2012) Cut me some slack: Latency-aware live

migration for databases. Proceedings of the 15th international conference on extending database technology, Berlin,

Germany, 27-30 March, pp. 432-443. ACM- New York, NY, USA.

[10] Cecchet, E., Singh, R., Sharma, U. and Shenoy, P. (2011) Dolly: virtualization-driven database provisioning for

the cloud. Proceedings of the 7th ACM SIGPLAN/SIGOPS international conference on Virtual execution

environments, Newport Beach, USA, 09-11 March, pp. 51-62. ACM- New York, NY, USA.

[11] Elmore, A. J., Das, S., Agrawal, D. and El Abbadi, A. (2011) Zephyr: live migration in shared nothing databases

for elastic cloud platforms. Proceedings of the 2011 ACM SIGMOD International Conference on Management of

data, Athens, Greece, 12-16 June, pp. 301-312. ACM- New York, NY, USA.

[12] Sakr, S. and Liu, A. (2012) SLA-based and consumer-centric dynamic provisioning for cloud databases.

Proceedings of 5th IEEE International Conference on Cloud Computing (CLOUD), Honolulu, USA, 24-29 June,

pp. 360-367. IEEE- California, USA.

[13] Jain, N., Menache, I., Naor, J. and Shepherd, F. (2012) Topology-aware VM migration in bandwidth

oversubscribed datacenter networks. Proceedings of 39th International Colloquium on Autonomic, Language, and

Programming, Warwick, UK, July 9-13, pp. 586-597. Springer- Verlag Berlin, Heidelberg.

[14] Osman, S., Subhraveti, D., Su, G. and Nieh, J. (2002) The design and implementation of ZAP: A system for

migrating computing environments. ACM SIGOPS Operating Systems Review, 36(SI), 361-376.

[15] Jun, C. and Xiaowei, C. (2011) IPv6 virtual machine live migration framework for cloud computing. Energy

Procedia, 13, 5753-5757.

[16] Nelson, M., Lim, B. H. and Hutchins, G. (2005) Fast transparent migration for virtual machines. Proceedings of

USENIX Annual Technical Conference, Anaheim, USA, 10-15 April, pp. 391-394. USENIX Association-

Berkeley, CA, USA.

[17] Clark, C., Fraser, K., Hand, S. and Jacob, G. H. (2005) Live migration of virtual machines. Proceedings of the

2nd ACM/USENIX Symposium on Network Systems, Design and Implementation (NSDI), 2-4 May, pp. 273-286.

USENIX Association- Berkeley, CA, USA.

[18] Nicolae, B. and Cappello, F. (2013) BlobCR: Virtual disk based checkpoint-restart for HPC applications on IaaS

clouds. Journal of Parallel and Distributed Computing, 73(5), 698-711.

[19] Liao, X., Jin, H. and Liu, H. (2012) Towards a green cluster through dynamic remapping of virtual machines.

Future Generation Computer Systems, 28(2), 469-477.

38

[20] Lin, W., Wang, J. Z., Liang, C. and Qi, D. (2011) A threshold-based dynamic resource allocation scheme for

cloud computing. Procedia Engineering, 23, 695 – 703.

[21] Atif, M. and Strazdins, P. (2014) Adaptive parallel application resource remapping through the live migration of

virtual machines. Future Generation Computer Systems, 37, 148-161.

[22] Ramezani, F., Lu, J. and Hussain, F. K. (2013) Task-Based System Load Balancing in Cloud Computing Using

Particle Swarm Optimization. International Journal of Parallel Programming, 42(5), 739-754.

[23] Mishra, M., Das, A., Kulkarni, P. and Sahoo, A. (2012) Dynamic resource management using virtual machine

migrations. Communications Magazine, IEEE, 50(9), 34-40.

[24] Forsman, M., Glad, A., Lundberg, L. and Ilie, D. (2015) Algorithms for automated live migration of virtual

machines. Journal of Systems and Software, 101, 110-126.

[25] (2015) HTCondor™ Version 8.3.8 Manual. Center for High Throughput Computing, U. o. W.-M., Madison,

USA.

[26] (2016) Pegasus 4.6.2 User Guide. California, U. o. S., Santa Monica, USA.

[27] Islam, S., Keung, J., Lee, K. and Liu, A. (2012) Empirical prediction models for adaptive resource provisioning

in the cloud. Future Generation Computer Systems, 28(1), 155-162.

[28] Yang, D., Cao, J., Fu, J., Wang, J. and Guo, J. (2013) A pattern fusion model for multi-step-ahead CPU load

prediction. Journal of Systems and Software, 86(5), 1257-1266.

[29] Ramezani, F., Lu, J., Taheri, J. and Hussain, F. (2015) Evolutionary algorithm-based multi-objective task

scheduling optimization model in cloud environments. World Wide Web, 18(6), 1-21.

[30] Calheiros, R. N., Ranjan, R., Beloglazov, A., De Rose, C. A. F. and Buyya, R. (2011) CloudSim: a toolkit for

modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms.

Software: Practice and Experience, 41(1), 23-50.

[31] Cirne, W., Brasileiro, F., Andrade, N., Costa, L. B., Andrade, A., Novaes, R. and Mowbray, M. (2006) Labs of

the world. Journal of Grid Computing, 4(3), 225-246.

[32] Tchernykh, A., Pecero, J. E., Barrondo, A. and Schaeffer, E. (2014) Adaptive energy efficient scheduling in

peer-to-peer desktop grids. Future Generation Computer Systems, 36(0), 209-220.

[33] Shieh, W.-Y. and Pong, C.-C. (2013) Energy and transition-aware runtime task scheduling for multicore

processors. Journal of Parallel and Distributed Computing, 73(9), 1225-1238.

[34] Wang, X., Wang, Y. and Cui, Y. (2014) A new multi-objective bi-level programming model for energy and

locality aware multi-job scheduling in cloud computing. Future Generation Computer Systems, 36(0), 91-101.

[35] Priya, B., Pilli, E. S. and Joshi, R. C. (2013) A survey on energy and power consumption models for Greener

Cloud. Proceedings of IEEE 3rd International Conference on Advanced Computing (IACC), 22-23 February, pp. 76-

82. IEEE.

[36] Zhang, Y.-W. and Guo, R.-F. (2013) Power-aware scheduling algorithms for sporadic tasks in real-time systems.

Journal of Systems and Software, 86(10), 2611-2619.

[37] Buyya, R., Beloglazov, A. and Abawajy, J. (2010) Energy-efficient management of data center resources for

cloud computing: A vision, architectural elements, and open challenges. Proceedings of the 2010 International

Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA 2010), Las Vegas, USA,

12-15 July, pp. 1-12. arXiv preprint.

[38] Gao, Y., Guan, H., Qi, Z., Hou, Y. and Liu, L. (2013) A multi-objective ant colony system algorithm for virtual

machine placement in cloud computing. Journal of Computer and System Sciences, 79(8), 1230-1242.

[39] (2008) Altix® XE320 System User’s Guide. Silicon Graphics International Corp.

[40] Top 500 Supercomputing Sites (2014) http://www.top500.org/system/176223

[41] Guo, L., Zhao, S., Shen, S. and Jiang, C. (2012) Task Scheduling Optimization in Cloud Computing Based on

Heuristic Algorithm. Journal of Networks, 7(3), 547-553.

[42] Lei, Z., Yuehui, C., Runyuan, S., Shan, J. and Bo, Y. (2008) A task scheduling algorithm based on PSO for grid

computing. International Journal of Computational Intelligence Research, 4(1), 37-43.

[43] Ramezani, F., Lu, J. and Hussain, F. (2012) Tasks based system load balancing approach in cloud environment.

Proceedings of International Conference on Intelligent Systems and Knowledge Engineering, Beijing, China, 15-17

December, pp. 31-42. Springer - Berlin Heidelberg.

[44] Salman, A., Ahmad, I. and Al-Madani, S. (2002) Particle swarm optimization for task assignment problem.

Microprocessors and Microsystems, 26(8), 363-371.

[45] Liu, H., Abraham, A., Snášel, V. and McLoone, S. (2012) Swarm scheduling approaches for work-flow

applications with security constraints in distributed data-intensive computing environments. Information Sciences,

192(0), 228-243.

[46] Mahmoodabadi, M. J., Bagheri, A., Nariman-zadeh, N. and Jamali, A. (2012) A new optimization algorithm

based on a combination of particle swarm optimization, convergence and divergence operators for single-objective

and multi-objective problems. Engineering Optimization, 44(10), 1-20.

[47] Deb, K., Pratap, A., Agarwal, S. and Meyarivan, T. (2002) A fast and elitist multiobjective genetic algorithm:

NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182-197.

[48] Alves, M. J. (2012) Using MOPSO to solve multiobjective bilevel linear problems. Proceedings of International

Conference on Swarm Intelligence, Shenzhen, China, 17-20 June, pp. 332-339. Springer- Verlag Berlin,

Heidelberg.

[49] Gao, Y., Zhang, G., Lu, J. and Wee, H.-M. (2011) Particle swarm optimization for bi-level pricing problems in

supply chains. Journal of Global Optimization, 51(2), 245-254.

[50] Lu, J., Zhang, G. and Ruan, D. (2007) Multi-objective Group Decision Making: Methods, Software and

Applications with Fuzzy Set Techniques. Imperial College Press, London.

http://www.top500.org/system/176223

39

[51] Naderpour, M., Lu, J. and Zhang, G. (2014) An intelligent situation awareness support system for safety-critical

environments. Decision Support Systems, 59, 325-340.

[52] Kennedy, J. and Eberhart, R. (1995) Particle swarm optimization. Proceedings of The IEEE International

Conference on Neural Networks, Perth, Australia, pp. 1942-1948. IEEE Service Center- Piscataway, NJ.

[53] Engelbrecht, A. P. (2006) Fundamentals of Computational Swarm Intelligence. John Wiley & Sons, Hoboken,

NJ.

[54] Engelbrecht, A. P. (2007) Computational intelligence: an introduction. John Wiley & Sons, Ltd, Hoboken.

[55] Poli, R., Kennedy, J. and Blackwell, T. (2007) Particle swarm optimization. Swarm Intelligence, 1(1), 33-57.

[56] Tasgetiren, M. F., Sevkli, M., Liang, Y.-C. and Gencyilmaz, G. (2004) Particle swarm optimization algorithm

for single machine total weighted tardiness problem. Proceedings of The Congress on Evolutionary Computation

(CEC2004), 19-23 June, pp. 1412-1419. IEEE.

[57] Dubey, I. and Gupta, M. (2015) Enhanced Particle Swarm Optimization with Uniform Mutation and SPV Rule

for Grid Task Scheduling. International Journal of Computer Applications, 116(15), 14-17.

[58] Kumar, N. and Vidyarthi, D. P. (2016) A novel hybrid PSO–GA meta-heuristic for scheduling of DAG with

communication on multiprocessor systems. Engineering with Computers, 32(1), 35-47.

[59] Zhang, L., Chen, Y., Sun, R., Jing, S. and Yang, B. (2008) A task scheduling algorithm based on PSO for grid

computing. International Journal of Computational Intelligence Research, 4(1), 37-43.

[60] Barati, M. and Sharifian, S. (2015) A hybrid heuristic-based tuned support vector regression model for cloud

load prediction. Journal of Supercomputing, 71(11), 4235-4259.

