TO CITE THIS PAPER, PLEASE USE:

Automating data mart construction from semi-structured data sources.
M Scriney, S McCarthy, A McCarren, P Cappellari, M Roantree.

The Computer Journal 62 (3), pp.394-413, 2019.



Automating Data Mart Construction
from Semi-Structured Data Sources

MICHAEL SCRINEY!, SUZANNE MCCARTHY!, ANDREW MCCARREN!,
PAOLO CAPPELLARI?> AND MARK ROANTREE!

! Insight Centre for Data Analytics, School of Computing, Dublin City University, Glasnevin,
Dublin 9, Ireland
2 City University of New York, New York, NY, USA
Email:  [michael.scriney, suzanne.mccarthy]@insight-centre.org, [andrew.mccarren,
mark.roantree]@dcu.ie, paolo.cappellari@csi.cuny.edu

The global food and agricultural industry has a total market value of USD 8
trillion in 2016, and decision makers in the Agri sector require appropriate tools
and up-to-date information to make predictions across a range of products and
areas. Traditionally, these requirements are met with information processed into
a data warehouse and data marts constructed for analyses. Increasingly however,
data is coming from outside the enterprise and often in unprocessed forms. As
these sources are outside the control of companies, they are prone to change
and new sources may appear. In these cases, the process of accommodating
these sources can be costly and very time consuming. To automate this process,
what is required is a sufficiently robust Extract-Transform-Load (ETL) process;
external sources are mapped to some form of ontology, and an integration process
to merge the specific data sources. In this paper, we present an approach to
automating the integration of data sources in an Agri environment, where new
sources are examined before an attempt to merge them with existing data marts.
Our validation uses three separate case studies of real world data to demonstrate
the robustness of our approach and the efficiency of materialising data marts
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INTRODUCTION

the context and data understanding. Solutions involve

The Agri industry is increasingly making use of data
mining and analytics for decision support, predictions
and preparing reports.  The sector regularly has
requirements to analyse trends in pricing of a specific
Agri product or monitor production of various products.
Increasingly, this requires integrating data from a web-
based sources with their own internal databases in order
to view them in a single homogeneous view for querying
and analyses. The end goal is to provide Agri decision
makers with a degree of certainty in their reports, rather
than relying on instinct.

Apart from enterprise data, there is a significant
volume of both online and third party datasets upon
which to base predictions. However, correct usage can
be difficult for several reasons: (i) the data is coming
from multiple sources and there may be heterogeneity in
the metadata structure or in the data itself; (ii) the data
is often semi-structured making it unsuitable for loading
to a Data Warehouse without significant manual effort
on the part of data engineers; and (iii) integrating
datasets often requires a domain expert to provide

processes for cleaning, restructuring and integrating
data, which are generally both expensive and time-
consuming. One of the primary aims in this area of
research is to reduce both cost and the time taken
to make data available by automating these tasks as
much as possible, generally through the help of domain
experts and ontology construction.

1.1. Background and Motivation

Integrating semi-structured data sources is not new as
research into integrating semi-structured data with en-
terprise data has been ongoing for almost 20 years
eg. [I] and integration of fully unstructured sources in
[2]. However, there is very little research into auto-
constructing the types of multidimensional schemas
needed for OLAP and data mining [3]. Traditionally,
the process for constructing a warehouse (or multidi-
mensional) schema involves matching business require-
ments with existing enterprise databases to specify the
data marts which will generate the required datasets.
An Extract-Transform-Load process [3] will be put in
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place to continuously harvest data from operational
databases. In previous work, we used the same process
to create a large Agri Warehouse model [4] although we
integrated non-enterprise sources to meet specific busi-
ness needs. As part of this work, a multidimensional
data model was specified to map online sources to the
various data marts represented in the Agri warehouse.

The problem with online Agri (in addition to many
other) data sources is that they evolve much more
than in-house databases. Sources can disappear or
change structure, new sources can become available
and this can have a widespread effect as different user
needs require the construction of separate data marts.
Approaches to clustering online data such as [5] can
be effective when query changes require a modification
to the materialised data mart but cannot process or
integrate new online sources. In effect, a warehouse
setup that comprises online data sources requires a
methodology for analysing unknown or altered data
streams to detect facts and dimension hierarchies with
an ability to create data marts from multiple data
sources.

1.2. Approach and Contribution

While integrating data from heterogeneous sources
is often complex and domain-dependent, the data
integration issues are well understood [6]. More
recently, XML mapping technologies have been studied
in terms of processing and transforming XML data [7]
and XML sensor streams [§]. While the enhancement
of data warehouses with web generated XML data
was presented in [0], the schema design (facts and
dimensions) was driven by enterprise databases. In this
paper, we present a system which automatically creates
multidimensional data marts from Agri data sources.
Our approach provides a means of automatically
detecting the attributes that make up a data mart
from within each source stream, convert these sources
to pure multidimensional graph mode and then, using
an ontology, attempt to construct the required data
mart by integrating the source data. This provides
a significant benefit to Agri knowledge workers as it
greatly reduces the time to construct data marts and
can also be used to evolve data marts where the
structure of source data streams has been modified.

Our previous work [I0] introduced the StarGraph
model which captures the multidimensional concepts of
facts and dimensions from the online data streams.

The contribution of the work presented in this paper
is as follows:

e As the StarGraph has a 1-1 relationship with
external sources, a multi-source version is required
to construct data marts from multiple sources.
In this work, we present theConstellationGraph
(or Constellation for short) which represents
integrated StarGraphs.

e We also present a methodology to automatically
integrate (as far as possible) StarGraphs to
complete the process of forming an integrated data
mart from online data sources.

e Finally, we present an evaluation process which
takes three user requirements - data marts for
predicting pig prices, comparing pricing trends
across Agri food products, and milk production
analysis - and attempts to construct the data
marts from data sources selected by our end-
user partners. We run three exercises as part
of the validation: firstly, the end user manually
constructs the data mart; the second exercise
sees the integration process take place without
the use of an ontology so that we can classify
exactly where semantic integration issues occur;
and finally, our enriched ontology is used to drive
the auto-construction of data marts which match
those constructed by the end-user.

1.3. Paper Structure

This paper is structured as follows: in Section [2] we
provide a discussion on the state of the art; in Section [3]
we describe our StarGraph model and the methodology
for creating data marts from online sources; in Section
[ we present the metadata and ontology parts to
our system; as our case studies involve real end-user
requirements from data streams that are currently in
use, we present a brief overview of these data sources
in Section [5| and a report on how they were integrated
into our system; in Section @, we provide an extensive
evaluation using three user-defined case studies; and
finally in Section [ we present our conclusions.

2. RELATED RESEARCH

In [TT], the authors present an ontology-based approach
to constructing a data warehouse. Two different
graphs are used: the datastore graph and the ontology
graph. These graphs are linked by a series of
formally defined mappings provided by a designer. This
approach ensures semantic completeness between the
datastore and the ontology. Similar to our StarGraph,
the canonical model is a graph model. However,
the StarGraph performs graph restructuring which
attempts to define facts and dimensions before an
ontology is required.

In [12], the authors present a system which utilises
a global ontology to facilitate the ETL process and
user querying, supplemented by metadata. The authors
demonstrate how the system can be used to enrich user
queries by providing an ad-hoc approximation search
based on the global ontology. This ad-hoc querying
mechanism allows for in-depth analysis which was not
previously defined by a query designer. However, there
is no focus on the larger ETL architecture while we
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provide a full methodology for importing new data
sources.

An ETL process for OLAP on Linked Data is pre-
sented in [13]. This work introduces HSPOOL, a frame-
work which provides a user with the means to perform
OLAP analysis on Linked Data by extracting facts and
measures and dimension hierarchies. However, a suit-
able OLAP schema must be constructed first in order
to determine hierarchies from an ontology. In addi-
tion, while the authors use Linked data to construct
the OLAP cube, we instead use an ontology to supple-
ment the integration process for a Constellation Graph.

In [T4], the authors present a unified cube, a
combination of data obtained from a data warehouse
and open linked data. Similar to our approach, a
common data model is used to represent all data, which
is then grouped into the unified cube. However, the
integration process for linking cubes is controlled by a
query designer, while our approach is more automated,
using a global ontology to facilitate integration.

The authors in [I5] present an RDF-based ETL
process for Agri data. Their system utilises RDF graphs
created from each Agri source and integrate by using
queries with an end goal of creating a multidimensional
schema. However, while we share a similar domain to
the authors, our data sources are different. The authors
use statistical open Agri data, presented as a series of
flat spreadsheets, while we offer more flexibility by using
web data which can come in a variety of data formats.

In [I6], the authors present an automatic ETL
system which uses an ontology to facilitate semantic
data integration. The authors use a combination of
a thesaurus derived from a starting data warehouse
schema and a lexicon (e.g. WordNET) and clustering
to determine similarity between attributes. However,
in our approach, we use abstract types defined by our
meta model to determine candidates for integration and
propose a suitable integration strategy.

The authors in [I7] present a semi automatic
approach for combining business requirements and
data sources to create a multidimensional schema
and a corresponding conceptual ETL process. All
data sources are captured in an OWL ontology
with corresponding mappings while the business
requirements are stored as a series of structured XML
files. When the system is presented with a new business
requirement, the requirement is first validated, then
compared to the ontology of data sources to generate a
multidimensional schema and ETL process. Similar to
our approach, an ontology is used to facilitate semantic
integration. However, the authors require an ontology
detailing the mappings for each data source, while our
process automatically generates mappings during the
StarGraph creation phase.

In [I8], the authors present a method for creating
a data warehouse from heterogeneous data. Each data
source is provided with a corresponding ontology, which
are subsequently connected through a global domain

ontology. The system uses structured requirements to
extract suitable DW schemas from the global ontology
based on requirements provided by a user. However, the
ontologies for each data source identify the mappings
and instance data provided is stored in a relational
format. Instead, our approach adopts a data lake
approach which stores instance data in its raw format
and thus, provides us with a means of quickly detecting
changes to the structure of schemas.

The authors in [T19] present a system which constructs
a data warehouse based on user requirements. The first
step in this approach is to present the system with a
domain ontology. The system parses this ontology to
derive facts. It then constructs facts based on each
concept detailed in the ontology. These facts are then
presented to the user and the user selects the facts
they wish to use. Similar to the authors’ approach,
we attempt to identify facts, dimensions and measures
from a data source prior to user interaction. However,
while the authors’ approach requires a domain ontology,
our approach identifies facts, measures and dimensions
per source automatically.

In [20], the authors present an automatic ETL
approach facilitated by domain specific modelling,
where they use their own language (DSL) to represent
different stages of the ETL process. A user (typically
a domain expert), using DSL, outlines the concepts
and operations for the conceptual ETL process. This
process is then automatically deployed as a domain-
specific ETL process. The authors use Domain
Modelling to encapsulate the data sources and their
interactions while our approach utilises an ontology
to facilitate this semantic integration. Our approach
extends this work by identifying facts, dimensions
and measures automatically, requiring limited human
intervention when integrating sources to a data mart.

The authors in [2I] present an ETL process which
utilises RDF/OWL ontologies to create OLAP data
cubes from heterogeneous data sources. Each data
source is provided with a corresponding ontology which
is used to create RDF representations of the source
data. The data is then extracted using RDF queries
obtained from a cube definition represented as OWL.
The authors use RDF queries to extract the data
from each source, whereas our approach uses the data
source’s native format (XPath, JSON etc.) to extract
the data. Additionally, our system automatically
generates these mappings without the need for a pre-
defined ontology bound to a data source as our ontology
is used purely for assisting only in some integration
scenarios.

3. BUILDING INTEGRATED DATA MARTS

Let us start by presenting a high level overview of our
step-by-step approach to analysing and transforming
data streams before integration into existing data marts
or the creation of new ones. Throughout the rest
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of this paper, our usage of the terms data mart and
cube represent: a multidimensional construct with
data originating from separate sources. Our approach
uses a StarGraph to model each data source and
a Constellation to model the integrated data mart.
For the data transformation shown in figure the
methodology comprises four main processes to manage
different aspects of the overall transformation.

e Stream Introduction (P1). This process adds
a data source to the Data Lake.

e StarGraph Construction (P2). This process
creates a StarGraph from a single data source.

e Constellation Construction (P3). This
process creates a Constellation from two or more
StarGraphs. The process has three sub-processes,
Term-mapping, Type-mapping and Integration.
Term-mapping is used to assign canonical terms
to StarGraphs by consulting the ontology; Type-
mapping is used to assign canonical types
and analyse a StarGraph with respect to the
metamodel; the Integration process combines
two StarGraphs to produce a Constellation; or adds
a StarGraph to an existing Constellation.

e Materialise (P4). This process populates a data
mart (StarGraph or Constellation).

We now provide a description of our system in terms
of workflow and the transformations that are necessary
to deliver an integrated data mart from non-enterprise
data sources.

3.1. Stream Introduction

The stream introduction process (P1) is used to add
new data streams with a Stream Service process to
update a data lake with new instances of each data
source at their specified update interval. A user is
necessary to provide the URL to the data stream,
an update interval and (if available) a schema of the
stream data. A Metabase is used to capture stream
metadata and a tree representation of the schema is
constructed and stored in the Metabase, together with
the source (URL) and update interval. This structure
will be used as the basis for constructing a StarGraph.
When appropriate, the process Pla Stream Service
will populate the data lake with a new instance of
the data stream at each update interval. The system
Metabase is described in detail in section Hl

3.2. StarGraph Construction

This process (P2) constructs a StarGraph from a single
data source. A StarGraph is a tree-based construct,
which is annotated to capture fact, measure and
dimensional data detected in a data source (should
this information exist). As part of the construction of

the StarGraph, mappings between StarGraph and data
source are stored in the Metabase.

While the StarGraph construct is described in detail
in earlier work [I0], we present an overview here to
provide the reader with an understanding of how the
multidimensional data mart is represented. Both a
StarGraph and Constellation are comprised of a set of
nodes N and a set of edges E. Each edge is a three-
tuple £ = (X,Y, REL) where: X,Y € N; REL is a
type denoting the relationship which exists between the
nodes X and Y. The possible values for REL are:

e 1-1, denoting a one-to-one relationship.
e 1-m, denoting a one-to-many relationship.
e m-m, denoting a many-to-many relationship.

The relationship type is obtained from examining the
cardinally between attributes such as maxOccurs and
minOccurs for an XSD schema.

Each node n € N is a four-tuple node such that

n = (name, class, source,dType). name is the name
of the node, dT'ype is the datatype of the defined node.
source is an indicator of where the particular data item
is to be found in the schema. This attribute can take
the form of an XPath query (for XML/HTML data) or
dot-notation for JSON data.

class indicates the type of node.
possible types:

There are six

e Dimension marks a node which is the beginning of
a dimension.

e dimension_attribute is a marker denoting that
the node in question is an attribute of the parent
dimension node.

e container indicates the node is an instance
containing other nodes.

e measure indicates that this node is a measure.

e key indicates that this node is a primary key

e key-ref indicates that this node is a foreign key,
and as such depends on a node which is classified
as a primary key.

3.3. Constellation Construction

The TermMapping process resolves naming differences
between data sources to prepare data sources for
integration. The process uses a set of canonical terms
stored in an ontology. For example, consider two nodes
which denote the country Ireland where the first node
has the name IRL and the second has the name Rep.
of Ireland. The term ITRELAND and all of its
synonyms are captured in our ontology in the collection
of terms associated with the GeoLocation dimensional
data.

The TypeMapping process overcomes semantic differ-
ences between StarGraphs. Consider two nodes, one
named IRELAND and the other named FRANCE which
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FIGURE 1: A StarGraph-based ETL System

both represent dimensional information. A simple com-
parison would determine that these two nodes are not
equal. However, they are both classified as countries,
and as such are members of the same Geo dimension.
This process is also necessary to ensure compliance
with the ontology’s metamodel described later in sec-
tion Each detected measure is assigned the type
Value. However, each measure must also be provided
with the attributes Item, Metric and Unit. These types
are assigned to a StarGraph during the type mapping
phase. The TypeMapping process examines each node
and can either apply a pre-defined type or a user defined
type.

The Integration process begins with an analysis of
the two StarGraphs selected for integration. The role
of the ontology is described in section[d We outline the
process here.

e When evaluating two StarGraphs, the first
attributes checked for are the Date and Geo
attributes as at least one of these attributes must
be present for integration to take place. If only
the Date attribute is present, the StarGraphs will
be merged on Date. If Geo is present, they
will be merged on their respective Geo attributes.
However, if both attributes are present, they will
be merged on both, combining rows where their
values match. Even if neither attribute is found,
integration can take place if the user provides
location details for these attributes.

e The next stage is to examine the Item, Metric and
Unit attributes for the measures found. If all three
values are the same for both products then both
sources can be directly integrated without the need
for transformation functions. If the Item attribute

is identical for both but the Metric and Unit values
are different, then the measures will be joined based
on sharing the same product. Finally if the Item,
Metric and Unit attributes are different, they are
joined on the Date and Geo dimensions which have
been previously evaluated.

There are two possible integration strategies. The
first is the row-append strategy. This strategy is used
when two data sources present semantically identical
information, and as such can be directly integrated.
The second approach is the column-append strategy.
This strategy is used when data must be integrated on
a number of attributes. The column-append strategy
seeks out common dimension values between data from
two sources and joins them based on these values.

The fallback approach for the column-append
strategy is to join data simply based on the values
present in the Date and Geo dimensions.

When two StarGraphs are set to be integrated,
the presence of both a Date and Geo dimension are
examined. These dimensions will be used to join data
from two independent sources. If both a Date and Geo
dimension are present, both will be used to join the
data.

An example of missing data for these attributes can
be seen in the Bord Bia data [22]. Where there is no
specified Geo dimension, it assumes a user knows that
all information provided is from Ireland and as such,
the value for the Geo dimension is ‘Ireland’ for all
values.

4. METADATA AND STORAGE

As depicted in Fig. our approach leverages three
repositories: the Data Lake, the Metabase, and the
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TABLE 1: Sources used in the Pig Prediction Data Mart

Name ID Format | Nodes | Edges | Dims | Measures | Materialize (ms) | Ins.
Aimis_1 aim_1 | HTML | 12 12 10 32 27 30
Aimis_2 aim 2 | HTML | 12 12 10 7 32 30
Bord Bia_1 b_1 HTML | 2 2 1 1 70 Varies
Bord Bia-2 b_2 HTML | 17 13 5 7 70 1-4
AHDB_1 p-1 HTML | 88 88 11 8 122 8
AHDB_2 p-2 HTML | 2 2 1 1 91 42
AHDB_3 p-3 HTML | 4 2 3 1 150 156
AHDB_Bpex_1 | bp.1 | CSV 5 4 2 3 320 4
AHDB_ Bpex_2 | bp2 | CSV 5 4 2 3 320 3
cme_1 c-1 HTML | 8 8 1 6 128 8
cme_2 c2 HTML | 8 8 1 6 131 12
imf imf XML 6 3 2 1 256 1122
usda usda | CSV 39 38 33 6 166 84

Data Warehouse. The Data Lake is where raw data
retrieved from the data sources is stored. The Metabase
contains descriptive and administrative information
regarding the data sources, the raw data, their mapping
to the respective StarGraphs and Constellations, and
the rules to automate the data integration. The Data
Warehouse holds the materialisation of the data cubes
resulting from our automated integration process. The
rest of this section details these three repositories.

4.1. Data Lake

The Data Lake is the repository where raw data
retrieved from the data sources is staged before being
analysed and integrated. Raw data is retrieved
(independently) from each known source at specified
intervals, and “appended” to existing data already
collected from the same source. Data is stored in its
native format in simple flat structures, e.g. JSON,
XML, or CSV. The Data Lake does not enforce a rigid
structure on data pulled from the same data source:
as the data structure from a source evolves, the data
lake approach offers us the flexibility to seamlessly
accommodate any change without having to undergo
a revision of our repository. In fact, data belonging
to the same source may be stored in multiple files,
where each file may differ in both structure and format.
Information about the origin, format, and location of
data is captured as metadata and maintained in the
Metabase as described in the next section.

4.2. The Metabase

The Metabase contains descriptive and administrative
information about the input data, our integration
graphs and processes, and data marts.

4.2.1.  Data Source and Cube Metadata

In our system, data sources and their instance data
are described independently, so as to keep separate the
origin of the data from the actual format that the raw
data has when retrieved. Data sources and associated

instances are described by the following two properties:
Data Source and Data Instance.

DEFINITION 4.1 (Data Source). A data source DS =
(U, N, W, I) is a four element tuple where U is the
unique identifier the system generates for each new data
source, N 1is the mnemonic associated with the data
source, W is the URL at which the raw data is available
for retrieval from the remote data source, and I is the
interval of time specifying the pace at which to pull data
from the provided URL.

The Data Source property characterises the source of
the data so that our system knows when and from where
to retrieve (new) data. The Data Instance property,
on the other hand, characterises the actual data as it
is stored in the Data Lake, so that the system knows
how old the last batch of retrieved data is and in what
format it should be accessed locally. The Data Instance
property is defined as follows:

DEFINITION 4.2 (Data Instance). A data instance
DI = (I,U,D,T) is a four element tuple where I
is the unique identifier the system generate each time
new data is retrieved from a specific source, U 1is the
identifier of the source from which data is retrieved, D
is the UTC date-time of data retrieval, and T is the
format used to store the raw data into the data lake.

Similar metadata is maintained for the data marts
and cubes materialised in the Data Warehouse. Every
time data from the input sources is integrated to update
an existing cube, or to generate a new one, the system
keeps track of the new data mart instance by the
property Cube Instance, that is defined as follows:

DEFINITION 4.3 (Cube Instance). A cube instance
CI = (C,D,L) is a three element tuple where C is
the unique identifier the system generates for each new
data mart created, D is the UTC date-time of the cube
creation/update, and L is number of times the cube has
been loaded since its (first) creation.
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4.2.2.  Integration Ontology

Information and processes on how to populate the data
mart starting from the raw input data is described
in the StarGraph, in the Constellation and in their
associated mappings, as described in Sec. All
this information is stored in the Metabase. While
StarGraph information can be automatically deduced
given the input raw dataset, the Constellation and its
mapping are based on an integration ontology, which is
a separate component of the Metabase. This ontology
is composed of two main parts: a metamodel for further
describing each StarGraph from a semantic point of
view, and a set of rules that, acting in a cascade fashion,
automate the integration process.

Metamodel. The metamodel augments each attribute
in the StarGraph with annotations that drive the in-
tegration process by helping to identify compatible at-
tributes across different StarGraphs. We group these
annotations under the property called Attribute Seman-
tic. When attributes from two (or more) StarGraphs
are semantically compatible, the StarGraphs can be in-
tegrated to form a Constellation. Instances of compati-
bility are described as mappings that are then executed
to import actual data from the data lake into a data
mart.

The Attribute Semantic property is described as
follows.

DEFINITION 4.4 (Attribute Semantic). An attribute
semantic AS = (D,G,I,M,U,V) is a five element
tuple where D is a Boolean describing whether the
attribute represents the Date dimension, G is a Boolean
describing if the attribute is a Geo dimension, I
indicates the name of the measure in case the attribute
18 a measure of interest, M describes the metric for the
measure, U specifies the units for the metric, and V is
an actual value from the domain.

In the Attribute Semantic property, the set of
elements {D,G},and{I, M,U} are mutually exclusive
because an attribute can either be a quantitative
measure or a dimension (either date-time or geo-
location). If the attribute is a measure, then all the
elements {I, M, U} must be specified in order to identify
the name of the measure, the metric it is derived from,
and the unit of reference for the attribute’s values.
These pieces of information are crucial to ascertain
whether two dimensions or measures (e.g. metric) from
different StarGraph are semantically compatible, and
whether some transformation is needed in order to
achieve homogeneous data in the cube (e.g. units for
the metric).

Integration Rules. The metadata described in the
Attribute Semantic is stored along with the Integration
Rules. The latter are used to determine the integration
strategy to construct the Constellation. FEach rule

describes an integration technique. Which rule to apply
depends on the result of the semantic compatibility
of the attributes in the StarGraph to integrate.
Integration Rules are defined as follows:

DEFINITION 4.5 (Integration Rules). An integration
rule IR = (R,C,T,F) is a four element tuple where
R is the identifier of the rule, C' is the condition that
determines whether the rule is applicable to the case
under analysis, T and F are the the actions to execute
in case the condition is satisfied or not, respectively.

Actions T and F' can be of three types:

e The first type is a rule cascade, where the action
returns a set of further actions to trigger (via the
action identifier R). This strategy allows us to
have a set of cascading rule sets that can easily
be reconfigured.

e The second type is the user-prompt action: when
there is not enough metadata to understand how
to integrate the StarGraphs, users are prompted to
provide additional information.

e Finally, the third type is the integration strategy
recommendation: the system can suggest which
strategy is more effective. The integration
strategy provides a recommended structure for the
integrated data and tells the integration process
specifically which attributes will be used to join
the datasets.

4.3. Data Warehouse

The Data Warehouse stores populated data marts
created from either a StarGraph or Constellation.
When a data mart population process triggers, the
relevant source data is obtained from the Data Lake
and the facts, dimensions and measures required for a
star schema are extracted using the mapping rules from
the Metabase.

5. DATA SOURCE ANALYSIS AND PRO-
CESSING

In this section, we present how our method fared with
120 unknown Agri data sources. We first briefly discuss
the features and the type of data published in the
considered data sources, then we analyse how these
are data sources are imported into our StarGraph and
Constellation constructs. An examination of the results
allowed us to create a set of classifiers on the benefit and
usage of each data source.

5.1. Agri Datasets

Here, we briefly describe the data sources captured
in one of the sample Constellations and, using a
small subset of the ontology, explain how a simple
normalisation process can create usable data marts. An
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approach advocated in [23] is to use lightweight dynamic
semantics - which our system adopts - in order to import
and integrate new source data. Table[I] in Section [3.3
provides details of how this process worked for the 13
Agri sources which comprise the data mart we describe
here.

e Agriculture and Agri-Food Canada [24], in
their Aimis webpage, publish weekly data reports
on multiple measures from which we have extracted
data on hog slaughters at packing plants in Canada
(Aimis_1 and Aimis_2 in Table [f)).

e USDA [25] provide the Quickstats API for easy
access to several datasets such as production, price
and slaughters. This data mart imports pig crop
data from this source (usda in Table .

¢ Bord Bia [22] is the Irish food board, founded to
promote sales of Irish food and horticulture as well
as providing certification of Irish products. This
data mart is extracting: pig prices (Bord Bia_1 in
Table; dairy prices (also Bord Bia_1 in Table ;
and pig slaughters (Bord Bia_2 in Table [1]).

e The Agriculture and Horticulture Develop-
ment Board (AHDB)[26] is a statutory levy
board who provide research and development pro-
grams and market information to farmers and busi-
nesses in the Agri sector. This data mart is ex-
tracting: annual per capita consumption (AHDB_1
in Table ; annual pig slaughters (AHDB_2);
pig prices (AHDB_3); and weekly pig slaughters
(AHDB Bpex_1 and AHDB Bpex_2 in Table [I]).

¢ CME Group [27] is a Designated Contract
Market who conduct and publish economic
research in addition to publishing quotes for
various commodities. Live pig data is used in this
data mart (cme_1 and cme_2 in Table [1)).

e International Monetary Fund [2§] publishes
daily exchange rates based on the unit of account
SDR (Special Drawing Rights) (imf in Table ).

5.2. StarGraph Analysis

We attempted to import 120 unseen Agri-data sources
and the construction of a StarGraph for each of them.
However, it is important to note that, unlike traditional
data streaming sources, where there is one StarGraph
per source, multiple StarGraphs can be produced from
a single data source. This could be the result (for
example) of multiple <table> elements in the HTML
document from where data is extracted. In this case,
the 120 streaming sources provided 120 StarGraphs.
However, not all sources are usable, or have dimensional
data, or are in the format that we assume for data
sources (a basic schema). By using 120 different data
sources, there is enough empirical evidence for us to

classify data sources in terms of their usability. The
classifications are as follows:

e Full. This indicates the construction of a “perfect”
StarGraph, with all attributes of the source being
correctly captured and stored.

e Partial. This indicates that after StarGraph
construction, not all metadata has been processed
correctly but nevertheless, it still functions as a
working data mart.

e Descriptive. This indicates that a dimensional
structure was found within the StarGraph, but
no measure could be identified. However, the
dimensional structure can be used in integration
to enhance another StarGraph.

e Missing. These were constructed StarGraphs
where dimensions were detected, but no facts could
be identified and the dimensions found were not of
sufficient depth to prove useful for integration.

e Unusable. In this case, the data source did not
allow a StarGraph to be constructed.

From table we can see that of the 120
potential sources, our approach automatically imported
and integrated 84 (70%) wusable Agri sources of
which 41 (34%) were imported with 100% accuracy.
Each column illustrates how a classification was
achieved: Facts indicates that one or more facts
were identified; Dimensions indicates that one or more
dimensions were found; Holistic confirms that no
attributes were discarded during the creation of the
StarGraph; Integrated indicates that the StarGraph
can be used in a subsequent integration by providing
dimension hierarchies and more details to a usable
StarGraph; Non-Spurious indicates that data is the
constructed StarGraph is valid and usable; and finally,
Count denotes exactly the number of constructed
StarGraphs for each classification. Note that the
classification Unusable means that a StarGraph cannot
be constructed while the Non-Spurious metric being
false means that a StarGraph was constructed, but the
data was usable.

The sources which were classified as unusable were
mainly due to the format of the source data (e.g. a
PDF) and for others, it was due to issues with the file
structure (e.g. a file having a .CSV extension, but the
content was not a CSV file). Some sources could be
correctly parsed yet they still proved unusable. All of
these sources were HTML documents which displayed
data in a tabular fashion, but this was accomplished
using CSS, while the underlying HTML failed to use
tags in the correct fashion (e.g. using <div> elements
to represent a table).  Additionally, some sources
which were classified as unusable were, in fact, fully
constructed data cubes. However, creating a StarGraph
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TABLE 2: Results of Analysing 120 Agri Data Sources

Classification | Facts | Dimensions | Holistic | Integrated | Non-Spurious | Count | Sources(%)
Full v v v v v 41 34%
Partial v v v v X 29 24%
Descriptive X v v v X 14 12%
Missing X v X X v 2 1%
Unusable X X X X X 34 29%

from fully constructed data cubes is not currently
possible using our mapping process.

The two sources classified as Missing, found
dimensions but these proved to be unusable without
context. In both instances, the only dimension found
was a date dimension, and in the absence of a
fact, measure or other dimensions to relate to, the
constructed StarGraphs were of little use.

For those classified as Descriptive, no facts were
found in the source data. However, a large degree of
dimensions and hierarchies were discovered. These can
be integrated with other StarGraphs in order that their
dimensional data is reusable.

For those sources classified as Partial, StarGraphs
were constructed but were unusable. An example of a
Partial StarGraph is where a data source uses <table>
elements to model both tabular data and to dictate
layout of content on a webpage. When elements are
misused in this manner, it is difficult for our system to
determine whether or not the data located inside the
<table> is dimension or fact values, or neither. In all
of these cases, user interaction can be used to convert
these StarGraphs to Full StarGraphs. In effect, this
means that 58% of the unknown Agri sources are usable
as data marts with a further 12% ready for integration
into existing data marts.

6. EVALUATION AND DISCUSSION

For a robust evaluation of our methodology, we engaged
with industry partners who specified three business
requirements, each necessitating the construction of
a new data mart. For each case, we perform three
types of integration: user defined, non-assisted, and
ontology assisted. In the user-defined integration,
the data marts were created manually by editing the
structure of a StarGraph and forcing the generation of
mappings. This provided our ground truth version for
each data mart. In the non-assisted integration, we
tested the automated construction of data marts with
a limited usage of our ontology to understand where
issues with automatic integration of data lie. Here, the
ontology was used to normalise terms before StarGraph
construction but was not involved in the integration
process. This was to evaluate the degree to which a
fully automatic process could be used for integration
and the degree to which an ontology is required. This
is useful for domains for which no ontology is readily
available. In the ontology-assisted integration, we

tested the automated construction of data marts but
with a semi-automatic integration approach utilising
the ontology to facilitate semantic integration. This
approach is fully automated for those streams classified
as Full in our earlier analysis, but require some level
of user intervention for streams classified as Partial. In
these cases, the appropriate semantic attributes defined
in our metamodel could not be detected.

For the remainder of this section, we will present our
evaluation using three separate case studies for each of
our partner’s business requirements.

6.1. Case Study 1: Predicting Pig Prices

This first case study analyses pig market trends and
prices in order to predict future pricing. This case study
uses all 13 data sources outlined in Table [[to construct
a data mart to be used to predict the price of pigs on the
global market. It contains the number of pig slaughters
and prices per date and location. The dataset imf is
required in order to resolve different currencies. Of the
13 data sources specified by the end user, 8 sources were
classified as Full while the remaining 5 were classified
as Partial.

User Defined Integration. The manual data mart
was created by editing the mapping files of each
generated StarGraph to influence the integration
process. Four measures were identified: the number of
pigs slaughtered slaughter, the price of pigs price, the
milk futures quotes milk-future and the corn futures
corn-future quotes. In addition there were three main
dimensions, Date, Geo and Currency.

The dimensions Date and Geo are dimensional
hierarchies containing various levels of granularity. For
the Date dimension, the data sources provided were
either monthly or weekly. For the Geo dimension, the
hierarchies were based on area. For example, the USDA
source provided a breakdown of slaughtering by state,
while the Bord Bia source lists the number of slaughters
as a whole.

A high-level overview of the Constellation can be seen
in Fig [2] with details of dimensions and facts and the
links between them. Solid nodes indicate a dimension
while dotted nodes indicate a fact. Solid edges detail the
links between dimensions and facts, while dotted edges
indicate hierarchical relationships within a dimension.
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FIGURE 2: User defined Strategy (Case Study 1)

Non-Assisted Integration. The integration process is
outlined in Table Bl and contains all the three
approaches.  Source_1 and Source_2 indicate the
sources used at different stages of the integration
process and for Source_1, the value Cons represents
the current Constellation. Issues highlights problems
which appeared during the non-assisted integration and
OntologyAssist indicates the rule or process utilised
by the ontology to resolve the issue. The User
Supplied column indicates the metamodel values a
user was required to supply in order for the integration
process to complete. For example, GEO indicates that
the user was prompted to provide a value for the GEO
attribute, while NONE indicates that no user intervention
was required.

The initial Constellation (Step 1) was created from
the datasets aimis_1 and aimis_2. From here, the
integration process adds data sources (Table in
step-wise fashion to the Constellation. There was
a high degree of integration at Step 1. This is
because structurally aim_1 and aim_2 were very similar.
However, granularity for integrated data proved a
problem. Both of these sources contained a measure
called % which denotes the percentage change between
two dates. However, for one source the percentage
meant the percentage change from the previous week,
and for the second source, it meant the percentage
change for a year. Despite these both being correctly
identified as measures, the ontology is needed to resolve
these issues of granularity.

Step 2 integrated the b_1 data. Here, there was a
single node to be integrated with the previous data,
based on the date dimension. However, as there was
no matching node in the Constellation for the measure,
it was not combined with an existing one and instead
occupies its own column in the fact table. This measure
should have integrated with the previous two sources in
addition to the Date dimension as they all relate to the
sales and production of pigs. However, without a form
of abstraction (supplied by an ontology) to semantically
link the two measures they remain separate. Step

3 included the StarGraph created from b_2 into the
Constellation. Similar to b_1, this source was integrated
based on the date dimension as no suitable candidate
was found for measure integration. In other words, the
dimensional hierarchy was enriched but no new facts
were added.

Step 4 integrated p_1 into the Constellation. Once
again, a matching date candidate was found which
saw a large reduction in the graph (as this source is
largely time-series data). However, other dimensions
which failed to integrate were country identifiers (e.g.
“Austria”). Again, an extension to the ontology to
indicate a type hierarchy would see a large degree of
integration produced (and subsequently a lower number
of nodes & edges). As this data was initially modelled
as a matrix, a large number of rows were produced in
the fact table associated with the measure which could
not be integrated with the existing Constellation. Steps
5 & 6 integrates p-2 and p-3. These sources were simple
tables matching years to a measure. As such the data
was integrated based on the date dimension and the
measure was added to the fact table.

Step 7 integrated bp_1 with the Graph partially
integrated on the countries listed in p_1 as one
dimension specified a country. As expected, without the
ontology, which contains a full dimensional hierarchy,
some countries failed to be integrated due to differing
tags (e.g.“Great Britain” and “Northern Ireland”
combined would be synonymous with the tag “United
Kingdom”). Step 8 integrated the bp_2 data source.
This data source was identical in structure to bp-1. As
such, there was a 1-1 integration between this source
and the Constellation with all measures additionally
being merged with those provided by bp_1.

Step 9 integrated c_1 with date providing the only
common attribute for integration. This is due to the
fact that the data source c_1 refers to future prices.
However, a large number of measures were found within
this data source, and as such have been added to
the fact data joined on the date dimension. Step 10
integrated c_2 and, similar to Step 9, the structural
similarity between c_1 and c_2 facilitated a 1-1 mapping
between all nodes. Step 11 sought to integrate currency
conversion data from the imf data source. The data
was successfully integrated on the date dimension,
while the new currencies occupied new dimensions and
the rates were included as measures within the fact
table. Finally, Step 12 integrated the usda data, once
again using the date dimension. The data was highly
dimensional, adding in 30 previously unseen dimensions
and 8 measures.

Ontology-Assisted Integration In this section, we
describe how a close-to-automatic process for data
mart constructed was achieved. However, at various
points in the process, it was necessary for the user
to update the ontology (through a system prompt) so
that integration could complete and to ensure a fully
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automated integration for the same sources in future
data marts.

For the initial Constellation, both a Date and Geo
dimension were found for both data sources. Two
measures were found for each source, but there was
no defined Item, Metric or Units attributes. As
both of these sources were the same structurally and
semantically, they were fully integrated. However, the
process prompted the user for input in both cases.

The next source b_1, was very sparse, containing
only two attributes: date and measure. In this
instance, the integration processes stopped again to
prompt a user for input for the dimensions Geo and
the attributes Item, Metric and Units, as the ontology
again could not provide the precise level of detail. Once
supplied, integration was completed using the Date
and Geo dimensions, and along the measure by the
item dimension. This is because both measures are
of the product Pig but have different metric and unit
attributes.

The next source - b_2 - was again missing a Geo
dimension and Item, Metric and Units attributes.
Once provided, the system proceeded to integrate this
source on the Date and Geo dimensions, and integrated
the measure with the aimis_1 and aimis_2 sources, as
they were identical. The source p-1 found Date and
Geo dimensions, but failed to find the attributes Item,
Metric. However a Units attribute was found (kg
per head). The source p_2 found a Date and Units
attributes, but failed to find a Geo and Item attributes.
Once again, a user prompt updated the ontology and
integration was completed.

The source p-3 found a Date attribute and two
Unit attributes. However, there was no Metric or
Geo dimension. The source bp-1 found all required
attributes except an Item and a Unit attribute. Once
provided by a user, it was integrated into an existing
Metric and Unit dimension.

The source bp_2 was also missing the Item and Unit
attributes and, after user prompting, integration with
bp_1 was successful.

The source c_1 provided several new Metric
attributes. However, a Unit was not listed and the
Geo dimension was not found. c¢_2 was also missing
Unit attributes and a Geo dimension. However, with a
user prompt and ontology update, the integration was
completed. The final integration was different as the
data source provided quotes about corn, and every Item
thus far referred to pigs. Thus, the system integrated
on the Date and Geo dimensions, which was correct.

The source imf found a series of Item attributes and
a Date attribute. However, it failed to find a Metric
or Unit attribute for each measure. Once again, this
data was of an entirely new domain, currency conversion
rates, and as such was integrated on the Date and
Geo dimensions, after the ontology was updated. The
final source usda found all required attributes and was
integrated automatically.

Summary. Case study 1 required the integration of
13 data sources to construct the data mart. In terms
of the user-defined approach, not only do they have to
have an in depth understanding of the data they are
capturing, it was also necessary to manually design and
create the Data Mart (e.g. construct the schema, add
constraints, write queries to insert data). This raised
the same issues as were seen during both non-assisted
and ontology-assisted integration strategies, in terms
of having to determine the correct grain in hierarchy
dimensions and in detecting the correct attribute for
integration. Manual integration was estimated to take
between 8 and 10 hours for what was a reasonably
complex data mart (13 separate sources), while the
automated approach required 118ms and populated
with a batch update in 1.1 seconds. The manual data
mart had a faster population time of 0.9 seconds.

It is worth highlighting the reasons as to why
manual construction takes such a long time as these
are generally the same issues that are resolved
during ontology-assisted integration. This process also
highlights how the ontology is used to aid integration
and how rules are updated when issues with the
structure of data sources are uncovered.

Step 1 integrates two sources into a Constellation
(Cons) and from there, proceeds to integrate more
sources into this constellation. At a high level, there
are three main issues. The first is GRAIN_MISMATCH,
which occurs when two data source are of differing
levels of granularity. For example, the Date dimension
has one source that provides weekly data and the
other providing monthly data.  Similarly for the
Geo dimension, some data sources indicate individual
countries while others provide statistics globally. The
approach is to create a separate fact for each level
of granularity. Later, a ROLLUP operation can be
employed to join facts.

The second issue is labelled generically as
MISSING_ATTR. This indicates that the data source did
not contain enough information to correctly (semanti-
cally) integrate facts. In short, it means that the data
source did not contain all of the attributes specified in
the metamodel. The approach in this instance is for
the ontology to prompt a user for input on these val-
ues. The most common reason for this issue to occur
is that the data is sparse in terms of dimensions and
attributes. When this occurs, it is impossible to infer
these values so the system defers to a user to provide
the missing contextual information.

The final issue is labelled as TERM-TYPE MISMATCH
and revolves around two problems. The first
being different terminologies used across data sources,
particularly across the Geo dimension (for example
‘US’ vs ‘America’). These issues are resolved by the
ontology during the term mapping phase, where both
possibilities are resolved into a single canonical term.
The second issue arises from a lack of type information
in both sources. This issue arises when attempting to
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TABLE 3: Integration Issues for Case Study 1

Step | Source_1 Source_2 Join on Issues Ontology Assist User Supplied
1 {aimis_1} | {aimis_2} | DATE, GEO | GRAIN.MISMATCH | GRAIN_.CHECK ITEM, MET-
RIC, UNIT
2 Cons {b-1} DATE MISSING_ATTR METAMODEL_CHECK | GEO, ITEM,
METRIC,
UNIT
3 Cons {v-2} ALL MISSING_ATTR METAMODEL_CHECK | GEO, ITEM,
METRIC,
UNIT
4 Cons {p-1} DATE TERM- TERM-TYPE_MAP ITEM, MET-
TYPE_MISMATCH RIC
5 Cons {p-2} DATE MISSING_ATTR METAMODEL_CHECK | GEO, ITEM
6 Cons {p-3} DATE MISSING_ATTR METAMODEL_CHECK | GEO, MET-
RIC
7 Cons {bp-1} DATE TERM- TERM-TYPE_MAP ITEM, UNIT
TYPE_MISMATCH
8 Cons {bp-2} ALL TERM- TERM-TYPE_MAP ITEM, UNIT
TYPE_MISMATCH
9 Cons {c-1} DATE MISSING_ATTR METAMODEL_CHECK | GEO, UNIT
10 Cons {c2} ALL MISSING_ATTR METAMODEL_CHECK | GEO, UNIT
11 Cons {imf} DATE TERM- TERM-TYPE_MAP METRIC,
TYPE_MISMATCH UNIT
12 Cons {usda} DATE TERM- TERM-TYPE_MAP NONE
TYPE_MISMATCH

resolve different attributes and dimensions which are
of the same abstract type. For example one source
may have a dimension called ‘France’ and another

‘Australia’.  Without an ontology linking these two S
concepts under the common theme ‘Country’, they o .
cannot be integrated. ,:'

For this case study, term and type mapping
resolved integration problems for the Geo and product
dimensions, while the metamodel was used to enforce

semantic integration by prompting a user for the metric i S
and units attributes. ’l’ ‘\\
For the remaining two case studies, we will provide a I s s
more abbreviated discussion as the issues are identical \  (price,%change) 4
across case studies. However, it is important to k% !
demonstrate the generic nature of our work and the R et i

wider applicability.

FIGURE 3: User defined Strategy (Case Study 2)
6.2. Case Study 2: Price Trend Comparison

This case study compares the trend in the price of
butter with the price of vegetable oil. It requires the
9 sources shown in Table[d] to construct the appropriate
data mart. Of the 9 sources, 8 were classified as Full
StarGraphs and GlobalDairyTrade being classified as .
Partial. Data sources such as PPOIL_USD provide / YA \ ! X

1 \ 1 L \
: value : 1 AveragePrice l‘ %Change | : printonly : I‘pmdncwaluel iprudumpercen]
o i ’ U U

historical data up to the current week. N R Aol R )

User Defined Integration and Non-Assisted integration.
A manual design of a fact table satisfying this FIGURE 4: Non-assisted Strategy (Case Study 2)
requirement is shown in Fig. All of the data
sources provided for this case study provide the same
information, a product and a price at datetime ¢.
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TABLE 4: Sources for Case Study 2.

Name 1D type instances | Description
PPOIL_USD PP CSv 447 Historical Palm oil prices for Africa
PROIL_USD pr CSV 447 Historical Rapeseed oil prices for
Africa
PSOIL_USD ps CSv 447 Historical Soy Bean oil prices for
Africa
PSUNO_USD psu CSv 447 Sunflower oil prices for Africa
REN_SU ren CSV 143 Rennet Casein price (Milk produc-
tion) from Global Dairy Trade
WLD_COCONUT_OIL | cn CSV 687 Prices for World coconut oil pro-
duction
WLD_PALM_OIL po CSvV 687 Prices for world palm oil production
WLD_SOYBEAN_OIL | so CSV 687 Prices for world soybean oil produc-
tion
GlobalDairyTrade gdt | HTML 24 Prices for dairy products

However, some attributes such as product name are
taken from the name of the source (e.g. PPOIL_USD
refers to the product Palm Oil in USD). The Non-
Assisted Constellation is shown in Fig. [] illustrating
again the missing information (the grain in the geo
dimension). As the issues involved in this case study
were described in the previous case study, we provide a
summary of the integration strategies in Table

Ontology-assisted integration. Term mapping and type
mapping were correctly able to identify all attributes
necessary for the GTD data source. However, due to
the sparse nature of the CSV data sources, user input
was required to determine the Type, Metric and Units
for these data sources. Once provided, all data sources
shared a date dimension and all CSV sources shared the
same metric and units dimensions

Comparison Table |p| details the issues found in the
non-assisted integration, the ontology rules applied
to mitigate these issues for the ontology-assisted
integration, and a marker denoting whether user
intervention was needed at a particular integration step
for Case Study 2. Most of the sources for this data
mart were structurally identical, containing only a Date
and a measure. The non-assisted integration approach
integrated on both attributes. This was the incorrect
approach, as despite the fact that these sources are
structurally identical, they are semantically different.

What was different in this case study, and was
due to the sparse nature of sources, was the lack
of information required to deliver proper (semantic)
integration. These issues are overcome through a
combination of the ontology (TERM-TYPE_MAP) and user
intervention through the ontology’s METAMODEL_CHECK
function. The user supplies the necessary metamodel
values for most of these sources and in general, these
contained only a date and measure.

Summary. Case study 2 used nine data sources in
the construction of the data mart. The user defined

approach and the ontology-assisted approach suffered
from the same problem: the sparseness of the majority
of the data sets. However, as most of the datasets were
identical in structure, there was a significant saving
in development time when manually constructing the
data mart. We estimate that this manual approach
completed in about 5 hours and took 17 seconds to
perform a population. A large amount of time was
spent understanding the data due to its sparse nature.
Conversely, the automatic approach had a time of
102ms and populated the data mart in 23 seconds.

6.3. Case Study 3: Analysing Milk Production
for Major Producers

This case study examines year on year changes for milk
production and milk deliveries and uses the 5 data
sources outlined in Table[fl Two were classified as Full
and three as Partial StarGraphs. For this case study,
we again use a summary table (Table E[) to provide a
brief overview of the different integration strategies and
the issues that arose.

User Defined and Non-Assisted Integration. Similar
to the first case study, this data mart requires use
of information which is not visible to the StarGraph.
For instance, terms with names such as Kg/$ imply
that this attribute is a measure; it is created from
two units. Additionally, the knowledge a designer
has such as New Zealand, Germany == Country allow
the schema designer to create generic dimensions such
as Type, Country and Units. The reason for the
units dimension is that unless one explicitly identifies
those units used for a specific measure, they cannot be
directly compared.

Due to that fact that some sources were simply
csv files with two attributes date and value, this
provided a direct mapping for integration. One other
source also provided a date dimension and as such the
attributes named butter, for example, integrated on
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TABLE 5: Integration Issues for Case Study 2
Step | Source_1 | Source_2 | Join on Issues Ontology Assist User Supplied
1 {pp} {pr} DATE, MEASURE | TERM- TERM-TYPE_MAP, GEO, METRIC,
TYPE_MISMATCH, | METAMODEL_CHECK | ITEM, UNITS
MISSING_ATTR
2 Cons {ps} DATE, MEASURE | TERM- TERM-TYPE_MAP, GEO, METRIC,
TYPE_MISMATCH, | METAMODEL_CHECK | ITEM, UNITS
MISSING_ATTR
3 Cons {psu} DATE, MEASURE | TERM- TERM-TYPE_MAP, GEO, METRIC,
TYPE_MISMATCH, | METAMODEL_CHECK | ITEM, UNITS
MISSING_ATTR
4 Cons {ren} DATE MISSING_ATTR METAMODEL_CHECK | GEO, METRIC,
ITEM, UNITS
5 Cons {cn} DATE, MEASURE | TERM- TERM- GEO, METRIC,
TYPE_MISMATCH, | TYPEMAP, META- | ITEM, UNITS
MISSING_ATTR, MODEL_CHECK,
GRAIN_MISMATCH | GRAIN_.CHECK
6 Cons {po} DATE, MEASURE | TERM- TERM-TYPE_MAP, GEO, METRIC,
TYPE_MISMATCH, | METAMODEL_CHECK | ITEM, UNITS
MISSING_ATTR
7 Cons {so} DATE, MEASURE | TERM- TERM-TYPE_MAP, GEO, METRIC,
TYPE_MISMATCH, | METAMODEL_CHECK | ITEM, UNITS
MISSING_ATTR
8 Cons {gdt} NONE TERM- TERM-TYPE_MAP GEO, METRIC,
TYPE_MISMATCH UNITS
TABLE 6: Sources for Case Study 3.
Name 1D Type | Instances | Description
Argentina_Milk_Deliveries amd HTML Deliveries of Cow’s Milk in Ar-
gentina
Cows’ milk collection and products obtained | wdp CSvV 18450 Production of world dairy products
USDA usda_2 CSV 1231 US Dairy production
Milk Production Germany mpg HTML Dairy Germany
NZ Milk Production nzmp HTML Milk production for New Zealand
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FIGURE 5: User defined Strategy (Case Study 3)

this dimension. However, for the remaining source,
the only attribute to integrate on was the name of the
measure. Despite the fact that it provided usable facts,
the data content was incorrect in data mart usage. This

required an entry in the ontology to prevent this aspect
to the integration.

The differences between user-defined (Fig. [5) and
non-assisted (Fig. @ are primarily due to abstractions
of which the user-defined approach has knowledge. In
general, all facts present in the automatic approach are
combined into a single fact entity. This is accomplished
through the use of a Type dimension. However, without
a suitable ontology to inform the automatic approach
that these facts can be combined, they will remain
separated.

Ontology assisted integration All attributes required
for an integration approach were found within both csv
files. However, there was no geo dimension found for
the Argentina and NZ milk production tables. Finally,
for the Milk production in Germany data, no date or
geo dimensions were located. This required the user
prompt for dimensions and an ontology update before
the integration process could complete.
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TABLE 7: Integration Issues for Case Study 3

Step | Source_1 | Source_2 | Join on | Issues Ontology Assist User Supplied
1 {amd} {wdp} DATE | TERM- TERM-TYPE_.MAP | GEO, ITEM
TYPE_MISMATCH

2 Cons {usda_2} | DATE | TERM- TERM-TYPE_MAP | NONE
TYPE_MISMATCH

3 Cons {mpg} DATE | TERM- TERM-TYPE_MAP | GEO
TYPE_MISMATCH

4 Cons {nzmp} DATE | TERM- TERM-TYPE_MAP | GEO, ITEM
TYPE_MISMATCH
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FIGURE 6: Non-assisted Strategy (Case Study 3)
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Comparison. Summary. While case study 3
constructed a data mart from just 5 sources, the
levels of missing metadata and heterogeneity in the
data, resulted in the most difficult integration effort
of all three case studies. Regarding the user-defined
approach, in addition to the time taken to understand
the data and design/implement a data mart, additional
time was spent individually examining the markup
specific to each HTML source so that the correct data
could be extracted. We estimate this process took in
the region of 10 hours while the automatic approach
completed in approx. 110ms.

With regards to population time, the automatic
approach was 11 seconds slower than the manual
approach (74s to 63s). Table moutlines the issues found
during the non-assisted approach, the ontology rule
applied to overcome this issue, and whether or not user
intervention was required at an integration step. For
all sources the only issues found were those of term and
type mapping. Once again, the ontology uses these to
assign canonical terms to each data source, and provides
a layer of abstraction between the data sources so that
they can be semantically linked.

6.4. Overall Summary

The goal of our evaluation is to examine the differences
between a manual integration approach and our
automated approach, both to determine the value of our

methodology and to identify potential improvements to
our process. Table [§ outlines the results of all three use
cases under both a manual and automatic approach.
Column Name relates to the case study and the approach
used: the columns Sources and Instances refer to the
number of data sources involved in the integration, and
the number of instances for each; Metadata refers to
the number of attributes found in the multidimensional
schema once integration has been completed; Time
is the time taken to construct the final data mart;
Structure relates to the usability of the data (yes/no);
and finally Semantics refers to the correctness of data
(yes/no).

The most important column, Time, illustrates
the savings in time using our approach. The 3
manual approaches required between 5 and 10 hours
approximately while the automated approach was
between 3 and 11 minutes. In the earlier discussion
on case studies, the automated time was reported as
between 110ms and 7s. However, here we include 1
minute for each user prompt and response (60 seconds
was the longest time recorded). This clearly shows the
benefit of the automated approach.

In terms of Metadata, the manual approach detected
and removed more redundancies than the automatically
generated approach. This is due in a large part to
the domain expert’s knowledge of the dataset compared
to the automatic approach. While the semi-automatic
approach had similar results to the automatic approach,
this is undoubtedly due to the semi-automatic approach
requesting information from the user as needed. This
results in marginally slower times for batch updates
as recorded in the case study discussions. The degree
of redundant data determines the difference in data
loading times and is our current area of research in
terms of improving the ontology.

7. CONCLUSIONS

There are many websites generating information
that covers a wide range of activities in the Agri
sector. When properly processed, synchronised and
aggregated, these sources can provide vital input for
Agri decision makers. The main issues are that these
data streams come and go, are prone to change, and
can be costly to process for many Agri sector workers.
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TABLE 8: Analysis of all case study approaches

Name Sources | Metadata | Instances | Time | Structure | Semantics
cs_1_user_defined 13 24 262 8hrs | v/ v
cs_1_non_assisted 13 143 262 N/A |/ X

cs_1_ontology_assisted 13 24 262 1lm | v/ v
cs_2_user_defined 9 16 4016 5hrs | v/ v
cs_2_non_assisted 9 28 4016 N/A |/ v

cs_2_ontology_assisted 9 16 4016 8m v v
cs_3_user_defined 5 17 19709 10hrs | v v
¢s_3_non_assisted 5 60 19709 N/A | X X

cs_3_ontology_assisted 5 17 19709 3m v v

In earlier work [I0], we presented a method to convert
smart city web streams into a StarGraph construct
to enable the construction of a single source data
mart from unseen source data. In this paper, we
extend this work by integrating StarGraphs to create
multi-source data marts which we call Constellations.
For our evaluation, we used 120 unseen Agri data
sources to first determine how many sources were
usable by our system. This analysis showed that
70% of the sources were successfully transformed to
our StarGraph model. We then worked with industry
partners who provided three different requirements
and a list of data sources with which to create data
marts. Our automated approach was shown to deliver
considerable benefits, firstly by eliminating the need for
manually constructing data marts (the smallest data
mart required 5 hours in construction); requiring a
minimal effort by the data mart designer in terms of
fully understanding the separate sources (user prompts
for ontology updates refer only to specific parts of the
schema); and finally, new information learnt about data
sources, is maintained in the ontology for future data
mart construction.
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