
Order-Hiding Range Query over
Encrypted Data without Search

Pattern Leakage
Yi Dou∗, Henry C. B. Chan and Man Ho Au

Department of Computing, The Hong Kong Polytechnic University, Hung Hom, Kowloon,
Hong Kong

∗Corresponding author: yi.dou@connect.polyu.hk

For cloud data storage, data privacy and security are two key concerns. Although
sensitive data can be encrypted before they are stored in the cloud, the encrypted
data can hardly be processed efficiently. Hence, a lightweight solution is required
to satisfy both high security and high efficiency requirements. In this paper,
we study the problem of range query over encrypted data. The main idea
is to transform the range comparison to a privacy-preserving set intersection
operation. To protect record privacy, our scheme builds searchable encrypted
indexes for records that are secure against inference attack. To ensure the privacy
of range queries, non-deterministic encryption, which has not been achieved in
range query before, is proposed to hide the search pattern of queries. During
range comparison, our scheme neither leaks the order relationship between the
upper/lower bound of a range query and the encrypted index, nor produces false
positives in the query results. We have implemented our scheme and evaluated its
performance in comparison with other schemes. The comparison results indicate
that our scheme has a shorter index size and search time than the order-revealing
encryption (ORE) scheme when the processing unit is large. Meanwhile, our
scheme only leaks the access pattern, and is proved to be more secure than existing

schemes.

Keywords: Cloud security; Cloud data storage; Data privacy; Range query; Searchable
symmetric encryption

Received 02 September 2017; revised 17 May 2018

1. INTRODUCTION

Cloud computing plays an important role in Informa-
tion Communications and Technology (ICT) infrastruc-
ture to enhance system sustainability and resource man-
agement. Using an outsourcing approach, data can
be stored, accessed and processed flexibly through the
cloud for various applications, such as financial ser-
vices, public health services, and traffic services. To
use a cloud data storage service, data owners need to
upload data to the cloud provider. Hence, data pri-
vacy is a major concern. Instead of storing plaintext
data, encrypted data can be stored in order to protect
data privacy, but it is neither convenient nor efficient
to process encrypted data (e.g., data searching). When
someone wants to search the encrypted data using cer-
tain query conditions, he/she needs to download the en-
crypted data from the cloud, decrypt them and process
the query locally. This method is obviously not desir-
able in terms of efficiency and energy usage. It is also
not practical when the terminal’s processing power or

network bandwidth is limited, such as when processing
data through a mobile phone.

Searchable symmetric encryption (SSE) is a promis-
ing technique to tackle the aforementioned problem
[1]. Currently, the majority of SSE schemes are secure
index-based. This means that each encrypted record is
associated with a number of secure indexes. Each in-
dex is created based on a record to be queried using
one of its attribute values. To allow a cloud server to
search the encrypted records, a trapdoor is created for
each query. During the search phase, the server finds
the matched records by comparing trapdoors of queries
with indexes of records.

Most current SSE schemes focus on handling keyword
search over encrypted data [2, 3, 4, 5]. Some dynamic
SSE schemes are designed for similarity search [6]
and multi-keyword query [7] while achieving forward-
privacy protection. Their main purpose is to reduce
information leakage when an encrypted database is
updated. However, they do not address the problem
of comparison query and range query over encrypted

The Computer Journal, Vol. ??, No. ??, ????

This is a pre-copyedited, author-produced version of an article accepted for publication in The Computer Journal following peer review. The version
of record Yi Dou, Henry C B Chan, Man Ho Au, Order-Hiding Range Query over Encrypted Data without Search Pattern Leakage, The Computer
Journal, Volume 61, Issue 12, December 2018, Pages 1806–182 is available online at: https://doi.org/10.1093/comjnl/bxy075.

This is the Pre-Published Version.

2 Y. Dou, H. C. B. Chan and M. H. Au

data, which is required for some applications. For
example, to find the shortest path between two nodes
in a social network or a computer network without
disclosing network connections, the corresponding cloud
server needs to perform comparisons on the encrypted
path information [8, 9]. In other scenarios, such as
medical record reviewing or financial auditing, records
are sensitive and queries are usually based on range
values (e.g., certain time periods or a particular range of
IP addresses) [10]. They also require performing secure
range queries over encrypted data. Compared with
keyword queries, there are more technical challenges
in designing an effective and secure scheme for range
queries on encrypted data.

In general, there are two types of solutions to the
secure range queries on encrypted data. The first
type (e.g., [11, 12, 13, 14, 15, 16]) aims to provide
faster search time while disclosing certain information
(e.g., the ordering between unmatched records and
trapdoors). The second type (e.g., [17, 18, 19]) is
designed to achieve higher security at the expense of
extra cost (e.g., longer search time, large index storage
space, false positives in the query results). For instance,
Fully Homomorphic Encryption (FHE), which allows
arithmetic operations on ciphertexts can be applied to
support privacy-preserving range queries [19]. Although
FHE can achieve high security, its computational cost is
high. In this paper, we design and evaluate a privacy-
preserving range query scheme to address the above-
mentioned limitations. Our main contributions are
summarised as follows:

• We provide a range comparison method that does
not disclose the different binary bit(s) between a
record and a query.

• We develop a trapdoor generation algorithm that
can hide query search patterns.

• We prove that our proposed scheme is secure under
the best security model available, without the re-
striction of identical search patterns. Furthermore,
our scheme does not produce false positives in the
query results.

• We implement and compare our scheme with OPE
[12] and ORE [16] schemes. Our scheme is on
average over 16 times faster than the OPE scheme
in index generation. For each range comparison,
our scheme is on average 3.89 times faster than the
ORE scheme when the processing unit is 2 bytes.

The rest of the paper is organised as follows. Related
works are introduced in Section 2. Section 3 provides
the scheme’s general construction and security goal.
Section 4 describes the building block utilised in the
scheme. Section 5 presents the details of our proposed
privacy-preserving range query scheme. Experimental
setup and results are illustrated in Section 6. Section 7
analyses the security of the scheme and proves that

it can achieve the defined security goals. Section 8
presents the conclusion and future work.

2. RELATED WORKS

We classify the existing schemes into two categories.
The first type of scheme [11, 12, 13, 14, 15, 16] performs
a range query [a, b] by checking whether the data item is
larger than the lower bound (a ≤ du) and smaller than
the upper bound (du ≤ b) of a query. The comparison
result directly discloses whether the unsatisfied data
item is larger/smaller than the upper/lower bound of
a query. The second type of scheme [17, 18] conducts
a range query by treating the query range as a single
keyword. This type of scheme only outputs whether
the data values are within the query range or not (i.e.,
du ∈ [a, b]). The server is unable to learn the ordering
of unsatisfied records. Therefore, it is more secure
than the first type. However, it introduces plenty of
unmatched query results, and requires a large amount
of index storage space. To maintain similar search time
complexity (i.e., as O(log N) or even faster), these
schemes usually organise indexes of the entire dataset
using special data structures.

Order Preserving Encryption (OPE). Order preserv-
ing encryption, one of the methods for supporting nu-
merical comparison between ciphertexts, has been stud-
ied in [11, 12, 13, 14]. OPE ciphertexts are deterministic
and preserve the numerical order between their plain-
texts, that is a ≤ b, if and only if OPE(a) ≤ OPE(b).
Since the server can directly obtain the ordering of data
items from their OPE ciphertexts, any comparison-
based index structures (e.g., B+ Tree) used for indexing
plaintext data can be directly applied to the OPE ci-
phertexts. Although OPE can achieve the same search
efficiency as in the plaintext cases, it is unable to pre-
vent “inference attacks” [20]. This attack mainly lever-
ages the ordering and the frequency of data items dis-
closed from OPE ciphertexts.

Order Revealing Encryption (ORE). To prevent
“inference attacks”, Lewi and Wu proposed both a
small-domain ORE scheme and a large-domain ORE
scheme in [16]. For both schemes, the comparison
is performed between the right ciphertext of data
EncR(du) and left ciphertext of the query boundary
EncL(a)/EncL(b). The small-domain ORE scheme can
achieve the best-possible semantic security, which is
robust against inference attacks. However, the length
of each right ciphertext grows linearly in the size of
the entire plaintext space. To improve comparison
efficiency and also reduce the index size of the small-
domain ORE scheme, the large-domain ORE scheme
is designed to build indexes by grouping the message
space of data into blocks. However, this approach
leaks the first block that is different between two
ciphertexts during the comparison. This leakage implies
the ordering between data items. When the block size
is relatively small, the server can precisely estimate

The Computer Journal, Vol. ??, No. ??, ????

Range Query over Encrypted Data 3

the relative ordering information. When the block size
is large, however, the ciphertext size of ORE grows
exponentially. The left ciphertext is deterministically
created in the ORE scheme for each query condition.
The search pattern of queries in the ORE scheme is
leaked from trapdoors to the server. The ORE scheme
also inherits the weakness of the comparison query.
Throughout the searching result, the entire encrypted
dataset can be divided into three ordered parts (R1 <
R2 ∈ [a, b] < R3). The ORE scheme has been used
in other scenarios. Shen et al. adopted ORE to
support the approximate constrained shortest distance
queries over encrypted graphs [9]. To filter out paths
in an encrypted graph with the constrained total cost,
the scheme encrypts the cost of each edge using ORE
encryption, and designs an efficient tree-based ORE
ciphertext comparison protocol. However, this scheme
also inherits the weaknesses of the ORE scheme, such
as disclosing the search patterns and order relationship
among the costs.

Comparable Encryption (CE). Comparable encryp-
tion was proposed by Furukawa [21, 22]. The com-
parable encryption ciphertexts are semantically secure
against inference attack, and they are unable to be di-
rectly compared with one another. To support a com-
parison, comparable encryption generates tokens for the
query boundaries. In the token generation, comparable
encryption adopts prefix-preserving encryption (PPE).
When any two data items have the same first n digits
of prefix strings, their PPE tokens must also have the
same n high elements as their prefixes. Hence, the com-
parison seeks to check the equivalence between cipher-
text and token, starting from the high elements until
finding the first one that is different. Comparable en-
cryption has a similar weakness to ORE, which leaks
the length of the longest common prefix string of record
value and query boundary [23]. Moreover, it tells the
attacker about the comparison operator, since it sepa-
rately compares data items with the upper and lower
bounds of a range query. This leakage indicates the rel-
ative numerical differences between data items to the
same query. Since tokens of queries are deterministic
and prefix preserving, the repetition and numerical or-
der between upper/lower bounds of issued queries are
also leaked in comparable encryption.

Privacy Bloom filter tree (PBtree). Li et al. proposed
a privacy-preserving range query scheme that can
achieve index indistinguishability [17]. The scheme is
to test whether in a range query du ∈ [a, b], the prefix
set of du and prefix union set of [a, b] have the same
elements [24]. This scheme can avoid a full dataset
scan, and order leakage between left and right nodes
during the binary search as well. It organises the prefix
sets of data items in random order using a special
complete binary tree called PBtree. Specifically, the
root node stores the prefixes union of all of the data
items. It then recursively splits the data items of each
node into its left and right child node. This split only

ensures that each child node has an equal number of
data items. Since data items are randomly split, the left
child data items are not necessarily smaller than those
of the right child. To achieve the PBtree structure, this
scheme sacrifices the storage cost of O(N logN logM),
where M is the domain size of data items. To improve
the speed of checking the overlap between two prefix
sets, the scheme employs the data structure of Bloom
filter [25], but this creates false positives in the query
results. Although the PBtree structure seeks to achieve
a sublinear search time, the actual search time is
Ω(logN logQ + R), where Q and R are the sizes of
query range and result, respectively. This search time
has no upper bound because of the random placement
of the data items in the PBtree and possible false
positive results [18]. This scheme is only proved to
be secure under certain conditions (i.e., non-adaptive
adversaries following Goh’s definition [26]). Goh’s
security definition does not guarantee trapdoor privacy.
The trapdoor generation is always deterministic, and
thus the search pattern is disclosed [24].

Tree-like Directed Acyclic Graph (TDAG). Search-
able Symmetric Encryption is widely used for keyword
search over encrypted data. Inspired by this idea, De-
mertzis et al. proposed the concept of Range Search-
able Symmetric Encryption (RSSE) [18]. This concept
turns the problem of range query into a multi-keyword
search problem, such that any secure SSE schemes can
be employed to realize the RSSE concept. IND-CKA2
(indistinguishability against adaptive chosen keyword
attacks) is the strongest security model available for
SSE schemes, introduced by Curtmola et al. [27]. The
scheme proposed by Demertzis et al. also satisfies the
IND-CKA2, but has additional leakages. This means
that an attacker can learn nothing more than the formu-
lated leakages. In this scheme, a range query condition
is replaced by several sub-ranges, with each sub-range
represented by a keyword. Data items belonging to the
same sub-range are considered to be documents contain-
ing the same keyword. To prevent multiple sub-ranges
from being associated with the same data item, the
scheme needs to duplicate records into all sub-ranges
having its value. However, this duplication requirement
generates a much larger dataset (i.e., compared to the
original dataset). With the aim of reducing storage cost
and the number of sub-ranges, the scheme designs a new
structure called TDAG (i.e., Tree-like Directed Acyclic
Graph). A TDAG tree is constructed by inserting a
middle node between any two peer nodes on the binary
tree of sub-ranges. During the search phase, each query
is mapped to a single TDAG node based on the low-
est common ancestor node that covers the query range.
However, the TDAG structure creates an unacceptable
number of false positive results when the data skew rate
is high. These false positives reduce the search time to
O(N). Queries with similar range values are targeted
to the same node on the TDAG structure, such that the
search pattern is partially leaked.

The Computer Journal, Vol. ??, No. ??, ????

4 Y. Dou, H. C. B. Chan and M. H. Au

TABLE 1. Comparison of privacy-preserving range query schemes

Scheme
Index Comparison Search Space Search False

Order Operator Pattern Usage Time Positive

OPE [12] leak leak leak O(N) O(logN) no

ORE [16] no / leak leak leak O(N 2b (logM)/b) O(N) / O(logN) no

CE [21] leak leak leak O(N logM) O(N) no

PBtree [17] no no leak O(N logN logM) Ω(logN logQ + R) O(R)

TDAG [18] no no partial leak O(N logM) × Size(record) O(N) O(N)

Our Scheme no / leak no no O(N logM) O(N) / O(logN) no

Data Owner

Data User

1. Build_Index

Cloud Server

5. Search_Index

IndexIndex

FIGURE 1. Architecture of range query on encrypted data
in cloud computing.

Our Scheme. Table 1 shows the comparison
of different privacy-preserving range query schemes.
Parameter N is the dataset size, R is the result size,
Q is the query range size, M is the domain size of
data items, and b is the block size in bits of the ORE
scheme. To summarise, the first three range query
over encrypted data schemes [16, 12] provide higher
search efficiency, but a lower security guarantee than
those of the last two range query over encrypted data
schemes [17, 18]. Compared to existing schemes, our
scheme supports both types of range query (i.e., a ≤ du
and du ∈ [a, b]) and can hide the comparison operator
during the query, even using the first type of comparison
approach. The search pattern of queries (i.e., non-
deterministic trapdoor) is also concealed. Compared
with the listed schemes, our scheme does not have a high
space cost, and produces no false positives in the query
results. Our scheme can support binary search (i.e.,
search time is O(logN)) when ciphertexts are sorted
before searching, which inevitably leaks the ordering of
the index during the query.

3. PROBLEM STATEMENT

We present the system model, algorithm construction,
and security definitions of our scheme in this section.

3.1. System Model

The system model discussed in our scheme is shown in
Figure 1. There are three parties: a data owner, a data
user, and a cloud server. The data owner would like
to store a collection of sensitive records to the cloud.
However, it does not fully trust the cloud provider.
Thus, before uploading records to the cloud, it first
encrypts each record. To provide the cloud with the
ability to perform relational operations on encrypted
records without decryption, the data owner associates
each encrypted record with a secure searchable index
generated using the attribute value of records to be
queried. A valid data user submits a trapdoor - which is
obtained from the data owner generated from plaintext
query - to the server in the cloud. After obtaining
the trapdoor, the server searches the matching records
remotely via indexes, and returns the ID of satisfied
records as the query results to the data user.

In our model, the data owner and authorised
data user are regarded as fully trusted. They
communicate through a secure channel. In practice,
clouds are managed by well-established IT companies.
In cases of attack, it is more likely for cloud
providers to conduct passive attacks instead of active
attacks on specific users. Therefore, in our scheme,
we assume the cloud server to be a semi-honest
(honest-but-curious) adversary, which is trusted to
correctly execute required communication protocols
and algorithms. At the same time, the cloud server
actively deduces the sensitive information of records
and the content of received queries. The semi-
honest adversary model has commonly been adopted
in existing privacy-preserving range query and keyword
searchable symmetric encryption schemes [12, 17, 18,
24, 26, 27]. We make the same assumption as before.

3.2. Notation and Definition

Notations and functions in the rest of the paper are
defined as follows.

• R = (r1, ..., rN) is a collection of records, where ru
is the ID of the uth record.

The Computer Journal, Vol. ??, No. ??, ????

Range Query over Encrypted Data 5

• D = (d1, ..., dN) is a collection of attribute values
from R. Each attribute value du(1 ≤ u ≤ N)
contained in a record ru, where du ∈ Z2` and `
is the bit length of attribute values.

• I = (Id1 , ..., IdN) is a collection of encrypted
searchable indexes based on D, where Idu is the
index of du.

• |Idu | is the index size, which is the number of row
vectors and polynomial random nonce pairs used
in generating Idu .

• Q = [wL, wH] is a range query, where wL, wH ∈
Z2` , wL is the lower bound, and wH is the upper
bound of query Q, respectively.

• TQ is the secure trapdoor of the query Q.

• |TQ| is the trapdoor size, which is the number of
column vectors in TQ.

• D(Q) is the set of query Q’s result on the collection
D, where the attribute values of records in D(Q)
belongs to the interval [wL, wH].

Before going into the details, we first define the
following main algorithms of our scheme.

Definition 3.1. (Privacy Preserving Range Query
Scheme): A searchable symmetric encryption range
query scheme includes four algorithms.

• (sk, params) ← Gen Key(λ) : is executed by the
data owner. Taking as input security parameter λ,
the algorithm generates secret key sk and system
parameter params.

• I ← Bld Index(sk,D) : is run by the data owner
to support the cloud server, with the capability of
searching on R. It takes as input secret key sk
and the attribute value collection D and outputs
encrypted searchable indexes I.

• TQ ← Gen Trapdoor(sk, Q) : is run by the data
owner to create a trapdoor for a given query Q.
It takes both secret key sk and range query Q:
[wL, wH] as the input. It outputs trapdoor TQ for
query Q.

• D(Q) ← Rag Search(I, TQ) : is run by the cloud
server to determine the query result. It takes as
input encrypted searchable indexes I and trapdoor
TQ. It outputs record set D(Q) as the query result.

Correctness. We consider a privacy-preserving range
query scheme over a collection of records is correct, if
for all records in D(Q),

Pr[ru ∈ Rag Search(I, TQ)|du ∈ [wL, wH]] = 1−negl(λ).

3.3. Security Goals

Since the records are encrypted by the data owner
before outsourcing to the cloud server, our scheme aims
to preserve the privacy of the searchable index and
trapdoor during and after queries from the following
aspects:

1) The attribute value used to generate the index is
part of the record contents. As a result, the cloud
server should not learn attribute value du from its
index Idu or from trapdoor TQ of any issued query.

2) The cloud server should not deduce whether the
indexes of two different records are built from the
same attribute value (hide the frequency), and
whether the attribute value of one record is larger
or smaller than that of another record (hide the
order).

3) The privacy of a trapdoor is inherently linked to
the privacy of the index. Hence, the cloud server
should not distinguish the value of wL and wH
from its trapdoor TQ and from the received record
indexes.

4) The cloud server is unable to determine whether
two trapdoors are created from the same query
range or not (hide the search pattern), and whether
the upper or lower bound of one query is larger or
smaller than that of another query.

5) For each unmatched record ru /∈ D(Q), the cloud
server should not know if du > wH or du < wL and
in which bits of du and in which bits of wH/wL
that differentiates du from query Q.

Since we are unable to enumerate all possible attacks,
we introduce the following security definitions.

3.4. Security Model

Let SSERAG = (Gen Key,Bld Index,Gen Trapdoor,
Rag Search) be our privacy-preserving range query
scheme. We analyse the security of SSERAG under
the game-based IND-CKA2 security model [27] with
appropriate modifications. Since trapdoors are
deterministically generated in Curtmola et al.’s scheme,
adversaries in the game of IND-CKA2 model can only
ask for the trapdoors of queries in pairs. And the IND-
CKA2 model includes the search pattern of queries as
one of its leakages. However, in our scheme SSERAG,
the trapdoors are not deterministically created. The
adversary in the game of our security model can make
a request for the trapdoor of the single query.

To make the security definition of IND-CKA2 fit our
stronger security guarantee, we relax the assumption
of the same search pattern in IND-CKA2, and redefine
two games in Section 3.4.1 and Section 3.4.2 to prove
the security of indexes/ciphertext and the security
of trapdoors separately. In each of the two games,

The Computer Journal, Vol. ??, No. ??, ????

6 Y. Dou, H. C. B. Chan and M. H. Au

challenger C executes the actual algorithms in SSERAG.
An adversary A adaptively sends queries to challenger C
based on all previously obtained indexes, trapdoors, and
search results. Before we present our security model, we
first formulate the information leakages that arise from
our scheme.

Definition 3.2. (Information Leakage) Function
L(D, |TQ|, Q) describes the leakage from a range query
Q over a collection of attribute values D, that is

L(D, Q) = 〈|Id1 |, ..., |IdN |, |TQ|,D(Q)〉.

comprised of the index size of attribute values in D,
trapdoor size |TQ|, and the access pattern D(Q) (i.e.,
the record set of range query Q’s result).

3.4.1. Ciphertext Indistinguishability Security
We use the following game to formally define the
requirement that the adversary learns nothing about
the attribute values beyond their index sizes and access
patterns.

Game 1

• Setup: Challenger C creates a large collection of
attribute values D, a sequence of range queries
Q and gives them to the adversary A. C runs
Gen Key(λ) to generate secret key sk and system
parameter params. C keeps secret key sk and sends
params to A.

• Phase 1: Adversary adaptively issues q1 pairs
of requests based on past received indexes and
trapdoors, where the request 1 ≤ i ≤ q1 is shown
as follows:

– Index generation request for an attribute
value collection Di ∈ D: The challenger runs
Bld Index(sk,Di) on a collection of attribute
values Di, and forwards the index Ii to the
adversary.

– Trapdoor generation request for a range
query Qi ∈ Q: The challenger runs
Gen Trapdoor(sk, Qi) on a range query Qi,
and forwards the index TQi

to the adversary.

• Challenge: The adversary submits two plaintext
collections of attribute values D0 and D1 ∈ D.
The challenger randomly flips a bit b ∈ {0, 1} and
responds to the adversary with the index Ib ←
Bld Index(sk,Db) as its challenge ciphertext.

• Phase 2: For request q1 + 1 ≤ i ≤ q, adversary
repeats the same process as in Phase 1 and finally
obtains 〈I1, ...,Iq,Ib〉 and 〈TQ1 , ..., TQq〉.

• Guess: With the restriction that D0 and D1 cause
the same leakage under all chosen queries

L(D0, Q1) = L(D1, Q1),

......

L(D0, Qq) = L(D1, Qq),

adversary guesses a bit b
′ ∈ {0, 1}. If b = b

′
, we

consider that the adversary wins the index security
game.

Definition 3.3. (Ciphertext Indistinguishabil-
ity Security): We say that SSERAG is ciphertext/index
secure in terms of adaptive indistinguishability if for all
polynomial-sized adversary A, the advantage in winning
Game 1 is less than a negligible function of λ.

Pr[b
′

= b]− 1

2
≤ negl(λ).

3.4.2. Trapdoor Indistinguishability Security
We use the following game to formally define the
requirement that the adversary learns nothing about
the range query values beyond their trapdoor sizes and
access patterns.

Game 2

• Setup: Challenger C creates a large collection of
attribute values D, a sequence of range queries
Q and gives them to the adversary A. C runs
Gen Key(λ) to generate secret key sk and system
parameter params. C keeps secret key sk and sends
params to A.

• Phase 1: Adversary adaptively issues q1 pairs
of requests based on past received indexes and
trapdoors, where the request 1 ≤ i ≤ q1 is shown
as follows:

– Index generation request for an attribute
value collection Di ∈ D: The challenger runs
Bld Index(sk,Di) on a collection of attribute
values Di, and forwards the index Ii to the
adversary.

– Trapdoor generation request for a range
query Qi ∈ Q: The challenger runs
Gen Trapdoor(sk, Qi) on a range query Qi,
and forwards the index TQi

to the adversary.

• Challenge: The adversary submits two range
queries Q0 and Q1 ∈ Q. The challenger
randomly flips another bit c ∈ {0, 1} and replies
to the adversary with the trapdoor TQc

←
Gen Trapdoor(sk, Qc) as its challenge trapdoor.

• Phase 2: For request q1 + 1 ≤ i ≤ q, adversary
repeats the same process as in Phase 1 and finally
obtains 〈I1, ...,Iq〉 and 〈TQ1 , ..., TQq , TQc〉.

• Guess: With the restriction that Q0 and Q1 cause
the same leakage under all chosen attribute value
collections

L(D1,Q0) = L(D1,Q1),

......

L(Dq,Q0) = L(Dq,Q1),

The Computer Journal, Vol. ??, No. ??, ????

Range Query over Encrypted Data 7

adversary guesses a bit c
′ ∈ {0, 1}. If c = c

′
,

we consider that the adversary wins the trapdoor
security game.

Definition 3.4. (Trapdoor Indistinguishability
Security): We say that SSERAG is trapdoor secure
in terms of adaptive indistinguishability if for all
polynomial-sized adversary A, the advantage in winning
Game 2 is less than a negligible function of λ.

Pr[c
′

= c]− 1

2
≤ negl(λ).

Definition 3.5. (Indistinguishability Security):
We say that scheme SSERAG is both ciphertext and
trapdoor secure in terms of adaptive indistinguishability
if for all polynomial-sized adversary A, the advantage
in winning both Game 1 and Game 2 is less than a
negligible function of λ.

4. BUILDING BLOCK

The building block of our scheme is the 0/1 encoding
first proposed by Lin and Tzeng to address the
Millionaires’ Problem [28]. The key idea of 0/1 encoding
is to turn data comparison to the problem of finding
the intersection of two sets. For a comparison a > b, it
needs to find a common element between the 1-encoding
set of a and 0-encoding set of b. Let s = s1s2...s` denote
the binary string of s and s1s2...sh represent the binary
string of the first h digits of s (i.e., the h-length prefix
string of s). The prefix string set Ps of s is defined as
follows

Ps = {s1s2...sh|1 ≤ h ≤ `}. (1)

For each prefix string s1s2...sh ending up with sh = 0,
we write the binary string s1s2...sh−11 as one of the
elements in the 0-encoding set S0

s . For each prefix string
s1s2...sh ending up with sh = 1, we directly write its
prefix string s1s2...sh as one of the elements in the 1-
encoding set S1

s . Two binary string sets S0
s and S1

s are
defined as the 0-encoding and 1-encoding sets of s, such
that

S0
s = {s1s2...sh−11|sh = 0, 1 ≤ h ≤ `}, (2)

S1
s = {s1s2...sh|sh = 1, 1 ≤ h ≤ `}, (3)

where ` is the number of binary digits in the binary
string of s. For any two numbers a and b with bit-
length of `, their 0-encoding set and 1-encoding sets
have the following properties [28].{

a > b ⇐⇒ S1
a ∩ S0

b 6= ∅,
a ≤ b ⇐⇒ S1

a ∩ S0
b = ∅. (4)

When S1
a ∩S0

b 6= ∅, their common element is denoted as

a1a2...ah−11|ah=1 = b1b2...bh−11|bh=0

which is equivalent to

a1a2...ah−10|ah=1 = b1b2...bh−10|bh=0.

Then, the right side element b1b2...bh−10|bh=0 belongs
to Pb the prefix string set of number b. Based on the left
side element a1a2...ah−10|ah=1, we define the following

new 1-encoding set S̃1
s

S̃1
s = {s1s2...sh−10|sh = 1, 1 ≤ h ≤ `}. (5)

Since all elements of S̃1
s end up with ah = 0, we can

convert the determination of S1
a ∩S0

b to the comparison

between S̃1
a and Pb, that is S1

a ∩ S0
b = S̃1

a ∩ Pb.
Conversely, we can compare Pa with the 0-encoding
set of b. Since each element of S1

a belongs to Pa and
all elements of S0

b end up with bh = 1, we can get
S1
a ∩ S0

b = Pa ∩ S0
b .

Therefore, S̃1
s , S

0
s and Ps satisfy the same properties

as the 0/1 encoding when comparing two numbers a
and b.{

a > b ⇐⇒ S̃1
a ∩ Pb 6= ∅ or Pa ∩ S0

b 6= ∅,
a ≤ b ⇐⇒ S̃1

a ∩ Pb = ∅ or Pa ∩ S0
b = ∅.

(6)

Here is an example of how to compare two numerical
values. Let a = 9 = (1001)2 and b = 14 = (1110)2
denote two binary strings with 4 bits. Based on
definitions in Equation (1), (2) and (5), we obtain

P9 = {1, 10, 100, 1001}, S0
9 = {11, 101}, S̃1

9 = {0, 1000},

P14 = {1, 11, 111, 1110}, S0
14 = {1111}, S̃1

14 = {0, 10, 110}.

Since S̃1
14 ∩P9 = {10} 6= ∅ and P14 ∩S0

9 = {11} 6= ∅, we

learn that 14 > 9. S̃1
9 ∩ P14 = ∅ and P9 ∩ S0

14 = ∅, we
learn that 9 ≤ 14.

Based on Equation (6), we obtain the following
properties when comparing a value d with a closed
interval [wL, wH].

d /∈ [wL, wH]
⇐⇒ d < wL and d > wH

⇐⇒ Pd ∩ S̃1
wL
6= ∅ and Pd ∩ S0

wH
6= ∅.

(7)
This means that we can use the same prefix string set
of d to compare it with the different encoding sets of
upper bound wH and lower bound wL of a range query.

5. OUR PRIVACY PRESERVING RANGE
QUERY SCHEME

We present our privacy-preserving range query scheme
in this section. We assume that the database records
have already been encrypted before being stored in the
cloud server.

5.1. Scheme Overview

As introduced in the previous sections, the cloud server
will match the index of records with the query trapdoor
to target the satisfied database records. To provide

The Computer Journal, Vol. ??, No. ??, ????

8 Y. Dou, H. C. B. Chan and M. H. Au

sv +----=))()()(()(432110 xxxxxxxxxF
P

01

2

2

3

3

4

410)(cxcxcxcxcxF
P

++++=

)||1010()||101()||10()||1(4321 KHxKHxKHxKHx ====

],,,,,[
~

0123410 gcccccI =)}(,
~
{ 761010 sHMII

´
×=

}1010,101,10,1{)1010(10 102 === Pd

FIGURE 2. Example of index generation.

a security guarantee, our scheme needs to achieve
indistinguishability of both the index and trapdoor.
The building block of our scheme is 0/1 encoding
introduced in Equation (4) and (6), which converts the
data comparison into the calculation of the intersection

between their corresponding 0/1 encoding set S̃1
a/S

0
a

and prefix string set Pb.
Inspired by the idea of private set intersection (PSI)

[29], our scheme represents the encoding elements in
Pb as the roots of polynomial function. During the

comparison phase, the encoding elements in S̃1
a and

S0
a are plugged into the polynomial function. This

design can prevent the server from knowing in which
binary bit the two values differ. To hide the search
pattern of different queries, we use an invertible matrix
with random numbers, such that the cloud server is
unable to distinguish between different queries. As the
encoding elements are placed in shuffled order during
the generation of the trapdoor, the cloud server cannot
locate the intersection results from the upper or lower
bound of the queries. The details of our scheme are
indicated below.

5.2. Scheme Details

• Gen Key(λ) : First, the Gen Key algorithm is
performed by the data owner to determine a modulus p
and a secure keyed hash function H : {0, 1}λ×{0, 1}` →
{0, 1}s(λ), in which s(λ) is a quantity polynomial of the
security parameter λ. Then, Gen Key generates a secret
key K and a random invertible matrix M(`+3)×(`+3),
in which ` is the bit length of the attribute value to
be indexed. The system parameter params is the pair
(p,H) sent to the cloud server and the secret key sk is
the pair (K,M) kept by the data owner.

• Bld Index(sk,D) : The Bld Index algorithm is
performed by the data owner to generate indexes for
records. For each attribute value du in the collection

of D, Bld Index algorithm executes the following steps.
Figure 2 illustrates an example of index generation.

1) First, the Bld Index algorithm computes the `
length binary strings for du and calculates the
prefix string set Pdu = {e1, e2, ..., e`} of du.
Then, for each element ei ∈ Pdu(1 ≤ i ≤ `),
it computes the corresponding hash value xi =
H(ei||K) (mod p) by the secret key K generated
in Gen Key.

2) To hide in which bit of du that differs du from a
range query, the algorithm constructs the following
polynomial function FPdu(x) for all hash values
{x1, ..., x`}. A pair of polynomial random nonces
$u and σu is embedded in FPdu(x) in order to
distinguish the indexes of different records with the
same attribute value,

FPdu(x) = $u(x− x1)(x− x2)...(x− x`) + σu (mod p)

= c`x
` + c`−1x

`−1...c1 + c0,
(8)

where {x1, ..., x`} are the hash values of elements
in Pdu .

3) First, the algorithm constructs a row vector Ĩdu
with ` + 2 elements, where c`, ..., c0 are the
coefficients of FPdu(x), and γu is a random nonce:

Ĩdu = [c`, c`−1..., c1, c0, γu]. (9)

Then, the algorithm constructs two matrixes
[M](`+2)×(`+3) and [M−1](`+3)×(`+2) based on the
matrix M in sk. [M](`+2)×(`+3) is constructed
by removing the (` + 2)th row of M and
[M−1](`+3)×(`+2) is obtained by deleting the (` +
3)th column of M−1.

4) Ĩdu is right multiplied by matrix [M](`+2)×(`+3) to
obtain

I
′

du = Ĩdu · [M](`+2)×(`+3)

= [c`, ..., c1, c0, 0, γu] · [M](`+3)×(`+3).
(10)

The Bld Index algorithm outputs the encrypted
searchable index of du as a 2-tuple of

Idu = {I
′

du , H(σu)} (11)

where H(σu) is the hash value of σu. Finally,
the data owner submits encrypted searchable index
I = (Id1 , ..., IdN) to the cloud sever.

• Gen Trapdoor(sk, Q) : The Gen Trapdoor algorithm
is performed by the data owner to generate the trapdoor
for a query Q : [wL, wH] requested by the data user.
Figure 3 illustrates an example of trapdoor generation.

1) The algorithm first computes two ` length binary
strings for wL and wH . Then, it calculates new

1-encoding set S̃1
wL

for lower bound wL based on
Equation (5) and the 0-encoding set S0

wH
for upper

bound wH based on Equation (2).

The Computer Journal, Vol. ??, No. ??, ????

Range Query over Encrypted Data 9

},,{ 321 TTTTQ =

0-Encoding1-Encoding
]14,9[],[: =HL wwQ

)||1000()||0(21 KHyKHy ==)||1111(3 KHy =

ú
ú
ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê
ê
ê

ë

é

=

1

1

2

1

3

1

4

1

1

1

~

b

y

y

y

y

T

167
1

1

~
TMT ×= ´

-

ú
ú
ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê
ê
ê

ë

é

=

2

2

2

2

3

2

4

2

2

1

~

b

y

y

y

y

T

267
1

2

~
TMT ×= ´

-

ú
ú
ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê
ê
ê

ë

é

=

3

3

2

3

3

3

4

3

3

1

~

b

y

y

y

y

T

367
1

3

~
TMT ×= ´

-

}1111{)1110(14 14
0

2 === S}1000,0{
~

)1001(9 9
1

2 === S

FIGURE 3. Example of trapdoor generation.

2) We suppose that the total number of elements

in S0
wH

and S̃1
wL

is g. Then, for each element

ej(1 ≤ j ≤ g) in S0
wH

and S̃1
wL

, the algorithm
computes its hash value by the secret key K to
obtain yj = H(ej ||K) (mod p). Note that y1, ..., yg
are placed in shuffled order, yj does not correspond

to the jth encoding element in S̃1
wL

or S0
wH

.

3) Since a hash function has the property of
one-wayness and collision resistance, the set

H(Pdu ||K) = {x1, ..., x`} and set H(S̃1
wL
||K) ∪

H(S0
wH
||K) = {y1, ..., yg} still satisfy the same

properties in Equation (6), shown as follows:

a > b ⇐⇒ H(S̃1

a||K) ∩H(Pb||K) 6= ∅
or H(Pa||K) ∩H(S0

b ||K) 6= ∅,
a ≤ b ⇐⇒ H(S̃1

a||K) ∩H(Pb||K) = ∅
or H(Pa||K) ∩H(S0

b ||K) = ∅.

(12)

The union of intersection

[H(S̃1
wL
||K)∩H(Pdu ||K)]∪[H(Pdu ||K)∩H(S0

wH
||K)]

is the intersection {x1, ..., x`} ∩ {y1, ..., yg}.

4) To distinguish the trapdoors of different queries
with the same lower and upper bound values, the
algorithm generates a random nonce βj for each

yj and constructs a column vector T̃j with ` + 2
elements, as follows

T̃j = [y`j , y
`−1
j , ..., yj , 1, βj]

> (mod p). (13)

Then, T̃j is left multiplied by matrix
[M−1](`+3)×(`+2) to obtain the jth trapdoor
element, as follows

Tj = [M−1](`+3)×(`+2) · T̃j
= [M−1](`+3)×(`+3) · [y`j , ..., yj , 1, βj , 0]>.

(14)

},,{Trapdoor 321 TTTTQ =
]14,9[],[: =HL wwQ10=d

sv +----=

++++=

))()()((41312111

011

2

12

3

13

4

14

xyxyxyxy

cycycycyc

sv +----=

++++=

))()()((42322212

021

2

22

3

23

4

24

xyxyxyxy

cycycycyc

ú
ú
ú
ú
ú
ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê

ë

é

×××= -

0

1

],0,,,,,[

3

3

2

3

3

3

4

3

1

01234

b

g y

y

y

y

MMccccc

sv +----=

++++=

))()()((43332313

031

2

32

3

33

4

34

xyxyxyxy

cycycycyc

109
~

)()(),()(109
1

21 £®=®¹¹ fssss PSHHHH I

1410)()(14
0

103 £®=®¹ fss SPHH I

)}(,
~

{Index 761010 sHMII ´×=

167
1

7610110
'

1

~~
TMMITI ×××=×= ´

-
´s

ú
ú
ú
ú
ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê
ê
ê
ê
ê

ë

é

×××= -

0

1

],0,,,,,[

1

1

2

1

3

1

4

1

1

01234

b

g y

y

y

y

MMccccc

367
1

7610310
'

3

~~
TMMITI ×××=×= ´

-
´s

267
1

7610210
'

2

~~
TMMITI ×××=×= ´

-
´s

FIGURE 4. Example of comparison between index and
trapdoor

Finally, the data owner returns g vectors as the
trapdoor of query Q to the data user

TQ = {T1, ..., Tg}. (15)

• Rag Search(I, TQ) : The Rag Search algorithm is
conducted by the cloud server to determine records that
satisfy the query Q. Figure 4 illustrates an example
of search algorithm between index Idu and trapdoor
TQ. For each record ru ∈ R, the cloud server executes
the following steps to determine whether it satisfies the
query or not.

1) Based on the received index Idu = {I ′

du
, H(σu)}

and trapdoor TQ, the cloud server calculates

σuj = I
′

du · Tj
= Ĩdu · [M](`+2)×(`+3) · [M−1](`+3)×(`+2) · T̃j
= [c`, ..., c0, 0, γu] ·M ·M−1 · [y`j , ..., yj , 1, βj , 0]>

= c`y
`
j + c`−1y

`−1
j + ...+ c0 + 0 · βj + γu · 0

= $u(yj − x1)(yj − x2)...(yj − x`) + σu (mod p).

The idea of this step is to plug each trapdoor
element yj into function FPdu(x). Once there is a
trapdoor element Tj to obtain H(σuj) = H(σu),
the server learns {x1, ..., x`} ∩ {yj} 6= ∅, which
means either

du < wL ←− H(S̃1
wL
||K) ∩H(Pdu ||K) 6= ∅

or wH < du ←− H(Pdu ||K) ∩H(S0
wH
||K) 6= ∅

The algorithm outputs du /∈ [wL, wH] that leads
to the unsatisfied record du. Then, the algorithm
directly moves to determine the next record.

The Computer Journal, Vol. ??, No. ??, ????

10 Y. Dou, H. C. B. Chan and M. H. Au

2) When all of H(σu1) 6= H(σu), ...,H(σug) 6= H(σu),
it indicates that

wL ≤ du ←− H(S̃1
wL
||K) ∩H(Pdu ||K) = ∅

du ≤ wH ←− H(Pdu ||K) ∩H(S0
wH
||K) = ∅.

The algorithm outputs du ∈ [wL, wH] and inserts
ru into D(Q) as the query result.

After scanning all of the records in R, the cloud server
returns query result D(Q) to the data user.

5.3. Index Generation Optimization

The main time cost of Bld Index and Rag Search
algorithm is in the calculation of polynomial function
FPdu(x). To improve their execution speeds, we reduce
the comparing units into smaller groups by following
the grouping method. Instead of constructing a single
polynomial function FPdu(x) based on the hash value
of the entire elements {x1, ..., x`}, we first shuffle
the prefix elements, then evenly partition them into
several groups. Then, we construct several polynomial
functions based on the xi in each group, such that
each polynomial function degree is smaller. During the
search phase, trapdoor elements are checked with each
group of xi to find the first unsatisfied group. That
is, each trapdoor element yj is plugged into each group
of polynomial function. The purpose of this grouping
is to reduce the degree of FPdu(x) and the number of

elements in I
′

du
and Tj . It accelerates the speed of

Bld Index (index building) and Rag Search (trapdoor
comparison).

The following shows an example of the grouping
method. The prefix strings of an 8-bit attribute
value d are partitioned into 2 groups in random
order {x1, x8, x2, x4 | x5, x7, x3, x6}. It constructs a
polynomial function for each group with the same
random nonce σ. Finally, the index of d is the cascading
of coefficients {[I ′

d]1 || [I
′

d]2, H(σ)} in each polynomial
function. Since the elements are grouped in shuffled
order, the comparison in grouping method provides
the same security guarantee as for the original scheme.
That is, the server is unable to learn which binary bit
differs between the attribute value and the query.

$1(x− x1)(x− x8)(x− x2)(x− x4) + σ

[I
′

d]1 = [c4,1, ...,c0,1, γ1] ·M6×7,

$2(x− x5)(x− x7)(x− x3)(x− x6) + σ

[I
′

d]2 = [c4,2, ...,c0,2, γ2] ·M6×7.

6. IMPLEMENTATION AND EVALUATION

Apart from the security improvements, in this section
we implement our scheme and evaluate its practicality
with various parameter settings. Specifically, we assess
the performance of our scheme against the OPE scheme
[12] and ORE [16] scheme to illustrate the benefits and

costs of our scheme’s security enhancements. As shown
in Table 1, comparable encryption (CE) is a variant
of the OPE and ORE schemes. However, it leaks
the numerical difference of indexes during the search
by default, which is less secure than the small-domain
ORE. Therefore, in this section we do not compare
the search efficiency of our scheme with comparable
encryption. The TDAG [18] scheme and PBtree [17]
scheme rely on special tree structures built on the entire
dataset to enhance query efficiency. Their searching
speeds are highly related to the query choice and
distribution of attribute domain. Both the TDAG and
PBtree schemes produce false positives to the range
query results. However, our scheme only addresses how
to build secure indexes for attribute values and trapdoor
for the range query condition. There is no false positive
in the query results of our scheme. Hence, we do not
assess the efficiency of our scheme in comparison with
that of the TDAG and PBtree schemes. Certainly, all of
the tree structures proposed in the TDAG and PBtree
schemes for the entire dataset can be directly applied to
our scheme, which can achieve the same efficiency with
better security.

6.1. Experimental Settings

6.1.1. Implementation
Our scheme was implemented in C. For the crypto-
graphic details, we chose the security parameter λ as
128 bits. For the sake of fairness, we used the PRF
function implemented in the ORE scheme [16, 30] as
the hash function H in our scheme, which is an AES-
128 construction. Unlike the PRF function, we took
the output of our AES-based hash function to be the
domain of {0, 1}128. We then converted the outputs of
H as mpz t integers and used GMP-5.0.1 library [31]
for all of the arithmetic operations. We chose the max-
imum value of 128 bits as the modulus p = 2128−1 and
random invertible matrix M was generated with integer
entries. All of the following experiments were conducted
on a computer running macOS Sierra 10.12.5 with 4GB
memory and a 1.3-GHz Intel Core i5 CPU. For the eval-
uation of the ORE scheme [16], we directly used the C
implementation of FastORE [30]. For the evaluation of
the OPE scheme [12], we used the C++ implementation
from CryptDB [32, 33].

Range query is widely used in different scenarios,
in which the query attribute is one of the important
factors affecting performance. Specifically, date and
time are often used range query attributes (i.e., search
for the records during the time period from ‘01/07/2017
00:00:00’ to ‘01/08/2017 00:00:00’). Since date and time
are usually displayed in long format, the schemes use
integers with longer bit length to represent this type of
attribute value. For instance, Li et al. converted the
check-in time attribute field in the Gowalla dataset (a
geo-social network dataset [34]) to 32-bit integers [17].
Another type of range query attribute has a relatively

The Computer Journal, Vol. ??, No. ??, ????

Range Query over Encrypted Data 11

TABLE 2. Parameter settings for figures

Figure
Attribute Value

Group Size (bits)
(bits)

5,6
16, 24, 32, 48 ,64

2, 8, 16
7,9,11 12, 16

8,10 64
4, 8, 12, 14, 16

12 16

small domain (i.e., product price, employee salary, and
student scores), which can be represented as integers
with shorter bit length. For example, the annual salary
field in the USPS dataset (a dataset of employee records
of the US Postal Service [35]) can be represented as 24-
bit integers.

To assess the performance of our scheme under
different scenarios, we randomly choose the attribute
value and the upper or lower bound of a query as the
integers with different bit lengths. Our scheme used
the grouping method introduced in Section 5.3. The
group size is the number of elements involved in building
each group of indexes. To discuss the performance of
schemes under group size, we also varied the group
size within the maximum bit length of attribute. Each
measurement was found by taking the mean value over
50-107 iterations. Table 2 lists the parameter settings
of each experimental result figure.

6.2. Experimental Result

6.2.1. Evaluation with different parameter set-
tings

The index size and building time of our scheme
for different-sized attribute values and groups are
illustrated in Figure 5 and Figure 6, respectively. The
bars in both figures have the same trends. That is, the
index building time and size increase with the increased
bit length of attribute value. For the same bit length of
attribute value, the index building time increases with
increased group size, as shown in Figure 5. Whereas for
the same bit length of the attribute value, the index size
decreases with increased group size, shown in Figure 6.
The opposite results are due to the larger group size,
resulting in a longer time spent on constructing the
index, but with a smaller number of groups. Each
group brings one more set of polynomial coefficients
to the entire index. The index size becomes smaller
when there is a smaller number of groups. Hence, in our
scheme there exists a trade-off between index building
time and index size when choosing group size.

6.2.2. Evaluation of the index building time
The index building time comparison between OPE [12],
ORE [16] schemes and our scheme for different-sized
attribute values and groups is shown in Figure 7 and
Figure 8, respectively. The random oracle in ORE and
our scheme use the same AES-based construction. The

16 24 32 48 64

Bit Length of Attribute Value

0

50

100

150

200

250

300

In
d
e
x
 B

u
ild

in
g
 T

im
e
 (
µ

s
)

2-bit group

8-bit group

16-bit group

FIGURE 5. Index building time of our scheme.

16 24 32 48 64

Bit Length of Attribute Value

0

200

400

600

800

1000

1200

1400

1600

In
d
e
x
 S

iz
e
 (

b
y
te

)

2-bit group

8-bit group

16-bit group

FIGURE 6. Index size of our scheme.

group size for the ORE scheme is the number of bits in
each block. Each group or block is also the comparing
unit for ORE and our scheme. As shown in Figure 7,
among the three schemes, our scheme has the minimum
index building time, while the ORE scheme with the
16-bit group has the maximum index building time.
The time cost of the OPE scheme is slower than the
ORE scheme with 12-bit, but still much faster than the
ORE scheme with 16-bit groups. Specifically, the index
building time of our scheme is on average over 16 times
faster compared to the OPE scheme, and on average
over 6 times faster compared to the ORE scheme with
12-bit groups. We continue to discuss the influence of
group size on both the ORE scheme and our scheme.
The index building time of our scheme and the ORE
scheme under different group sizes is shown in Figure 8.
Note that the index building time of the ORE scheme
grows more rapidly than our scheme when the group
size is larger than 8 bits.

The Computer Journal, Vol. ??, No. ??, ????

12 Y. Dou, H. C. B. Chan and M. H. Au

16 24 32 48 64

Bit Length of Attribute Value

10
1

10
2

10
3

10
4

10
5

In
d
e
x
 B

u
ild

in
g
 T

im
e
 (

s
)

Our scheme(16-bit group)

Lewi & Wu. ORE (12-bit group)

Lewi & Wu. ORE (16-bit group)

Boldyreva et al. OPE

FIGURE 7. Index building time of our scheme, OPE and
ORE schemes with different-sized attribute values.

4 8 12 14 16

Group Size in Bits

10
1

10
2

10
3

10
4

10
5

In
d
e
x
 B

u
ild

in
g
 T

im
e
 (

s
)

Our scheme (64-bit attribute value)

Lewi & Wu. ORE (64-bit attribute value)

FIGURE 8. Influence of group size on the index building
time of our scheme and ORE scheme.

6.2.3. Evaluation of the index size
The index size comparison between OPE [12], ORE
[16] schemes and our scheme for different-sized attribute
values and groups is shown in Figure 9 and Figure 10,
respectively. In Figure 9, the index of the OPE
scheme is the smallest due to its ciphertext still being
a numerical value. The ORE scheme with the 16-bit
group also has the largest index size. The index size
of our scheme with the 16-bit group is on average 2.92
times smaller, compared to the ORE scheme with the
12-bit group. Figure 10 illustrates the index size of ORE
and our scheme under a different group size. The index
size of the ORE scheme also grows quickly when the
group size is larger than 8 bits. However, the index size
of our scheme decreases with increased group size.

As a similar trend reflected from Figure 8 and
Figure 10, the index generation of the ORE scheme is
only efficient by setting a relatively small block size.

16 24 32 48 64

Bit Length of Attribute Value

10
0

10
2

10
4

In
d
e
x
 S

iz
e
 (

b
y
te

)

Our scheme(16-bit group)

Lewi & Wu. ORE (12-bit group)

Lewi & Wu. ORE (16-bit group)

Boldyreva et al. OPE

FIGURE 9. Index size of our scheme, OPE and ORE
schemes with different-sized attribute values.

4 8 12 14 16

Group Size in Bits

10
2

10
3

10
4

10
5

In
d
e
x
 S

iz
e
 (

b
y
te

)

Our scheme (64-bit attribute value)

Lewi & Wu. ORE (64-bit attribute value)

FIGURE 10. Influence of group size on the index size of
our scheme and ORE scheme.

The main reason is that the ORE scheme relies on a
small-domain ORE construction in each group/block to
achieve the best possible security. That is, the indexes
in each ORE group leak nothing but the ordering of
their plaintexts. The cost of constructing the small-
domain ORE indexes grows linearly in the size of group
message space. For a b-bit group, the index size of each
ORE group is linear with 2b − 1 [16]. Whereas in our
scheme, the index of each group is linear with the bit
length of the group b. Therefore, when the group size
is large, the index generation time and index size of our
scheme are much faster and smaller than those of the
ORE scheme.

6.2.4. Evaluation of the search time
Our scheme leaks strictly less information than the OPE
[12] and ORE [16] schemes. In this experiment, we
evaluate how much search efficiency has been sacrificed

The Computer Journal, Vol. ??, No. ??, ????

Range Query over Encrypted Data 13

due to the security improvements in our scheme.
Figure 11 compares the search times of the OPE and
ORE schemes and ours with different-sized attribute
values. The search time is the time used to compare an
index with a trapdoor value of a range query’s upper
or lower bound. The three lower lines (i.e., including
marker symbols +, ∗, and ◦) in Figure 11 indicate
that our scheme is slower than OPE and ORE (12-
bit group) schemes. This is because our scheme is
designed to hide more sensitive information than the
other two schemes. Hence, it requires a longer time to
complete a range comparison. The search time of the
OPE scheme is the fastest, since it directly compares
two numerical values. Nevertheless, it leaks much more
information than the ORE scheme, and indeed, much
more information than our scheme does, as shown in
Table 1. Hence, OPE-encrypted indexes are vulnerable
to inference attack, which directly leaks the frequency
and order relationship of attribute values.

To hide the bit of an attribute value that differs
its index from the trapdoor, our scheme builds the
index from a single function FPdu(x) using the entire
prefix strings of the attribute value du. In the grouping
method proposed in Section 5.3, we shuffle the prefix
strings of each attribute value before partitioning them
into different groups. Thus, the group of index elements
that stops algorithm Rag Search does not correspond
to the same group of bits in the plaintext of du. As a
result, our scheme does not leak the relative differences
between attribute values to the same query in the
range comparison process. Meanwhile, the server in our
scheme has to compare the trapdoor with all or part of
the attribute value’s prefix strings, which takes a longer
time. In the ORE scheme, its index elements keep
the same binary order of the plaintext of the attribute
value. Once the index differentiates the trapdoor in a
group/block of high bits, the ORE scheme will stop the
comparison. Consequently, the ORE scheme is faster
than our scheme when the group size is small (e.g.,
no more than 12 bits). However, the ORE scheme
tells the server about the first bit or group of bits
that differs between an index and a trapdoor. This
leakage shows the relative distances between different
attribute values to the same query. Even for the best
secure setting of the ORE scheme (i.e., small-domain
ORE), our scheme still provides stronger security. The
ORE comparison result inevitably discloses whether an
unmatched attribute value is larger than the upper
bound or smaller than the lower bound of a range
query, while the trapdoor generated in our scheme is
not deterministic, which can prevent the search pattern
leakage of the ORE scheme.

From the two upper lines (i.e., including marker
symbols C and +) in Figure 11, interestingly, we can
observe an opposite trend. The search time of our
scheme is 3.89 times faster than the ORE scheme when
the group size is 16 bits. To further explain the reason
for this result, we discuss the influence of group size

16 24 32 48 64

Bit Length of Attribute Value

10
-2

10
-1

10
0

10
1

10
2

S
e
a
rc

h
 T

im
e
 (

s
)

Our scheme(16-bit group)

Lewi & Wu. ORE (12-bit group)

Lewi & Wu. ORE (16-bit group)

Boldyreva et al. OPE

FIGURE 11. Search time of our scheme, OPE and ORE
schemes with different-sized attribute values.

4 8 12 14 16

Group Size in Bits

10
-1

10
0

10
1

10
2

S
e
a
rc

h
 T

im
e
 (

s
)

Our scheme (16-bit attribute value)

Lewi & Wu. ORE (16-bit attribute value)

FIGURE 12. Influence of group size on the search time of
our scheme and ORE scheme.

on both the ORE and our scheme in Figure 12. Since
the OPE scheme does not process the range comparison
in groups of bits, we cannot test the search time of
the OPE scheme in Figure 12. It shows that our
scheme is both more secure and faster, compared to
the ORE scheme, when the group size is larger than
12 bits. This is because the ORE scheme has adopted
the small-domain ORE construction in each group, such
that it needs to compare the trapdoor with 2b index
elements in each b-bit group. When the group size
increases, the ORE scheme provides higher security, but
at the expense of ORE’s search efficiency, which declines
greatly. In our scheme, on the contrary, each b-bit group
has exactly b index elements. The increasing group
size has less impact on the search speed of our scheme.
Additionally, our scheme provides the same security
guarantees under different group sizes, as discussed
before. Therefore, we can conclude that under the ORE

The Computer Journal, Vol. ??, No. ??, ????

14 Y. Dou, H. C. B. Chan and M. H. Au

scheme, it is difficult to achieve both security and search
efficiency simultaneously. To achieve higher security,
the ORE scheme must sacrifice more efficiency than our
scheme.

7. SECURITY ANALYSIS

Motivated by the approach in [17], we analyse the
security of our scheme in this section to prove that it
achieves the defined security goals.

7.1. Ciphertext Indistinguishability Proof

Theorem 7.1. The privacy-preserving range query
scheme SSERAG is ciphertext indistinguishability secure
with the leakage function L from Definition 3.2,
assuming that the keyed hash function H is a secure
pseudo-random function.

Proof : We use contradiction to prove the Theorem
7.1. Supposing that our scheme SSERAG is not
ciphertext indistinguishability secure, then there exists
a polynomial-sized adversary A1 that can win Game 1
in Section 3.4.1 with an advantage greater than negl(λ).
We construct a polynomial-sized adversary B1, which
usesA1 as a subroutine to break the pseudo-randomness
of function H.

Specifically, adversary B1 plays with a challenger
C in a pseudo-randomness game. At the same time,
B1 interacts with A1 by attempting to “fake” the
challenger in Game 1. Before answering the queries of
A1, the challenger gives B1 a function f and algorithm
Bld Index and Gen Trapdoor. However, the keyed hash
functions H in Bld Index and Gen Trapdoor are replaced
with the function f , which is either pseudo-random or
truly random and takes as input {0, 1}λ and outputs
{0, 1}s(λ).

Next, we describe how the adversary B1 provides the
view for A1 and answers A1’s queries in the following
phases.

• Setup: Based on the function f , adversary B1
generates a large collection of attribute values D
and a sequence of range queries Q, constructs a
system parameter params and sends them to the
adversary A1.

• Phase 1: Adversary A1 adaptively sends B1 an
attribute value collection Di and a range query
Qi as it did in Phase 1 of Game 1. B1 replies to
A1 with indexes Ii and trapdoor TQi

by running
algorithm Bld Index and Gen Trapdoor given by the
challenger, where 1 ≤ i ≤ q1.

• Challenge: Adversary A1 submits two collections
of attribute values D0 and D1. B1 randomly
chooses a bit b ∈ {0, 1} and replies to A1 with
index Ib ← Bld Index(sk,Db) as before.

• Phase 2: For request q1 +1 ≤ i ≤ q, adversary A1

repeats the same process as in Phase 1 and finally
obtains 〈I1, ..., Iq, Ib〉 and 〈TQ1

, ..., TQq
〉.

All range queries are chosen under the restriction
of L(D0, Qi) = L(D1, Qi), where 1 ≤ i ≤ q.

• Guess: After q requests, A1 outputs a bit b
′
. If

b
′

= b, then B1 outputs 1 to the challenger in
the pseudo-randomness game. This means that B1
guesses that function f is pseudo-random. If b

′ 6= b,
then B1 outputs 0 to the challenger. This means
that B1 guesses that function f is truly random.

Next, we prove the following two claims to indicate
that B1 can distinguish whether function f is pseudo-
random or truly random with non-negligible probability
over 1/2.

Claim1. If f is a pseudo-random function, then

Pr[Bf1 = 1|f : {0, 1}λ×{0, 1}` → {0, 1}s(λ)] > 1

2
+negl(λ).

Claim2. If f is a truly random function, then

Pr[Bf1 = 0|f : {0, 1}` → {0, 1}s(λ)] =
1

2
.

Claim 1 Proof : If f is a pseudo-random function, then
A1’s observation is identical to what is viewed during
Game 1 defined in Section 3.4.1. Since we have assumed
thatA1 can win Game 1 with an advantage greater than
negl(λ), then adversary B1 can also output 1 with an
advantage greater than negl(λ). Thus, we prove Claim
1.

7.1.1. Claim 2 Proof
Claim 2 means that adversary A1 cannot distinguish D0

from D1 when the function f is truly random. Next, we
prove Claim 2 from the following aspects.

• Indexes of any attribute values 〈I1, ..., Iq〉 and
Ib reveal no difference between D0 and D1 to A1.

In the index generation, algorithm Bld Index uses the
function f to map the prefix string of an attribute value
into a string. If f is a truly random function, the output
of f is a random string. Then, upon these random
strings, algorithm Bld Index assigns different records
with different random nonces. Specifically, random
nonces $u and σu are embedded in constructing the
function FPdu(x). And random nonce γu is used in the
matrix multiplication. The last element of index Idu
is the f(σu). Hence, each index is identical to a series
of random strings. Adversary A1 is unable to detect
that the secret key sk, queried attribute value du have
not been used. Given two different indexes Idu1

and
Idu2 , it is infeasible for A1 to determine whether they
are created from the same attribute value (du1 = du2) or
two different attribute values (du1 6= du2). Additionally,
the index sizes of attribute values in D0 and D1 are
required to be the same. A1 also cannot distinguish D0

from D1 based on the index sizes shown in the Ib.

The Computer Journal, Vol. ??, No. ??, ????

Range Query over Encrypted Data 15

• Trapdoors of any range queries 〈TQ1 , ..., TQq 〉
reveal no difference between D0 and D1 to A1.

In algorithm Gen Trapdoor, each element of trapdoor
TQi

(Qi = [wiL, wiH]) is initially constructed using
the new 1-encoding of wiL or 0-encoding of wiH .
This encoding approach is different from that used in
index generation. Then, algorithm Gen Trapdoor uses
function f to map each encoding into a string. As
indicated before, when f is a truly random function,
its output is a random string. Later, each trapdoor
element TQi

is assigned with a different random nonce
βj used in the matrix multiplication. Hence, elements
of any trapdoor to adversary A1 are identical to a series
of random strings. Therefore, it is infeasible for A1 to
correlate any trapdoor values TQi

with the attribute
values in D0 and D1.

• Matched records in Db(Qi) ←
Rag Search(Ib, TQi

) reveal no difference between
D0 and D1 to A1.

D0 and D1 are required to have the same access pattern
under all issued queries, that is, D0(Qi) = D1(Qi). And
every prefix string of a satisfied attribute value has no
common elements with any encodings of a range query,
that is H(σu1) 6= H(σu), ...,H(σug) 6= H(σu). Hence,
A1 cannot trivially distinguish D0 from D1 based on
their matched records under any range queries.

• The case of how each unmatched record in Db
fails to be returned by a range query reveals no
difference between D0 and D1 to A1.

Based on the property shown in Equation (7), there
is no difference when comparing the index with the
trapdoor elements of upper bound or lower bound of
the same range query. That is, A1 cannot distinguish
D0 from D1 based on the difference of du > wiH or du <
wiL. In addition, function FPdu(x) is constructed from
all hashed prefix strings of du. The A1 cannot detect in
which bit of du that differs du from Qi. In the grouping
method proposed in Section 5.3, we shuffle the prefix
elements of each attribute value before partitioning
them into different groups. Thus, the group of index
elements that stops algorithm Rag Search does not
correspond to the same group of bits of du and leaks
no difference between D0 and D1.

If f is a truly random function, B1 can correctly guess
f with a probability of 1/2. Thus, we prove Claim 2.

The function f given by the challenger is either pseudo-
random or truly random with the same probability of
1/2. Combining Claim 1 with Claim 2, we obtain

1

2
Pr[Bf1 = 1|f : {0, 1}λ × {0, 1}` → {0, 1}s(λ)]

+
1

2
Pr[Bf1 = 0|f : {0, 1}` → {0, 1}s(λ)] > 1

2
+

negl(λ)

2
.

This result indicates that B1 can distinguish a pseudo-
random function from a truly random function with an

advantage greater than negl(λ). However, this result
contradicts the property of a pseudo-random function,
which is impossible. Thus, we prove that an adversary
A1 that can win in Game 1 with non-negligible
probability over 1/2 does not exist. Therefore, our
scheme SSERAG is ciphertext indistinguishability secure.

7.2. Trapdoor Indistinguishability Proof

Theorem 7.2. The privacy-preserving range query
scheme SSERAG is trapdoor indistinguishability secure
with the leakage function L from Definition 3.2,
assuming that the keyed hash function H is a secure
pseudo-random function.

Proof : We use contradiction to prove the Theorem
7.2. Supposing that our scheme SSERAG is not
trapdoor indistinguishability secure, then there exists
a polynomial-sized adversary A2 that wins in Game 2,
defined in Section 3.4.2 with non-negligible probability
over 1/2. We construct a polynomial-sized adversary
B2, which uses A2 as a subroutine to break the pseudo-
randomness of function H.

Specifically, adversary B2 plays with a challenger
C in a pseudo-randomness game. At the same time,
B2 interacts with A2 by attempting to “fake” the
challenger in Game 2. Before answering the queries of
A2, the challenger gives B2 a function z and algorithm
Bld Index and Gen Trapdoor. However, the keyed hash
functions H in Bld Index and Gen Trapdoor are replaced
with the function z, which is either pseudo-random or
truly random, and takes as input {0, 1}λ and outputs
{0, 1}s(λ).

Next, we describe how the adversary B2 provides the
view for A2 and answers A2’s queries in the following
phases.

• Setup: Based on the function z, adversary B2
generates a large collection of attribute values D
and a sequence of range queries Q, constructs a
system parameter params and sends them to the
adversary A2.

• Phase 1: Adversary A2 adaptively sends B2 an
attribute value collection Di and a range query
Qi as it did in Phase 1 of Game 2. B2 replies to
A2 with indexes Ii and trapdoor TQi by running
algorithm Bld Index and Gen Trapdoor given by the
challenger, where 1 ≤ i ≤ q1.

• Challenge: Adversary A2 picks two range queries
Q0 and Q1. B2 randomly samples a bit c ∈
{0, 1} and replies to A2 with a trapdoor TQc

←
Gen Trapdoor(sk, Qc) as before.

• Phase 2: For request q1 +1 ≤ i ≤ q, adversary A2

repeats the same process as in Phase 1 and finally
obtains 〈I1, ..., Iq〉 and 〈TQ1

, ..., TQq
, TQc

〉.
All collections of attribute values are chosen under
the restriction of L(Di, Q0) = L(Di, Q1), where

The Computer Journal, Vol. ??, No. ??, ????

16 Y. Dou, H. C. B. Chan and M. H. Au

1 ≤ i ≤ q.

• Guess: After q requests, A2 outputs a bit c
′
. If

c
′

= c, then B2 outputs 1 to the challenger in
the pseudo-randomness game. This means that
B2 guesses that z is a pseudo-random function. If
c
′ 6= c, then B2 outputs 0 to the challenger. This

means that B2 guesses that z is a truly random
function.

Next, we prove the following two claims to indicate
that B2 can distinguish whether function z is pseudo-
random or truly random with an advantage greater than
negl(λ).

Claim3. If z is a pseudo-random function, then

Pr[Bz2 = 1|z : {0, 1}λ×{0, 1}` → {0, 1}s(λ)] > 1

2
+negl(λ).

Claim4. If z is a truly random function, then

Pr[Bz2 = 0|z : {0, 1}` → {0, 1}s(λ)] =
1

2
.

Claim 3 Proof : If z is a pseudo-random function, then
A2’s observation is identical to what is viewed during
Game 2 defined in Section 3.4.2. Since we have assumed
that A2 can win Game 2 with non-negligible probability
over 1/2, then adversary B2 can also output 1 with non-
negligible probability over 1/2. Thus, we prove Claim
3.

7.2.1. Claim 4 Proof
Claim 4 means that adversary A2 cannot distinguish Q0

from Q1 when the function z is truly random. Next, we
prove Claim 4 from the following aspects.

• Trapdoors of any range queries 〈TQ1 , ..., TQq 〉
and TQc

reveal no difference between Q0 and Q1

to A2.

As indicated in the second point of Section 7.1.1,
algorithm Gen Trapdoor uses function z and different
random nonce βj in generating each trapdoor element
TQi

. When the function z is truly random, the elements
of any trapdoor are identical to a series of random
strings. AdversaryA2 is unable to detect that the secret
key sk, the upper bound wiH and lower bound wiL
have not been used. Given two different trapdoors TQi1

and TQi2
, it is infeasible for A2 to determine whether

they are created from the same query range or not, and
whether the upper or lower bound of Qi1 is larger or
smaller than that of Qi2. Additionally, the trapdoor
sizes of Q0 and Q1 are required to be the same. A2

cannot distinguish Q0 from Q1 based on the trapdoor
size of TQc

.

• Indexes of any attribute values 〈I1, ..., Iq〉
reveal no difference between Q0 and Q1 to A2

As mentioned in the first two points of Section
7.1.1, both algorithm Bld Index and Gen Trapdoor add

different random nonces when generating each index
and trapdoor element. Adversary A2 is unable to
correlate any index value Idu with the trapdoor of Q0

or Q1.

• Matched records in Di(Qc) ←
Rag Search(Ii, TQc

) reveal no difference between
Q0 and Q1 to A2.

Q0 and Q1 are required to have the same access pattern
with all issued collections of attribute values, that is,
Di(Q0) = Di(Q1). And every trapdoor element has no
common elements with any prefix string of a satisfied
attribute value, that is H(σu1) 6= H(σu), ...,H(σug) 6=
H(σu). Hence, A2 cannot trivially distinguish Q0 from
Q1 based on their matched records in any attribute
value collections.

• The case of how each unmatched record fails
to be returned by the range query Qc reveals no
difference between Q0 and Q1 to A2.

To hide which trapdoor element differs between the
trapdoor and index, algorithm Gen Trapdoor places
the trapdoor elements of each issued range query in
shuffled order. That is, trapdoor element Tj causing
the H(σuj) = H(σu) does not correspond to the same
bit of lower/upper bound of a range query. Hence,
the trapdoor element that differs in each unmatched
attribute value from query Qc does not leak any
difference between Q0 and Q1 to A2.

If z is a truly random function, B2 can correctly guess
z with a probability of 1/2. Thus, we prove Claim 4.

The function z given by the challenger is either pseudo-
random or truly random, with the same probability of
1/2. Combining Claim 3 with Claim 4, we obtain

1

2
Pr[Bz2 = 1|f : {0, 1}λ × {0, 1}` → {0, 1}s(λ)]

+
1

2
Pr[Bz2 = 0|f : {0, 1}` → {0, 1}s(λ)] > 1

2
+

negl(λ)

2
.

This result indicates that B2 can distinguish a pseudo-
random function from a truly random function with
non-negligible probability over 1/2. However, this
result contradicts the property of a pseudo-random
function, which is impossible. Thus, we prove that there
does not exist an adversary A2 that can win in Game
2 with an advantage greater than negl(λ). Thus, our
scheme SSERAG is trapdoor indistinguishability secure.

To sum up, based on the Definition in 3.5, we
can conclude that our privacy-preserving range query
scheme SSERAG is both ciphertext and trapdoor
indistinguishability secure with the leakage function
L from Definition 3.2, assuming that the keyed hash
function H is a secure pseudo-random function.

8. CONCLUSION

In this paper, we have designed an order-hiding range
query scheme. Our scheme solves the security leakage

The Computer Journal, Vol. ??, No. ??, ????

Range Query over Encrypted Data 17

problem in existing secure range query schemes. To hide
the statistical relationships among indexes, our scheme
adopts the 0/1 encoding technique and constructs the
indexes as the coefficients of the randomized polynomial
function. To avoid leaking the comparison operator
and search pattern, our scheme introduces a random
invertible matrix in the generation of query trapdoors.
We formally analyse sensitive information leakage in
our scheme, and have proved it is secure under an
IND-CKA2 security definition without restriction of the
same search pattern. We implemented and assessed the
performance of our scheme. The comparison results
show that although the ORE scheme has a shorter index
size and search time with small processing units, it is
slower and has a longer index size than our scheme
when the processing unit is large. On average, the
index building time of our scheme is more than 16 times
faster than the OPE scheme. Meanwhile, our scheme
only leaks the access pattern, and is proved to be more
secure than existing schemes.

ACKNOWLEDGMENT

This work is supported by the Department of
Computing, The Hong Kong Polytechnic University.

REFERENCES

[1] Bösch, C., Hartel, P. H., Jonker, W., and Peter,
A. (2014) A survey of provably secure searchable
encryption. ACM Comput. Surv., 47, 18:1–18:51.

[2] Wang, B., Yu, S., Lou, W., and Hou, Y. T.
(2014) Privacy-preserving multi-keyword fuzzy search
over encrypted data in the cloud. 2014 IEEE
Conference on Computer Communications, INFOCOM
2014, Toronto, Canada, April 27 - May 2, 2014, pp.
2112–2120. IEEE.

[3] Wang, B., Song, W., Lou, W., and Hou, Y. T.
(2015) Inverted index based multi-keyword public-key
searchable encryption with strong privacy guarantee.
2015 IEEE Conference on Computer Communications,
INFOCOM 2015, Kowloon, Hong Kong, April 26 - May
1, 2015, pp. 2092–2100. IEEE.

[4] Sun, W., Yu, S., Lou, W., Hou, Y. T., and Li, H. (2014)
Protecting your right: Attribute-based keyword search
with fine-grained owner-enforced search authorization
in the cloud. 2014 IEEE Conference on Computer
Communications, INFOCOM 2014, Toronto, Canada,
April 27 - May 2, 2014, pp. 226–234. IEEE.

[5] Cao, N., Wang, C., Li, M., Ren, K., and Lou, W. (2014)
Privacy-preserving multi-keyword ranked search over
encrypted cloud data. IEEE Trans. Parallel Distrib.
Syst., 25, 222–233.

[6] Wang, Q., He, M., Du, M., Chow, S. S. M., Lai, R.
W. F., and Zou, Q. (2018) Searchable encryption over
feature-rich data. IEEE Trans. Dependable and Secure
Computing, 15, 496–510.

[7] Du, M., Wang, Q., He, M., and Weng, J. (2018)
Privacy-preserving indexing and query processing
for secure dynamic cloud storage. IEEE Trans.
Information Forensics and Security, 13, 2320–2332.

[8] Wang, Q., Ren, K., Du, M., Li, Q., and Mohaisen,
A. (2017) Secgdb: Graph encryption for exact shortest
distance queries with efficient updates. Financial
Cryptography and Data Security - 21st International
Conference, FC 2017, Sliema, Malta, April 3-7, 2017,
Revised Selected Papers, Cham, pp. 79–97. Springer.

[9] Shen, M., Ma, B., Zhu, L., Mijumbi, R., Du, X., and
Hu, J. (2018) Cloud-based approximate constrained
shortest distance queries over encrypted graphs with
privacy protection. IEEE Trans. Information Forensics
and Security, 13, 940–953.

[10] Boneh, D. and Waters, B. (2007) Conjunctive, subset,
and range queries on encrypted data. Theory of
Cryptography, 4th Theory of Cryptography Conference,
TCC 2007, Amsterdam, The Netherlands, February 21-
24, 2007, Proceedings, Berlin, Heidelberg, pp. 535–554.
Springer.

[11] Agrawal, R., Kiernan, J., Srikant, R., and Xu,
Y. (2004) Order-preserving encryption for numeric
data. Proceedings of the ACM SIGMOD International
Conference on Management of Data, Paris, France,
June 13-18, 2004, New York, NY, USA, pp. 563–574.
ACM.

[12] Boldyreva, A., Chenette, N., Lee, Y., and O’Neill,
A. (2009) Order-preserving symmetric encryption.
Advances in Cryptology - EUROCRYPT 2009, 28th
Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Cologne,
Germany, April 26-30, 2009. Proceedings, Berlin,
Heidelberg, pp. 224–241. Springer.

[13] Popa, R. A., Li, F. H., and Zeldovich, N. (2013) An
ideal-security protocol for order-preserving encoding.
2013 IEEE Symposium on Security and Privacy, SP
2013, Berkeley, CA, USA, May 19-22, 2013, pp. 463–
477. IEEE.

[14] Kerschbaum, F. and Schröpfer, A. (2014) Optimal
average-complexity ideal-security order-preserving en-
cryption. Proceedings of the 2014 ACM SIGSAC Con-
ference on Computer and Communications Security,
Scottsdale, AZ, USA, November 3-7, 2014, New York,
NY, USA, pp. 275–286. ACM.

[15] Boneh, D., Lewi, K., Raykova, M., Sahai, A., Zhandry,
M., and Zimmerman, J. (2015) Semantically secure
order-revealing encryption: Multi-input functional en-
cryption without obfuscation. Advances in Cryptol-
ogy - EUROCRYPT 2015 - 34th Annual International
Conference on the Theory and Applications of Crypto-
graphic Techniques, Sofia, Bulgaria, April 26-30, 2015,
Proceedings, Part II, Berlin, Heidelberg, pp. 563–594.
Springer.

[16] Lewi, K. and Wu, D. J. (2016) Order-revealing en-
cryption: New constructions, applications, and lower
bounds. Proceedings of the 2016 ACM SIGSAC Con-
ference on Computer and Communications Security,
Vienna, Austria, October 24-28, 2016, New York, NY,
USA, pp. 1167–1178. ACM.

[17] Li, R., Liu, A. X., Wang, A. L., and Bruhadeshwar,
B. (2016) Fast and scalable range query processing
with strong privacy protection for cloud computing.
IEEE/ACM Trans. Netw., 24, 2305–2318.

[18] Demertzis, I., Papadopoulos, S., Papapetrou, O.,
Deligiannakis, A., and Garofalakis, M. N. (2016)

The Computer Journal, Vol. ??, No. ??, ????

18 Y. Dou, H. C. B. Chan and M. H. Au

Practical private range search revisited. Proceedings of
the 2016 International Conference on Management of
Data, SIGMOD Conference 2016, San Francisco, CA,
USA, June 26 - July 01, 2016, New York, NY, USA,
pp. 185–198. ACM.

[19] Gai, K. and Qiu, M. (2017) Blend arithmetic operations
on tensor-based fully homomorphic encryption over real
numbers. IEEE Trans. Industrial Informatics, PP, 1–
1.

[20] Naveed, M., Kamara, S., and Wright, C. V. (2015)
Inference attacks on property-preserving encrypted
databases. Proceedings of the 22nd ACM SIGSAC Con-
ference on Computer and Communications Security,
Denver, CO, USA, October 12-6, 2015, New York, NY,
USA, pp. 644–655. ACM.

[21] Furukawa, J. (2013) Request-based comparable encryp-
tion. Computer Security - ESORICS 2013 - 18th Eu-
ropean Symposium on Research in Computer Security,
Egham, UK, September 9-13, 2013. Proceedings, Berlin,
Heidelberg, pp. 129–146. Springer.

[22] Furukawa, J. (2014) Short comparable encryption.
Cryptology and Network Security - 13th International
Conference, CANS 2014, Heraklion, Crete, Greece,
October 22-24, 2014. Proceedings, Cham, pp. 337–352.
Springer.

[23] Horst, C., Kikuchi, R., and Xagawa, K. (2017)
Cryptanalysis of comparable encryption in sigmod’16.
Proceedings of the 2017 ACM International Conference
on Management of Data, SIGMOD Conference 2017,
Chicago, IL, USA, May 14-19, 2017, New York, NY,
USA, pp. 1069–1084. ACM.

[24] Li, J. and Omiecinski, E. (2005) Efficiency and security
trade-off in supporting range queries on encrypted
databases. Data and Applications Security XIX, 19th
Annual IFIP WG 11.3 Working Conference on Data
and Applications Security, Storrs, CT, USA, August 7-
10, 2005, Proceedings, Berlin, Heidelberg, pp. 69–83.
Springer.

[25] Bloom, B. H. (1970) Space/time trade-offs in hash
coding with allowable errors. Commun. ACM, 13, 422–
426.

[26] Goh, E. (2003) Secure indexes. IACR Cryptology
ePrint Archive, 2003, 216.

[27] Curtmola, R., Garay, J. A., Kamara, S., and Ostrovsky,
R. (2006) Searchable symmetric encryption: improved
definitions and efficient constructions. Proceedings
of the 13th ACM Conference on Computer and
Communications Security, CCS 2006, Alexandria, VA,
USA, October 30 - November 3, 2006, New York, NY,
USA, pp. 79–88. ACM.

[28] Lin, H. and Tzeng, W. (2005) An efficient solution
to the millionaires’ problem based on homomorphic
encryption. Applied Cryptography and Network
Security, Third International Conference, ACNS 2005,
New York, NY, USA, June 7-10, 2005, Proceedings,
Berlin, Heidelberg, pp. 456–466. Springer.

[29] Freedman, M. J., Nissim, K., and Pinkas, B. (2004)
Efficient private matching and set intersection. Ad-
vances in Cryptology - EUROCRYPT 2004, Inter-
national Conference on the Theory and Applications
of Cryptographic Techniques, Interlaken, Switzerland,
May 2-6, 2004, Proceedings, Berlin, Heidelberg, pp. 1–
19. Springer.

[30] Lewi, K. (2016). Fastore-an implementation of
order-revealing encryption. https://github.com/

kevinlewi/fastore. Last accessed 20 December 2017.

[31] Granlund, T. and the GMP development team (2012).
Gnu mp: The gnu multiple precision arithmetic library.
http://gmplib.org. Last accessed 20 December 2017.

[32] Popa, R. A., Redfield, C. M. S., Zeldovich, N., and Bal-
akrishnan, H. (2011) Cryptdb: protecting confidential-
ity with encrypted query processing. Proceedings of the
23rd ACM Symposium on Operating Systems Principles
2011, SOSP 2011, Cascais, Portugal, October 23-26,
2011, New York, NY, USA, pp. 85–100. ACM.

[33] Group, C. (2014). Cryptdb-a database system that
can process sql queries over encrypted data. https:

//github.com/CryptDB/cryptdb. Last accessed 20
December 2017.

[34] Leskovec, J. and Krevl, A. (2014). Snap datasets: Stan-
ford large network dataset collection (gowalla). https:

//snap.stanford.edu/data/loc-gowalla.html. Last
accessed 20 December 2017.

[35] Chang, C.-C. and Lin, C.-J. (2011). Lib-
svm: a library for support vector machines
(usps). https://www.csie.ntu.edu.tw/~cjlin/

libsvmtools/datasets/multiclass.html#usps. Last
accessed 20 December 2017.

The Computer Journal, Vol. ??, No. ??, ????

