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Abstract 

Virtual Machine (VM) live migration has been applied to system load balancing in cloud environments for the pur-

pose of minimizing VM downtime and maximizing resource utilization. However, the migration process is both time- 

and cost-consuming as it requires the transfer of large size files or memory pages and consumes a huge amount of 

power and memory for the origin and destination Physical Machine (PM), especially for storage VM migration. This 

process also leads to VM downtime or slowdown. To deal with these shortcomings, we develop a Multi-objective 

Load Balancing (MO-LB) system that avoids VM migration and achieves system load balancing by transferring extra 

workload from a set of VMs allocated on an overloaded PM to other compatible VMs in the cluster with greater 

capacity. To reduce the time factor even more and optimize load balancing over a cloud cluster, MO-LB contains a 

CPU Usage Prediction (CUP) sub-system. The CUP not only predicts the performance of the VMs but also deter-

mines a set of appropriate VMs with the potential to execute the extra workload imposed on the VMs of an over-

loaded PM. We also design a Multi-Objective Task Scheduling optimization model using Particle Swarm Optimiza-

tion (MOTS-PSO) to migrate the extra workload to the compatible VMs. The proposed method is evaluated using a 

VMware-vSphere based private cloud in contrast to the VM migration technique applied by vMotion. The evaluation 

results show that the MO-LB system dramatically increases VM performance while reducing service response time, 

memory usage, job makespan, power consumption, and the time taken for the load balancing process.  
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1. Introduction  

Cloud computing delivers scalable on-demand services include Software as a Service (SaaS), Platform as 

a Service (PaaS), and Infrastructure as a Service (IaaS) over the Internet. A cloud provides the IaaS, PaaS, 

and/or SaaS through its own virtualized resources, which are created over its underlying physical re-

sources. Typically, a cloud virtualized resource is a set of specification and configuration files called a 

Virtual Machine (VM) [1, 2].  

Due to the dynamic nature of cloud environments, the workload of VMs fluctuates dynamically, 

leading to imbalanced loads and the utilization of virtual and physical cloud resources. VM migration is 

used in this situation to relax the workload by moving a VM from an overloaded Physical Machine (PM) 

to an under-loaded PM. In addition, VM migration is applied when IaaS customers ask to scale up their 

assigned VMs, while the original host PM has no idle resources available [3]. VM migration by the sus-

pend/resume strategy or live migration is the process of copying the complete state of a VM from one PM 

to another for stronger computation power, larger memory, fast communication capability, or energy 

saving [4]. In suspend/resume VM migration, the execution of the VM is suspended during the migration 

process; applications are halted until the VM is fully migrated to the destination host [5-8]. VM downtime 

in this method equals the VM migration time plus the time taken to suspend and resume the VM. Using 

the stop-and-copy process in live migration, the running instance of a VM is migrated between hosts. VM 

downtime is thus much less in stop-and-copy (~10-120 seconds depending on the load) than sus-

pend/resume (~180-600 seconds depending on the load). 

We believe that if a VM has small size, it is reasonable to migrate the VM to a new physical host. 

However, when the VM is large, VM migration is not the optimal solution. The live VM migration pro-

cess results in dirty memory as a result of the pre-copy process, utilizes a large amount of memory in the 

primary PM and new host PM, causes the VM to slow down during the migration process, carries the risk 

of losing last customer activities, and is cost- and time-consuming. The resume/suspend migration strate-

gy not only has live migration shortcomings but also causes lengthy VM downtime.  

In this study, a Multi-Objective Load Balancing (MO-LB) system is developed to eliminate the need 

for VM migration to solve the problem of an over-utilized PM, and to scale up a VM that is located on a 

PM with no available resources. To do this, the MO-LB system reduces the workload of a set of VMs —

that deliver SaaS or PaaS and are located on an over-utilized PM— and transfers their extra workload to a 

set of compatible VM instances located on underutilized PMs. A compatible VM is a VM with the same 
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OS as the primary VM, and has the required application/software stack to execute the scheduled tasks. 

Cloud providers need to solve such problems as this in the shortest possible time to satisfy the Service 

Level Agreement (SLA). Therefore, a prediction sub-system is developed to predict CPU usage by VMs 

which is able to predict PM hotspots before low performance occurs. It also creates the opportunity to 

predict a set of compatible under-loaded VMs that can execute the workload that has accumulated in the 

task queues of a set of primary VMs allocated on a possible over-utilized PM. This helps the hypervisor 

layer to make an accurate decision and solve the problem before it arises. We also develop a multi-

objective optimization sub-system for transferring these accumulated tasks from the primary VMs to the 

destination VMs with minimum task transfer time, task execution cost/time, power consumption, and task 

queue length.  

In summary, the contribution of this paper is to develop an MO-LB system that eliminates VM mi-

gration to achieve system load balancing through the creation of two sub-systems: (1) a CPU usage pre-

diction sub-system, and (2) a Multi-Objective Task Scheduling sub-system. The efficiency of the pro-

posed solution is evaluated by comparison with vMotion in both live and storage VM migration using a 

VMware-vSphere based private cloud and HTCondor functionality. The evaluation parameters are 

makespan, execution time, memory usage, and total time taken for load balancing.  

The rest of this paper is organized as follows. Works related to load balancing methods are de-

scribed in Section 2. In Section 3, a conceptual model and the main algorithm for the MO-LB system are 

proposed. This model is completed by the developed VM workload prediction and the multi-objective 

task scheduling optimizing sub-systems presented in Section 4 and Section 5 respectively. The model is 

evaluated in Section 6. Lastly, the conclusion and future works are explained in Section 7.  

2. Related Works on Load Balancing in Cloud Environments Using VM Migration 

Techniques  

Virtualization technique has improved utilization and system load balancing by enabling database [9-

12] and VM migration, which has resulted in significant benefits for cloud computing [13]. Several meth-

ods have been proposed to migrate a VM from one physical host to another with more available resources 

for optimizing cloud utilization. These methods are categorized in two main classes: (1) suspend /resume 

strategy, and (2) live migration.  

 The suspend/resume VM migration approach has three steps: pause the original VM, copy the VM’s 

related data (memory pages and processor state) to a new host PM, and then resume the VM on the desti-
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nation host [5-7]. Using this method, applications running on the VM need to be stopped and are not made 

available until the migration process has been completed and all the data have been transferred to the new 

destination. Moreover, this method results in long VM downtime. To reduce downtime, the ZAP system 

[14] only transfers a process group, but it still uses a stop-and-copy strategy. In contrast, live migration, in 

which a running instance of VM is migrated between hosts in a local area network, eliminates the stop-and-

copy process and minimizes VM downtime. Jun and Xiaowei [15] developed a VM live migration policy 

for the IPv6 network environment. In this migration method, the VM does not provide new services but 

continues its work and then stops after completing its old services. A pre-copy migration method is applied 

by the vMotion component of VMware vSphere in [16], and Xen hypervisor in [17] for live migration. 

Using this method, VM’s run-time memory state files are pre-copied (migrated) from the source host to the 

destination host while the VM is still working. This method generates a huge amount of dirty memory and 

takes a long time, because it is necessary to transfer a large amount of data. In addition, the dirty memory 

generation rate in some cases is faster than the pre-copy speed, in which case live migration will be pro-

longed. To overcome these drawbacks, Jin et al. [4] suggested using the pre-copy based model from VM 

live migration in combination with an optimized algorithm that reduces the speed of changing memory by 

controlling the CPU scheduler of the VM monitor. To ease the VM migration process, Nicolae et al. [18] 

developed a repository check pointing strategy called BlobCR that frequently stores live snapshots of the 

entire VM instances disk. There are also several VM live migration techniques that consider power con-

sumption reduction as well as downtime and migration time. Liao et al. [19] developed a live VM mapping 

framework to map VMs onto a set of PMs without significant system performance degradation, while at 

the same time reducing power consumption. Sallam and Li [3] also suggested a multi-objective VM migra-

tion technique that considers power and memory consumption, thus making live VM migration more bene-

ficial for cloud providers.  

Lin et al. [20] believed that load balancing strategies that focus on VM migration for optimizing on-

demand resource provisioning needed to be improved. They proposed a threshold-based dynamic resource 

allocation approach for load balancing in the cloud environment that dynamically allocates the VMs 

among the cloud’s applications based on their load changes. Atif and Strazdins [21] also developed a simi-

lar cloud utilization optimization framework for Application as a Service (AaaS). They used virtual ma-

chine monitor facilities (which have traditionally been used for live migration) to create sets of homoge-

nous clusters of computing frames (VMs). They used these clusters to schedule or migrate application tasks 
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over a set of homogenous VMs based on estimated task execution time to optimize resource utilization and 

enhance application performance. However, this method cannot be used when a determined homogenous 

cluster has high utilization and is in an overloaded state. The reviewed literature related to this study is 

summarized in Table 1. 

The fundamental drawback of these load balancing approaches is that the majority attempt to migrate 

the VM [4, 15, 17, 19]. In our previous work [22], we proposed a Task-Based System Load Balancing 

using a Particle Swarm Optimization (TBSLB-PSO) conceptual model to overcome these shortcomings. 

The TBSLB-PSO achieves system load balancing by migrating tasks from primary VMs on an overload-

ed PM to a set of compatible VM instances located on under-loaded PMs, instead of migrating VMs in 

their entirety. However, although VM migration has been eliminated by TBSLB-PSO, this model is not 

applicable to VMs that are delivered as IaaS because cloud providers do not have access to the applica-

tions running on these VMs.  

Using the MO-LB system, not only is the need for VM migration eliminated: the system is also appli-

cable to VMs that deliver different types of cloud services. A CPU utilization prediction sub-system is 

also added to the previous model to determine primary VMs, PM hotspots and new destination VMs, for 

the purpose of executing tasks located in the task queues of the primary VMs. The MOTS-PSO sub-

system of MO-LB is also improved so that it is compatible with real cloud environments and has four 

objective functions, while the TBSLB-PSO is not applicable in real cloud environments and has two ob-

jective functions. The MO-LB system reduces the amount of dirty memory produced, as well as the con-

sumption of load balancing time and power, compared to VM migration. Furthermore, the proposed sys-

tem is not restricted to distributing the extra workload over a set of VMs in predefined clusters, because 

the new destination VMs are determined dynamically over the entire local cloud environment.  

Table 1. Summary of reviewed literature related to load balancing in cloud environments 

References Key Development 

1- Suspend/resume VM migration 

ZAP system in [14] Applied suspend/resume VM migration strategy that only transfers a process group 

2- Live VM migration 

Jun and Xiaowei [15] Developed a VM live migration policy for the IPv6 network environment 

vMotion in  [16] and Xen in [17] Applied a pre-copy migration method for live migration 

Jin et al. [4]  Combined the pre-copy based model and an optimized algorithm that reduces the speed of 

file:///D:/Fahimeh/Thesis-5%2011%202015.docx%23_Toc434590552
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changing memory 

Nicolae  et al. [18] Developed a repository check pointing strategy called BlobCR for live migration 

Liao et al. [19] Developed a live VM mapping framework with minimum system performance degrada-

tion while reducing power consumption 

Sallam and Li [3] Developed a bi-objective VM migration technique that considers power and memory 

consumption 

3- Other load balancing techniques  

Lin et al. [20] Developed a threshold-based dynamic resource allocation approach for load balancing 

Atif and Strazdins [21] Developed a cloud utilization optimization framework for AaaS to optimize load balanc-

ing 

3. The Multi-Objective Load Balancing System  

VM migration (live and storage migration) is applied by a hypervisor (or Virtual Machine Monitor 

(VMM)) such as VMware EXSi to manage cloud resources and balance the load over PMs [4, 15, 17, 19]. 

VM migration has important applications in dynamic resource management for cloud-based systems and 

large data centers. In these environments, a group of VMs can begin to compete for resources provided by 

a single PM. A hotspot occurs when the performance of VMs degrades because the PM is unable to re-

spond to the resource demand. The opposite situation, when resources on a PM are underutilized, is 

termed a cold spot. This happens when the running VMs consume only a tiny fraction of the resources 

provided by the hosting PM. Both hotspots and cold spots can be handled by moving one or more VMs 

from an overloaded PM to another PM with available physical resources. In hotspot mitigation, the se-

lected VMs are moved to a less loaded PM. Server consolidation is the strategy for handling cold spots by 

regrouping VMs from lightly-loaded hosts to a smaller subset of PMs, thus freeing up the remaining PMs 

for resource-hungry VMs [23, 24]. VM migration is also applied to scale up VMs that are delivered as 

IaaS based on customer demand when the original host PM has no idle resource availability [3].  

 Cloud providers benefit from VM migration for small VMs as the entire process is completed in se-

conds. However, VM migration for large VMs results in dirty memory, utilizes a large amount of memory 

in the primary PM and destination PM, causes the VM to slow down during the migration process, and 

carries the risk of losing last customer activities. Therefore, the need for a replacement solution that can 

achieve higher cloud utilization, increase the performance of primary VMs, and as a result allow cloud 

providers to deliver higher QoS at lower cost has been recognized.   
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The main goal of this study is to find a way to reduce the need for VM migration, especially for 

large VMs in two particular situations: (1) the primary PM is over-utilized/overloaded; (2) a VM that is 

delivered as IaaS needs to be scaled up and there is no available capacity on the host PM.  

The first step is to create clusters of PMs with a set of VMs that are applied to deliver PaaS or IaaS, 

and another set of VMs to deliver AaaS/SaaS, in which cloud service providers distribute jobs/DAGs 

(Directed Acyclic Graph) of applications. Instead of conducting VM migration when the host PM be-

comes overloaded, the solution is to reduce the load of the set of VMs that deliver AaaS/SaaS, or stop 

them from working. Their extra workload is then allocated to compatible VMs that are allocated on the 

other PM and have the resources available to execute the workload. This solution is similar to job/task 

scheduling, which is widely applied in cloud and grid environments. Using this solution, the load of the 

PM is reduced and there is no need to migrate some of its allocated VMs (see Figure 2). In the second 

situation where VM migration is required, the same solution is suggested. Then, the resources allocated to 

the VMs that are no longer working or have fewer jobs to do are allocated to the VM that needs more 

resources. Therefore, this VM can be scaled up and does not need to be migrated (see Figure 3).  

HTCondor [25] and Pegasus-WMS [26] are two examples of systems that can be used to implement 

this idea. In both systems, a central management system periodically polls the status of all its “workers”. 

Workers, in turn, are designed to collect and report the latest status (e.g., the number of available CPUs 

and amount of available memory) of the machine/VM in which they reside. This work was empirically 

tested using HTCondor v8.2. The central management system can also “kill” and “reinitiate” jobs should 

Figure 1: VM migration using vMotion 
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it need to empty a higher-capacity VM to accommodate another job with greater requirements. Regardless 

of this capability, MO-LB implicitly assigns jobs to the “right” size VM so that it is not necessary to later 

reassign jobs. Because VMs are provided by a cloud infrastructure, we can also assume that MO-LB will 

spin-up larger size VMs as needed, or at least, replace several small VMs with a larger VM by destroying 

and/or resizing existing VMs.    

 

 

The MO-LB system has four main parts: (1) Global Blackboard (GB), (2) CPU Usage Prediction (CUP) 

sub-system, (3) Multi-Objective Task Scheduling sub-system applying PSO (MOTS-PSO sub-system), 

Figure 3: MO-LB to scale up a VM that delivers IaaS 

 
 

Storages 

PMs 

Hypervisors 

VMs 

Figure 2: MO-LB solution for resolving the problem of an overloaded PM  
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and (4) Decision Maker Centre (DMC). The first three parts communicate with each other and report to 

the DMC of the MO-LB system to conduct load balancing. An overview of the MO-LB system is given 

in Figure 4. 

 

The first element is the GB on which all Virtual Machine Monitors (VMMs) and task schedulers 

share their data and information about VM features, jobs and scheduled tasks in a cluster. This data in-

cludes the number of CPUs, free memory and bandwidth allocated to VMs. Additional information about 

the VMs provided for SaaS and PaaS includes the number of tasks to be executed, the task execution 

time, and the resources required for the tasks (number of processors required, CPU and memory usage). 

In addition, this blackboard contains online information about PMs (physical resources), such as the 

number and speed of their processors (CPUs), the amount of free memory and hard disk they have, their 

situation (idle or active), and their associated VMM. The information about SLA constraints is also gath-

ered on this blackboard to monitor QoS criteria. The stored variables on GB are summarized in Table 2. 

The second element of the MO-LB framework is the CUP sub-system which predicts the two situa-

tions that are targeted in this study. Based on the predicted situations, the DMC determines whether the 

MO-LB system or VM migration should be applied to solve the problem. If the VMs on an overloaded 

PM are small, the DMC suggests VM migration, otherwise, the MO-LB system is applied. In the first 

situation, where the primary PM has become overloaded, the CUP sub-system applies blackboard data 

and information related to the VMs’ CPU usage to predict which VMs are likely to reach maximum utili-

zation and exhibit low performance, thereby predicting hotspots in the PM. Based on the prediction result 

of the CUP sub-system, some VMs on the overloaded PM that deliver SaaS/PaaS are determined as pri-

mary VMs to reduce their workload. In the second situation where a VM that is delivered as IaaS needs to 

be scaled up, the CUP determines a set of VMs that deliver SaaS/PaaS in the neighborhood of the targeted 

Figure 4: Overview of the MO-LB system 
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VM as the set of primary VMs. This method also determines a set of compatible high performance VMs 

that can be used to execute the extra workload imposed on the set of primary VMs.  

The MOTS-PSO sub-system is developed as the third main element of the MO-LB framework. The 

MOTS-PSO sub-system applies all the information supplied by the other two parts of the framework (GB 

and CUP) to determine the optimal pattern for scheduling extra tasks from the primary VMs to a set of 

compatible destination VMs. The MOTS-PSO sub-system considers the minimization of task transfer 

time, task execution cost, power consumption in the corresponding data center, and task queue length in 

the destination VMs to find the optimal solution. The DMC of the MO-LB system then transfers those 

tasks and their corresponding data to the pre-determined set of VMs based on the optimal suggested task 

scheduling pattern.  

The main algorithm of MO-LB is summarized as Algorithm 1. The proposed MO-LB framework illus-

trated in Figure 5 shows how MO-LB sub-systems communicate with each other and perform the steps of 

the MO-LB algorithm. The CUP and MOTS-PSO sub-systems referred to above are described in detail in 

Section 4 and Section 5 respectively. 

Algorithm1. The MO-LB main algorithm 

Input: All variables on the global blackboard (Summarized in Table 2).  

[Begin MO-LB algorithm]  

1. Monitor MO-LB blackboard data to collect VM information including: VM tasks, memory and CPU usage, the 

amount of virtual resources (CPU and memory), etc. 

2. Predict VM CPU usage by applying CUP sub-system to determine primary over-utilized VMs on an overloaded 

PM, the PM host spots, and destination under-loaded VMs (Algorithm 2). 

3. If VM is small and its host PM is also overloaded, then migrate it and go to Step 7.    

Else 

4. Predict a set of compatible VMs as the new possible destinations for the determined tasks by applying CUP sub-

system (Algorithm 2).  

5. Determine set of tasks that have accumulated in the task queue of each primary VM.  

6. Determine the optimal task scheduling pattern to reschedule tasks onto new determined destination VMs by apply-

ing MOTS-PSO sub-system (Algorithms 3), and transfer tasks and their corresponding data to the determined 

VMs. 

7. Update the blackboard and scheduler information to include the current properties of PMs and VMs. 

[End MO-LB algorithm] 
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4. CPU Usage Prediction Sub-System  

Most researches in the area of VM workload prediction have applied prediction methods such as neural 

networks, pattern recognition and linear regression to forecast the workload of VMs or their CPU usage in 

the cloud environment [27]. These methods predict the future workload of VMs by applying their previ-

ous workload patterns in time slot t, determined on the basis of related historical data [28]. We also apply 

linear regression in the developed CPU Usage Prediction (CUP) sub-system to predict CPU utilization 

patterns by VMs that are allocated on a PM, using historical data.  

Considering the fluctuation in CPU usage and the fact that it might increase suddenly and decrease 

soon after, CPU usage should be checked frequently at specific times to estimate a VM’s upcoming CPU 

usage and workload [27]. Therefore, we monitor CPU usage trends and fluctuations over a small period of 

 Step 1: Gather and update data including: 

 VM CPU utilization  

 Primary VMs 

 Tasks that need to be transferred  

 List of possible destination VMs 
 PM hot spots 
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Figure 5:  The MO-LB framework 
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time (e.g., every two minutes) to forecast the VM’s workload level for the next interval. The CUP is run 

every two minutes because the applied hypervisor is set to balance the load over PMs every five minutes. 

This time can be changed by the cloud provider, based on the primary settings of the hypervisor. 

The CPU usage usually fluctuates dramatically and it is difficult to estimate its overall increasing or de-

creasing trend (see Figure 6a). Therefore, the cumulative average of CPU usage that is calculated every 20 

seconds is used to estimate its trend during time slot    as follows:  

      
      

      
    

    

    
                     

  

  
                                                                       

Where variables    and   are in seconds,       
  is the total amount of CPU utilization of     and     is 

the integer division. Then, the corresponding continuous chart to      
     is produced (see Figure 6b). 

The polynomial fitting tool in MATLAB is then applied to determine the overall trend of      
     as 

shown in Figure 6c.      
     has an increasing trend if the derivative of its fitted line (      

    ) is 

positive in   :         

       
                         

  

  
                                                        

 

a                                                      b                                                        c    

Figure 6: Estimating the CPU utilization trend in time slot Ts 
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fore assumes that this VM will be overloaded if the cumulative average of the CPU usage of     
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VM at the end of the time slot exceeds 80% i.e: 
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where ct is the current time, t is a given period of time (e.g., two minutes), and time slot     is the number 

of seconds between           . The CUP algorithm is summarized as follows. 

Algorithm2. The CUP algorithm (Steps 2 and 4 of the MO-LB algorithm) 

Input: All variables in Table 2.   

[Begin CUP algorithm] 

6.1. Monitor MO-LB blackboard data to calculate the value of the following variables:  

       
          

    ,       
            

     and       
      

6.2. determine the following information based on CUP rules: 

 The primary VMs as a result of their high CPU utilization 

 The PMs that are at risk of becoming overloaded  

 The primary set of VMs that is targeted to stop working or that has a reduced workload 

 A set of compatible VMs as the new destination for the extra workload imposed on the primary VMs 

[End CUP algorithm] 

 

5. Multi-Objective Task Scheduling Optimization Sub-System   

MOTS-PSO is designed as part of the MO-LB framework to find an optimal solution to the schedul-

ing of tasks from primary VMs to a set of new destination VMs (Step 6 of the MO-LB algorithm). This 

optimization model has four conflicting objectives, namely: task transfer time, task execution cost/time, 

length of VM task queue, and power consumption. In our previous work [29], a four-objective optimiza-

tion model that considers the same aspects of task scheduling was developed. The objective function for-

mulas in [29] were designed for a simulation cloud environment (i.e. CloudSim [30]) and the model has 

been evaluated using the CloudSim toolkit. In this paper, however, we have changed the objective func-

tion formulas to make them compatible with real cloud infrastructures, such as the VMware-vSphere 

based clouds used in this work. This study focuses on scheduling Bag-of-Tasks (BoT) applications for 

SaaS. In BoT applications, the completion of one task does not affect the completion of other tasks, and 

only one task is executed on a computer processor (CPU) at a time. BoT applications are used for data 

mining, massive searches, parameter sweeps, simulations, fractal calculations, computational biology, and 

computer imaging [31, 32].  

To formulate the MOTS-PSO objective functions, the following variables are defined:  
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Table 2. MOTS-PSO variables  

Symbol Definition 

n The number of tasks that have accumulated in the task queue of a primary VM (   ) 

    
  Set of tasks that has accumulated in the task queue of     

    The taski file size (MB)   

    The taski output file size (MB) 

    The taski input file size (MB) 

                                         

    The maximum level of memory required to execute task i (MB) 

    The number of CPUs required to execute task i 

     The amount of CPU usage of task i (GHz) 

     
  The total execution time of task i on    (Hour) 

      The total task execution time on    (Hour) 

m The number of VMs 

    Virtual Machine k, k={1, 2, …, m} 

   
 

 The amount of memory allocated to     (MB ≈ 0.001 GB) 

   
  The number of CPUs allocated to     

    
  The number of available CPUs allocated to      

    
  The amount of available memory allocated to      

     
 

 The number of active CPUs on      

    
 

 The bandwidth of      (Mb/s) 

          
  The CPU computing speed of     (GHz) 

    
 

 The amount of available memory on     

    
  

The number of available CPUs on     

NPM The number of PMs in cloud 

NaPM The number of active PMs in cloud 

                                       = The set of indices of VMs located on zth PM 

cp The number of cloud providers 

   Maximum capacity of provider p 

                                                 = The set of VMs belonging to the pth provider 

         The cost of one CPU for the pth provider (AUD/hour) 

    1 if task i is assigned to     and 0, otherwise 
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  Set of underloaded VMs that are compatible with     

5.1. The MOTS-PSO Objective Functions  

In this study, the available resources in VMs that are determined to be possible destinations for the 

extra workload of a primary VM will be fewer than their allocated resources. Based on this fact, the ob-

jective functions of MOTS-PSO are formulated and explained below. 

5.1.1. Task Transfer Time 

When a task is assigned to a VM for execution, the input data of the task and the output data of its 

prerequisite tasks are uploaded to the VM from the corresponding storage node to the VM. Therefore, to 

transfer a task from one VM to another, the task and the output data produced by its prerequisite tasks 

should be transferred from the primary VM (   ) to the destination VM (   ) for execution. In this 

case, the total task transfer time for both the computing and data intensive tasks is estimated as follows, 

where the coefficient 1/8 is used to convert Megabit (Mb) to Megabyte (MB) where 1 Mb equals 1/8 MB: 

          
                      

 

        
      

    
 

 
 

 

   

 

   

                                         

5.1.2. Task Execution Cost and Time 

The task execution cost (AUD per hour) for provider p is calculated as follows: 

                   
     

                                                                   

 

where        is the cost of one CPU for the pth provider in AUD per hour, and       is the estimated 

execution time (in hours) of the tasks assigned to each     belonging to provider p.  

The execution time of task i on     can be estimated by dividing the total amount of CPU usage of 

task i (    ) by the CPU speed of the corresponding VM (          
 ) i.e: 

     
  

    

          
 

                                                                          

However, the CPU speed of the VM is not consistent during the task execution time in a VMware-

vSphere based cloud environment with VMware-ESXi hypervisor. In this environment, the CPU speed 

changes based on the number of active CPUs because the VMware-ESXi divides the CPU speed of     
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(          
 ) by the number of its active CPUs. To determine the execution time of a set of tasks sched-

uled to    , therefore, the number of active CPUs during the execution time of these tasks should be 

estimated.   

To estimate this number, we first determine the total number of tasks that are scheduled to     as: 

   
      

 

   

                                                                              

The integer division of    
  divided by     

  is calculated as follows, where     
  is the number of 

available CPUs allocated to    : 

    
       

        
                                                                         

This value is used to estimate how many tasks (i.e.     
      

 ) will be executed while all the CPUs of 

    are active and the CPUs’ speed is equal to  
          

 

   
 . 

The remainder after the division of    
  by     

  (i.e. modulo) is calculated in Equation 9 to estimate 

how many CPUs will be used to execute the rest of the tasks. In this situation, the CPU speed of     is 

divided by the number of its activate CPUs as calculated in Equation 10. 

    
       

        
                                                                      

      
       

        
                                                                 

where        
  is the number of CPUs in     that were busy before tasks were scheduled to it and is 

estimated as: 

       
     

      
                                                                     

http://en.wikipedia.org/wiki/Remainder
http://en.wikipedia.org/wiki/Division_(mathematics)
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For example, when we have 13 tasks scheduled to     with four CPUs, three of which are available, 

then     
          . This means that 4*3=12 tasks will be executed while all the CPUs of     are 

busy, and the CPU speed is 
          

 

 
. In this example,      

          . This means that one of 

these tasks will be executed while the number of busy CPUs in     is      
          

    

       , and CPU speed equals 
          

 

 
 (see Figure 7). 

      is then estimated in hours by applying the aforementioned assumptions as follows:  

       
     

    
      

 

   

 
          

 

   
  

   
     

   
 

       
      

    

 
          

 

    
          

  

  
 

  
                                       

The value of        has been empirically determined.  

We assume the same price for all CPUs in a VM, therefore task execution sequence and scheduling 

schema in each VM are not considered in this function. For instance, in a VM with three CPUs, the cost 

of assigning three tasks to three different CPUs will be the same as the cost of assigning the execution of 

three tasks to one CPU (see Equation 5). The total task execution cost for all providers is determined as: 

 

                     

  

   

                                                                   

In situations where minimizing the execution time of tasks is more important than cost, the task exe-

cution time must be estimated. To do this, the value of coefficient        in Equation 5 for all providers 

is considered equal to 1; Equation 13 is then an estimation for the total task execution time in hours.  

5.1.3. Power Consumption  

t0 

 

t1 

VM1 

CPU1   CPU2   CPU3   CPU4 

Figure 7: Task scheduling pattern 
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t4 

 

t5 

 

t6 
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t8 
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t11 

 

 t12 

 

t13 
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Several power-aware multi-objective task scheduling models have been proposed for multi-core 

processors, grid and cloud environments [33, 34]. A variety of linear and non-linear objective functions 

have been suggested in these models to estimate power consumption based on task scheduling patterns, 

by considering the fact that energy will be reduced when the PM is either off or in idle mode [32, 35, 36]. 

It has also been proved by Buyya et al. [35, 37] that an idle server consumes around 70% of the power 

consumed by a fully utilized server. Previous studies show that having fewer active CPUs and PMs leads 

to lower power consumption in a cluster. Considering this fact, the ratio of active PMs and CPUs to all 

available PMs and CPUs has been minimized in this study to reduce power consumption. By applying 

this as an objective function, the optimization model avoids the selection of VMs on idle PMs as the des-

tination for scheduled tasks and consequently reduces the power consumed in the corresponding cloud 

cluster. To calculate this ratio, we first determine the power consumption for each fully utilized PM (i.e. 

all of its CPUs are active) as follows, based on the fact that the power consumed by the PM is linear with 

the number of busy/active CPUs [38] and increases by this number: 

                
                                                                          

                

where      
  is the amount of power that     consumes when all of its CPUs are idle,     

  is the number 

of CPUs of fully utilized     that are active, and    is the amount of extra power consumed above 

   for every active CPU of    . Using this, the value of   is: 

  
                

 

     
                                                                 

For a cluster with homogenous PMs, the value of   and      are the same for every PM. Therefore, the 

total amount of consumed power in this cluster can be determined as follows: 

                          

   

   

     

   

   

          
                                     

   

   

 

then 

                                                                                         

where      is the total number of CPUs in the cluster and can be calculated by counting the number of 

CPUs allocated to each VM i.e.          
  

   . Using this                is calculated as: 
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By applying the same logic, the value of the power consumed by the active PMs and CPUs in this cluster 

is calculated as follows: 

                                      
                                             

 

   

 

where      
  is the number of active CPUs in    . To calculate      

 , the number of CPUs of      that 

are already busy is calculated by applying Equation 11, and the number of activated CPUs is considered. 

The number of tasks assigned to     may be less than the number of available CPUs in    , or it may 

exceed this number, therefore the number of activated CPUs in     after a task has been scheduled is 

equal to the minimum value of the total number of tasks assigned to     and the total number of availa-

ble CPUs in this VM. The total number of active CPUs in     can be estimated as:  

      
         

           

 

   

     
                                                      

     is the number of active PMs in all iterations and is estimated on the basis that     will be activated 

if at least one of its allocated VMs is active. The activation status of VMs is determined according to the 

current number of busy CPUs (       
   and the number of tasks assigned to them.     is already acti-

vated if at least one of its CPUs is busy before a task is scheduled to it. The current status of     is then 

calculated as: 

          
             

                                                                 

In the situation where all CPUs of     are idle (available),     will be activated by having at least one 

task assigned to it, and the status of     is determined by the following formula: 

         
          

 

   

                                                                   

where      
 
    is the number of tasks assigned to the available CPUs of    . By applying Equations 21 

and 22, the number of active VMs located on     is calculated as follows:  

     
              

               
              

                                      

      

 

and the number of active PMs is determined using the following formula:  
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Using Equations 18 and 19, the ratio of consumed power in the cluster for each task scheduling pat-

tern can be calculated as:   

                 

                
 

                    
  

   

                
  

   

                                          

 
          

 

   
         

   
   

        
 

   
      

  
    

                                            

As a result, the following formula is developed as an objective function in our task scheduling model to 

control power consumption in the cluster: 

       
              

  
    

          
   

     
                                                        

where   
 

   
  . For instance, for one of our servers in this study (Altix XE320 [39]) with           

     ,           [40], and 16 CPUs, the value of   is equal to 0.1.  

5.1.4. Length of VM Task Queue  

For each possible best solution of the multi-objective task scheduling pattern, extra tasks will be al-

located to the task queue of      if the number of tasks assigned to     exceeds the number of its CPUs 

(see Figure 8). In this model, we consider another objective function to optimize the task scheduling pat-

tern by minimizing the length of the VM task queues. This will reduce the makespan of the corresponding 

jobs to the tasks, and consequently reduce response time, as fewer tasks will be located in queues and in 

waiting mode. 

 Figure 8: A sample task scheduling pattern between VMs 

The following objective function is proposed to minimize the number of tasks in queues that will be 

created in any possible optimal task scheduling pattern: 

t1 

CPUs 

VMs 

t3 t5  t2 t4  

t6 

t11 

t13 

t7 

t9 

 

t8 

t12 

 

t10 

t14 

t15 

 

Queues 
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where i is the task index, and the value of      
    and      

    is the portion of remaining memory and 

CPU capacity of     respectively after     has received each scheduled task, calculated as: 

     
    

    
        

   
        

    
                                                                       

      
    

    
        

   
        

    
                                                                        

where the values of       
   
         and      

   
         are the total amount of memory and number of 

CPUs required to execute the tasks previously assigned to     prior to task i.  

To calculate   , the formula proposed in [41-43] is improved by considering changes in the capacity 

of available VMs after the assignation of new tasks. Equation 27 indicates that scheduling task i to 

    —which reduces the amount of available CPU and memory of the corresponding VM— negatively 

affects    ’s performance and the execution time of its tasks. In this formula, if     
        

   
    

     and/or     
        

   
        , the implication is that there is no available memory or CPU to 

execute extra tasks, thus the suggested solution will increase the number of accumulated tasks in the task 

queue of      and create a long task queue for this VM. This study prevents the suggested solution from 

being chosen as an optimal task scheduling solution by assigning a big penalty value to the value of    . 

Using this,    will not be minimized and the probability of choosing the corresponding task scheduling 

solution as an optimal solution will be reduced. To increase the value of    , a small value is assigned to 

     
    and/or      

   . This is achieved as follows: if      
    and/or      

    are equal to zero, the 

value of 10
-3

 will be added to them, and if each of them has a negative value, they will be converted to 

     
   

  
 and/or       

   
  

 then multiplied to a small value (-10
-3

). This method for panelizing solu-

tions with negative values for      
    and/or      

    has been determined to not only penalize solu-

tions that do not achieve optimal resource utilization and increase the task queue length of the corre-

sponding VMs, but also to enable the system to rank these suggested solutions.  For example, we assume 

in a solution that       
        (i.e. we have two more CPUs required to execute task i), and in another 

solution      
       . Although the task scheduling pattern suggested in both solutions will increase 

the task queue length of the corresponding VM, the first solution is better than the second solution as it 

requires fewer extra CPUs. Therefore, we change the value of      
     in first solution to       
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    , and in the second solution to       
          

   . Considering this fact that    
  

   

   
  

   , the value of    in the first solution is less than the value obtained in the second solution. There-

fore, the first solution has a higher rank than the second solution in terms of minimizing   .   

Since the values of      
    and      

    are multiplied by each other, using this will increase the 

value of    dramatically whenever one of them equals zero or has a negative value. Therefore, the proba-

bility of this pattern being chosen as a possible optimal solution will decrease. This prevents the assigna-

tion of tasks to VMs that do not have available resources. The following formula is then used as an opti-

mization objective function in our proposed model to minimize VM task queue length and optimize the 

load balance: 

     

 

   

                                                                                     

5.1.5. The Multi-Objective Problem  

The multi-objective optimization problem for task scheduling applied by the MO-LB system is de-

fined as follows, based on the determined objective functions:  

Problem: 

                                                                                                                                                       

                                                                                                                                                            

                                                                                                                                                

                                                                                                                                                                

Subject to 

                

 

   

  

                              

          

     
      

           

5.2. The MOTS-PSO Algorithm  
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The task scheduling optimization model is an NP-Complete problem in cloud computing, and the 

supremacy of PSO for such optimization problems in the cloud and grid environment has been proved in 

[41, 42, 44, 45]. In addition, the efficiency of MOPSO for solving multi-objective task scheduling prob-

lems has been examined in [29] in comparison with the multi-objective genetic algorithm. It has been 

shown in [29] that MOPSO is the most efficient and reliable algorithm for solving these problems be-

cause it not only determines the optimal task scheduling pattern with the highest QoS, but also obtains the 

solution in the shortest possible time. In light of these results, MOPSO is applied in this study to find the 

optimal schema for transferring tasks from primary VMs to the selected destination VMs. For small num-

bers (e.g., 20 Tasks and 10 VMs) the convergence time of MOTS-PSO is less than 0.3 seconds. For in-

dustry sized deployments (e.g., 100 Tasks and 20 VMs), and for very large numbers of tasks and VMs 

(e.g., 1000 Tasks and 50VMs), the computation can be parallelized by processing MOTS-PSO in parallel 

for smaller groups of tasks and VMs. In this situation, the tasks and VMs are categorized in several sets 

with a small number of tasks and VMs. MOTS-PSO is then run in parallel for each set and the time con-

sumed for task scheduling does not increase. 

In this section, the preliminary definition of the PSO method is first described. The MOTS-PSO al-

gorithm is then explained to complete Step 6 of the MO-LB algorithm and solve the formulated task 

scheduling optimization problem. 

5.2.1. Particle Swarm Optimization 

In the majority of optimization problems, the objective functions are in conflict with each other and 

there is no unique solution for them. Therefore, the goal is to find good trade-off solutions that represent 

the best possible compromises among the objectives [46]. A multi-objective optimization problem is de-

fined as follows: 

                                                                                                      

where                    is the vector of decision variables;      
            are the objective 

functions. Let particle                     represent a solution to (1). A solution       dominates       if 

                       for all j=1,..,k and                        for at least one j=1,…,k. A feasible solution       is 

called Pareto optimal (non-dominated) if there is no other feasible solution       that dominates it. The set 

of all objective vectors          corresponding to the Pareto optimal solutions is called the Pareto front 
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(P*). Thus, the aim is to determine the Pareto optimal set from the set F of all the decision variable vec-

tors (particles) [47-51].  

Particle Swarm Optimization (PSO) is a population-based search algorithm based on a simulation of 

the social behavior of birds which was originally proposed by Kennedy and Eberhart [52]. Although orig-

inally adopted for balancing weights in neural networks, PSO soon became a very popular global opti-

mizer, mainly in problems in which the decision variables are real numbers [53, 54]. In PSO, particles are 

flown through hyper-dimensional search space. Changes to the position of the particles within the search 

space are based on the socio-psychological tendency of individuals to emulate the success of other indi-

viduals. The position of each particle is changed according to its own experience and that of its neighbors. 

Let          denote the position of particle i, at iteration t. The position of          is changed by adding a ve-

locity            to it, i.e.: 

                                                                                       (36) 

The velocity vector reflects the socially exchanged information and, in general, is defined in the fol-

lowing way:  

                                                                                                    

where    is the cognitive learning factor and represents the attraction a particle has to its own success;    

is the social learning factor and represents the attraction a particle has to the success of the entire swarm; 

W is the inertia weight, which is employed to control the impact of the previous history of velocities on 

the current velocity of a given particle;           is the personal best position of the particle i;          is the 

position of the best particle of the entire swarm; and             are random values [46, 49, 50] .   

5.2.2. The MOTS-PSO Algorithm 

The MOTS-PSO algorithm specifies the most appropriate VMs to which the tasks of the primary 

VMs can be allocated, and finds the optimal task scheduling schema by applying the PSO algorithm 

adopted from [55] and modified to MOPSO to support multi-objective problems. This algorithm applies 

the data and information determined in Table 2, and the output variables obtained by Steps 1, 2, 4 and 5 

of the MO-LB algorithm as its input variables.  

In this stage, CUP output variables are generated as input variables for MOTS-PSO: a set of primary 

VMs, and a set of destination VMs as                   which have available memory and CPUs 

for executing extra tasks. For each primary VM (   ) in the MOTS-PSO algorithm, a set of compatible 
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VMs from        are chosen as new destinations for the extra workload (     
 ). The set of tasks to be 

transferred from      are determined as     
           . Lastly, the MOPSO algorithm is applied to 

find the best solution for the multi-objective task scheduling optimization problem (see Section 5.1) to 

schedule tasks in      
  to VMs in       

 . All particle positions                  determined by 

MOPSO by applying Equations 36 and 37 are vectors with continuous values, but their corresponding 

discrete values are needed to determine the index of VMs chosen for task execution. The Smallest Posi-

tion Value (SPV) rule is proposed in [56] to modify the PSO algorithm and enable the continuous PSO 

algorithm to be applied to all classes of sequencing problems such as the task scheduling problem, which 

are NP-hard. By using the SPV rule, permutation can be determined through the position values of the 

particle so that the positions of each particle are updated at each iteration k in the PSO algorithm and the 

fitness value of the particle can be computed with that permutation. The feasibility of PSO using the SPV 

rule to determine the optimal solution is proved in [56]. In addition, the SPV rule is widely applied to 

convert the vector of the particles’ continuous position vector to discrete vectors [41, 56-59]. Given this 

knowledge, the SPV rule is applied in this study. First a new sequence vector                     is 

generated by applying the SPV rule based on continuous vector                    .  For example, the 

smallest position value for continuous vector                                         is -1 2 0. There-

fore, the dimension 5 is assigned as   . The second smallest position value is -0.99, so    = 2, and so on. 

For a task scheduling problem with n tasks and m VMs, discrete vectors                     is gener-

ated by applying the following equation [57]: 

                                                                                               

 For example, for continuous vector                                          in a task scheduling 

problem with six tasks and three VMs,                      and                    . Based on this 

solution (    ), tasks 1, 2, 3, 4, 5 and 6 are assigned to VMs with indices 2, 2, 1, 1, 0 and 0 respectively. 

Ultimately, in MOTS-PSO algorithm, the current value of VM properties (CPU, memory, etc.) will be 

updated on the GB. In summary, the following steps should be conducted for each primary VM by the 

MOTS-PSO algorithm to complete Step 6 of the MO-LB system: 

Algorithm3. The MOTS-PSO algorithm (Step 6 of the MO-LB algorithm) 

Input: All variables in Table 2, and variables created in Steps 1, 2, 4 and 5 of the MO-LB algorithm.   

[Begin MOTS-PSO algorithm] 
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7.1. Choose a VM from a set of primary VMs suggested by the CUP algorithm as    . 

7.2. Choose a set of compatible VMs as       
              form the new candidate destination VMs 

(                 ) determined by the CUP algorithm. 

7.3. Determine the set of tasks to be transferred from the primary VMs as      
            

7.4. Apply the PSO method to find the Pareto optimal schema to assign the determined tasks (     
 ) to the specified 

VMs (      
 ) minimizing task transfer time, task execution cost/time, length of VM task queue, and power 

consumption as follows:  

7.4.1. Create an initial population array of every particle i (     ) with random positions and velocities on n di-

mensions in the search space. 

7.4.2. Initialize an archive in which members are non-dominated solutions (n dimensions particles/genes whose 

position/pattern is a Pareto optimal solution) 

7.4.3. Determine the value of                 
     

  and      
  based on         to calculate the value of eve-

ry fitness function. 

7.4.4. For each particle, calculate fitness functions fTransferTime, fExecution, fTaskQueue and fPowerConsumption by applying 

Equations 31, 32, 33 and 34. 

7.4.5. For each particle, evaluate the desired optimization fitness functions. 

7.4.6. Update the archive content by deleting dominated members from the archive and storing the Pareto opti-

mal (non-dominated) solutions in the archive. 

7.4.7. Sort archive members based on the number of optimized objective functions and their determined weight. 

7.4.8. Compare each particle’s fitness evaluation with its personal best fitness function value (         . If the 

current value is better than         , then set         equal to the current value, and the best position pi 

equal to the current location     in n-dimensional space. 

7.4.9. Choose           from top sorted members in the archive as the best global position. 

7.4.10. Change the velocity and position of the particle according to Equations 36 and 37. 

7.4.11. Convert continuous position values vector of        to discrete vector        using SPV rule to determine 

the allocated VM for every arrival task. 

7.4.12. If a criterion is met (usually a sufficiently good fitness or a maximum number of iterations) then  

7.4.12.1. Output the best particle position in n-dimensional space            as the optimal task migration 

schema 

Else  

7.4.12.2. Go to Step 7.4.3 

7.5. Calculate and update the current VM properties according to the optimal task scheduling solution.  

7.6. Transfer tasks and their corresponding data to the destination VMs 
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 [End MOTS-PSO algorithm] 

6. Evaluation Results 

We compare the efficiency of the MO-LB system with the VMware-ESXi auto load balancing sys-

tem which is based on VM migration, by implementing those systems in a VMware-vSphere based pri-

vate cloud. HTCondor [25] is also applied to implement the suggested solution and submit tasks to the 

destination VMs. HTCondor is a software system that creates a High-Throughput Computing (HTC) en-

vironment. When a user submits a job to HTCondor, HTCondor finds an available machine on the net-

work and begins to run the job on that machine. It can checkpoint the job and migrate jobs to a different 

machine. HTCondor implements ClassAds, a clean design that simplifies the user’s submission of jobs. 

ClassAds work in a fashion similar to ‘want ads’ in classified advertising. All machines in the HTCondor 

pool advertise their resource properties, both static and dynamic, such as available RAM memory, CPU 

type, CPU speed, virtual memory size, physical location, and current load average, in a resource offer 

advertisement (ad). A user specifies a resource request ad when submitting a job. The request defines 

both the required and desired properties of the resource for running the job. HTCondor acts as a broker by 

matching and ranking resource offer ads with resource request ads, making certain that all requirements in 

both ads are satisfied. During this match-making process, HTCondor also considers several layers of pri-

ority values: the priority the user has assigned to the resource request ad, the priority of the user who 

submitted the ad, and the preference of the machines in the pool to accept certain types of ads over others 

[60]. In this study, the destination machines are determined on the basis of the optimal solution suggested 

by the MOTS-PSO sub-system. To achieve this, the names of the selected machines are detailed in the 

submit file of their corresponding jobs, and HTCondor sends the jobs to the specified machines.  

6.1. Environment Description 

The cloud environment is designed to have two data-stores, four PMs, twenty VMs, two cloud pro-

viders and 200 arrival computation, memory and data intensive tasks that are independent. We 

ered                  in Equation 5, therefore the objective function fExcecution (Equation 32) is ap-

plied as an estimation of the task execution time. The information about VMs and tasks is summarized in 

Tables 3 and 4. To evaluate the proposed model, several computational, memory and data intensive tasks 

are generated, using C++ programming language, as examples of the different types of task that are exe-

cuted in a BoT as part of the workflow applications, such as Pegasus workflow applications. In this study, 
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the computationally intensive tasks multiply large matrices. The memory intensive tasks consume 

memory by inserting and deleting data to and from memory blocks. The data intensive tasks transfer large 

images between primary and destination VMs. The PMs are homogenous and each has a different type of 

VM (see Table 5).  

Table 3. Properties of VMs 

VM Id 

CPU speed in GHz 

(VMCPUSpeed) 

Available memory in MB 

(VMm) 

Bandwidth                  

in Mb/s (VMbw) 

Number of           

CPUs (VMc) 

OS 

1-4 2.6 4096 1024 4 Ubuntu Linux  

5-8 2.6 4096 1024 2 Ubuntu Linux  

9-12 1.3 2048 1024 2 Ubuntu Linux  

13-16 1.3 1024 1024 1 Ubuntu Linux  

17-20 1.3 512 1024 1 Ubuntu Linux  

 

Table 4. Properties of tasks 

Task Id 

File Size in 

kB (DF)  

Output Size 

in Byte (DO) 

Input size 

in MB (DI) 

Required 

CPUs (tc) 

CPU usage 

in GHz (tcu) 

Total memory 

usage in MB  

Max level of memory 

usage in MB (tm) 

Computationally Intensive Tasks 

1-20 8.7 47 0 1  186.372 2055.06 125.828 

21-40 8.5 46 0 1  21.186 985.616 62.912 

41-60 8.5 47 0 1  67.166 754.924 62.912 

61-80 8.5 46 0 1  8.261 471.848 73.4 

81-100 8.5 47 0 1  21.759 524.26 62.912 

101-120 8.5 46 0 1  2.263 125.82 41.94 

Memory Intensive Tasks 

121-140 9.2 170 0 1  41.097 11534.304 943.716 

141-160 9.2 169 0 1  38.367 9940.468 859.832 

161-180 9.2 170 0 1  38.372 1992.268 167.772 

Data Intensive Tasks 

181-200 8.5 46 1.4 1 2.833 377.484 125.828 

   

Table 5. Resource allocation in the cluster 

PM Id VMs 

1               
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2                        

3                        

4                        

 

6.2. Scenario development 

In this study, we evaluate the MO-LB system in cases when VM migration is required, i.e. (1) a host 

PM is likely to be overloaded (PM hotspot), or (2) a VM needs to be scaled up. The hotspot situation 

occurs when all the resources in the host PM are allocated to VMs, and all VMs are using their maximum 

capacity to execute their allocated tasks. In this case —irrespective of whether the VMs are used for SaaS, 

PaaS or IaaS— the PM is at risk of being overloaded. The current solution for this problem, conducted by 

the Auto Load Balancer (ALB) of VMware-ESXi, is to migrate a set of VMs from the overloaded PM to 

other PMs that have more available resources [3-7, 14-18]. The second situation investigated in this study 

occurs when VMs that are delivered as IaaS exhibit low performance and their client asks for VM scale-

up when no capacity is available in their host PM. In this case, VMware-ESXi migrates the VMs to PMs 

that have the capacity and scales up these VMs [3-7, 14-18].  

In contrast, the MO-LB solution for the first situation is to select a set of VMs that deliver SaaS or 

PaaS and are located on the overloaded PM, stop these VMs from working, and transfer their tasks in 

progress and all the tasks that have accumulated in their task queues to compatible VMs with available 

capacity located on other PMs. This reduces resource utilization on the overloaded PM and eases the ten-

sion between its allocated VMs. In the second situation —where a VM that delivers IaaS is performing 

poorly and needs to be scaled up— MO-LB applies the same process. The resources allocated to the se-

lected VMs are released and allocated to the poorly performing VM, which is thus scaled up.   

The ALB of VMware-ESXi reacts after a number of VMs start to exhibit low performance and the 

PM utilizes more than the determined threshold of its capacity. However, the prediction model applied in 

the MO-LB system predicts VM performance and reacts before the corresponding PM meets the prede-

fined utilization threshold.  

In this study, the MO-LB system is compared to VMware-ESXi in both live and storage migration. 

In live migration, the execution state and active memory of a VM is migrated to a new ESX host. Live 

storage VM migration involves changing both the host and the data store. In this case, the disk files of the 

VM are also migrated.  
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6.3. Implementation 

To implement the MO-LB system, we first randomly schedule the determined tasks to the VMs in 

our private cloud by applying HTCondor functionality for one week to create historical data of CPU us-

age        
   as the historical input data for the CUP sub-system. The CUP algorithm (Algorithm 2) is 

implemented using MATLAB. 

6.3.1. Implementing the MO-LB System  

To evaluate the MO-LB system, we apply a PM with the lowest capacity compared to other PMs to 

give us the ability to overload this PM. To emulate a situation in which a PM will be overloaded, random 

tasks are chosen from the list of computationally intensive tasks in Table 4 and scheduled to the VMs 

located on    , as illustrated in Table 6. 

 
Table 6. List of tasks scheduled to VMs located on      

VM ID Tasks 

1                                            

5                                 

In addition, a random set of tasks is scheduled to other VMs in the cluster.  The CUP algorithm also 

checks the performance of every VM every two minutes (as previously described). After two minutes, the 

CUP algorithm specifies a list of possible overloaded and underloaded VMs in the cluster as follows:  

Table 7. CUP results 

VM ID         
           

                             
  Number of available CPUs (    

 ) 

1    and     then  Overloaded 0 

5    and     then  Overloaded 0 

3    and     then  Under-loaded 2 

6    and     then  Under-loaded 2 

7    and     then  Under-loaded 2 

9    and     then  Under-loaded 1 

10    and     then  Under-loaded 1 

11    and     then  Under-loaded 1 
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As can be seen from Table 7, CUP suggests that     and     , located on    , are poorly per-

forming VMs, which means that     is at risk of becoming overloaded.         and      from the 

list of high performance VMs are compatible with     and have 2, 1 and 1 available CPUs respectively. 

        and      are compatible with     with 2, 2 and 1 available CPUs respectively. In this situa-

tion, the VM with the lowest number of scheduled tasks is selected to cease executing, and all the tasks 

scheduled to this VM (pending and executing tasks) are transferred to reduce the tension between VMs on 

the overloaded PM. The executing tasks on this VM will resume and continue their execution on the des-

tination VM from where they left off, using the HTCondor check point mechanism. The VMs that have 

lower numbers of scheduled tasks are chosen to cease executing so that fewer tasks need to be transferred. 

The tasks that have accumulated in the    task queue and all the tasks scheduled to     are determined 

as       
                                and      

                       . The MOTS-PSO algorithm 

(Algorithm 3) is then used to schedule      
  and      

  to their compatible VMs. The scheduling results are 

illustrated in Tables 8 and 9.  

Table 8. Optimal suggested pattern for scheduling      
  to      

  

Tasks                             

Task CPU usage (GHz) 67.166 67.166 21.186 21.186 21.186 21.186 67.166 

VMs                              

 

Table 9. Optimal suggested pattern for scheduling      
  to      

  

Tasks                     

Task CPU usage (GHz) 67.166 67.166 67.166 21.186 21.186 

VMs                      

The optimal values for the objective functions fTransferTime, fExcecution, fTaskQueue and fPowerConsumption of 

MOTS-PSO for the optimal pattern to schedule      
  to      

 are 0 seconds, 2.42 hours (02:25:12), 2.58 

and 1 respectively. The corresponding values to these objective functions determined for scheduling      
  

to      
  are 0 seconds, 1.12 hours (01:07:12), 7.20 and 1 respectively.  

The execution of tasks     and     on     are stopped, and      
  and      

  are scheduled according 

to the suggested optimal patterns to their specified destinations. Following the execution of these tasks, 



32 

 

the related data about the evaluation measurements are determined and summarized in Table 10. Each set 

of tasks (e.g.,     
 ) is considered as a job, and each sub-set of this set of tasks that is scheduled to a differ-

ent destination VM (i.e.{                            and {    ) is considered as a sub-job. The value of 

job makespan for      
  is calculated as the maximum makespan among these sub-jobs on their corre-

sponding VM (i.e.            and      ). The job makespan for set q is calculated as: 

                  
            

                                                     

where         
 

        
 is the maximum time taken by the claimed CPUs of     to execute sub-job p 

of job q, and is calculated as: 

         

               
    

 

         

                                                    

where          

  is the task execution time on ith available CPU on    .The value of  

         

        
 for each VM is determined by monitoring the VM performance and checking its task 

log files.  

The job execution time for each set is the summation of the execution time of its sub-jobs on their 

destination VMs. It can be seen from the results that the estimated execution time calculated as objective 

function fExcecution for the tasks scheduled to     and     is close to their corresponding real time con-

sumption of 02:19:06 and 01:00:23 respectively. 

In total, the 07:39:29 hours taken for all jobs to be executed with 01:34:00 hours makespan which is 

the maximum value among                                  and            (see Table 10). 

Table 10. MO-LB implementation results  

VM ID Scheduled Tasks Sub-job Execution Time Sub-job Makespan 

Executing tasks by      

1                04:16:00 01:34:00 

                                                                                                                            Job1 execution time = 04:16:00 Jmakespan1= 01:34:00 

Scheduling     
  to      

  

3                 01:26:44  00:43:20 

9         00:21:30  00:21:30 

11     00:30:52  00:30:52  

                                                                                                                                Job2 execution time = 02:19:06    Jmakespan2= 00:43:20 

Executing tasks by     before transferring its tasks 
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5                     00:04:00                           00:02:00 

                                              Job3 execution time = 00:04:00    Jmakespan3= 00:02:00 

Scheduling     
  to      

  

6         00:19:42 00:14:55 

7         00:31:30 00:16:30 

10     00:10:11 00:10:11 

          Job4 execution time = 01:00:23 Jmakespan4= 00:16:30 

Total 07:39:29 01:34:00 

6.3.2. Implementing VMware Auto Load Balancer  

After implementing the MO-LB model, the cluster is set to apply the VMware ALB. The tasks are 

scheduled to VMs in the same order as scheduled in Section 6.3.1, and     and     allocated on 

     start to use all the resource capacity of their host. After five minutes, when     has 

                              in its task queue and is executing               and     , and     has 

              in its task queue and is executing      and    ,     is migrated to      by the hypervisor 

in approximately three seconds. In this state,    has approximately 100 Mb active memory which is 

migrated to the new host.  In the same situation, the live storage migration of      with 290 GB (296960 

Mb) disk file size and 100 Mb active memory takes approximately 5.5 minutes. Before     migration, 

the CPU speed of     and     were less than the guaranteed speed; therefore, it takes longer than ex-

pected for the executing tasks to be completed. In addition,      is slowed down during the storage mi-

gration time, which also affects the execution time of its allocated task.  

The two sets of tasks that are scheduled to     and     are considered as two jobs. The value of 

the execution time and makespan of these jobs on each VM is determined after the completion of their 

corresponding tasks by     and     before and after live and storage migration. These values are calcu-

lated on the basis of the logic explained in Section 6.3.1 and summarized in Table 11. 

As can be seen from the results, 7:55:46 hours in total is taken by     and     to execute the jobs 

with 2:41:06 total makespan when storage migration is applied. In live migration, the jobs are completed 

after 2:38:16 when 7:48:25 hours in total has been taken for their execution. 

Table 11. Implementation results using the VMware ALB  

VM ID Location Scheduled Tasks Job Execution Time Job Makespan 

VM storage migration 



34 

 

1 

    Before migration                

6:51:06 2:05:49 

    After migration                                            

5 

    Before migration          

1:04:40 0:35:17 

    After migration                     

Total 7:55:46 2:41:06 

VM live migration 

1 

    Before migration                

6:46:45 2:04:30 

    After migration                                            

5 

    Before migration          

1:01:40 0:33:46 

    After migration                      

Total 7:48:25 2:38:16 

6.4. Evaluation Results Analyses  

The final results of implementing the two approaches are summarized in Table 12.  

Table 12. Comparison of results  

 

Time (Seconds and Hours) 
Power 

(kw) 

 

Memory (MB) 

MOTS-PSO 

time  

Total execu-

tion time  

Total makespan 

(Max Path) 

Task 

transfer 

time 

VM 

migration 

time 

VM 

transferred 

memory  

Task 

size 

Transferred 

data 

VM 

Storage 

Migration 

NA 
28546 

(7:55:46) 

9666 

(2:41:16) 
NA 330 

(0:5:30) 
31.71 297059 0.1536 0 

VM Live 

Migration 
NA 

28102  

(7:48:25) 

9486  

(2:38:06) 
NA 3 

(0:0:3) 
31.22 100 0.1536 0 

MO-LB 0.5 

(00:00:0.5) 

27569  

(7:39:29) 

5640 

(1:34:00) 
0 NA 30.63 NA 0.1536 0 

When the ALB was applied in the defined scenario,     was migrated after      became overload-

ed and its allocated VMs experienced tension and low performance for a period of time. This affected the 

execution time of tasks on both VMs and it took longer for these VMs to complete their jobs. In contrast, 

the amount of execution time with the application MO-LB was reduced by 3.4% and 1.9% compared to 

VM storage and live migration respectively, as a result of executing tasks by VMs on another PM with 

lower resource utilization. In addition, makespan was reduced dramatically (41.6% and 40.5% compared 

to VM storage and live migration respectively) by MO-LB, as the tasks were distributed over eight VMs, 

and this method benefits from parallel task execution. Furthermore, 100 Mb more memory was trans-

ferred for the ALB during live VM migration compared to the MO-LB system. The ALB also consumed 

297059 Mb (     GB) more memory on both the original and destination PMs and data-stores for 5.5 

minutes compared to the MO-LB system, and used more bandwidth due to VM migration.  
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The additional amount of power consumed per hour by an active CPU can be estimated using Equa-

tion 19 where              and            (see Section 5.1.3): 

                                                                      

In this study it is assumed that the total execution time is the summation of time taken by each task 

to reach completion and that each task applies one CPU during execution. Therefore, it can be assumed 

that the power of only one CPU is applied during the total execution time of tasks. Using this calculation, 

the additional amount of power consumed by applying the ALB using storage migration to execute all 

scheduled tasks (      —which takes 28546 seconds or 7.93 hours—is: 

                   
                                                                           

The additional amount of power consumed by the ALB using live migration to execute      during 

28102 seconds (7.80 hours) is also calculated as: 

                   
                                                                          

In the MO-LB system, the number of activated PMs was not changed because the model applies 

VMs on active PMs. Therefore, the additional power consumption by the MO-LB system for executing 

     —which takes 27569 seconds or 7.65 hours—can be estimated as follows: 

                   
                                                                            

This shows that the proposed method has the lowest power consumption. 

In addition, it takes 330 seconds for the ALB to perform VM storage migration, and three seconds 

for VM live migration. In contrast, the MO-LB system achieves load balancing in at most 0.5 second, 

which is the time taken by the MOTS-PSO algorithm to find the optimal scheduling pattern. The task 

transfer time taken in the MO-LB system is near zero. The time taken for load balancing is reduced by 

99.8% and 83.3% using the MO-LB system compared to VM storage and live migration respectively. 

In summary, the MO-LB system achieves lower execution time, job makespan, memory transfer, 

bandwidth, and power consumption compared to live and storage migration strategies applied by 

VMware-ESXi. In addition, the MO-LB system takes less time to conduct load balancing over PMs com-

pared to the ALB of VMware-ESXi. 
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7. Conclusion and Future Works  

Several VM migration techniques have been applied for load balancing and optimizing resource uti-

lization in cloud environments, including suspension/resumption and live migration. Live migration has 

been developed to migrate running VMs, and achieves lower VM downtime compared to the sus-

pend/resume strategy. However, live migration for large VMs is not an optimal solution because it con-

sumes time, bandwidth, power, and memory space in both origin and destination PMs and data-stores. In 

addition, the live migration process carries the risk of losing last user activities.  

In this study, an MO-LB system has been proposed instead of VM migration for load balancing. The 

MO-LB system distributes accumulated tasks in the task queue of the primary VMs over a set of compat-

ible VMs with lower utilization. This method includes a CPU Utilization Prediction (CUP) method that 

not only forecasts primary VMs, but also determines a set of VMs as candidate destinations for arrival 

tasks to primary VMs. A Multi-Objective Task Scheduling optimization model using Particle Swarm 

Optimization (MOTS-PSO) was designed to transfer tasks to the selected destination VMs, minimizing 

task transfer time, task execution cost/time, length of VM task queue, and power consumption. In addi-

tion, the primary VMs were not slowed down by the application of the MO-LB system. We evaluated the 

proposed model by applying a VMware-vSphere based private cloud in comparison with the ALB of 

VMware-ESXi which applies VM live and storage migration. The evaluation results show that the MO-

LB system achieved a reduction in makespan, execution time, memory usage, power consumption, and 

total time taken for load balancing compared to the ALB in both live and storage VM migration. As a 

result, the proposed method dramatically increased VM performance and reduced service response time. 

This method can be applied in the hypervisor layer to optimize resource management and load balancing, 

boosting the Quality of Service (QoS) expected by cloud customers.  

When the CPU speed of the destination VM is lower than the CPU speed of the primary VM, how-

ever, the task execution time and consequently power consumption will be increased. In our future work, 

therefore, we will add extra constraints to our MOTS-PSO problem to consider scheduling tasks to VMs 

that have a CPU speed equal to or more than the CPU speed of the primary VM. Using this strategy, there 

would not be even a slight increase in total execution time and power consumption. In addition, the solu-

tion will be improved to cover scheduling scientific workflows (such as Pegasus applications), and the 

application of this solution to solve the problem of cold spot PMs will be evaluated. This future study will 

also consider heterogeneous cloud environments as its research direction, and the prediction sub-system 
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of the developed model will be improved. We will also consider different amounts of CPU utilization by 

task (      to obtain a better estimation of task execution time.  
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