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Abstract: The constant increase in the growth of the cloud market creates new challenges for cloud service 

providers. One such challenge is the need to avoid possible SLA violations and their consequences through good 

SLA management. Researchers have proposed various frameworks and have made significant advances in 

managing SLAs from the perspective of both cloud users and providers. However, none of these approaches 

guides the service provider on the necessary steps to take for SLA violation abatement; that is, the prediction of 

possible SLA violations, the process to follow when the system identifies the threat of SLA violation, and the 

recommended action to take to avoid SLA violation. In this paper, we approach this process of SLA violation 

detection and abatement from a risk management perspective. We propose a Risk Management-based Framework 

for SLA violation abatement (RMF-SLA) following the formation of an SLA which comprises SLA monitoring, 

violation prediction, and decision recommendation. Through experiments, we validate and demonstrate the 

suitability of the proposed framework for assisting cloud providers to minimize possible service violations and 

penalties. 
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1. Introduction 

Cloud computing has captured a huge customer base in enterprise and small business due to its 

ability to provide users with a wide range of flexible services at reduced cost. Due to its wide 

adoption, cloud computing is often referred to as a fifth utility for human beings [2]. Enterprises 

and businesses using the operational paradigm of cloud computing have drastically reduced 

their business costs by moving from capital expenditure (e.g. buying resources by building 

datacentres) to operational expenditure, thus enabling them to focus on their core business 

activities [3]. Features such as the elastic scaling of resources, pay-as-you-go, and metered 

resource usage have also enabled users of such enterprises and businesses to reduce their 

operational costs [4]. However, while such features are beneficial from the user's perspective, 

they create the illusion that businesses have an infinite quantity of resources that can be 

accessed as required. This may not be true in all cases, especially when the business is a small 

to medium (SME) cloud service provider. Unlike large scale cloud service providers, such as 

Amazon, an SME has a finite quantity of computing resources with which to manage their 

users’ requests [5]. As shown in the literature, these issues between a service provider and 

service user are addressed by defining and managing a Service Level Agreement (SLA). An 

SLA describes all the Service Level Objectives (SLOs) and agreed Quality of Service (QoS) 

parameters [6] and shows the commitment and obligations of each party, including the 

deliverability and penalties to be applied in the case of SLA violation [7].  

 

As is the case in any business activity, the primary aim of a service provider in cloud computing 

is to fulfill its commitment to the many users with whom it has formed an SLA, to avoid 

violations. This falls within the broad domain of cloud service management. Recent 

contributions in this area [8-11] have looked at different methods, such as the automatic 

extraction of metrics, ontology-based semantic reasoning, and linked USDL (unified service 
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description language) to manage the SLA and avoid service violations. However, these 

approaches consider the management of a service after a violation has taken place; in other 

words, they adopt a reactive approach to service management, which may be detrimental to the 

cloud service provider’s reputation and may negatively impact the likelihood of attracting 

future business from existing or new cloud service users. This can be avoided if service 

providers proactively manage their services. In this form of service management, service 

providers constantly monitor the SLOs after the SLA has been formed to ensure that possible 

violations are averted before they occur. In our previous work [5], we observed that this 

proactive management after an SLA has been formed but before violation occurs works well 

for large scale cloud service providers. This is because large providers have abundant resources 

and can easily obtain additional resources if/when required to avert possible violations as they 

are detected. However, for an SME cloud service provider that has a finite quantity of 

computing resources, obtaining such additional resources at the time and in the quantity 

required after an SLA has been formed may not be possible. For SLA violations to be 

proactively managed by such cloud service providers, we emphasize that the service 

management process should start before the formation of the SLA [5], during the SLA 

negotiation/formation phase (referred to here as the pre-interaction phase) in which the cloud 

service provider pre-allocates its available resources to users after conducting a vetting process. 

In the SLA execution phase (referred to here as the post-interaction phase), which includes 

SLA monitoring, SLA violation prediction and decisions on violation abatement, the SLOs are 

constantly monitored to ensure that possible violations are averted. From the perspective of 

SME cloud service providers, therefore, active service management in both the pre-interaction 

phase and the post-interaction phase will lead to the better administration of the SLA, 

maximizing the likely commitment of the service provider, reducing the prospect of SLA 

violation, and achieving maximum financial returns [5, 12, 13]. 

 

Our previous work proposed the provider-based Optimized Personalized Viable SLA (OPV-

SLA) framework for service management [1, 14]. OPV-SLA is divided into two parts, namely 

the pre-interaction phase and the post-interaction phase. In the pre-interaction phase, the 

provider starts the process of SLA management by negotiating and forming a viable SLA, 

which is then proactively managed in the post-interaction phase. In this paper, we explain the 

workings of the OPV-SLA post-interaction phase, which we term the Risk Management 

Framework for SLA violation abatement (RMF-SLA). In this framework, the runtime 

performance of the SLOs is captured and predicted, and the service provider recommends the 

appropriate actions to take to proactively mitigate the risk of SLA violation. The rest of the 

paper is organized as follows. Section 2 describes the related literature on SLA management. 

Sections 3 and 4 detail the components of the RMF-SLA along with their workings. Section 5 

describes the evaluation of RMF-SLA and Section 6 concludes the paper. 

 

2. Literature Review 

The activities in SLA management can be broadly categorized into two time periods, namely 

the pre-interaction phase and the post-interaction phase, as mentioned in the Introduction. The 

activities in the pre-interaction phase are the SLA negotiation and formation, while the 

activities in the post-interaction phase are QoS prediction for future intervals, runtime QoS 

monitoring, the comparison between actual and promised QoS parameters, and determining 

the best course of action for SLA management in the event of observed differences [5]. As our 

focus in this paper is on the post-interaction phase, we present a summary of some of the 

existing approaches to SLA management and violation abatement in the literature.  

 



Wood et al. [15] proposed the Sandpiper approach for SLA monitoring and resource 

management to detect hotspots that indicate a possibility of violation. To eliminate a hotspot, 

Sandpiper resizes and shifts the virtual machine or adjusts resources. It gathers the usage 

records of virtual and physical servers and flags a hotspot when resource usage exceeds a 

defined threshold. The proposed approach manages the runtime workload of the servers. Other 

approaches such as [16-19] map low-level resource metrics to SLA parameters. This is done 

by mapping the service status to the predefined threshold and identifying the deviation between 

the agreed and actual behavior to detect SLA violations using case-based reasoning (CBR) 

approaches. Although the proposed idea of mapping service resource metrics to SLA 

parameters helps the service provider to identify potential violation on current performance 

measures, it may not guarantee commitment to the requirements of all customers, as the 

performance measures are not formed and agreed in the pre-interaction phase. These 

approaches do not describe what needs to be done when the system identifies a likely violation. 

Some approaches offer a limited set of rules and use a CBR approach, which has its own 

limitations such as adaption, processing time, and storage, and usually does not produce 

optimal results [20]. Another work in this category by Falasi et al. [21] presents the Sky 

framework, which adaptively implements SLAs to manage changes in a federated cloud 

environment. The framework is capable of managing multilevel SLAs but does not describe 

the process for handling SLA violation. Also, SLAs are not formed during the negotiation 

process of the pre-interaction phase in this framework, which may not guarantee the 

requirement commitment of customers in the post-interaction phase. There are a number of 

approaches with self-management features which try to manage SLA violation before end users 

are affected. Brandic et al. [18] proposed a bottom-up hierarchical layered approach for the 

propagation of SLA violation when a violation threat is found. Mosallanejad and Atan [22] 

proposed a hierarchical self-healing approach in which each layer of cloud is responsible for 

managing the problem by itself. If the problem cannot be, the framework informs the upper 

layer for possible remedial action. Lu et al. [23] proposed an actor system framework that 

adopts a parent-child relationship for managing SLA violation. When the actor system detects 

a possible SLA violation, it first tries to resolve it, and then sends the error information to the 

upper parent actor if it is unable to do so. A multilayer monitoring approach was proposed by 

Katsaros et al. [24] that monitors SLAs based on observing time intervals and SLA parameters. 

The proposed approach has the features of runtime adaptability of resource provision, 

estimation, and decision taking. Although the self-management approaches [18, 22, 23] attempt 

to adjust violations when they are detected by the system, they do not suggest what action to 

take to avoid violation occurring. Moreover, these approaches lack the agreement process in 

the pre-interaction phase of SLA management.   

 

Other approaches in the literature use a third party broker to manage SLAs. Lee et al. [25] 

proposed a cloud service broker portal that provides a gateway for cloud service providers and 

users to interact with each other. The portal has a single entry point for a cloud service broker, 

a cloud service provider, and a cloud service user. It interacts with a unique interface designed 

for each stakeholder, and has a brokerage API that integrates various cloud service providers 

into the cloud service broker portal. The cloud service brokerage model has  five components 

[26]. The framework helps cloud users to select a suitable cloud provider that satisfies the 

functional and non-functional requirements of the SLA; from a provider’s perspective, 

however, they lack the pre-interaction processing steps and actions to be taken if an SLA 

violation is detected. Other SLA management approaches focus on trusted relationships 

between the provider and the user. Noor and Sheng [27] proposed an adaptive credibility model 

that offers trust as a service to the service provider. The proposed approach helps the service 

provider to differentiate between biased and unbiased feedback. Although this approach is 



helpful for the service provider, it is only effective for a system that has existing users. It lacks 

a process for differentiating between possible users and the recommended action to be taken 

on SLA formation and violation. Fan and Perros [28] differentiated between biased and 

unbiased feedback based on the familiarity and consistency of the feedback. They proposed a 

trust value range and ranked users based on that value. However, without a bootstrapping 

mechanism, this method cannot be applied to new users who have only recently subscribed to 

services. Another category of SLA management approaches uses proactive mechanisms to 

identify and predict likely SLA violations. Quality of Service (QoS) parameters are predicted 

using a user-based collaborative filtering (CF) mechanism, item-based CF mechanism, and 

stream processing framework [29-31]. Cardellini et al. [32] proposed heuristic policies to 

predict QoS parameters and determine the resources needed in future intervals using the 

recursive least squares method; however the process of managing SLA violations when they 

are predicted by the system is not defined.   

 

It can be seen from the above discussion that even though many approaches have been proposed 

in the literature for cloud SLA management, not all of them guide the service provider on the 

steps required for SLA violation abatement. In Table 1, we compare SLA management 

approaches on the three criteria required for SLA abatement, namely the ability to predict 

possible SLA violations, a description of the process to be followed when the system identifies 

an SLA violation threat, and the SLA violation abatement recommendation. It is important to 

mention that most of the existing approaches focus on the post-interaction phase of SLA 

management, that is, after a user and provider have formed their SLA. As mentioned in Section 

1, this is not beneficial for SME cloud service providers, since the careful prior negotiation of 

SLOs is necessary to maximize the likelihood of a consumer commitment, reduce the 

possibility of SLA violation, and gain maximum financial returns. To address these drawbacks, 

we proposed the OPV-SLA (Optimized Personalized Viable SLA) management framework, 

shown in Figure 1, in our previous work [1, 14, 33]. This framework first assists the user and 

provider to agree on QoS expectations and then monitors the terms of the agreement for 

violations.  

 
Table 1: Comparison of SLA management approaches in the post-interaction phase 

Source Predicts SLA / SLO /QoS Defines procedure for when a 
violation threat is detected 

SLA violation 
recommendation 

Emeakaroha et al. [16, 17] 

 
✔ ✖ ✖ 

Brandic  et al. [18] ✔ ✔ ✖ 

Haq et al. [19] ✔ ✔ ✖ 

Emeakaroha et al. [34] ✔ ✔ ✖ 

Mosallanejad  et al. [22] ✖ ✔ ✖ 

Katsaros  et al. [24] ✖ ✖ ✖ 

Al Falasi  et al. [21] ✖ ✖ ✖ 

Chandrasekar  et al. [35] ✔ ✖ ✖ 

Alhamad  et al. [36] ✖ ✖ ✖ 

Wang  et al. [37] ✖ ✖ ✖ 

Hammadi  and Hussain [38] ✖ ✖ ✖ 

Muchahari  and Sinha [39] ✖ ✖ ✖ 

Cicotti  et al. [31] ✔ ✖ ✖ 

Romano  et al. [30] ✔ ✖ ✖ 

Sun  et al. [40] ✔ ✖ ✖ 

Hussain  et al. [41] ✔ ✔ ✔ 



Source Predicts SLA / SLO /QoS Defines procedure for when a 

violation threat is detected 

SLA violation 

recommendation 

Leitner  et al. [42] ✔ ✖ ✖ 

Ciciani  et al. [43] ✔ ✖ ✖ 

Cardellini et al. [44] ✔ ✖ ✖ 

Son et al. [45] ✖ ✖ ✖ 

Silaghi et al. [46] ✖ ✖ ✖ 

Badidi et al. [47] ✖ ✖ ✖ 

Pacheco-Sanchez et al. [48] ✔ ✖ ✖ 

Wood et al. [15] ✖ ✔ ✖ 

Schmieders  et al. [49] ✔ ✔ ✖ 

Noor  and Sheng [27] ✖ ✖ ✖ 

Fan  and Perros [28] ✖ ✖ ✖ 

 

 
Figure 1: OPV-SLA management framework (reproduced from [1]) 

The process of forming customized SLAs between providers and users in the pre-interaction     

phase is explained in our previous work [1]. In this paper, we explain the process for 

determining and abating SLA violation, which forms part of the post-interaction phase. It is 

important to mention that various approaches in the literature have used techniques such as 

QoS prediction [29], workflow detection control model [40], machine learning regression 

technique [42], and workload analyzer [50] to ascertain the possibility of SLA violation. In our 

method, we analyze the notion of risk as the criterion for ascertaining possible SLA violation 

and the subsequent actions to take for its abatement. A related work in this category that uses 

risk as the criterion for SLA management is Kiran et al. [51], who proposed a risk assessment 

framework for cloud service provisioning. Their proposed framework assists both SaaS and 

IaaS providers to identify, evaluate and mitigate risk in service provisioning. The risk 
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assessment between a service provider and an infrastructure provider consists of six steps:  the 

infrastructure provider's business dealings, the service provider's business dealings, the 

potential for service failure under the SLA, the reliability of the services offered under the SLA, 

the service provider for runtime operation and monitoring of QoS parameters, and lastly, the 

infrastructure provider for potential infrastructure failure. Zhang et al. [52] proposed a risk 

management framework that analyzes, assesses and mitigates risk to help the service provider 

to achieve better management of SLAs. Risk assessment in this approach is comprised of four 

steps: to define the likelihood of vulnerabilities and associated threats, to determine the 

magnitude of risk, to find the level of  risk, and to take all necessary actions to mitigate risk. 

Cicotti et al. [53] proposed a model that predicts future QoS based on runtime monitoring data 

and data from a probabilistic model-checking method. The system generates an alert when it 

detects probable QoS violation and helps service providers to stop or minimize possible service 

violation. Albakri et al. [54] proposed a security risk management framework that allows users 

to evaluate risk and contribute to the risk assessment process. The framework permits users to 

define the legal requirements, identify the risk factors, and obtain feedback from a service 

provider. While there are approaches that consider the notion of risk in SLA management, most 

of them are unable to guide a service provider in relation to the steps to be taken to determine 

and address possible SLA violation. In the next section, we define our RMF-SLA, which assists 

cloud service providers to identify and assess the risk of SLA violation occurring in the post-

interaction phase and to manage it by considering a set of decision parameters.  

 

3. Risk Management framework for SLA violation abatement (RMF-SLA) 

As shown in Figure 1, RMF-SLA is a combination of five modules that address the detection 

and abatement of SLA violation. They are: 

• Module 1: Threshold Formation Module (TFM)  

• Module 2: Runtime QoS Monitoring Module (RQoSMM)  

• Module 3: QoS Prediction Module (QoSPM) 

• Module 4: Risk Identification Module (RIM) 

• Module 5: Risk Management Module (RMM).  

The workings of each module of RMF-SLA are explained in the following sub-sections. 

 

3.1 Module 1: Threshold formation module (TFM):  

This is the first module of the RMF-SLA framework, as shown in Figure 2. It takes the QoS 

values of the SLOs determined between the cloud provider and the user in the pre-interaction 

phase and forms two thresholds for determining and managing violations. These two thresholds 

are the Agreed threshold (Ta) and the Safe threshold (Ts). 

• Agreed threshold (Ta): This threshold value is described in the SLA and is mutually agreed 

by the user and the provider. When both parties have finalized their SLAs, they agree on 

certain thresholds for each Service Level Objective (SLO) and QoS parameter. A service 

provider that does not comply with the agreed QoS parameters commits a service violation 

and is liable for violation penalties.    

• Safe threshold (Ts): To avoid possible service violation and penalties, we propose that a 

provider should define a safe threshold (Ts) that is stricter than the agreed threshold (Ta). 

This is a customized threshold defined by the provider. It raises an alarm of possible SLA 

violation when a runtime QoS reaches or exceeds the threshold and invokes Module 5, the 

Risk Management Module (RMM), to take necessary action to avert the violation. 

To explain the importance of Ts and Ta, let us consider a provider and user forming an SLA in 

the pre-interaction phase who agree on having 80% availability of a resource (memory). This 

80% availability of memory is the Ta value agreed by both parties. For service management 

and SLA violation abatement, the provider defines a customized threshold for the total 



memory, say 90%, which is the Ts value. When the availability at runtime falls below this 90% 

threshold, the framework alerts the service provider and activates the RMM to manage the risk 

of the QoS value of the SLO falling below the Ta value. 

 

 
Figure 2: Provider-based Risk Management Framework for SLA violation abatement (RMF-SLA) 

3.2 Module 2: Runtime QoS monitoring module (RQoSMM): 

This is the second module of RMF-SLA, which is responsible for monitoring the runtime QoS 

parameters of each SLO in the SLA. The captured runtime QoS values are sent to Module 3 - 

QoSPM where the QoS values of the SLOs in the near future are determined.   

 

3.3 Module 3: QoS prediction module (QoSPM):  

The QoSPM is the third module of RMF-SLA, which predicts users’ resource usage in each 

SLO. The module uses an optimal prediction algorithm for each SLO to predict the user’s likely 

resource usage based on his or her usage history. The choice of an optimal prediction algorithm 

plays a key role in decision making, since the accuracy of of the prediction method depends on 

the choice of dataset. In our previous work [55], we considered the stochastic, neural network, 

and different time series prediction methods and analyzed their prediction accuracy on a dataset 

from the Amazon EC2 cloud. We observed from the evaluation results that an optimal 

prediction result is obtained by considering small intervals for prediction and using the 

Autoregressive Integrated Moving Average (ARIMA) method. ARIMA is one of the most 

efficient versions of the Autoregressive Moving Average (ARMA) method formulated by 

mathematical statisticians George Box and Gwilym Jenkins in the 1970s [56] for use with 

business and economic data. It has been widely used as an optimal prediction method in the 

cloud service domain. For example, Calheiros et al. [57] developed a cloud virtual machine 

workload prediction model and observed 91% prediction accuracy when using the ARIMA 

method. Other researchers, such as Rehman et al. [58], have used the ARIMA method to 

forecast the QoS values from the user perspective with good accuracy. Hence, for the prediction 

of QoS we use the ARIMA method in QoSPM. To enhance the accuracy of the prediction 

result, RQoSMM constantly inputs the value of the SLOs in previous time intervals to QoSPM. 

For example, RQoSMM captures the QoS values from time interval 1 to time interval 10 (t1 - 

t10) to predict them over time interval 11 to 14 (t11 - t14). When the QoS values over the interval 



t15 to t18 are predicted, RQoSMM gives QoSPM the captured QoS values up to t14, to ensure that 

an optimal prediction result closely related to the observed data with minimum deviation [55] 

is achieved. The pseudocode of the workings in QoSPM is as follows: 
 
 

for (i=start limit; i <= endlimit ; i++ ) 

 if (RQoSMM is empty)  

     input[i]= prev_observation[i]; 

 else 

     input[i]= RQoSMM[i]+ prev_observation[i]; 

Pred_output= Prediction_algo(input); 

 

The algorithm starts by ensuring that the runtime data is available. If a transaction has just 

started and runtime QoS data is not available, QoSPM considers the user’s data from the 

Identity Management Module (IMM) in the pre-interaction phase. As explained in our previous 

work [1], this module stores the interaction history of a user. If a user is new and has no 

previous transaction records, the commitment of the user to the QoS values is ascertained by 

IMM using top-K nearest neighbors and their transactions. Once these values have been 

obtained, the QoSPM prediction is not made by taking the relative values of the SLOs, but by 

taking the percentage value of the level of the SLO commitment to the level of the SLO 

requested. This is because the level of resources requested by a user in the current SLO 

interaction may be different from what was requested in the past, so a standardized scale on 

which to represent these values is needed for fair analysis. To obtain the standardized scale, we 

take the relative values of the previous transaction, as presented in Equation 1.  

𝑅𝑝𝑟𝑒𝑑 = ∑  (
𝑅𝑢𝑠𝑒𝑑

𝑅𝑟𝑒𝑞𝑢𝑒𝑠𝑡
)

𝑖
∗ 𝑅𝑐𝑖𝑚

𝑖=1                    Equation 1 

 

where  

Rused is the amount of resources used for the previous SLA 

Rrequest is the amount of resources requested for the previous SLA 

i is the time interval from 1 to m  

m is the total time interval 

𝑅𝑐𝑖 is the predicted resource for the new SLA at ith interval 

Rpred is the total predicted amount of resources for the current requested SLA 

 

The output of the QoSPM is forwarded to Module 4 - Risk Identification Module (RIM) which 

invokes Module 5 - Risk Management Module (RMM) when the possibility of SLA violation 

is detected.  

 

3.4 Module 4: Risk identification module (RIM): 

RIM is responsible for comparing the predicted values from QoSPM with the formed Ts value 

in Module 1. If the value of QoSPM reaches or exceeds the Ts value, Module 5 - Risk 

Management Module (RMM) is activated to abate possible SLA violation. 

 

3.5 Module 5: Risk management module (RMM):  

As mentioned earlier, RMM is invoked when RIM determines the possibility of an SLA 

violation occurring. Once invoked, RMM estimates the severity of the risk of SLA violation 

and determines how to manage it. RMM as shown in Figure 4 is comprised of two sub-modules, 

the risk estimation module (REM) and the risk mitigation module (RMtM).  

a) Risk estimation module (REM): This sub-module is responsible for estimating the risk of 

an SLA violation occurring. The notion of risk is subjective, as is the process for managing 



it, so to determine the severity of the risk from the subjective viewpoint of the provider, the 

following three inputs are considered in REM:  

• Risk attitude of the provider: The risk attitude of the provider represents its capacity 

to deal with risk. A provider’s risk attitude is risk averse, risk neutral, or risk taking. 

A provider with a risk averse attitude is more reluctant to take a risk (in this case, 

to allow an SLA violation to occur) than a provider with a risk neutral or risk taking 

attitude [1]. 

• Reputation of the user for whom the possibility of SLA violation is being 

determined: Reputation is the reliability or trust value a provider places on a user to 

uphold the terms of the SLA. The reputation of a user shows the user's commitment 

to previously formed SLAs with the provider and is represented as being bronze, 

silver or gold. The process for determining the class of reputation is described in 

our previous work [1]. The reputation of a user is an input of REM, because we 

consider that if a provider values a user highly (represented as being silver or gold 

class), the provider will prefer to take immediate action to minimize the possible 

risk of SLA violation, in contrast to a similar situation with a user whose reputation 

is bronze class.  

• Transaction trend curve over future time intervals: The third input to REM is the 

transaction trend curve that shows a user’s use of an SLO over future time intervals. 

This shows the prevailing use of resources by the user over a period of time (from 

QoSPM) and how this usage maps against the formed Ta and Ts values. When the 

transaction trend curve  exceeds Ts, it may either move towards Ta, as shown in 

Figure 3a, or away from Ta, as shown in Figure 3b. REM captures the direction of 

the transaction trend curve to ascertain the risk of SLA violation and estimate the 

steps required to mitigate the risk.  

 

b) Risk mitigation module (RMtM): As discussed above, REM estimates the risk of possible 

SLA violation occurring by considering the relevant inputs. Subsequently, RMtM 

recommends an appropriate action to manage and mitigate the risk. A fuzzy inference 

system is used to perform the computation with the recommendation to take immediate 

action, delayed action, or no action. When a risk of violation is assessed as high, RMtM 

recommends that the service provider should take immediate action. In taking this action, 

the service provider stops accepting new requests and arranges for sufficient resources to 

be provided in the fastest possible time to avoid service violation. When the risk of violation 

is estimated as medium or low, RMtM decides and recommends whether to take delayed 

action or no action. Here, it is implied that the provider accepts the risk but keeps the 

situation under observation, with the intention of taking any necessary action within a 

certain timeframe.  

 

To summarize, the working of RMF-SLA is as follows and as shown in Figure 5: 

a) Step 1: After forming the Ts and Ta thresholds, QoSPM collects data from IMM and 

RQoSMM. 

b) Step 2: QoSPM predicts the QoS usage values in future time intervals. 

c) Step 3: RIM compares the predicted values from the QoSPM with the Ts value. 

d) Step 4: If the value from QoSPM is below Ts, then no action is taken and the runtime QoS 

parameters of the SLO are monitored. However, if the value of the QoSPM reaches or 

exceeds Ts, RMM is activated to manage the risk of SLA violation. 

e) Step 5: REM of RMM estimates the risk of SLA violation by capturing the risk attitude of 

the provider, the reputation of the user and the transaction trend curve. A fuzzy inference 

system (FIS) is used to estimate the risk of SLA violation occurring.  



f) Step 6: Depending on the estimated risk in REM, RMtM suggests the appropriate action 

that the cloud provider should take to mitigate the risk of violation occurring. The type of 

action is immediate action, delayed action, or no action.  

The fuzzy inference system for estimating the possible risk of SLA violation and determining 

the appropriate mitigation action is explained in the next section.  

 

 
Figure 3: Transaction trend curve moving towards and away from Ta 

 

 
Figure 4: Working of RMM in RMF-SLA 

  

 



 
Figure 5: The working of RMF-SLA in the post-interaction phase of OPV-SLA 

 

 

4. Fuzzy Inference System (FIS) for determining possible SLA violations and their 

abatement in RMF-SLA 

To assess the possible risk of SLA violation and manage its abatement, we use a Mamdani type 

FIS [59] to combine the various inputs. Figure 6 represents the input and the output used to 

manage possible SLA violations. The FIS and the membership functions of each of its inputs 

and outputs are explained in the following sub-sections. 

 



 
Figure 6: FIS for assessing and managing the risk of SLA violation in RMF-SLA  

4.1 Defining the fuzzy sets and membership function for input - risk attitude of the provider: 

The risk attitude (RA) of the provider defines the provider's propensity to take risk. Depending 

on its RA, a service provider may be risk averse, risk neutral, or risk taking. These are the 

fuzzy sets over which the RA will be represented. A risk averse provider attempts to avoid any 

risk, whether it is small or large. A risk neutral provider takes the middle ground; depending 

on the nature of the risk, it may decide to take action or to ignore the risk. A risk taking provider 

has a bold attitude, ignoring small risks and taking action only for risks that will have a 

significant effect. We consider 1 to 5 as the Universe of Discourse  over which the fuzzy sets 

of this input will be represented. The membership function for this input is as shown in Figure 

7, and the corresponding membership function for each fuzzy set is as follows: 

                                                   

 Risk Averse (RA) = 

2

3 x
 if 1 < x   3; 0 if 3 < x   5  

  Risk Neutral (RA) = 

2

1x
if 1 < x   3; 

2

5 x
if 3 < x   5 

  Risk Taking (RA) = 0 if 0 < x   3; 

2

3x
 if 3 <x  5   

 

 
Figure 7: Risk attitude of a provider in assessing the possibility of SLA violation occurring 



4.2 Defining the fuzzy sets and membership function for input - reputation of the user: 

User reputation (R) is the trustworthiness of the user’s commitment in previous transactions to 

the defined SLAs with the service provider. The fuzzy set over which the reputation value of a 

user is represented is bronze, silver, or gold, and the universe of discourse is from 0 to 100. 

The membership function for this input is as shown in Figure 8, and the corresponding 

membership function for each fuzzy set is as follows: 

 Bronze (R) = 1 if 0 < x   40; 

5

45 x
 if 41 < x   45; 0 if 46 < x   100  

  Silver (R) = 0 if 0 < x   40, 

5

40x
 if 41 < x   45, 1 if 45 < x   70, 

5

75 x
 if 71 < x   75,  0 if 76 < x   100 

 Gold (R) = 0 if 0 < x   70, 

5

70x
if 71 <x   75, 1 if 76 < x   100  

                                                   

   
             Figure 8: Membership function for the reliability of a user 

4.3 Defining the fuzzy sets and membership function for input – transaction trend: 

Transaction trend (TT) shows the trajectory of the predicted resource usage in future intervals. 

The values of the predicted trajectory are obtained from the QoSPM. The fuzzy sets used to 

represent input TT are Towards the Ta or Away from the Ta. The universe of discourse over 

which the input TT is represented is from 0 to 1. The membership function for this input is as 

shown in Figure 9, and the corresponding membership function for each fuzzy set is as follows: 

 Away (TT) =  

1

1 x
      if 0 < x   1 

 Towards (TT) =  

1

1x
     if 0 < x   1   

  
Figure 9: Membership function for the transaction trend 



                                          

4.4 Defining the fuzzy sets and membership function for output – recommended action: 

The output Recommended Action (RAc) is the appropriate action to be taken to manage the 

possible risk of violation occurring, and the recommended output of Immediate Action, 

Delayed Action, or No Action. These are the fuzzy sets used to represent the output, and the 

universe of discourse over which these fuzzy sets are represented is 0 to 1. The membership 

function for this input is as shown in Figure 10 and the corresponding membership function for 

each fuzzy set is as follows: 

 
 No Action (RAc) = 1 if 0 < x   0.01, 0 if 0.01 < x   1  

 Delayed Action (RAc) = 0 if 0 < x   0.01; 1 if x = 0.01; 

99.0

01.0x
    if 0.01 < x   1;  

 Delayed Action (RAc) = 0 if x=0.01; 

99.0

1 x
    if 0.01 < x   1 

 

 
             Figure 10: Membership function for recommended risk mitigation action 

 

4.5 Fuzzy rules for possible risk of SLA violation occurring and mitigation action to be 

taken: 

The combination of linguistic variables for the inputs, resulting in a total of eighteen rules, is 

presented in Table 2. The variables are: the risk attitude of the provider [risk averse (Ra), risk 

neutral (Rn), or risk taking (Rt)], the reputation of the user [bronze (B), silver (S), or gold (G)], 

and the transaction trend [towards (T) or away (A)]  
 

Table 2: FIS rules for the assessment and abatement of SLA violation risk  

Rule #  Risk 

attitude  

 Reputation   Transaction  

trend 

then Recommended 

risk mitigation 
action 

1 If Ra and B and T then IA 

2 If Ra and B and A then IA 



3 If Ra and S and T then IA 

4  If Ra and S and A then DA 

5 If Ra and G and T then DA 

6 If Ra and G and A then DA 

7 If Rn and B and T then IA 

8 If Rn and B and A then DA 

9 If Rn and S and T then IA 

10 If Rn and S and A then NA 

11 If Rn and G and T then DA 

12 If Rn and G and A then NA 

13 If Rt and B and T then DA 

14 If Rt and B and A then NA 

15 If Rt and S and T then DA 

16 If Rt and S and A then NA 

17 If Rt and G and T then NA 

18 If Rt and G and A then NA 

 

In the next section, we demonstrate how the service provider can assess and manage the risk 

of possible SLA violation with the consumer using the RMF-SLA framework of OPV-SLA.  

 

5. Validation of RMF-SLA framework for managing possible SLA violation abatement 

 

To demonstrate the applicability of the RMF-SLA framework for service providers in the 

abatement of possible SLA violations, we utilize the dataset from Amazon EC2 IaaS cloud 

services – EC2 US West collected from CloudClimate [60] through the PRTG monitoring 

service [61]. This dataset is used for QoS prediction and for managing SLAs and the abatement 

of possible violation. The prototype was built using Microsoft Visual Studio 2010 to develop 

the interface, Microsoft SQL Server Management Studio 2008 for the databases, and 

MATLAB to design the FIS application. To implement RMF-SLA, we first need to form an 

SLA between the user and provider in the OPV-SLA pre-interaction phase. Readers should 

refer to our previous work in [1], in which we explain these computations in detail. The 

outcome of this phase is a well-formed SLA between the service provider and service user 

which maximizes the likelihood of the service provider’s commitment to the formed SLOs, 

reduces the potential for SLA violation, and achieves the maximum financial return for the 

available resources. To ensure the successful fulfillment of the SLA, the service provider needs 

to undertake the following management steps in the post-interaction phase: prediction, 

monitoring, and decision-making, which are assisted by RMF-SLA, as explained next. 

Using the EC2 US West dataset from Amazon EC2 IaaS cloud services, we adopt CPU usage 

as the SLO we want to monitor to proactively pre-determine possible SLA violations. As 

discussed in Section 4, the first module of RMF-SLA is TFM, which defines the Ts value for 

the SLO being monitored. This is different from the Ta value, which is decided during the 

formation of the SLA. The next two stages in the RMF-SLA are RQoSMM and QoSPM. 

QoSPM predicts the QoS values over a future period. A number of prediction methods are 

available, each of which generates a different output depending on the nature of the dataset 

being used. RMF-SLA uses ten prediction methods, namely Cascade Forward 

Backpropagation (CFBP), Elman Backpropagation (EBP), Generalized Regression (GR), 

Nonlinear autoregressive neural network with external  input (NARX), Simple Exponential 



Smoothing (SES), Simple Moving Average (SMA), Weighted Moving Average (WMA), 

Extrapolation (EXP), Holt-Winters Double Exponential Smoothing (HDES), and 

Autoregressive Integrated Moving Average Method (ARIMA). Root Mean Square Error 

(RMSE) and Mean Absolute Deviation (MAD) are used as the benchmark to measure 

prediction accuracy, and the method which gives the least error is used for prediction.  

 

We use an example to explain the process. Figure 11 shows the observed QoS of the SLO CPU 

usage for the period of one hour on 6th September 2016 from 06:35AM to 7:30AM. To test the 

accuracy of the prediction methods, we use the QoS values for that SLO from a previous time 

period and use them to predict the QoS values for 06:35AM to 7:30AM on 6th September 2016. 

The neural network-based methods were trained by considering 1002 data sets from the 

previous six days. The results of the observed and predicted QoS values are shown in Table 3 

and Figure 12. The prediction results at five-minute intervals are given, and all units are 

measured in millisecond (ms). The accuracy of each method is measured using Root Mean 

Square Error (RMSE) and Mean Absolute Deviation (MAD). The prediction accuracy of all 

methods is presented in Table 4 and Figure 13. 

 

We evaluate CPU usage every five minutes for one hour, starting on 6th September 2016 at 

06:35AM and ending on 6th September 2016 at 7:30AM. Figure 12 presents the CPU usage 

for the period. 

 
Figure 11: CPU usage data for one hour [60]  

  

 

 

 



Table 3: Prediction results of ten methods at five-minute intervals 
Time 6:35:00 6:40:00 6:45:00 6:50:00 6:55:00 7:00:00 7:05:00 7:10:00 7:15:00 7:20:00 7:25:00 7:30:00 

Observed data 577 561 577 576 577 561 560 561 577 562 561 577 

CFBP 565.7835 569.1289 565.7835 565.9902 565.7835 569.1289 569.3407 569.1289 565.7835 568.9174 569.1289 565.7835 

EBP 561.1551 560.3656 561.1551 560.921 561.1551 560.3656 560.4925 560.3656 561.1551 560.2562 560.3656 561.1551 

GR 563.7587 562.58 568.6284 566.7982 563.7587 560.2106 560.2518 562.58 563.9038 559.747 562.58 563.7587 

NARX 579.6209 578.983 561.8996539 575.5140582 564.1123463 563.7748057 561.8996539 576.9943986 577.0424372 575.5140582 562.7078841 576.8213273 

SES 577.0000 577.0000 569.0000 573.0000 574.5000 575.7500 568.3750 564.1875 562.5938 569.7969 565.8984 563.4492 

SMA 577.0000 569.0000 571.6667 571.3333 576.6667 571.3333 566.0000 560.6667 566.0000 566.6667 566.6667 566.6667 

WMA 577.0000 566.3333 571.6667 576.3333 576.6667 566.3333 560.3333 560.6667 571.6667 567.0000 561.3333 571.6667 

EXP 577.0000 561.0000 545.0000 593.0000 575.0000 578.0000 545.0000 559.0000 562.0000 593.0000 547.0000 560.0000 

HWDES 577.0000 572.2000 572.9680 573.4475 574.2363 570.1543 566.4477 563.7661 566.5231 564.5816 562.7676 566.1918 

ARIMA 576.5432 561.0000 577.0000 576.9987 577.0009 561.0887 560.0087 561.0000 577.0000 562.0000 561.0000 577.0594 

 

 

 
Figure 12: Prediction output of each approach at five-minute intervals 

 



Table 4: Prediction accuracy of all methods 
Prediction Method RMSE MAD 

CFBP 9.489859312 9.365921429 

EBP 10.31080812 7.167585714 

GR 7.873491133 5.757521429 

NARX 9.959856064 7.185961724 

SES 9.317532303 7.878696987 

SMA 6.52346193 5.523809524 

WMA 3.743777907 2.761904762 

EXP 18.48937919 15.00000000 

HWDES 6.216755602 4.999325847 

ARIMA 0.461865174 0.249580313 

 

 
Figure 13: Prediction accuracy of all methods using RMSE and MAD as a benchmark 

From Table 4, we can see that of all the prediction methods, ARIMA gives the optimal 

prediction result with an RMSE value of 0.461865174 and a MAD value of 0.249580313. 

Extending our example, QoSPM uses the ARIMA method to predict the QoS of the CPU usage 

for the next hour from 7:40 AM to 8:35 AM, as shown in Table 5. To determine the possibility 

of SLA violation and its abatement, we consider that the values for Ts and Ta are 575ms and 

599ms respectively, as shown in Figure 14. Ta  is the value of the SLO determined on the 

formation of the SLA and Ts is the safe threshold defined by the provider. RIM compares the 

predicted QoS value with these values, and if the Ts value is exceeded, the RMM is activated 

to ascertain and manage the risk of SLA violation. 

 
Table 5: Prediction of the SLO over a period of one hour using the ARIMA method 

Time 7:40:00 7:45:00 7:50:00 7:55:00 8:00:00 8:05:00 8:10:00 8:15:00 8:20:00 8:25:00 8:30:00 8:35:00 

ARIMA 567 569 577 579 580 582 585 589 571 591 593 594 

    

 
Figure 14: Showing the Ts and Ta values  of the predicted QoS over a future period 

0	

2	

4	

6	

8	

10	

12	

14	

16	

18	

20	

CFBP	 EBP	 GR	 NARX	 SES	 SMA	 WMA	 EXP	 HWDES	 ARIMA	

N
u
m
e
ri
c	
va
lu
e
s	
o
f	
R
M
SE
	a
n
d
	M

A
D
	

Predic on	accuracy	of	different	methods	

RMSE	

MAD	



From Figure 14, we see that at the third time interval (7:50AM) the predicted result exceeds 

the Ts threshold. RMM at this stage considers the risk attitude of the provider, the reputation of 

the user, and the projected transaction trend to suggest an appropriate action. In this scenario, 

we consider that the reputation of the user at the pre-interaction phase is 45 (silver), the risk 

attitude of the provider is risk neutral, and the transaction trend is moving towards the agreed 

threshold value. These inputs are processed by the FIS rules and the recommended output is 

immediate action. This is because the provider is risk neutral and the transaction trend has 

exceeded the Ts and is moving towards the Ta value, so if the provider does not take action, 

there is a high risk of SLA violation. The provider needs to take immediate action by arranging 

supply of the deficient resources, either itself or from external resources, to avoid possible 

violation. Similarly, at 8:15 AM we see that the predicted QoS value moves towards Ts and 

drops below it. In this scenario, the output from the FIS recommends no action to be taken, as 

no likelihood of SLA violation is determined. From the above example we see that RMF-SLA 

suggests the appropriate action to be taken to manage potential SLA violation according to the 

risk attitude of the provider, the user’s reputation, and the transaction trend. The combination 

of RMF-SLA with the pre-interaction phase module of OPV-SLA assists an SME service 

provider to first form viable SLA and then manage the risk associated with possible SLA 

violations.  

 

6. Conclusion 

The service level agreement (SLA) is the key agreement made between a service provider and 

a service user in a cloud computing environment. To increase and maintain their reputation, 

service providers need a viable SLA management framework that helps them to first form 

viable SLAs and then intelligently predict the occurrence of possible SLA violations before 

recommending an appropriate action to be taken. Our proposed OPV-SLA management 

framework helps service providers, particularly SME providers with limited resources, to 

achieve this. In this paper, we have briefly explained the OPV-SLA framework and focussed 

on its post-interaction phase module, namely the RMF-SLA, which is responsible for QoS 

prediction, detecting the possible occurrence of SLA violations, and recommending the best 

possible decision to avert violation. We have demonstrated the application of RMF-SLA with 

an example and have shown how the proposed method assists cloud service providers in SLA 

management. In our future work, we will find the hidden patterns between SLOs and low-level 

metrics to predict likely violation for SLA management.  
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