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The MC64-Cluster computer platform was designed, based on many-core CPU microprocessors:
Tile64. MC64-Cluster architecture was outlined in terms of both hardware and software, including
commands available to manage jobs and provided application programming interfaces to communi-
cate and synchronize tiles, making this system easy to use. Massively;-eoneurrent-searehes of keys in
B-trees, which are used in many applications, including bioinformatics, were used. Remarkable per-
formance improvements were obtained when the cluster resources were combined with those avail-
able in host machine (hybrid or heterogeneous environments). These results were even more
outstanding when analyzed in terms of performance-per-watt, highlighting their green-computing
advantages. Together with the cluster architecture, they represent the main contributions of this
work. To our knowledge, this is the first cluster implementation of this kind being developed.
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1. INTRODUCTION

Recently, we have introduced the cluster concept [1] of Tilera
coprocessor cards, as a ‘group of tightly- or loosely-coupled
computers’. Thus, in our previous proposal for future devel-
opments [2], MC64-Cluster connected several coprocessors
through their built-in 10 Gigabit (Gbit; Gbps) Ethernet inter-
faces. That represented a natural extension to overcome intrin-
sic limits of a single card, as observed during our previous
developments. Such a cluster was composed by TILExpress-
20 G cards, inserted as coprocessors into passive personal com-
puter (PC)-hosts. Each card included an energy-efficient Tile64
microprocessor with 64 reduced instruction-set computing
(RISC) tiles/cores. The new MC64-Cluster aims to take the

concept of high-performance computing (HPC) clusters as a
model to provide increased performance. That is accomplished
by splitting computational tasks across several nodes. However,
the term HPC is used here not to describe the MC64-Cluster,
but just in a methodological way, in relation to the memory and
network bandwidth available in our building blocks. These
microprocessor architectures have a bright future ahead.
Indeed, Tile64 microprocessor architecture has inspired new
chips like Adapteva Epiphany III and IV (including floating-
point support and a 28-nm technology at a much lower cost,
albeit lower computing power) [3], as well as the recently
announced Epiphany V, using 16 nm lithography. Close tech-

nologies, like massively—paralel processor array (MPPA),
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2 F. J. ESTEBAN et al.

also appeared at the time, with microprocessors from com-
panies like Ambric or PicoChip, and more recently with pro-
ducts like MPPA-256 (Andey) from Kalray [4] and newer
MPPA2-256 (Bostan).

Mellanox Technologies purchased EZchip Semiconductor
(which formerly acquired Tilera) to merge such technology
with EZchip high-performance network processing. This will
allow building new innovative chips to address many present
and future computing challenges. Nonetheless, they are not
the goal of this work, focusing instead on commercially avail-
able many-core central preeessing—unity (CPU). Likewise,
other approaches in the field of specific computing, like field-
programmable gate array (FPGA), general purpose graphics-
processing units (GPGPU), cell broadband-engine (CBE), etc.
fall outside our approach, because of the lack of flexibility
caused by their coupling hardware—software model.

Other architectures, like the one implemented in Godson-T
microprocessor [5] could be comparable. This is due to the
use of million instructions per second (MIPS) and a matrix of
cores, in a somewhat similar way as Tilera does. However,
such former architecture, currently renamed as Loongson, has
been implemented in multi-core CPU only, with a number of
cores that ranges from two to eight.

MC64-Cluster was developed its performance tested when
searching B-tree structures. This is an operation widely used
in many computing areas, including, among others, general-
database management and bioinformatics. The latter includes
algorithms like the ubiquitous Basic Local-Alignment Search
Tool (BLAST) [6, 7]. It is considered the most popular appli-
cation by life-science researchers, in which the index usage
and optimization are active-research areas [8]. A progressive-
refine path was followed, with the aim to put all processing
elements at work, and therefore reducing idle times as much
as possible. Thus, from a first approach in which all tiles
received the whole set of keys to search for, an optimized
strategy was implemented, with a previous sort-and-split exe-
cuted in the host machine. Such strategy has proved to be the
most efficient approach to the problem. Other alternative
approaches are also discussed below, like the ones using an
additional thread to support the most demanding tasks.
Execution of the same algorithm was also carried out in Intel
Xeon E5405 microprocessor, which has four cores running
at 2.0 GHz, with 8 GB of double-data rate type two (DDR2)
memory. Additionally, many-core Intel Xeon Phi 31S1P
with 57 cores at 1.10 GHz, with 8 GB Graphics double-data
rate type-five (GDDRS5) memory was also used. Both have
Intel x86 architecture, which is the standard one in PC, and
thus were used as reference microprocessors. For obvious
reasons, benchmarking against any possible parallel architec-
ture is beyond the purpose of this work. Our main contribu-
tions are the building of the cluster and its performance
results (including performance-per-watt; PPW) for this par-
ticular problem.

2. RELATED WORK

The appearance of a microprocessor element boarded in a
card, and acting more or less in conjunction with the host
CPU, has its immediate antecessor in specialized micropro-
cessors, like GPU. These systems have eventually evolved
into general-purpose capable microprocessors, although main-
taining their primary design, based in a great amount of hier-
archically-erganized, lightweight microprocessors [9]. Therefore,
their programming techniques and optimizations are quite dif-
ferent and specific, in spite of recent efforts to unify CPU and
GPU [10, 11]. Some clusters with this kindg of elements are
described elsewhere [12—14], and they are even available as
cloud solutions, like Amazon Elastic Computing Cloud (EC2)
service <https://aws.amazon.com/ec2> [15]. Furthermore,
tools to provide elastic virtualized clusters on top of these
kind of platforms can be found [16, 17]. They offer unpre-
cedented flexibility in the resources used, at the cost of extra
computing-resource consumption, which is inherent to any
virtualized solution.

On the other hand, Intel has introduced Many Integrated
Core (MIC) architecture into Xeon Phi cards that, depending
on the model, contain between 57 and 72 cores. Some works
with multiple interconnected Xeon Phi systems have been
described [18, 19]. Both Tile64 and Xeon Phi are boarded on
Peripheral Component-Interconnect express (PCle) cards that
may work inside standard desktop PC hosts, so they are usu-
ally referred as coprocessors. It is remarkable that Intel Xeon
Phi card requires a server or a very specific motherboard that
fits with its specifications, being also less energetically effi-
cient than Tilera one.

Clusters have been already applied to bioinformatics [20, 21],
but it is difficult to find implementations in which many-
core CPU (or even multicore) technologies are involved.
There is a recent BLAST implementation in a Xeon Phi
Cluster, called HPC-BLAST [22], being a general imple-
mentation of wavefront-algorithm suitable for many fields [23].
Heterogeneous clusters using Zynq boards from Xilinx have
also been described to analyze sequencing data [24]. Our cur-
rent study shares ideas with those three approaches, maintain-
ing its uniqueness in the use of Tilera cards.

Xeon Phi performance [25] was near the same than that of
Tile64 when only integers were involved. In particular, any
difference in time execution of a launched program in these
cards was not due to their complex instruction-set computing
(CISC) vs. RISC architectures, respectively. Instead, they
derived from different clock rates and number of tiles/cores
used. Therefore, a rewriting of existing programs to take
advantage of vectorization capabilities of such microprocessor
is mandatory to take full advantage of Xeon Phi. Tile64
represents an interesting approach in the many-core CPU are-
na, mostly because of its well-established PPW goodness
[26]. It should be taken into account that RISC is a proven
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MC64-CLUSTER: MANY-CORE CPU CLUSTER ARCHITECTURE 3

technology, used by modern mobile devices where PPW may
be critical to prevent overheating and save battery life, like
mobile phones and tablets. Besides, Tile64 has one of the
highest core-counts per CPU (up to 72).

Second-generation Xeon Phi, known as Knights Landing
(KNL), no longer consists of coprocessors, but regular micro-
processors. It has great advantages over first generation
Knights Corner (KNC) regarding memory management and
speed access. However, Tilera vs. Intel coprocessor compari-
son is more balanced than that between a coprocessor and a
pure microprocessor. KNL would be a mandatory reference if
comparing 8- or 16-bit data (not just 32 bit). That is due to its
brand new instruction set, albeit that does not fit into the
scope of this work.

We have previously demonstrated the usefulness of Tile64
microprocessors when applied to common bioinformatics
tasks [27-29]. Processing nucleic-acid or peptide (protein)
sequences usually consists of read-assemblies to generate
consensus contigs (both for de novo sequencing and re-
sequencing), as well as pairwise and multiple alignments to
compare sequences (in order to find differences, find iden-
tities, build dendrograms or phylogenetic tress, etc). As
expected, the best results were achieved when both hardware
and software peculiarities were taken into account, which
highlights the critical relevance of such methodological con-
siderations to optimize performance.

3. MC64-CLUSTER DESIGN AND ARCHITECTURE

Different hardware and software elements were developed to
build the cluster system. The goal was to obtain a platform as
transparent as possible, so that the users feel that they are
dealing with a single computer. That is a key cluster charac-
teristic. We have previously described the main guidelines to
create the MC64-Cluster [2]. In the present work, it is imple-
mented from both the hardware and software points of view.

3.1. Hardware-setup elements

The present work was carried out with Tile64 microprocessors
from Tilera [30]. Each of them contains 64 cores, called tiles
by the manufacturer, packed on a 90 nm System-on-Chip
(SoC), operating at a work frequency from 500 MHz to
866 MHz. Each tile is based on RISC technology, with a
32-bit word size and no hardware-support for floating-point
instructions. Base software for the microprocessor is a custo-
mized full-Linux kernel, so that any general-purpose applica-
tion can be run unmodified in this platform. Additionally,
specialized application—programming interfaces (API) are pro-
vided to take full advantage of its intrinsic parallelism (see
next section). In addition, tiles are internally connected by a
low-latency network branded as intelligent Mesh (iMesh), with
an aggregated bandwidth of 31 Terabits per second (Tbps).

Tile64 microprocessor boarded in PCle cards (TILExpress-
20 G) were used with tiles running at 866 MHz, each includ-
ing 8 GB of shared randem—aeeesg memory (RAM) and two
10GBase-CX4 Ethernet connectors. This kind of ports is
internally composed by four coaxial wires, being the first
commercially available copper-based 10 Gbit Ethernet imple-
mentation [31].

3.2. Software-setup elements

Available programming languages in the above-cited Linux
implementation are C and C++. Development process was
achieved via Tilera Multicore Development Environment
(MDE) version 1.3.5. That is an x86 Eclipse-based platform,
enriched with a cross-compiler into native Tile64 RISC code,
integrated debugger and profiler. It also has a deploy utility
for both Tile64 hardware and software emulator. Though new
versions of MDE are currently available, they do not provide
additional features useful to our developments.

Programming environment supports two API, allowing
executing parallel algorithms and communicating concurrent
processes. The first one (iLib) provides functions to start exe-
cution in any tile with its corresponding program, as well as
several sets of functions to communicate tiles by using differ-
ent approaches: shared memory, channels, message passing
and program-execution coordination. The second one (NetlO)
gives a low-level access to Ethernet ports, in order to take full
advantage of their native speed. In the case of 10 Gbps, this
implies a quick CPU-cycle pace between frame arrivals,
requiring routines in this library to be fast enough to effi-
ciently attend network events. It is also expected that a single
tile could not manage the entire stream of data at this speed,
so parallelism is required to reach wire speed.

Both libraries are specific developments from manufac-
turer, and, although they resemble concepts present in similar
message passing or communication libraries, there is no
standardization at all in them. Therefore, existing programs
must be rewritten to be executed in this architecture. To com-
plete these two libraries, a high-level transmisston—eontrol
protocol /internet protocol (TCP/IP) driver is also provided.
Thus, a well-known network-socket programming may be
used whenever a real-time response to the network events is
not required.

A scalable many-core architecture for MC64-Cluster was
built using 10 Gbps Ethernet ports available in TILExpress-
20 G cards, allowing the 64 tiles of each card to be escalated
to hundreds or even thousands of them. In order to achieve
this goal, software components were developed to give the
necessary global vision to the system. These components can
be grouped into two main areas: (i) cluster administration, in
which the most widely used commands for resource manager
(RM) and advanced scheduler (AS) were included; and (ii)
inter-process communication, in which the main functions
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4 F. J. ESTEBAN ef al.

available in message-passing libraries were provided, along
with native Tilera mechanism-extensions. For the first one,
Terascale Open-Source Resource and the QUEue Manager
(TORQUE) were used as a model, so the command-line
oriented tools follow its terminology. The key-consideration
was to control cluster resources, defining its geometry, know-
ing its state, executing jobs sent by users, distributing them
through available cards/tiles and controlling their states and
stages, providing at least one specific command to accom-
plish each of those tasks.

In order to get the least intrusive and most flexible
approach, a client/server paradigm was chosen, outlined in
Fig. 1. Using a set of command-line interface (CLI) tools, the
user can specify the details for each request, and then send
jobs to the master—server to be executed. A web interface is
currently under development, in order to make cluster usage
and management even easier. On the contrary, server cards of
the cluster work in a master/slave configuration. Every server
is initialized from internal configuration files, in which the
initial geometry of the cluster is defined, including the num-
ber of available tiles in each server card. The server itself
occupies a tile, and other eight tiles are reserved by the

system for coordination and administrative tasks, including
attending 10 Gbit ports, so the number of available tiles for
user jobs is 55 per card. The types of jobs that can be
launched in MC64-Cluster are listed in a properties file, so
the system can be easily enhanced just by including and
declaring new executable programs in such a file, keeping its
modularity and minimal-intrusion features.

In the conversation that takes place in a typical command
execution, the client sends command details to the first card
in the server (acting as master—server). Then, such master—
server communicates with remaining cards (slave—servers).
Thus, the command gets executed in tiles controlled by each
server (all master and slaves). Finally, command results are
sent back to the client tool, so that it can deliver operation
results to users. All communications between clients and ser-
vers are accomplished by means of TCP sessions, taking
advantage of the built-in native-seeket—drivey in the cards.
Although user-datagram protocol (UDP) would be available
too, it is not usual in message-passing interface (MPI) imple-
mentations, due to the reliability required in MPI transactions.
There are ongoing works showing alternatives to TCP in MPI
implementations [32, 33], but their use is beyond the goals of

Cluster single-entry point
(web interface available)

Host

CLI access
(console/
telnet)

Network

Reserved for
card internals

DOEOEDDE
gtig gl g gl gl
Higliqig gt g gt
(R W W W W W W]

FIGURE 1. Cluster topology.
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MC64-CLUSTER: MANY-CORE CPU CLUSTER ARCHITECTURE 5

our work. Availability of several cards can contribute to avoid
memory bottlenecks in memory-intensive executions, by
means of instructing the job manager to distribute workload
among as many different cards as possible.

A question/answer-like protocol was developed, in which
a typical question contains a command code, followed by its
applicable options and data associated with the question, if
required. If these data are simple enough, then a single packet
may be used to send them. Otherwise (i.e. when data are
complex or have variable sizes), a further client/server con-
versation is established, in order to send them fragmented
into the required number of packets. Along with this informa-
tion exchange, a file exchange can eventually take place, in
order to make data and executable files available to all cards
participating in a job, or to retrieve back generated job results
to the master card.

The inter-process communication component uses MPI
specification as a model, and extends it with native iLib-
channel features, to take the most out of the system. This task
has been achieved by means of a newly developed library, in
which a minimal set of MPI functions are offered. The ration-
ale behind this strategy is to give an opportunity to existing
MPI-based programs to be compiled and run unmodified in
the MC64-Cluster, assuming that their complexity rests on
the limits of our implementation. This may be considered
also a contribution of our research and development work to
Tile64 usability, since a native-MPI implementation is not
provided by the manufacturer. Of course, other standard eem-
muieation—mechanismsy like Unix sockets, TCP/IP sockets
and threads are also available. But the advantage of using a
cluster-specific library is abstraction of system topology.
Thus, each participating process can communicate with each
other, just by using the partner identifier (known as ‘rank’ in
MPI terminology). The underlying library, developed in a
modular fashion, encapsulates this communication in the
available way: an iLib communication through iMesh internal
network or a TCP session, through the 10 Gbps Ethernet
inter-card network. Additionally, the presence of iLib-like
channel-communication functions makes it easier to port
existing one-card native Tile64 programs to the cluster.

Regarding API internals, the most complex task has been
the development of TCP-session control code. Thus, when
tiles participating in communications belong to the same
card, a further call to the provided iLib-equivalent function
allows almost all the job to be completed. Figure 2 graphic-
ally shows these different kinds of communications. They
start when a client execution—eommand, arrives at the master—
server process, by means of a TCP session. As with most server
implementations, a new server process is forked in order to
complete the request. This is a key feature in our case, because
it will activate native iLib mechanisms (represented in the figure,
by the spawn calls), to launch the executables required by the
user job. These spawns take place both in master and slave
cards, after the needed TCP sessions to the slave cards are

started. Once the job is running, forked processes are not
needed, and therefore they are finalized, so that any further
communication between tiles is directly delivered, either using
low-level iLib API or by means of TCP functions, depending
on participant locations.

These latter communications can imply additional requests
to master—servers, in order to query available resources, or to
coordinate executions. These different kinds of communications
are carried out by our library internals, thus being fully trans-
parent to the programmer. In addition to pure communication
functions, MC64-Cluster API also provides the most-common

utilities for process management and synchronization, allowing

a complete paralel-environment.

4. B-TREES

Once MC64-Cluster internals were fully outlined as described
above, the first complete software development for it is indi-
cated below. This includes several implementations and a
comparison of its performance to that of other many-core
platforms.

Several approaches around B-trees data types are outlined
below, so the set of tests presented can provide a wider out-
look of the possibilities of the cluster from the performance
point of view. Issues related to large-scale pairwise align-
ments, their relationships with B-trees and particularities of
our implementation are also described in the next sections.
These developments can be applied in a wide variety of
areas.

4.1. General remarks

Alignment of two sequences/strings of letters is a process
that provides a measure of their similarity (score). As we
have previously described, it is one of the most widely—ased,
operations in bioinformatics, being the basic block of higher
fevel tasks, as phylogenetic analyses [34], multiple align-
ments [35], chromosome assemblies [36] and comparative
genomics [37]. In particular, an alignment can be carried out
either (i) following an optimal approach (like the Smith-
Waterman algorithm does), relying on time-consuming gen-
eration of a Dynamic-Programming Matrix (DPM); or (ii)
using a heuristic strategy, like Fast Alignment Sequence
Tools (FAST)-All (FASTA) and BLAST tools. Heuristics
are common in second-generation sequencing (SGS) and
third-generation sequencing (TGS) platforms of nucleic
acids, sometimes known with the ambiguous name of next-
generation sequencing (NGS), where the large amount of
pairwise comparisons makes unfeasible the deployment of
DPM-based methods.

The current SGS machines, like Roche 454 or Illumina
NovaSeq cannot sequence full genomes (which may have
milliards of base pairs) in a single or a few reads. So, many
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Master Card
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Client command MC64 cmasterd User exec
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Job
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User exec User exec User exec
MC64 cslaved User exec

FIGURE 2. Cluster internal-architeeture,

copies of the genome are broken down into small pieces and
read with such sequencing platforms, which generate from
about 50 bases (b) to one kilobase (kb) reads. Those milliards
of short DNA reads (made of A, C, G and T nucleotide resi-
dues) may represent a daunting maze to assemble into con-
tigs, chromosomes and genomes. This is particularly relevant
for repetitive or homopolymer stretches. Different strategies
have been devised to solve the problem of reconstructing original
chromosomes,/genomes—mostly in the absence of reference
ones—using overlapping and redundant reads. Pairwise align-
ments allow discovering overlapping sequences; i.e. sequences
whose similarity at the ends is greater than or equal to a
threshold. This allows to align such reads into contigs, scaf-
folds, super-scaffolds and eventually full chromosomes/
genomes.

Heuristic methods are employed when a sequence must be
aligned against many others (e.g. several millions). They are
usually based on particular database indexes, where sequences
are stored. This process is used because alignments of interest

are those whose score is greater than or equal to a minimum,
and thus looking for such matches is similar to looking for
them in an index. The techniques used to represent sequences
and to create indexes depend on each tool used, but the most
precise ones (like MegaBLAST) divide every sequence into
k-mers, and store them in some type of index [6, 38].

Optimization of massive-search algorithms is a key area in
many current scenarios. Concerning sequence alignments, there
are several proposals related to such task in BLAST variants
[39]. Although a suffix tree is the most prevalent approach when
dealing with sequence data, due to its string nature, a B-tree could
be a good alternative when numeric derivations are involved, like
in distance-based approaches [40] or for hashing ones [41]. On
the other hand, most existing assemblers use graph-based
approaches for sequence assembly. But there are also promising
developments based in massive local-searches [42].

To test the performance of our MC64-Cluster approach, a
well-known search-tree type suitable for this purpose was
implemented: B-tree. At the same time, the focus was on
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MC64-CLUSTER: MANY-CORE CPU CLUSTER ARCHITECTURE 7

main operations used in this particular problem; i.e. gener-
ation of a complete B-tree from scratch and usage of large-
scale searches. It must be noted that insertions/deletions
(InDels) are meaningless in this development, since the focus
are searches. In particular, the uniform probabilistic distribu-
tion of keys is assumed. Indeed, it has been reported that dis-
tribution of nucleotides in DNA is usually quite uniform,
with deviations under 5% from perfect uniformity [43], and
therefore, the distribution of sequences to search for.

4.2. Implementation

B-tree search was selected as a proof-of-concept, where sev-
eral shghtly—different tests can be run, in order to measure
performance of MC64-Cluster under different circumstances.
Furthermore, a split B-tree allows massive searches and scales
almost linearly when the number of microprocessors is
increased. Performance of this particular implementation of
parallel B-tree searches in MC64-Cluster was evaluated. As
said, Intel x86 was used as reference microprocessor, on the
same host hardware used to build the cluster. Such x86
implementation was not parallelized because, in such a case,
performance would depend on the particular number of cores
(and multithreading capabilities) of the microprocessor used.
In fact, its clock speed (2.0 GHz in our tests) must be con-
sidered for comparison purposes. In addition to this, our work
was focused on a many-core CPU SoC environment, where
threads are avoided and a process —developed in ANSI C- is
executed by a dedicated CPU. Thus, a comparison with a
GPU, FPGA or any hybrid environment is not relevant here,
because of the rather different preeessing—units and program-
ming methodologies involved. On the other hand, Intel Xeon
Phi boards are currently in mainstream, so they were also
used as reference architecture.

B-tree data structure was first proposed by Bayer and
McCreight [44], as a method to store pairs of key-data with
logarithmic profile in time for any operation: insert, delete
and search. This profile implies that the time required to find
a given key is maintained between acceptable limits when the
number of keys grows. Thus, it has been widely used in data-
base deployments [45]. It takes also advantage of the fact that
retrieving a single value from a magnetic storage disk takes
basically the same time than retrieving the complete block of
data where such single value is located. In the field of bio-
informatics, different tree-straetares are widely used in heuris-
tic altgnment—raethody [46]. Other feature of B-tree structure
that contributes to its high-performance is the fact that the
tree keeps well-balanced when Indels are involved. This is
accomplished by splitting full nodes when an additional inser-
tion is required, as well as merging adjacent nodes when a
deletion makes a node to contain fewer items than a prede-
fined threshold.

Starting from this classic B-tree implementation, the basic
ideas in B-tree structure were adapted in this work to the
developed parallel—<luster environment, establishing the fol-
lowing design criteria (Fig. 3 shows such a structure in
detail):

(a) Equath—sized distribution. In our parallelization, the
list of keys is partitioned into a number of contiguous
and equally sized sublists (with a difference of +1)
that matches the number of available tiles in the clus-
ter. Each tile receives a different sublist, from which
an independent B-tree is built. So, it is in charge of
answering queries for values that range from its min-
imum to the minimum of next tile. In order to cover
the whole datarange; the first tile answers also from
the absolute minimum up to its minimum, whereas
the last tile answers also from its maximum up to
the absolute maximum, so introducing the ‘effect-
ive-range’ concept. Numbers were chosen as keys
instead of alphanumeric characters (as we can expect
when dealing with nucleic-acid or peptide sequences)
to make the ‘ordered’ approach clearer (this decision
is irrelevant for the final outcome, but it was imple-
mented here for a better understanding).

(b) Null-pointer suppression at node and leaf levels. In
order to save memory, null pointers between values
that have no descendants were suppressed, both at
node and leaf levels, so valuable memory-space can
be saved. The search algorithm was modified to
implement such approach.

(c) Filled-up nodes. The strategy used by every tile to
build its B-tree fills completely the nodes at the dee-
pest levels. The result is a tree with minimum num-
ber of nodes. Therefore, a single operation of taking
a new node from the main memory to cache due, for
instance, to a fault, achieves maximum performance,
because it retrieves as many keys as possible. This
strategy guarantees that all nodes in a level are filled-
up, except the last one. A tile does not create its tree
by inserting keys one-by-one, but by partitioning its
particular sequence of keys into equal slices, whose
length is calculated in advance, using a simple calcu-
lus based on the order of nodes. No InDels are made
after the tree has been built (this is the general case
in many large-scale search algorithms).

(d) Long order and binary search at node level. A strat-
egy for high-performance developments in Tile64
microprocessor is to take advantage of its cache
structure, and to reduce node-cache faults to the min-
imum. As a consequence, our B-tree node is long
enough to allow binary searches inside a node to be
more efficient than usual sequential searches. This is
due to the fact that the most populated nodes are in
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Root node
[num Ttems] | ]
[Key, | key, | | key,
[ child [ child] [ child, |
Level 1 node 0 Level 1 no;:\}\\ Level 1 node m
[Num Ttems| | | [Num Ttems| | | [Num Ttems| | |
[key, [ Fev, | . | key, [key, [ *ey, | . [ ke, | [key, [ Fev, [ . [ ¥ev, |
[ child | child] [ child | [ child [ child] [ child | [ child | child] [ child |

A

Level 2 node 1 0 (leaf)

evel 2 node 1 1 (leaf)

S A

Level 2 node 1 p (leaf)

|Num Itemsl | | NULL | |Num Itemsl |

[ nuL |

[Num Ttems] | ] nuLL |

| keyol key, | | key, | | key0| key, |

| key, |

|key0| key, | | key, |

FIGURE 3. B-tree data structure used to test performance of MC64-Cluster. Note: In our implementation, n = m = p = g = order™2.

the deepest level, so few intermediate nodes remain
in cache for long periods of time.

(e) No data are associated to a key. In order to keep
memory load at its minimum, the B-tree does not
store pairs (key, value) but only keys to search for.
Therefore, the work was carried out with a minimal
B-tree implementation, where the hits should be
managed in a second stage of any algorithm that uses
the B-tree search.

Thus, these adaptations have been chosen taking into account
Tile64 microprocessor internals; mainly, cache and share-
memory limitations, and constitute the difference between our
proposed strategy versus previous works. Therefore, the same
performance results may not be expected when such an imple-
mentation (or any fine-tuned one) is executed in another hard-
ware architecture different from many-core CPU SoC. For
comparison purposes only, time executions obtained with
Xeon Phi 31S1P cards were included, as described in
Section 2 (Related work). In addition, this same x86 imple-
mentation has been tested in a standalone PC, in order to
obtain a reference exeeution-time easily reproducible with stand-
ard hardware requirements.

In this implementation, keys are distributed among avail-
able cluster cards, by means of MC64-Cluster built-in job-
execution system. It transfers the whole content of a given
job directory to all participant cards in such a job. This task
may be a bottleneck in TILExpress-20 G, as its native-socket
implementation fails to get the most of available 10 Gbps.
Probably due to this fact, other Tilera cards mount 10 ports at
1 Gbps each, instead of 1 port at 10 Gbps.

It should be noted that both the distribution of keys and that
of values to search for are the same because, in a real situation,
there is a database of nucleic-acid or peptide substrings as keys,
and another set of DNA strings as values to search for.
Although such a distribution is uniform, the approach used here
can be applied to any other distribution, because the range of
keys received by every tile contains the same amount of non-
overlapping values. In other words, the ordered sequence of
keys was not split into intervals of the same length, but into
intervals with the same number of keys (these concepts match
when uniform distributions are used). Therefore, if the set of
values to search for follows the same distribution than the
sequence of keys, then every interval will receive a similar
amount of search operations. Figure 4 shows the general work-
flow chart, describing how the proposed strategy works.
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Key Load

Key Split and
e

Benchmark

:£:> Data Query > Results

Data Preprocess
(optional)

Data Generation

FIGURE 4. General benchmark workflow.

Tests have been performed in a two-card cluster, with a
scheduling approach equally distributing load between them.
This is the most efficient strategy in this given scenario, because
of the minimum communication requirements between executa-
bles, further reducing memory requirements. In addition, this
approach takes advantage of cache structure in Tile64. Of
course, different strategies may be more appropriated in other
situations. For instance, if the communications between pro-
cesses are a key requirement, grouping the most-active com-
municating processes in the same card would offer better
results. This is due to the above-mentioned fact that the internal
iMesh network is by far faster (31 Tbps) than the 10 Gbps
Ethernet inter-card network.

5. RESULTS AND DISCUSSION

MC64-Cluster was developed, performing two main sets of
evaluation tests to obtain the corresponding benchmarks. In the
first one, a data set of trees with sizes from 1000 to 10 million
keys was generated, with increments of one order of magnitude.
As mentioned above, it has been considered that nucleotides in
nucleic-acid strings follow a uniform distribution [43], so the
keys were also uniformly distributed, by setting the distance
between two consecutive keys as a random value between one
and 49. With this technique, a set of keys that ranged from zero
to ~25 X size of tree were obtained. Thus, the probability for
any random value in such a range to be in the tree is 4%. In this
scenario, the query data set consisted of a sequence of values
generated on-the-fly, following the same uniform distribution.

They ranged from zero to the highest expected value in the tree,
being separated for a quarter of the maximum separation
between keys. With this search strategy, the range in which data
was expected to be located was fully covered, and both keys
and queries were equally distributed across all available tiles.
Thus, the effective key range had a similar size in all tiles, with
the exception of the first and last ones. Xeon Phi 31S1P tests
have been carried out both with sequential and binary intra-node
searches. In addition, the full computing power of this card has
been tested by launching 114 threads in every test; i.e. two
threads per core (an execution with four threads per core had an
inferior performance). As a reference, an identical B-tree imple-
mentation was used with the same order, keys and search data
executed, in a workstation equipped with an Intel Xeon E5405,
using a single core of such quad-core microprocessor in this ref-
erence seguentialtest; All results presented from this point on
exclusively refer to the search operations.

Table 1 shows the obtained results. The optimized imple-
mentation had a better performance in Tilera than Intel from
the very beginning. Besides, our cluster implementation scaled
well as more tiles were added to calculi with only one excep-
tion, located around 110-tiles execution with short trees.
These anomalies were associated to known memory-contention
issues in the card, which tends to have less weight in overall
result as the number of searches increases. For those larger-tree
sizes and increasing number of searches, tests showed an
almost proportional time-to-size behavior. Maximum speed-up
was obtained with one-million-key tree, showing a 104.82x
gain when all available tiles in cluster were used. Figare—4
graphically shows these speedups. Xeon Phi 31S1P execution
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TABLE 1. Execution times in fixed sequence. B-tree searches with values are generated on the fly. The number of performed searches is

directly proportional to tree size in each test.

Execution times using a sequence between tree limits™

Tree size Processor elements
Intel Xeon E5405 MC64-Cluster (Tilera) Intel Xeon Phi 31S1P
1 2 4 8 16 32 64 110 57 x 2
1000 356 251 127 49 41 50 156 9
10 000 4731 3330 1579 328 213 124 148 101
100 000 86161 39 499 18 895 9013 4405 2026 1286 822 1071
1000 000 642473 455571 218675 106 075 50199 24 084 11 840 6839 11618
10 000 000 7659 499 5541621 2682674 1290884 579550 278227 133,402 75826 121255

*All times in microseconds.

times were, generally, slightly slower than those of Tile64 with
similar number of cores in execution, in spite of having a high-
er clock speed (1.1 GHz vs. 866 MHz).

In a second set of tests, focus was set on input/output
(I/O) performance. In this case, the query data set involved
10-million randemty—generated, integers stored in a shared
file, searching for them in trees with different sizes. Once
again, this key generation allowed a similarly effective-range
size in all participant tiles, which is in the base of the scalabil-
ity of this strategy. Three approaches to make every tile to
read such a file were used. In the first one, a previous sort-
and-split step was executed on file content. There were as
many files generated as tiles, so that a given tile received
only the file with values inside within its effective range. A
well-known radix-sort algorithm was used to achieve this
goal, executed in host machine (the same reference worksta-
tion cited above). This previous sorting had an additional
advantage: it reduced possible eache—faults during search
phase, because of proximity of successive values to search
for. Different base—valaes were used to perform radix sorting,
always choosing power-of-two (2") ones, in order to optimize
the division phase of algorithm. As expected, our tests evi-
denced minimum sorting-times results from a base value of
4096 (212), because the size of integer was 232, and radix-sort
algorithm could be executed with just three loops (32/12)
and ‘only’ 4096 queues. It must be highlighted that the nature
of the cluster makes relatively easy to carry out the different
tests and approaches described, because they can be devel-
oped using standard methodologies of parallel programming
and languages like C. This is one of the main advantages of
MC64-Cluster when compared to many-core GPU ones.

Top section in Table 2 shows results obtained using this
hybrid-computing approach; every execution time is divided
into two parts: time taken to sort-and-split and time taken to
search. Obviously, any attempt to improve searches in B-tree
is limited by the sort-and-split phase. Indeed, this preproces-
sing step takes 6.65s, in contrast to the best effective time

taken to search: around 150 ms in MC64-Cluster and 83 ms
in Xeon Phi 31S1P. However, this hybrid approach may pro-
vide the best performance, depending on characteristics of
host and different implementations of sort-and-split step. In
fact, when the same radix-sort implementation is executed on
a PC with Intel Core 17-4820 K microprocessor at 3.70 GHz
and 24 GB of RAM, execution time was reduced to 3 284 ms,
and even to 1609 ms (332 ms to read file + 336 ms to sort
the set of values + 941 ms to write files), when a multi-
threaded implementation was used. Furthermore, regarding
Intel reference test, it is important to notice that the sorting
step did not actually offer any performance improvement. In
fact, as is shown in the next two approaches, when this phase
was removed from the reference implementation, overall
speed-up obtained by cluster execution was significantly
increased (Figure->),

Other possible strategies have demonstrated to be less
appropriated in this environment. Thus, in a second approach,
searches where every tile reads the corresponding file in its
entirety were performed, with a further selection of values in
the range of interest by each tile. In this case, the read task
showed a poor performance as compared to the search itself,
even when carried out in a RAM-disk environment. Moving
the I/O task into an additional thread (that reads keys and
loads an internal buffer shared with the main thread) showed
a slight benefit initially. But in a further third approach, when
this strategy was used with big files and many tiles involved,
performance was strongly penalized, since the same tiles got
used for reading and searching tasks. Middle and bottom
parts of Table 2 show results obtained by using these last two
approaches (without sort-and-split-preprocess step). The add-
itional thread technique was only implemented in MC64-
Cluster and Xeon Phi 31S1P, so both Intel columns showed
identical values. Xeon Phi 31S1P behaved as MC64-Cluster
in both last approaches. In fact, speed-up of the third one was
strongly dependent on 1/O strategy and size of buffers used
to read data (100 kB buffer size). However, when size of
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TABLE 2. Execution times when reading an entire file in different situations.
Tree size Processor elements
Intel Xeon E5405 MC64-Cluster (Tilera) Intel Xeon Phi 31S1P
1 2 4 8 16 32 64 110 57 x 2
Execution times using 10-million random searches with sort-and-split preprocessing”
1000 6650 + 3940 6650 + 1384 6650 + 679 6650 + 396 0225 6650 + 326 6650 + 114 6650 + 160 6650 + 83
10 000 6650 + 6083 6650 + 1898 6650 + 942 6650 + 459 0251 6650 + 135 6650 + 111 6650 + 119 6650 + 84
100 000 6650 + 6531 6650 + 2172 6650 + 1084 6650 + 536 0322 6650 + 174 6650 + 110 6650 + 126 6650 + 83
1 000 000 6650 + 8620 6650 + 2458 6650 + 1238 6650 + 622 0332 6650 + 202 6650 + 119 6650 + 131 6650 + 85
10 000 000 6650 + 9140 6650 + 2984 6650 + 1512 6650 + 749 0401 6650 + 223 6650 + 184 6650 + 132 6650 + 83
Execution times using 10-million random searches with a single thread”
1000 1006 1717 1228 1014 1591 1248 2124 2899 3027
10000 1003 2238 1483 1152 1016 1260 2107 2919 3066
100 000 1017 2533 1613 1210 1123 1285 2112 2930 3155
1 000 000 1187 2832 1768 1284 1107 1320 2105 2938 3409
10 000 000 2922 3372 2036 1421 1143 1315 2121 2978 3037
Execution times using 10-million random searches with two threadss

1000 1006 1961 2216 2219 3528 3644 3588 3931 6689
10 000 1003 1961 3802 3798 3790 3048 3099 3927 6888
100 000 1017 5862 1960 3915 1963 1961 2142 3925 6947
1000 000 1187 1964 2744 2841 2730 3679 3719 4676 7403
10 000 000 2922 1964 1961 4133 4194 4354 3249 4828 7248
*All times in milliseconds.
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MC64Cluster B-tree search improvement
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FIGURE 5. Speed-up obtained in fixed-sequence scenario.

buffer was reduced to one kB execution time increased to
586 seconds (~80 times slower).

To complete our analyses, a power consumption compari-
son was performed, showing that MC64-Cluster execution
required 286 W, while Intel execution demanded 330 W. It
must be considered that the cluster uses two PC hosts and
Xeon Phi 31S1P uses only one. Therefore, using efficient
hosts will be more than twice as favorable in cluster than in
Xeon Phi 31S1P systems.

6. CONCLUSIONS AND FUTURE WORK

MC64-Cluster behaves as a high-performance and scalable
system when solving a key task in many general-purpese,
applications, like the execution of massive searches against
databases. Best results were achieved when used in a hybrid-
computing environment, in which both host and many-core
cards collaborated in calculi. Our code optimization has been
focused on getting the most out of available resources in
Tilera platform (mainly, its cache system), while avoiding
less-optimal resources like solid-state drive storage systems,
as well as network interfaces. It is remarkable in this sense
that a significant improvement in cluster performance was
achieved sorting the set of values to search for, while it had
no effect when a single core was used. When compared to
other many-core technologies (like GPU or FPGA), many-
core CPU may be easier to deploy because they are

programmed in standard C, without any drawback of hard-
ware peculiarities. This fact has enabled to compare perform-
ance between MC64-Cluster with two cards and an Intel
Xeon Phi 31S1P.

Although this cluster design can be expanded to a higher
number of cards, a two-card setup has demonstrated to be
large enough for this work, since each one supplied 55
worker-microprocessor elements (tiles or cores), out of the
total of 64 cores per Tile64 microprocessor. Thus, with the
smallest tree sizes and all tiles in the cluster working, times
measured were in the range of a few milliseconds, which is
near to the measurement-reliability limit. Cluster computing
became even more attractive when PPW was considered (25
watts per Tile64 microprocessor), placing such cluster at the
high-end of green-computing scale when appropriate hosts
are used. To our knowledge, this is the first cluster implemen-
tation of this kind being developed, which, along with the
results obtained, are our main contributions.

The above results allow the characterization of this particular
many-core CPU system and its allocation in the HPC arena.
Thus, it can provide a power-efficient solution to parallelizable
problems that require a well-organized cache memory structure,
with moderate communication system. In addition, a good per-
formance is achieved by using standard and general-purpose
hardware, avoiding particular ad hoc architectures [47]. On the
downside, the number of programming languages and libraries
available to the TILExpress programmer is very limited, which
may reduce the scope of its application.
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Regarding future work, improvements in massively-paralel
searches, along with our previous developments in dynamic-

programming alignment methods [35] should allow further
improvements of bioinformatics algorithms, effectively com-
bining both approaches. Finally, a web manager is currently
under development, in order to give non-programmer users
(like most life-science researchers) a more-intuitive access to
MC64-Cluster, including a predefined list of algorithms to
run. This manager will graphically show the running status of
cluster resources, allowing interaction with it, even without
knowing syntax of command-line oriented tools.
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