
CAP Theorem: Revision of its Related Consistency
Models

Francesc D. Muñoz-Escoı́∗

Rubén de Juan-Marı́n
José-Ramón Garcı́a-Escrivá

Instituto Universitario Mixto Tecnológico de Informática,

Universitat Politècnica de València, 46022 Valencia (Spain)

J. R. González de Mendı́vil
Depto. de Ingenierı́a Matemática e Informática,

Universidad Pública de Navarra, 31006 Pamplona (Spain)

José M. Bernabéu-Aubán
Instituto Universitario Mixto Tecnológico de Informática,

Universitat Politècnica de València, 46022 Valencia (Spain)

Abstract
The CAP theorem states that only two of these properties can be simultaneously guaranteed in

a distributed service: (i) consistency, (ii) availability, and (iii) network partition tolerance. This
theorem was stated and proved assuming that “consistency” refers to atomic consistency. However,
multiple consistency models exist and atomic consistency is located at the strongest edge of that
spectrum.

Many distributed services deployed in cloud platforms should be highly available and scalable.
Network partitions may arise in those deployments and should be tolerated. One way of dealing
with CAP constraints consists in relaxing consistency. Therefore, it is interesting to explore the set
of consistency models not supported in an available and partition-tolerant service (CAP-constrained
models). Other weaker consistency models could be maintained when scalable services are deployed
in partitionable systems (CAP-free models). Three contributions arise: (1) multiple other CAP-
constrained models are identified, (2) a borderline between CAP-constrained and CAP-free models
is set, and (3) a hierarchy of consistency models depending on their strength and convergence is built.

KEYWORDS: Inter-replica consistency; CAP theorem; Service availability; Network partition; Con-
sistency model

1 Introduction
Scalable distributed services try to maintain their service continuity in all situations. When they are
geo-replicated, a trade-off exists among three properties: replica consistency (C), service availability
(A) and network partition tolerance (P). Only two of those three properties can be simultaneously
guaranteed. Such trade-off was suggested long time ago (Davidson et al., 1985) [1], explained by
Fox and Brewer [2] in 1999 and proved by Gilbert and Lynch [3] in 2002. However, the compromise
between strongly consistent actions, availability and tolerance to network partitions was already implicit
in Johnson and Thomas (1975) [4] and justified by Birman and Friedman [5] in 1996.

Service availability and network partition tolerance are dichotomies. They are either respected
or not. Service availability means that every client request that reaches a service instance should be

∗e-mail: fmunyoz@iti.upv.es

answered. When a network partition arises, the instances of a service may be spread among multiple
disjoint node subgroups. Network partition tolerance means that every service instance subgroup goes
on while the network remains partitioned.

On the other hand, service replica consistency admits a gradation of consistency levels. In spite of
this, when we simply refer to “consistency” we understand that it means atomic consistency [6]; i.e.,
that all instances are able to maintain the same values for each variable at the same time, providing a
behaviour equivalent to that of a single copy. This led to assume that kind of consistency in the original
proofs of the CAP theorem [3].

With the advent of cloud computing, it is easy to develop and deploy highly scalable distributed
services [7]. Those applications usually provide world-wide services: they are deployed in multiple
datacentres and this implies that network partition tolerance is a must for those services. Thus, those
services regularly prioritise availability when they should deal with the constraints of the CAP theorem,
and consistency is the property being sacrificed. However, that sacrifice should not be complete. Brewer
[8] explains that network partitions are rare, even for world-wide geo-replicated services. If services
demand partition tolerance and availability, their consistency may still be quite strong most of the time,
relaxing it when any temporary network partition arises.

It is worth exploring which levels of consistency are strong enough to be directly implied by the
CAP constraints; i.e., those CAP-constrained models are not supported when the network becomes
partitioned. On the other hand, there are several relaxed models that remain available when a network
partition arises. They constitute the CAP-free set of models and there is a (not yet completely known)
frontier between CAP-free and CAP-constrained models. Two questions arise in this scope: (1) Does
CAP affect only to atomic consistency or are there any other “CAP-constrained” models? (2) If there
were any other models, what would the CAP-constrained vs. CAP-free frontier be? Although some
partial answers to these questions have been given in previous papers [9, 10, 11], let us provide a revised
answer to them in the following sections.

2 System Model
A distributed system S = (P,O) is assumed. The real-time domain is represented by set T . S is partially
synchronous and consists of: (1) a set of processes P connected by a network where processes com-
municate through message passing, and (2) a set of objects O, with their states and methods. Processes
in P may fail. Scalable distributed services may be deployed in S. Those services consist of a set of
objects O. Objects are replicated in order to improve their availability. Their instances are deployed in
P using a replication protocol and respecting some replica consistency model.

Function Connect : P×P×T → { f alse, true}, used as Connect(p1, p2, t), returns true when pro-
cesses p1 and p2 are connected at time t, and false otherwise. Communication may fail when a tempo-
rary network partition occurs, defined as follows.

Definition 2.1 (Network partition). When a network partition NP = (S,K, it,et) occurs in a system
S = (P,O) from some initial time it ∈ T to an end time et ∈ T (it < et), S becomes partitioned in a set
K of network components, with | K |> 1, such that:

1.
⋃

i∈K Si ⊆ S, where Si = (Pi,O)

2.
⋃

i∈K Pi ⊆ P

3. ∀i, j ∈ K, i 6= j : Pi
⋂

Pj = /0

4. ∀i, j ∈ K, i 6= j,∀pm ∈ Pi,∀pn ∈ Pj,∀t ∈ T, it ≤ t ≤ et : Connect(pm, pn, t) = f alse

5. ∀i ∈ K,∀pm, pn ∈ Pi,∀t ∈ T, it ≤ t ≤ et : Connect(pm, pn, t) = true

Processes in different components cannot communicate with each other. Processes in the same
component intercommunicate without problems. A partitionable system model is assumed in regard to
process behaviour.

Proposition 2.1 (Partitionable system). When a network partition NP = (S,K, it,et) occurs in S =
(P,O), every operation from every process pi ∈ P is able to start and/or finish in a regular way in the
(it,et) interval, independently on the connectivity of pi with each other process p j ∈ P.

According to Prop. 2.1, no operation gets indefinitely blocked while a network partition lasts in
S. Considering the CAP constraints, availability and network partition tolerance are respected, while
consistency compliance may be sacrificed.

3 Basic Specification
Viotti and Vukolić propose a framework for specifying distributed (non-transactional) data consistency
models in [12], based on that presented in [13, 14]. Since the CAP theorem involves software services
deployed in distributed systems, it makes sense to consider those models in this scope. That framework
may be summarised as follows.

3.1 Specification Framework
Services consist of processes and objects. Object values belong to set V . Processes interact with objects
invoking their operations, whose types belong to set OT .

Tuples (proc,type,obj,ival,oval,st,rt) represent operations, where:

• proc ∈ P is the identifier of the process that invokes the operation.

• type ∈ OT is the operation type; e.g., wr for writes and rd for reads.

• obj ∈ O is the identifier of the invoked object.

• ival ∈V ∪{t} is the operation input value, or t in case of a read operation.

• oval ∈ V ∪{t,∇,Θ} is the operation output value, or t in case of a write or ∇ if the operation
does not return or Θ when a write completes in proc but not in other subsets of P.

• st ∈ T is the operation invocation (i.e., start) time.

• rt ∈ T is the operation return time.

In a tuple T = (e1, . . . ,en), T.ei refers to element ei in that tuple.
A history H is a set of operations. A history contains all operations invoked in an execution E of

S. H |wr (respectively, H |rd) denotes the set of write (respectively, read) operations in a history H.
Formally, H |wr= {op ∈ H : op.type = wr}.

The following relations are needed: (1) rb (returns-before) is a partial order on H based on real-time
precedence: rb≡ {(a,b) : a,b ∈ H ∧a.rt < b.st}, (2) ss (same-session) is an equivalence relation on H
that groups the operations invoked by the same process: ss≡{(a,b) : a,b∈H∧a.proc= b.proc}, (3) so
(session order) is a partial order defined as: so≡ rb∩ss, (4) ob (same-object) is an equivalence relation
on H that groups the operations invoked on the same object: ob ≡ {(a,b) : a,b ∈ H ∧a.ob j = b.ob j},
and (5) concur is a symmetric binary relation that includes all pairs of real-time concurrent operations
invoked on the same object: concur ≡ ob\ rb.

Moreover, there are other specification aspects to be considered. To begin with, the concur relation
is complemented with a function Concur : H → 2H that denotes the set of write operations concurrent
with a given operation: Concur(a)≡ {b ∈ H |wr: (a,b) ∈ concur}. The projection rel |wr→rd identifies
all pairs of operations in relation rel that consist of a write and a read operation. H/ ≈rel denotes
the set of equivalence classes determined by relation rel, rel−1 denotes the inverse relation of rel and
rel(a) = {b ∈ A : (a,b) ∈ rel}. Note that rel(a) is a set, since there may be many elements related
transitively to a.

An execution is defined as E = (H,vis,ar) and is built on a history H, complemented with two
relations vis and ar on elements of H, where: (1) vis (visibility) is an acyclic partial order that accounts
for the propagation of write operations; two write operations are invisible to each other when they are

Table 1: Definition of basic consistency predicates.

Predicate Definition
RVAL(F) ∀op ∈ H : op.oval ∈F (op,cxt(E,op))
PRAM so⊆ vis
SINGLEORDER ∃H ′ ⊆ {op ∈ H : op.oval = ∇} : vis = ar \ (H ′×H)
LAZYSINGLEORDER ∃H ′ ⊆ {op ∈ H : op.oval ∈ {∇,Θ}} : vis = ar \ (H ′×H)
REALTIME rb⊆ ar
REALTIMEWRITES rb |wr→op⊆ ar
SEQRVAL(F) ∀op ∈ H : Concur(op) = /0⇒ op.oval ∈F (op,cxt(E,op))
EVENTUALVISIBILITY ∀a ∈ H,∀[f] ∈ H/≈ss:| {b ∈ [f] : (a,b) ∈ rb∧ (a,b) 6∈ vis} |< ∞

NOCIRCULARCAUSALITY acyclic(hb)
STRONGCONVERGENCE ∀a,b ∈ H |rd : vis−1(a) |wr= vis−1(b) |wr⇒ a.oval = b.oval
CAUSALVISIBILITY hb⊆ vis
CAUSALARBITRATION hb⊆ ar
TIMEDVISIBILITY(∆) ∀a ∈ H |wr,∀b ∈ H,∀t ∈ T : a.rt = t ∧b.st = t +∆

⇒ (a,b) ∈ vis
REALTIMEWW rb |wr→wr⊆ ar
CONCURRVAL(F) ∀op ∈ H : op.oval ∈F (op,cxt(E,op)∪Concur(op))
K-REALTIMEREADS(K) ∀a ∈ H |wr,∀b ∈ H |rd ,∀PW ⊆ H |wr,∀pw ∈ PW :| PW |< K∧

(a, pw) ∈ ar∧ (pw,b) ∈ rb∧ (a,b) ∈ rb⇒ (a,b) ∈ ar
NOJOIN ∀ai,bi,a j,b j ∈ H : ai 6≈ss a j ∧ (ai,a j) ∈ ar \ vis∧ai �so bi∧

a j �so b j⇒ (bi,b j),(b j,bi) 6∈ vis
ATMOSTONEJOIN ∀ai,a j ∈ H : ai 6≈ss a j ∧ (ai,a j) ∈ ar \ vis⇒| {bi ∈ H : ai �so bi∧

(∃b j ∈ H : a j �so b j ∧ (bi,b j) ∈ vis)} |≤ 1∧ | {b j ∈ H : a j �so b j
∧(∃bi ∈ H : ai �so bi∧ (b j,bi) ∈ vis)} |≤ 1

PEROBJECTPRAM (so∩ob)⊆ vis
PEROBJECTSINGLEORDER ∃H ′ ⊆ {op ∈ H : op.oval = ∇} : vis∩ob = ar∩ob\ (H ′×H)

not ordered by vis, and (2) ar (arbitration) is a total order on operations of the history that specifies
how conflicts due to invisible operations are resolved in E in order to respect its consistency models.

The happens-before (hb) partial order is defined as the transitive closure of the union of so and vis;
i.e., hb≡ (so∪ vis)+.

Some extensions to [12] are needed in order to deal with partitionable networks. Those extensions
are specified hereafter.

E is the set of executions in S. EP is the subset of E that contains all executions in which the
conditions of Def. 2.1 are met, i.e., their network becomes temporarily partitioned. On the other hand,
EC is the complementary subset of EP in which no network partition has occurred. Thus, E = EP∪EC
and EP∩EC = /0.

The context C of an operation op in execution E is defined as: Cop = cxt(E,op) ≡ (E.vis−1(op),
E.vis |Cop.H , E.ar |Cop.H), i.e., a projection of E that only keeps in its history those operations in
vis−1(op). For each data type, function F specifies the set of intended return values of op in relation to
its context: F (op,cxt(E,op)). With F , the return value consistency is defined as: RVAL(F)≡∀op∈
E.H : op.oval ∈F (op,cxt(E,op)). In this scope, we use by default a register data type (Freg). Let us
explain how op.oval is chosen from Cop in Freg. From vis−1(op), only those op2 ∈Cop.H : op2.oval 6∈
{∇,Θ}∧op2.ob j = op.ob j are considered. Multiple candidates may arise. If so, only those operations
without vis-successors in Cop.H are assessed. From that subset, with operations invisible to each other,
the read value is that of the latest operation in ar order. If no candidate exists, then op.oval is a special
value ⊥.

Let us use an execution Ex for explaining the specification aspects presented in previous para-
graphs. Let S be ({p1, p2},{x}) and Ex = ({o1 = (p1,wr,x,1,t,0,1), o2 = (p2,wr,x,2,t,0,1), o3 =
(p1,rd,x,t,1,1,2), o4 =(p2,rd,x,t,2,1,2), o5 =(p1,rd,x,t,2,3,4), o6 =(p2,rd,x,t,1,3,4)}, {(o1,o3),

(o3,o5), (o2,o4), (o4,o6), (o2,o5), (o1,o6)}, {(o4,o1),(o1,o6),(o6,o3),(o3,o2),(o2,o5)}). Local ex-
ecution order introduces (o1,o3), (o3,o5), (o2,o4) and (o4,o6) in vis. Values written in o1 and o2 are
propagated to the other process, so (o2,o5) and (o1,o6) are in vis. Since ar is a total order, it sets this
ordering in Ex: o4 < o1 < o6 < o3 < o2 < o5. There are four reads: o3,o4,o5 and o6, with these context
histories: Co3 .H = {o1}, Co4 .H = {o2}, Co5 .H = {o1,o3,o2}, Co6 .H = {o2,o4,o1}. In each Ci.H, the
underlined operations are discarded when RVAL(F) is applied, since they have subsequent operations
in vis that are also in Ci.H. From the remaining subsets, any potential conflict is resolved according to
ar. This explains the read values.

3.2 Distributed Consistency Models
Viotti and Vukolić [12] distinguish ten groups of consistency models: (1) linearisable and other strong
models, (2) weak and eventual consistency, (3) PRAM and sequential consistency, (4) session guaran-
tees, (5) causal models, (6) staleness-based models, (7) fork-based models, (8) composite and tunable
models, (9) per-object models, and (10) synchronised models. Synchronised models are described in
[12] for completeness; they make sense in multiprocessor computers but not in general distributed sys-
tems. The models in the eighth group cannot be specified with the proposed consistency predicates.
Therefore, no relation with the models contained in other groups can be set for them. Those two groups
are not considered hereafter. Table 1 shows a set of consistency predicates. With those predicates,
consistency models may be specified as shown in Table 2.

Consistency models are also known as consistency conditions. Both terms are synonyms, but gen-
erate two different kinds of names. Conditions use nouns (e.g., linearisability [15]) while models use
adjectives (e.g., atomic, regular and safe [6]). For the sake of uniformity, this paper uses models and
adjectives in order to refer to consistency in all cases.

An execution E satisfies a consistency model M built as a conjunction of multiple consistency
predicates (M ≡P1 ∧ ·· · ∧Pn) iff E satisfies all those predicates. Formally: E |= M ⇔ E |= P1 ∧
·· ·∧Pn.

In regard to the consistency models specified in Table 2, PREFIXSEQUENTIAL(F) is derived from
the “prefix consistency” proposed in Bayou [23]. Bayou manages a partitionable system. To this end,
write operations have two states: tentative and committed, that are modelled using Θ or t, respectively,
as the value of the oval operation attribute. That management is specified using LAZYSINGLEORDER
in Table 2. In Bayou, a write operation op returns control once it reaches a single server pi. At that time,
op is still tentative (i.e., op.oval = Θ). To be committed, pi propagates op to a primary manager. The
primary manager for op.ob j chooses a commit order (that conditions the ar relation in that execution)
for all new writes on that object and that chosen sequence is kept in a log and lazily communicated
to every other process. Disconnected nodes should eventually contact the primary manager to learn
that commit order. At that time, those previously disconnected processes communicate their tentative
writes to the primary (to be ordered on the next commit) and apply the already committed writes on their
local replicas. This means that tentative writes may be undone and reapplied in their correct sequence
position when they had been initially applied in a disconnected node. When a write op is applied onto
the replica of object op.ob j in a process p j in the commit order, op.oval becomes t in the p j’s view
of that history. Such view may be represented as H |p j . This explains why different processes in the
same execution may have different available committed prefixes of that execution at the same time in
the PREFIXSEQUENTIAL(F) model.

3.3 CAP-related Definitions
Let assume that the executions in system S are driven by a consistency model CM ≡P1∧·· ·∧Pn. All
executions in EC comply always with the definition of CM. However, that behaviour may vary when
network partitions arise. That fact originates the following definitions.

Definition 3.1 (CAP-free consistency model). CM is CAP-free if every execution E in EP respects all
consistency predicates that define CM.

Formally: ∀E ∈ EP : E |= P1∧·· ·∧Pn.

Table 2: Definition of basic consistency models.
Model Ref. Definition
1.- Linearisable and other strong models
LINEARISABLE(F) [15] SINGLEORDER ∧ REALTIME ∧ RVAL(F)
REGULAR(F) [6] SINGLEORDER ∧ REALTIMEWRITES ∧ RVAL(F)
SAFE(F) [6] SINGLEORDER ∧ REALTIMEWRITES ∧ SEQRVAL(F)
2.- Weak and eventual consistency
WEAK No requirement
EVENTUAL(F) [16] EVENTUALVISIBILITY ∧ NOCIRCULARCAUSALITY

∧ RVAL(F)
STRONGEVENTUAL(F) [17] EVENTUAL(F) ∧ STRONGCONVERGENCE

3.- PRAM and sequential consistency
PRAM(F) [18] PRAM ∧ RVAL(F)
SEQUENTIAL(F) [19] SINGLEORDER ∧ PRAM(F)
4.- Session guarantees
MONOTONICREADS [20] ∀a ∈ H,∀b,c ∈ H |rd : (a,b) ∈ vis∧ (b,c) ∈ so⇒

(a,c) ∈ vis
READYOURWRITES [20] ∀a ∈ H |wr,∀b ∈ H |rd : (a,b) ∈ so⇒ (a,b) ∈ vis
MONOTONICWRITES [20] ∀a,b ∈ H |wr: (a,b) ∈ so⇒ (a,b) ∈ ar
WRITESFOLLOWREADS [20] ∀a,c ∈ H |wr,∀b ∈ H |rd : (a,b) ∈ vis∧ (b,c) ∈ so

⇒ (a,c) ∈ ar
5.- Causal models
CAUSAL(F) [21] CAUSALVISIBILITY ∧ CAUSALARBITRATION

∧ RVAL(F)
CAUSAL+(F) [22] STRONGCONVERGENCE ∧ CAUSAL(F)
REALTIMECAUSAL(F) [9] REALTIME ∧ CAUSAL(F)
6.- Staleness-based models
PREFIXSEQUENTIAL(F) [23] LAZYSINGLEORDER ∧ MONOTONICWRITES

∧ RVAL(F)
TIMEDCAUSAL(F ,∆) [24] CAUSAL(F) ∧ TIMEDVISIBILITY(∆)
TIMEDSERIAL(F ,∆) [25] SINGLEORDER ∧ TIMEDVISIBILITY(∆) ∧ RVAL(F)
K-LINEARISABLE(F ,K) [26] SINGLEORDER ∧ K-REALTIMEREADS(K)

∧ REALTIMEWW ∧ RVAL(F)
K-REGULAR(F ,K) [26] SINGLEORDER ∧ K-REALTIMEREADS(K)

∧ REALTIMEWW ∧ CONCURRVAL(F)
K-SAFE(F ,K) [26] SINGLEORDER ∧ K-REALTIMEREADS(K)

∧ REALTIMEWW ∧ SEQRVAL(F)
7.- Fork-based models
FORKLINEARISABLE(F) [27] REALTIME ∧ NOJOIN ∧ PRAM(F)
FORKSEQUENTIAL(F) [28] NOJOIN ∧ PRAM(F)
FORK∗(F) [29] READYOURWRITES ∧ REALTIME ∧ RVAL(F)

∧ ATMOSTONEJOIN

8.- Per-object models
SLOW(F) [30] PEROBJECTPRAM ∧ RVAL(F)
CACHE(F) [31] PEROBJECTSINGLEORDER ∧ SLOW(F)
PROCESSOR(F) [31] PEROBJECTSINGLEORDER ∧ PRAM(F)

This means that a CAP-free model is respected when the network is partitioned. On the other hand,
a CAP-constrained model is not respected by every execution in case of network partitions:

Definition 3.2 (CAP-constrained consistency model). CM is CAP-constrained if there is an execution
E in EP that does not fulfil all consistency predicates that define CM.

Formally: ∃E ∈ EP : E 6|= P1∧·· ·∧Pn.

Def. 3.2 cannot consider every execution in EP since there may be executions in a partitioned
system that still comply with all CM predicates. For instance, let consider execution E1 ∈ EP with
S = ({p1, p2},{x,y}) and a partition with P1 = {p1}, P2 = {p2}, it = 4 and et = 10: E1 = ({o1 =
(p1,wr,x,2,t,0,1), o2 = (p2,rd,x,t,2,2,3), o3 = (p2,wr,x,3,t,3,4), o4 = (p1,wr,y,t,2,4,5), o5 =
(p2,wr,x,6,t,5,6), o6 = (p1,rd,y,t,2,7,8), o7 = (p1,rd,x,t,6,11,12), o8 = (p2,rd,y,t,2,13,14)},
{(o1,o2), (o2,o3), (o3,o4), (o4,o5), (o5,o6), (o6,o7), (o7,o8)}, E1.vis).

Processes p1 and p2 have remained active in the partition interval (4,10). Prop. 2.1 is respected. E1
complies with all predicates that define the LINEARISABLE(F) model. As it will be stated in Theorem
4.1, LINEARISABLE(F) is CAP-constrained. This shows that some executions of CAP-constrained
models in partitioned systems still respect the predicates that define their consistency model.

In order to compare consistency models in S, let use E CM as the set of executions admitted in S by
a consistency model CM. This allows the following definition:

Definition 3.3 (Weaker than (→) relation on models). A model A ≡PA,1∧ ·· ·∧PA,n is weaker than
another model B≡PB,1∧·· ·∧PB,m, i.e., A→ B, when the set of executions admitted by B is a proper
subset of the set of executions admitted by A.

Formally: A→ B≡ E B ⊂ E A.
Or: A→ B≡PB,1∧·· ·∧PB,m⇒PA,1∧·· ·∧PA,n.

RegularTimed serial

Sequential Safe

Processor

Causal Cache

PRAM (FIFO)

Slow memory Eventual

Causal+ K−Regular

Weak

WFR MRRYW MW

Real−time causal Prefix sequential

Strong eventual

Fork*

Fork linearisable

Fork sequential

K−Safe

K−Linearisable

Linearisable

Timed causal

Figure 1: Strength-based partial ordering of consistency models.

When A→ B, model B is stronger than A. Besides, when A 6→ B∧B 6→ A then A and B are incom-
parable. Figure 1 depicts those relations. This initial model hierarchy is adapted from [12]. From Def.
3.3, combined with Def. 3.1 and 3.2, the following propositions can be stated.

Proposition 3.1 (Freedom of weaker CAP-free models). Given two consistency models A ≡PA,1 ∧
·· ·∧PA,n and B≡PB,1∧·· ·∧PB,m, if A→ B and B is CAP-free, then A is also CAP-free.

Proof. By Def. 3.3: (1) PB,1 ∧ ·· · ∧PB,m ⇒PA,1 ∧ ·· · ∧PA,n. Additionally, since B is CAP-free,
according to Def. 3.1: (2) ∀E ∈ E B

P : E |= PB,1∧·· ·∧PB,m.
Let assume that A was CAP-constrained. In that case, according to Def. 3.2: ∃E1 ∈ EP : E1 6|=

PA,1∧ ·· ·∧PA,n. This would imply that PA,1∧ ·· ·∧PA,n is false in some executions when network
partitions arise. If so, due to (1), PB,1 ∧ ·· · ∧PB,m is neither generally true in case of partitions. So,
an execution E2 could be found such that E2 ∈ EP : E2 6|= PB,1 ∧ ·· · ∧PB,m and this implies that B is
CAP-constrained. This sets a contradiction with (2). Thus, A is CAP-free.

Proposition 3.2 (Constriction of stronger CAP-constrained models). Given two consistency models
A≡PA,1∧ ·· ·∧PA,n and B≡PB,1∧ ·· ·∧PB,m, if A→ B and A is CAP-constrained, then B is also
CAP-constrained.

Proof. By Def. 3.3: (1) PB,1 ∧ ·· · ∧PB,m ⇒ PA,1 ∧ ·· · ∧PA,n. Additionally, since A is CAP-
constrained, according to Def. 3.2: (2) ∃E1 ∈ EP : E1 6|= PA,1∧·· ·∧PA,n.

Let assume that B was CAP-free. In that case, according to Def. 3.1: ∀E ∈ E B
P : E |= PB,1∧ ·· ·∧

PB,m. This would imply that PB,1 ∧ ·· · ∧PB,m is true when network partitions arise. If so, due to
(1), PA,1 ∧ ·· · ∧PA,n is also true in case of partitions. Thus, ∀E ∈ E A

P : E |= PA,1 ∧ ·· · ∧PA,n and
therefore A is CAP-free. This sets a contradiction with (2). So, B is CAP-constrained.

4 Finding a Consistency Border
Let us take the specifications of all consistency models as a base for analysing which requires any
agreement that a network partition will break. Those models are CAP-constrained. Section 4.1 presents
that analysis. Section 4.2 goes on in this analysis looking for other conditions that are not related with
consensus and cannot be either attained in an available and partitioned system. Finally, Section 4.3
looks for convergence-based inter-model relations.

Most predicates in Table 1 strengthen the definition of the consistency models that include them.
However, there are several exceptions: K-REALTIMEREADS(K), NOJOIN, ATMOSTONEJOIN and
SEQRVAL(F). The first one breaks read determinism. Instead of returning the last received write,
each process may read any of the K latest writes. The second and third ones impose divergence among
processes once a failure happens. The last one is a weaker variant for RVAL(F), since it drops the
determinism of read operations in case of concurrent writes. Because of this, all consistency models
that include them should be analysed with care.

4.1 Starting Point: The Linearisable Model
Gilbert and Lynch [3] proved the CAP theorem assuming linearisable [15] consistency. Let us start re-
vising its definition, given in Table 2, with the goal of identifying which predicates cannot be respected
in a partitioned and available system:

LINEARISABLE(F)≡ SINGLEORDER ∧ REALTIME ∧ RVAL(F)
RVAL(F) defines the appropriateness of the return value in an operation based on its execution con-

text. Its compliance is assumed in the following discussions. The other predicates mean the following
(Table 1):

• REALTIME: rb⊆ ar. This predicate states that all operations ordered by the returns-before (rb)
relation are considered in the arbitration relation (ar). Since rb considers real time, it is able
to order the operations executed by different processes, even when they are placed in different
network components in a partition.

Relation ar totally orders the operations in a history H. Considered in isolation, REALTIME may
be respected in a partitioned system. However, it leads to contradictions when the vis relation
assumed in other predicates requires communication among isolated network components.

As a result, the inclusion of REALTIME in a consistency model may endanger the compliance
with other vis-related predicates, e.g., SINGLEORDER.

• SINGLEORDER: ∃H ′ ⊆ {op ∈ H : op.oval = ∇} : vis = ar \ (H ′ ×H). This predicate states
that the visibility relation (vis) coincides with the arbitration relation (ar), discarding incomplete
operations. Let us prove that SINGLEORDER cannot be respected while a temporary network
partition lasts in a system.

Lemma 4.1 (SINGLEORDER ∧ RVAL(F) unattainability). In a system S = (P,O) that uses a
consistency model that includes SINGLEORDER, while a network partition NP arises, there is
some execution E ∈ EP in which SINGLEORDER ∧ RVAL(F) is false.

Proof. Without loss of generality, let us assume the following two conditions:

1. ∃E ∈ EP: E |= SINGLEORDER ∧ RVAL(F).

2. Partition NP has happened in the interval (it,et) generating two different separate network
components P1 and P2; i.e., NP = (S,{1,2}, it,et). ∃p1, p2 ∈ P : p1 ∈ P1, p2 ∈ P2.

Process p1 has executed op1,1 = (p1,wr,x, v,t,st,st + 1). Besides, p2 has also run op2,1 =
(p2,wr,x,v′,t,st ′,st ′+1) with both st,st ′ ∈ (it,et−1). Process p1 also runs op1,2 = (p1,rd,x,t,
v,st ′′,st ′′+1) with st ′′ ∈ (it,et−1) and st < st ′ < st ′′.

Since op1,1 and op1,2 have happened both in p1, they are trivially related by vis: (op1,1,op1,2) ∈
vis. This justifies the read value in op1,2 according to RVAL(F).

By definition, ar orders all operations in E. Since RVAL(F) is respected in E, the order
set by ar should allow that op1,2 reads value v. This may only happen when E.ar is either
ar1 = {(op2,1,op1,1),(op1,1,op1,2)} or ar2 = {(op1,1, op1,2), (op1,2,op2,1)}. Let us assume that
E.ar = ar1. Condition (1) above states that SINGLEORDER is true in E. Thus, E.vis = E.ar.

Condition (2), above, states that S remained partitioned while E was run. Because of condition 4
from Def. 2.1, p1 and p2 cannot exchange messages in (it,et). This means that (op1,∗,op2,1) 6∈
vis ∧ (op2,1,op1,∗) 6∈ vis; i.e., p1 and p2 operations cannot be directly or transitively related in
vis. So, E.vis 6= E.ar. Therefore, this sets a contradiction with our assumed condition (1); i.e.,
execution E cannot respect SINGLEORDER ∧ RVAL(F).

Lemma 4.1 assumes a single object x in its proof. So, this result applies to other predicates that
constrain the vis = ar equality to each object considered in isolation, e.g., to the PEROBJECTS-
INGLEORDER predicate.

These predicates have been used in the definition of several consistency models. Models based on
SINGLEORDER or PEROBJECTSINGLEORDER will be CAP-constrained when no relaxing predicate
is used in their definition. On the other hand, those using SINGLEORDER and any relaxing predicate,
and those based on REALTIME should be further assessed. Let us revise which they are:

• SINGLEORDER with no relaxing predicate: linearisable, regular, sequential, processor, cache
and timed serial.

Let us refer to these models as strong-SINGLEORDER models. SSO is the set of those models.
All they are CAP-constrained, as stated in the following theorem.

Theorem 4.1 (Strong-SINGLEORDER models are CAP-constrained). The LINEARISABLE(F),
REGULAR(F), SEQUENTIAL(F), PROCESSOR(F), CACHE(F) and TIMEDSERIAL(F ,∆) mod-
els are CAP-constrained.

Proof. All models in SSO include the SINGLEORDER ∧ RVAL(F) conjunction. They do not
include any other predicate that relaxes what is required in that conjunction. Formally: ∀M j ∈
SSO,M j ≡P j,1∧·· ·∧P j,n j . ∃i,1≤ i≤ n j : P j,i = SINGLEORDER ∧ RVAL(F).

Let us assume a system S with model M j. Then, predicate P j,i allows the application of Lemma
4.1. As a result: ∃E ∈ EP,E 6|= P j,1 ∧ ·· · ∧P j,n j , since P j,i may be false in those executions.
Thus, by Def. 3.2, each M j is CAP-constrained.

• SINGLEORDER with relaxing predicates: safe, k-linearisable, k-regular and k-safe.

Let us start our analysis with the safe model. It relaxes SINGLEORDER with the conjunction
of the SEQRVAL(F) predicate. The latter only requires determinism in a read operation opr
when there are no other concurrent write operations with opr. When there are concurrent write
operations, opr may return any value. Considering that behaviour, let us prove that the SAFE(F)
model is CAP-constrained.

Theorem 4.2 (SAFE(F) is CAP-constrained). The SAFE(F) consistency model is CAP-constrained.

Proof. Let us assume an execution Es ∈ EP with model SAFE(F). Let us consider that there
are two network components P1 and P2 in Es, each one consisting of a single process, p0 and
p1, respectively. Let us imagine that in Es there are no read events in process pi concurrent
with write events in process p1−i. This may easily happen if the set of objects being managed
by processes p0 and p1 is large, since each time one process is writing on a given object ok
the other process may be reading other objects. In this scenario, SEQRVAL(F) is equivalent to
RVAL(F). As a result, Es 6|=SAFE(F), since Lemma 4.1 may then be applied onto Es. Because
of this, considering Def. 3.2, SAFE(F) is CAP-constrained.

The remaining models (k-linearisable, k-regular and k-safe) share K-REALTIMEREADS(K) as
their relaxing predicate. Let us refer to them as k-staleness models. Like SEQRVAL(F), K-
REALTIMEREADS(K) relaxes read determinism. In this case, each read operation may return
any of the K latest written values in S. Let us consider this predicate in the following lemma.

Lemma 4.2 (K-REALTIMEREADS(K) ∧ SINGLEORDER unattainability). In a system S= (P,O)
that uses a consistency model with K-REALTIMEREADS(K) ∧ SINGLEORDER, while a net-
work partition NP arises in a time interval (it,et), there is some execution E ∈ EP in which
K-REALTIMEREADS(K) ∧ SINGLEORDER is false.

Proof. Let us assume that there are at least two network components in S, being P1 and P2 two
of those components, with at least one process in each component, p1 and p2, respectively. Ert is
an execution in EP. In Ert , process p1 has written K different values on object x after time it, in
operations op1,1 . . .op1,K , respectively. Later, p2 reads x in operation op2,1. Process p2 had not
written any value on x since time it. All those operations have happened before time et.

According to K-REALTIMEREADS(K), several of these K latest writes from p1 precede op2,1
in the ar relation. Thus, conceptually, p2 reads any of those values in op2,1. However, SINGLE-
ORDER requires that all completed operations in ar are also in vis. This means that the effects
from several op1,1 . . .op1,K must be already delivered to p2 when op2,1 is started. Since p1 and
p2 remain disconnected in the (it,et) interval, according to condition 4 from Def. 2.1, the values
written by p1 are not visible to op2,1. So, vis 6= ar in Ert , i.e., SINGLEORDER is not true in Ert .

Therefore, there are executions that do not comply with K-REALTIMEREADS(K) ∧ SINGLE-
ORDER in S.

With that result, the following theorem may be proved.

Theorem 4.3 (K-staleness models are CAP-constrained). K-REGULAR(F ,K), K-SAFE(F ,K)
and K-LINEARISABLE(F ,K) are CAP-constrained.

Proof. Immediate from Lemma 4.2 and Def. 3.2.

• REALTIME (or its variants REALTIMEWRITES, REALTIMEWW): linearisable, regular, safe, k-
linearisable, fork linearisable, and fork∗. From these models, fork linearisable and fork∗ have not
been considered yet in the analysis, since the others include SINGLEORDER in their predicates.
Besides, fork linearisable and fork∗ contain in their definitions, respectively, the NOJOIN and
ATMOSTONEJOIN relaxing predicates that have not been assessed yet.

Causal

PRAM (FIFO)

Slow memory Eventual

Weak

WFR MW MRRYW

Fork sequential

Fork*

CAP−free

Fork linearisable Real−time causal Timed causal

Linearisable

K−Linearisable

CCC

CAP−constrained

Models

Causal+

Strong eventualK−Safe

K−Regular

Cache

ProcessorPrefix sequential

Regular

Sequential

LEGEND

Safe

Timed serial

Figure 2: CAP-constrained and CAP-free consistency models considering SINGLEORDER and REAL-
TIME.

It is worth noting that fork-based models were proposed by Mazières and Shasha in [27] with the
aim of dealing with Byzantine failures in the management of networked file systems. When a
failure of that kind arises, some users may create a new version of a given file without considering
the latest version kept in the servers. This generates a new branch (i.e., a fork) of versions there-
after. If multiple failures exist, the resulting set of versions defines a tree of divergent branches
and those branches cannot join again. The specification shown in Tables 1 and 2 is general and
does not consider specific failure models. Our discussion considers those generalised consisten-
cies. In them, a fork in the version tree might be caused by a network partition. That possibility
was not explicitly assumed in the original fork-based papers [27, 28, 29].

Let us assess both models.

Theorem 4.4 (FORKLINEARISABLE(F) is CAP-free). The FORKLINEARISABLE(F) consis-
tency model is CAP-free.

Proof. Let us assume a system S where all its executions in E C respect PRAM ∧ REALTIME ∧
NOJOIN ∧ RVAL(F). Let us imagine that a network partition NP = (S,K, it,et) arises in S. Let
analyse what happens with each one of those predicates in the (it,et) interval:

1. REALTIME is trivially true, since it imposes a method for building ar based on the rb
relation. That method is implemented by a replication protocol and it can be maintained in
spite of NP. Actually, it is only a criterion for ordering invisible conflicting writes. That
criterion may still be used in case of network partitions.

2. RVAL(F) should be also true. This predicate states which criteria should be followed
for deciding the return value of each operation. Again, it is embedded in the replication
protocol and does not change when a network partition happens.

3. NOJOIN states that when two different sessions (i.e., processes) define a pair of operations
with an operation per process that are related by ar but are not related by vis, then all
subsequent operations in each of those sessions will not visible for the other process.

In case of a network partition, if pi ∈ Pi, p j ∈ Pj and 1 < i, j <| K |, then all operations run
by pi and p j will be ordered by ar according to the rb relation, but there will not be any
pair (a,b) ∈ vis with a.proc = pi and b.proc = p j (or a.proc = p j and b.proc = pi) while
the partition lasts, because of condition 4 from Def. 2.1.
Inter-process connectivity is recovered after time et. However, this will not resume inter-
process visibility, since the replication protocol being used in S respects NOJOIN while no
partitions arise. This means that none of the subsequent operations run by pi and p j will
be visible to the other process. This ensures that NOJOIN remains true in all cases: while
partitions exist and while connectivity is healthy.

4. PRAM demands that so is respected in vis. Since so is an order, this basically means that vis
cannot contain any pair of operations that contradicts any of the pairs held in so. In order
to guarantee PRAM, the replication protocol in S must transfer the writes made in each
session in FIFO order to the remaining processes. That transfer order is not endangered
nor prevented by network partitions. Indeed, when no write is transferred to the remaining
processes, PRAM is still true, since no so contradiction may arise in vis. Therefore, PRAM
is respected in E P.

Since all the predicates are true in case of network partitions, ∀E ∈ E P : E |= FORKLINEARIS-
ABLE(F). Therefore, according to Def. 3.1, FORKLINEARISABLE(F) is CAP-free.

Corollary 4.1 (FORK∗(F) is CAP-free). The FORK∗(F) consistency model is CAP-free.

Proof. FORK∗(F) is weaker than FORKLINEARISABLE(F) and, according to Theorem 4.4, the
latter is CAP-free. Thus, due to Proposition 3.1, FORK∗(F) is also CAP-free.

After this analysis on SINGLEORDER and REALTIME, a preliminary borderline between CAP-
constrained and CAP-free models may be set as depicted in Figure 2.

4.2 Exploring the Frontier
Considering Figure 2, let us continue our analysis revising which are the predicates that define the
set CCC (CAP-constrained candidates) of strongest models that do not need the SINGLEORDER or
REALTIME conditions in their specifications. In this scope, “strongest” refers to those models that: (1)
are not tagged yet as CAP-constrained, (2) are directly related as “weaker than” a CAP-constrained
model, and (3) do not have any other CAP-free model stronger than them. According to Figure 2, these
CCC models are: strong eventual, causal+, timed causal, real-time causal and prefix sequential. The
fork linearisable model also complies with those three conditions, but Theorem 4.4 has already proved
that it is CAP-free.

If any of these models was also CAP-constrained, we would continue our analysis with the new
candidates generated by its inclusion in the CAP-constrained set. On the other hand, if no CCC model
is identified as CAP-constrained in this stage, other models more relaxed than those in CCC will be also
CAP-free, according to Prop. 3.1. In that case, our analysis should end there.

Part of these CCC models have been proved CAP-free either in the papers that proposed them or in
other recent works. That is the case of STRONGEVENTUAL(F) [17], CAUSAL+(F) [22], REALTIME-
CAUSAL(F) [9] and PREFIXSEQUENTIAL(F) [32]. Therefore, they are CAP-free by definition.

Let us consider now the other model: timed causal.

Theorem 4.5. The TIMEDCAUSAL(F ,∆) consistency model is CAP-constrained.

Proof. Let us assume an execution E ∈ EC : E |= TIMEDCAUSAL(F ,∆). Let a partition NP occur in S
with NP.et−NP.it > ∆. Let E ′ ∈ EP : E ′.H is an adaptation of E.H. There may be (a,b) pairs (with
a.type = wr and b.type = rd) in E ′.vis generated at network reconnection time with a.rt = NP.it and
b.st > NP.et. Note that b needs to receive the value written in a, and that transmission may only com-
plete after NP.et. Since NP.et−NP.it > ∆, then b.st > a.rt +∆. Thus, E ′ makes TIMEDVISIBILITY(∆)
false and this means that E ′ 6|= TIMEDCAUSAL(F ,∆). Therefore, by Def. 3.2, TIMEDCAUSAL(F ,∆)
is CAP-constrained.

Fork sequential

Causal

PRAM (FIFO)

Slow memory Eventual

Causal+

Weak

Strong eventual

MRMWRYWWFR

Timed causal

LEGEND

CAP−constrained

CAP−free

Fork linearisable

Fork*

Real−time causal

Linearisable

Processor K−Linearisable

Sequential

Regular

Cache K−Safe

K−RegularPrefix sequential

Timed serial

Safe

Figure 3: CAP-constrained vs CAP-free borderline.

This analysis has shown that the timed causal model is CAP-constrained. Figure 2 shows that
timed causal is directly stronger than causal and there is no other weaker model directly related with
timed causal. The causal model is weaker than causal+ and the latter is CAP-free. Thus, according to
Prop. 3.1, CAUSAL(F) is CAP-free. This means that no other CAP-constrained model may be found.
Therefore, the borderline between CAP-constrained and CAP-free models is finally set as depicted in
Figure 3.

4.3 Revising Inter-Model Relationships
Previous figures show some “weaker than” relations between models. However, there are some other
inter-model relations that have not been depicted yet. Those relations are explained hereafter. Sec-
tion 4.3.1 discusses configurable models. Later, Section 4.3.2 describes relations that deal with state
convergence.

4.3.1 Configurable Models

The family of probabilistic bounded staleness (PBS) [33] models consists of three models: PBS k-
staleness, PBS t-visibility and PBS (k,t)-staleness. They are intended for quorum-based eventually
consistent datastores. The first describes a probabilistic model that restricts the staleness of read values.
The second limits probabilistically the time needed by written values to become visible. The third one
combines the other two. PBS k-staleness, depending on its parameter k, may be weaker than or equiv-
alent to k-linearisable, while PBS t-visibility is a probabilistic weakening of TIMEDVISIBILITY(∆).
Their place around the CAP-constrained vs CAP-free frontier depends on the values of their parame-
ters, and this avoids their inclusion in Figure 4. They are generally configured as eventually consistent
models, and this implies CAP-free models. However, PBS k-staleness when configured as non-stale
becomes k-linearisable and, as such, is CAP-constrained.

As Brewer states in [8] “because partitions are rare, there is little reason to forfeit C (consistency) or
A (availability) when the system is not partitioned”. This means that a strong model is needed while the
network shows no connectivity problem and such consistency should be only relaxed when a network

partition arises. Dynamically configurable models that may relax their consistency, as those proposed
in the PBS family, seem to be an adequate solution to this problem. There have been several other
models (e.g., [34, 35, 36, 37, 38, 39, 40]) of this kind, that are analysed by Viotti and Vukolić [12] in
their eighth group: composable and tunable models. We refer the reader to [12] for a short description
and comparison of them. Many of those models admit configurations in both parts of our identified
frontier.

4.3.2 Convergence-based Relations

Eventual consistency was defined with the goal of breaking the constraints of the CAP theorem [11].
Eventual models that reach state convergence once their processes have seen the same set of write
operations, like STRONGEVENTUAL(F) [17], may be weaker than most CAP-constrained models.
Indeed, according to Prop. 3.1, STRONGEVENTUAL(F) cannot be stronger than any CAP-constrained
model, since it is CAP-free [17]. Let us proceed in this analysis comparing several families of protocols:

• CACHE(F) and stronger models.

If STRONGEVENTUAL(F) was weaker than CACHE(F), then CACHE(F) predicates would
imply those that define STRONGEVENTUAL(F). Let us see whether that is true. Several lemmas
are needed to this end.

Lemma 4.3. PEROBJECTSINGLEORDER ∧ RVAL(F)⇒ EVENTUALVISIBILITY ∧ RVAL(F).

Proof. Without loss of generality, let assume a system S = ({p1, p2},{x}) where all its execu-
tions should respect PEROBJECTSINGLEORDER. Let consider executions in which all operations
end. PEROBJECTSINGLEORDER implies: (1) ∀E ∈ E ,E.vis∩ob = E.ar∩ob.

Let us assume that EVENTUALVISIBILITY did not hold in S. This means that: (2) ∀a∈E.H,∀[f]∈
E.H/≈ss: b ∈ [f]∧ (a,b) ∈ rb⇒ (a,b) 6∈ E.vis, i.e., all rb-ordered operations that do not belong
to the same process are not in vis. In that scenario, execution E3 would match¬EVENTUALVISIBILITY
in S: E3 = ({o1 = (p1,wr,x,3,t,1,2), o2 = (p2,wr,x,2,t,1,2), o3 = (p1,rd,x,t,3,3,4), o4 =
(p2,rd,x,t,2,4,5), o5 =(p1,wr,x,5,t,6,7), o6 =(p1,rd,x,t, 5, 8,9)}, {(o1,o3), (o2,o4), (o3,o5),
(o5,o6)}, {(o1,o3), (o3,o5), (o5,o6), (o6,o2), (o2, o4)}). But now, E3 violates condition (1),
since E3.vis 6= E3.ar. Thus, a contradiction is reached. So, EVENTUALVISIBILITY must hold in
S. Therefore: PEROBJECTSINGLEORDER ∧ RVAL(F)⇒ EVENTUALVISIBILITY ∧ RVAL(F).

Lemma 4.4. NOCIRCULARCAUSALITY is true in message-based inter-process communication
systems.

Proof. By definition, hb ≡ (so ∪ vis)+, vis is acyclic, so ≡ rb ∩ ss and rb ≡ {(a,b) : a,b ∈
H ∧ a.rt < b.st}. Because of rb, so is also acyclic, since the operations that compose the rb
elements are ordered by real time. Thus, to close a cycle, vis needs elements that transitively
relate two write operations in a reverse real-time order. This contradicts the vis definition, since
vis represents value propagation among processes. Section 2 has stated that such value propaga-
tion is message-based. Therefore, when two operations are related by vis, their relation order is
consistent with real time. As a result, hb is acyclic and NOCIRCULARCAUSALITY is true.

According to Burckhardt, NOCIRCULARCAUSALITY was introduced in his specification of ba-
sic eventual consistency in order to avoid the circular causality [14] (also known as thin air [13])
anomaly that may be generated by some compiler optimisations for shared memory multiproces-
sors (since vis is not acyclic in that context). However, in scenarios where those optimisations
cannot be applied, as it is assumed in our paper, such an anomaly cannot happen.

Lemma 4.5. PEROBJECTSINGLEORDER ∧ RVAL(F)⇒ STRONGCONVERGENCE ∧ RVAL(F).

Proof. STRONGCONVERGENCE requires that when two read operations (∀a,b ∈ H |rd , on two
different processes) have been preceded by the same set of write operations (vis−1(a) |wr=
vis−1(b) |wr), then both reads return the same value (a.oval = b.oval). PEROBJECTSINGLE-
ORDER implies that every process in S sees the same sequence of write operations on each object.
Therefore, every pair of processes that respect PEROBJECTSINGLEORDER have seen the same
sequence of values. In that case, when two different processes compare the output value of a read
in each process preceded by the same set of write operations, RVAL(F) guarantees that they read
the same value. Thus, PEROBJECTSINGLEORDER ∧ RVAL(F)⇒ STRONGCONVERGENCE ∧
RVAL(F).

Theorem 4.6. STRONGEVENTUAL(F)→ CACHE(F).

Proof. Lemmas 4.3, 4.4 and 4.5 imply that: PEROBJECTSINGLEORDER ∧ RVAL(F)⇒ STRONG-
CONVERGENCE ∧ EVENTUALVISIBILITY ∧ NOCIRCULARCAUSALITY ∧ RVAL(F). PEROB-
JECTPRAM constrains how written values are propagated. So, it is not a relaxing predicate in
this scope. Therefore, according to Def. 3.3, STRONGEVENTUAL(F)→ CACHE(F).

Corollary 4.2. STRONGEVENTUAL(F) is weaker than PROCESSOR(F), SEQUENTIAL(F),
TIMEDSERIAL(F) and LINEARISABLE(F).

Proof. All mentioned models are stronger than CACHE(F). Relation weaker than (Def. 3.3)
is transitive. So, because of Theorem 4.6, STRONGEVENTUAL(F) is weaker than each one of
them.

• SAFE(F).

In the SAFE(F) model, a read operation or returns the value written in the latest write if there
is no write concurrent with or. If any concurrent write exists, or.oval may be any value. This
provides the base for the following theorem.

Theorem 4.7. STRONGEVENTUAL(F) 6→ SAFE(F).

Proof. Let us assume a system S = ({p1, p2, p3},{x}). In order to prove that a model A is
not weaker than another model B, we should find an execution Enw that complies with B and
does not respect A, since this implies that E B 6⊂ E A. So, E4 = ({o1 = (p1,wr,x,2,t,0,1), o2 =
(p1,wr,x,1,t,2,5), o3 =(p2,rd,x,t,15,3,6), o4 =(p3,rd,x,t,20,4,7)}, {(o1,o2),(o2,o3),(o3,o4)},
{(o1,o2), (o2,o3), (o3, o4)}) satisfies those requirements. In that execution, p1 has written val-
ues 2 and 1 on x, in that order. That means that value 2 was known (i.e., visible) to p1 when it
wrote 1. The replication protocol forwarded value 1 to process p2 while it was written, and p2
also propagated that value 1 to p3. These actions explain the three pairs in the E4.vis relation.

E4 complies with all predicates that define SAFE(F):

1. SINGLEORDER needs that E4.vis = E4.ar, and that is true,

2. REALTIMEWRITES (rb |wr→op⊆ ar) means that, in E4, (o1,o2), (o1,o3) and (o1,o4) must
be in ar. Transitively, those pairs of operations are in E4.ar.

3. SEQRVAL(F) allows that both o3 and o4 return any value as a result of the read operation,
since o2 is a write concurrent with both of them.

However, E4 does not respect STRONGCONVERGENCE, since E4.vis−1(o3) |wr=E4.vis−1(o4) |wr=
{o1,o2}, but o3.oval 6= o4.oval.

Therefore, E Sa f e 6⊂ E StrongEventual . Then, according to Def. 3.3, STRONGEVENTUAL(F) 6→
SAFE(F).

Let us find out which models are weaker than SAFE(F) in order to adequately show as many
weaker-than relations as possible in Figure 4. To this end, we need to prove a property that was
previously conjectured:

Proposition 4.1. K-REALTIMEREADS(K) is a weakening predicate.

Proof. According to its definition, ∀a∈H |wr,∀b∈H |rd ,∀PW ⊆H |wr,∀pw∈ PW :| PW |< K∧
(a, pw) ∈ ar∧ (pw,b) ∈ rb∧ (a,b) ∈ rb⇒ (a,b) ∈ ar, when b is a read operation, it may get as
its result any of the latest K written values.

Let us consider a consistency model M that is built as the conjunction of a set of consistency
predicates: M≡P1∧·· ·∧Pn. We may build another consistency model M′ with this definition:
M′ ≡P1∧·· ·∧Pn∧K-REALTIMEREADS(K).

Let us assume a generic execution E ∈ E M that consists of at least K write operations (ow1 . . .owK ,
placed in that order in E.ar) and with or as its first read operation after the latest of those K writes.
According to the RVAL(F) or SEQRVAL(F) contained in M, or.oval = val.

K-REALTIMEREADS(K) introduces indeterminism in the output values of read operations. How-
ever, according to the definition of K-REALTIMEREADS(K), E still complies with all predicates
that define M′. Therefore, E M ⊆ E M′ . This implies that E ∈ E M′ .

Let us check now whether E M is a strict subset of E M′ or both sets are equal. To this end, let
us replay E using M′ as the consistency model in S. Each one of those replays may generate a
result different to val for or.oval. Now or.oval is a value val′, with val′ taken from any of the
owx.ival (with 1≤ x ≤ K) values. All those replays of E with val′ 6= val will belong to E M′ , but
will not be acceptable in E M . Therefore, this shows that E M ⊂ E M′ and, according to Def. 3.3,
this proves that M′→M.

Then, the following corollary may be stated.

Corollary 4.3. K-SAFE(F ,K)→ SAFE(F)

K-REGULAR(F ,K)→ REGULAR(F)

K-LINEARISABLE(F ,K)→ LINEARISABLE(F)

Proof. Every statement in this corollary is a direct consequence of Prop. 4.1.

• K-REALTIMEREADS(K)-based models.

The following proposition is needed for proving that all models in this set are incomparable to
STRONGEVENTUAL(F).

Proposition 4.2. K-REALTIMEREADS(K) 6⇒ STRONGCONVERGENCE.

Proof. According to the K-REALTIMEREADS(K) definition, ∀a ∈ H |wr,∀b ∈ H |rd ,∀PW ⊆
H |wr,∀pw ∈ PW :| PW |< K∧ (a, pw) ∈ ar∧ (pw,b) ∈ rb∧ (a,b) ∈ rb⇒ (a,b) ∈ ar, when b is
a read operation, it may get as its result any of the latest K written values.

Let S be a system where no communication problem exists. Let E be an execution that con-
sists of K write operations (ow1 . . .owK , placed in that order in E.ar) each one writing a different
value on object x and with or1 and or2 as two read operations after the latest of those K writes.
Since there are no communication problems, vis−1(or1) |wr= {ow1 . . .owK} and vis−1(or2) |wr=
vis−1(or1) |wr. However, or1.oval 6= or2.oval, since or1.oval may be ow1.ival and or2.oval be
owK .ival and those values are different. By definition of STRONGCONVERGENCE, STRONG-
CONVERGENCE becomes false in E.

Corollary 4.4. STRONGEVENTUAL(F) 6→ K-SAFE(F ,K).

Proof. By Prop. 4.2, ∃E ∈ E ,E |= K-SAFE(F ,K) ∧ E 6|= STRONGEVENTUAL (F). Thus, by
Def. 3.3, STRONGEVENTUAL(F) 6→ K-SAFE(F ,K).

Corollary 4.5. STRONGEVENTUAL(F) 6→ K-REGULAR(F ,K).

Proof. By Prop. 4.2, ∃E ∈ E ,E |= K-REGULAR(F ,K) ∧ E 6|= STRONGEVENTUAL (F). Thus,
by Def. 3.3, STRONGEVENTUAL(F) 6→ K-REGULAR(F ,K).

Corollary 4.6. STRONGEVENTUAL(F) 6→ K-LINEARISABLE(F ,K).

Proof. Due to Prop. 4.2, ∃E ∈E ,E |= K-LINEARISABLE(F ,K)∧ E 6|= STRONGEVENTUAL(F).
Thus, because of Def. 3.3, STRONGEVENTUAL(F) 6→ K-LINEARISABLE(F ,K).

• PREFIXSEQUENTIAL(F) and stronger models.

PREFIXSEQUENTIAL(F) ensures eventual convergence because it uses a primary manager per
set of objects that imposes a common commit write order among all processes. Therefore,
STRONGEVENTUAL(F) is weaker than PREFIXSEQUENTIAL(F), as stated in the following
theorem.

Theorem 4.8. STRONGEVENTUAL(F)→ PREFIXSEQUENTIAL(F).

Proof. In LAZYSINGLEORDER, each time a write op becomes committed in an execution E, op
is conceptually complete and it becomes visible to other processes. Then, it is included in both
E.vis and E.ar relations, in a way that ensures that E.vis = E.ar. Thus, LAZYSINGLEORDER
⇒ PEROBJECTSINGLEORDER. Therefore, Lemmas 4.3, 4.4 and 4.5 imply that: LAZYSINGLE-
ORDER ∧ RVAL(F)⇒ STRONGCONVERGENCE ∧ EVENTUALVISIBILITY ∧ NOCIRCULAR-
CAUSALITY ∧ RVAL(F). MONOTONICWRITES is not a relaxing predicate in this scope, since
it constrains vis. Therefore, according to Def. 3.3, STRONGEVENTUAL(F)→ PREFIXSEQUEN-
TIAL(F).

Corollary 4.7. STRONGEVENTUAL(F)→ REGULAR(F).

Proof. REGULAR(F) is stronger than PREFIXSEQUENTIAL(F). Relation “weaker than” (Def.
3.3) is transitive. So, due to Theorem 4.8, STRONGEVENTUAL(F) is weaker than REGU-
LAR(F).

• Other models.

A single CAP-constrained model remains unexplored in the CAP-constrained vs CAP-free fron-
tier: TIMEDCAUSAL(F ,∆). Let us assess it in this theorem.

Theorem 4.9. STRONGEVENTUAL(F) 6→ TIMEDCAUSAL(F ,∆).

Proof. Let assume the following system and execution: S = ({p1, p2},{x}), ∆ = 2, ∃E6 ∈
E TimedCausal : E6 = ({o1 =(p1,wr,x,1,t,0,1), o2 =(p2,wr,x,2,t,0,1), o3 =(p1,rd,x,t,1,1,2),
o4 = (p2,rd,x,t,2,1,2), o5 = (p1,rd,x,t,2,3,4), o6 = (p2,rd,x,t,1,3,4)}, {(o1,o3),(o3,o5),
(o2,o4),(o4,o6),(o2,o5),(o1,o6)}, {(o4,o1),(o1,o6),(o6,o3),(o3,o2),(o2, o5)}).
E6 |= TIMEDCAUSAL(F ,2), and vis−1(o5) |wr= vis−1(o6) |wr= {o1,o2}. However, o5.oval 6=
o6.oval. Therefore, E6 6|= STRONGEVENTUAL(F). This means that, E TimedCausal 6⊂E StrongEventual .
Thus, according to Def. 3.3, STRONGEVENTUAL(F) 6→ TIMEDCAUSAL(F ,∆).

The focus of this analysis has been set on some models whose strength suggested that might be
convergent. Some notes may be also given about other CAP-free models. In that area, Lloyd et al. [22]
prove that CAUSAL+(F) is stronger than STRONGEVENTUAL(F) and Mahajan et al. [9] prove that
REALTIMECAUSAL(F) also implies STRONGEVENTUAL(F). It is also known that CAUSAL(F) is
not convergent [22]. So, ∃E7 |= CAUSAL(F) : E7 6|= STRONGEVENTUAL(F), then STRONGEVEN-
TUAL(F) 6→ CAUSAL(F). By Def. 3.3, every model Mw weaker than CAUSAL(F) will not be
stronger than STRONGEVENTUAL(F), since E7 |= Mw and E7 6|= STRONGEVENTUAL(F). There-
fore, the causal, PRAM, RYW, MW, MR and slow models are not stronger than strong eventual. This
means that they are not inherently convergent. Fork-based models do not comply either with the

Causal

PRAM (FIFO)

Slow memory

Weak

MRMWRYWWFR

Fork linearisable

Fork*

Fork sequential

Eventual

K−Regular

K−Safe

K−Linearisable

Timed causal

Non−convergent

Prefix sequential

Models:

LEGEND

Sequential

Real−time causal

Cache

Processor

Regular

Linearisable

Convergent

Causal+

Strong eventual

Safe

Timed serial

Figure 4: Revised “weaker than” (→) relationships among models.

STRONGEVENTUAL(F) definition since their NOJOIN (or ATMOSTONEJOIN) predicate explicitly
prevents EVENTUALVISIBILITY from becoming true.

Figure 4 shows the weaker than relations among STRONGEVENTUAL(F) and other models. The
bold line depicts the frontier presented in Figure 2. Models placed above that frontier are CAP-
constrained, while the others are CAP-free. Inherently convergent models are shown in grey boxes,
while the others are in white boxes.

As shown in Figure 4, our analysis distributes consistency models in these classes regarding con-
vergence:

1. CAP-constrained and not necessarily convergent models: TIMEDCAUSAL(F ,∆), K-LINEARI-
SABLE(F ,K), K-REGULAR(F ,K), SAFE(F), K-SAFE(F ,K), ... These models lose availabil-
ity when a network partition arises and do not ensure convergence when no network partition has
occurred. This set is the worst one regarding state convergence and CAP freedom.

2. CAP-constrained and convergent models: LINEARISABLE(F), TIMEDSERIAL(F ,∆), SEQUEN-
TIAL(F), PROCESSOR(F), CACHE(F),... These models lose availability when a network par-
tition arises, but they keep state convergence among processes when no network partition occurs.

In spite of this, the availability loss may be overcome in some of these models. To this end,
the locality property may be used. Herlihy and Wing [15] stated that a consistency model M
is local when an implementation of M for disjoint subsets of objects is an implementation of
M for the whole set of objects. LINEARISABLE(F) and CACHE(F) are local models [15, 41].
This means that when a service has been implemented respecting any local model Ml and it is
deployed in a way that each node group holds a disjoint subset of the service objects (using
to this end a database sharding approach [42]), if the network becomes partitioned, every node
group still remains available to its users and the whole system still complies with Ml . In practice,
this means that the system tolerates those network partitions while it remains available, despite

using one of those CAP-constrained and convergent models. The key for ensuring this is to
have a good data sharding approach, and there has been a fruitful line of research in that area
[43, 44, 45, 46, 47, 48, 49].

3. CAP-free and convergent models: STRONGEVENTUAL(F), CAUSAL+(F), REALTIMECAUSAL(F),
PREFIXSEQUENTIAL(F),... These models keep availability when a network partition arises and
they are able to reach convergence among all processes when there is no connectivity problem or
connectivity is recovered. This is one of the most interesting sets, since these models are able to
overcome all CAP constraints without indefinitely losing state convergence.

4. CAP-free and not necessarily convergent models: WEAK(F), PRAM(F), EVENTUAL(F),
CAUSAL(F), ... These models keep availability in all processes when a network partition occurs,
and this is a good characteristic, but to this end they do not ensure state convergence. They are
generally considered too relaxed to implement and deploy scalable services.

5 Related Work
The identification of the set of consistency models affected by the CAP theorem has been implicitly
undertaken by several recent papers that have looked for the strongest consistency to be supported in
available and partition-tolerant systems [22, 9, 11]. Those papers have taken as a base causal con-
sistency, adding some conditions in order to strengthen it, generating in that way the causal+ [22],
real-time causal [9] and observable causal [11] models. Those models are incomparable to each other
and they define part of the strongest subset of models in the CAP-free set.

Another traditional approach to implement available and partition-tolerant services is based on
eventual consistency [50]. The term eventual consistency was probably first used in the Clearinghouse
system [16] and in the Lotus/Iris Notes project on computer-supported cooperative work [51], in 1987
and 1988, respectively. However, such kind of consistency was already explained and used in other pre-
vious papers, being the works from Johnson and Thomas [4, 52] (1975) and the commutative-update
replication protocol variant of Alsberg and Day [53] (1976) the first ones we are aware of.

Thus, both causal and eventual consistencies belong to the CAP-free set of models. Causal con-
sistency does not demand consensus on a common order of writes, while eventual consistency relaxes
the recency of the values being read since it uses lazy write propagation. Intuitively, this suggests that
CAP-constrained models are those requiring either consensus on a global write-order (impossible to at-
tain in a partitionable system due to the FLP impossibility result [54]) or a close to immediate recency
on the read values (broken when the latest values have been written in another network component
while the network is partitioned). However, that conjecture had not been explicitly proven yet.

The exact frontier is not easy to set. Previous attemps were centred on value-order consensus, e.g.
[10], and they only provided a partial frontier. The consistency specification framework proposed by
Burckhardt et al. [13, 14] provides an excellent basis for specifying consistency models. With it, it
is easy to state both safety and liveness conditions. Viotti and Vukolić [12] have used that framework
for surveying distributed consistency models. Our work complements their survey in regard to the
identification of multiple weaker-than relations between models that were not depicted in [12] and
in looking for the CAP-constrained to CAP-free frontier considering value-order consensus and read
recency criteria.

To this end, considering the formal models from [13, 14, 12], we have been able to state when a
model is CAP-constrained or CAP-free. Besides, we have also proven two interesting propositions: (1)
if a model A is weaker than another CAP-free model B, then A is CAP-free, and (2) if a model C is
stronger than another CAP-constrained model D, then C is CAP-constrained. Those two properties,
combined with our extended hierarchy of models based on the weaker-than relation, facilitates the
determination of any newly proposed consistency model as either CAP-free or CAP-constrained.

There are several composable and tunable consistency models [34, 35, 36, 37, 38, 33, 39, 40] whose
implementation protocols support both CAP-constrained and CAP-free consistencies. They are a good
choice to overcome the limitations imposed by the CAP theorem on the consistency of highly available
distributed services. Services that use those models may choose a configuration that either relaxes
consistency or easily determines which service activities may remain blocked while partitions arise.

Additionally, other configurations may provide quite a strong consistency while the network remains
connected.

However, there may be some problem domains (e.g., cryptocurrency supporting protocols) where
their potentially huge request arrival rates and their large set of participating servers may prevent those
servers from directly communicating to each other each time a request is processed. In those cases,
a CAP-free and eventually convergent model may be the best choice (e.g., prefix sequential) at every
time, even when no communication failure arises [32]. In those scenarios, the goal is to find an in-
herently convergent model that reduces to a minimum the interaction among servers, using to this end
decentralised algorithms. This shows that not all problems require hybrid tunable models that choose
a CAP-constrained variant in connected intervals and a CAP-free one when a disconnection occurs.
Indeed, prefix sequential guarantees sequential consistency when all committed writes are known by
every process.

6 Conclusions
The CAP theorem was originally proved considering linearisable consistency, but there are other con-
sistency models that cannot guarantee replicated service availability when the interconnecting network
remains partitioned. All these models are CAP-constrained. In order to find out which is the whole
set of CAP-constrained models a precise specification of that concept is needed. That specification has
been provided in this paper, accompanied by that of CAP-free models.

With those definitions, a precise frontier between the CAP-free and CAP-constrained sets of con-
sistency models has been determined. Besides, it has been proved that: (1) all models that are weaker
than a CAP-free model are also CAP-free, and (2) all models that are stronger than a CAP-constrained
model are also CAP-constrained. Those two propositions and the CAP-free vs CAP-constrained fron-
tier provide a basis for easily determining whether any new consistency model A is either CAP-free
or CAP-constrained. To this end, A should be compared with any strong CAP-free model F (being
CAP-free if A is weaker than F) or with any weak CAP-constrained model C (being CAP-constrained
if A is stronger than C).

In order to facilitate the assessment of any new model, we have revised the weaker-than relations
among consistency models, refining the hierarchy identified by Viotti and Vukolić in [12]. In this scope,
our analysis has been centred in the STRONGCONVERGENCE property. Thus, we have found that
not all CAP-constrained models are strongly convergent, while there are a few CAP-free models that
are inherently convergent. Convergent CAP-free models (e.g., causal+, real-time causal, observable
causal, prefix sequential...) allow service availability while the network is partitioned and easily reach
convergence once network connectivity is resumed, overcoming in this way all constraints imposed
by the CAP theorem. Considering our resulting hierarchy of models, and the propositions mentioned
before, every forthcoming (and potentially convergent and CAP-free) consistency model will be easily
characterised once its location in this hierarchy is found.

References
[1] Davidson, S. B., Garcı́a-Molina, H., and Skeen, D. (1985) Consistency in partitioned networks. ACM Com-

put. Surv., 17, 341–370.

[2] Fox, A. and Brewer, E. A. (1999) Harvest, yield and scalable tolerant systems. 7th Workshop on Hot Topics
in Operating Systems (HotOS), Rio Rico, Arizona, USA, 28-30 March, pp. 174–178. IEEE-CS Press, Los
Alamitos, CA, USA.

[3] Gilbert, S. and Lynch, N. (2002) Brewer’s conjecture and the feasibility of consistent, available, partition-
tolerant web services. SIGACT News, 33, 51–59.

[4] Johnson, P. R. and Thomas, R. H. (1975). The maintenance of duplicate databases. RFC 677, Network
Working Group, Internet Engineering Task Force.

[5] Birman, K. P. and Friedman, R. (1996) Trading consistency for availability in distributed systems. Technical
report. 96-1579, Department of Computer Science, Cornell University, Ithaca, NY, USA.

[6] Lamport, L. (1986) On interprocess communication. Part II: algorithms. Distrib. Comput., 1, 86–101.

[7] Muñoz-Escoı́, F. D. and Bernabéu-Aubán, J. M. (2017) A survey on elasticity management in PaaS systems.
Computing, 99, 617–656.

[8] Brewer, E. A. (2012) CAP twelve years later: How the “rules” have changed. IEEE Comput., 45, 23–29.

[9] Mahajan, P., Alvisi, L., and Dahlin, M. (2011) Consistency, availability and convergence. Technical report.
UTCS TR-11-22, Department of Computer Science, The University of Texas at Austin, USA.

[10] Pascual-Miret, L., González de Mendı́vil, J. R., Bernabéu-Aubán, J. M., and Muñoz-Escoı́, F. D. (2015)
Widening CAP consistency. Technical report. IUMTI-SIDI-2015/03, Inst. Univ. Mixto Tecnológico de In-
formática, Univ. Politècnica de València, Valencia, Spain.

[11] Attiya, H., Ellen, F., and Morrison, A. (2017) Limitations of highly-available eventually-consistent data
stores. IEEE Trans. Parallel Distrib. Syst., 28, 141–155.

[12] Viotti, P. and Vukolić, M. (2016) Consistency in non-transactional distributed storage systems. ACM Comput.
Surv., 49, 19:1–19:34.

[13] Burckhardt, S., Gotsman, A., Yang, H., and Zawirski, M. (2014) Replicated data types: specification, verifica-
tion, optimality. 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL), San Diego, CA, USA, 20-21 January, pp. 271–284. ACM Press, New York, NY, USA.

[14] Burckhardt, S. (2014) Principles of eventual consistency. Foundations Trends Program. Lang., 1, 1–150.

[15] Herlihy, M. and Wing, J. M. (1990) Linearizability: A correctness condition for concurrent objects. ACM
Trans. Program. Lang. Syst., 12, 463–492.

[16] Demers, A. J., Greene, D. H., Hauser, C., Irish, W., Larson, J., Shenker, S., Sturgis, H. E., Swinehart, D. C.,
and Terry, D. B. (1987) Epidemic algorithms for replicated database maintenance. 6th ACM Symposium
on Principles of Distributed Computing (PODC), Vancouver, British Columbia, Canada, 10-12 August, pp.
1–12. ACM Press, New York, NY, USA.

[17] Shapiro, M., Preguiça, N. M., Baquero, C., and Zawirski, M. (2011) Conflict-free replicated data types. 13th
Int. Symp. Stabilization, Safety, and Security of Distributed Systems (SSS), Grenoble, France, 10-12 October,
pp. 386–400. Springer, Berlin, Germany.

[18] Lipton, R. J. and Sandberg, J. S. (1988) PRAM: A scalable shared memory. Technical report. CS-TR-180-88,
Princeton University, Princeton, NJ, USA.

[19] Lamport, L. (1979) How to make a multiprocessor computer that correctly executes multiprocess programs.
IEEE T. Comput., 28, 690–691.

[20] Terry, D. B., Demers, A. J., Petersen, K., Spreitzer, M., Theimer, M., and Welch, B. B. (1994) Session
guarantees for weakly consistent replicated data. 3rd Int. Conf. Parallel and Distributed Information Systems
(PDIS), Austin, Texas, USA, 28-30 September, pp. 140–149. IEEE-CS Press, Los Alamitos, CA, USA.

[21] Ahamad, M., Burns, J. E., Hutto, P. W., and Neiger, G. (1991) Causal memory. 5th Int. Workshop on Dis-
tributed Algorithms and Graphs (WDAG), Delphi, Greece, 7-9 October, pp. 9–30. Springer, Berlin, Germany.

[22] Lloyd, W., Freedman, M. J., Kaminsky, M., and Andersen, D. G. (2011) Don’t settle for eventual: scalable
causal consistency for wide-area storage with COPS. 23rd ACM Symp. Operating Systems Principles (SOSP),
Cascais, Portugal, 23-26 October, pp. 401–416. ACM Press, New York, NY, USA.

[23] Terry, D. B., Theimer, M., Petersen, K., Demers, A. J., Spreitzer, M., and Hauser, C. (1995) Managing update
conflicts in Bayou, a weakly connected replicated storage system. 15th ACM Symposium on Operating System
Principles (SOSP), Copper Mountain Resort, Colorado, USA, 3-6 December, pp. 172–183. ACM Press, New
York, NY, USA.

[24] Torres-Rojas, F. J. and Meneses, E. (2005) Convergence through a weak consistency model: Timed causal
consistency. CLEI Electron. J., 8, 2:1–2:10.

[25] Torres-Rojas, F. J., Ahamad, M., and Raynal, M. (1999) Timed consistency for shared distributed objects.
18th Annual ACM Symposium on Principles of Distributed Computing (PODC), Atlanta, Georgia, USA, 3-6
May, pp. 163–172. ACM Press, New York, NY, USA.

[26] Aiyer, A. S., Alvisi, L., and Bazzi, R. A. (2005) On the availability of non-strict quorum systems. 19th
Int. Conf. Distributed Computing (DISC), Cracow, Poland, 26-29 September, pp. 48–62. Springer, Berlin,
Germany.

[27] Mazières, D. and Shasha, D. E. (2002) Building secure file systems out of byzantine storage. 21st Annual
ACM Symp. Principles of Distributed Computing (PODC), Monterrey, CA, USA, 21-24 July, pp. 108–117.
ACM Press, New York, NY, USA.

[28] Oprea, A. and Reiter, M. K. (2006) On consistency of encrypted files. 20th Int. Symp. Distributed Computing
(DISC), Stockholm, Sweden, 18-20 September, pp. 254–268. Springer, Berlin, Germany.

[29] Li, J. and Mazières, D. (2007) Beyond one-third faulty replicas in Byzantine fault tolerant systems. 4th Symp.
Networked Systems Design and Implementation (NSDI), Cambridge, Massachusetts, USA, 11-13 April, pp.
131–144. USENIX, Berkeley, CA, USA.

[30] Hutto, P. W. and Ahamad, M. (1990) Slow memory: Weakening consistency to enhance concurrency in
distributed shared memories. 10th Int. Conf. Distributed Computing Systems (ICDCS), Paris, France, 28
May-1 June, pp. 302–309. IEEE-CS Press, Los Alamitos, CA, USA.

[31] Goodman, J. R. (1989) Cache consistency and sequential consistency. Technical report. Number 61, IEEE
Scalable Coherent Interface Working Group, Stanford, CA, USA.

[32] Girault, A., Gößler, G., Guerraoui, R., Hamza, J., and Seredinschi, D. (2018) Monotonic prefix consistency
in distributed systems. 38th Int. Conf. Formal Techniques for Distributed Objects, Components, and Systems
(FORTE), Madrid, Spain, 18-21 June, pp. 41–57. Springer, Berlin, Germany.

[33] Bailis, P., Venkataraman, S., Franklin, M. J., Hellerstein, J. M., and Stoica, I. (2012) Probabilistically bounded
staleness for practical partial quorums. PVLDB, 5, 776–787.

[34] Attiya, H. and Friedman, R. (1992) A correctness condition for high-performance multiprocessors. 24th
Annual ACM Symposium on Theory of Computing (STOC), Victoria, British Columbia, Canada, 4-6 May, pp.
679–690. ACM Press, New York, NY, USA.

[35] Ladin, R., Liskov, B., Shrira, L., and Ghemawat, S. (1992) Providing high availability using lazy replication.
ACM Trans. Comput. Syst., 10, 360–391.

[36] Yu, H. and Vahdat, A. (2002) Design and evaluation of a conit-based continuous consistency model for
replicated services. ACM Trans. Comput. Syst., 20, 239–282.

[37] Krishnamurthy, S., Sanders, W. H., and Cukier, M. (2002) An adaptive framework for tunable consistency
and timeliness using replication. Int. Conf. Dependable Systems and Networks (DSN), Bethesda, MD, USA,
23-26 June, pp. 17–26. IEEE-CS Press, Los Alamitos, CA, USA.

[38] Santos, N., Veiga, L., and Ferreira, P. (2007) Vector-field consistency for ad-hoc gaming. ACM/IFIP/USENIX
8th Int. Middleware Conf., Newport Beach, CA, USA, 26-30 November, pp. 80–100. Springer, Berlin, Ger-
many.

[39] Li, C., Porto, D., Clement, A., Gehrke, J., Preguiça, N. M., and Rodrigues, R. (2012) Making geo-replicated
systems fast as possible, consistent when necessary. 10th USENIX Symposium on Operating Systems Design
and Implementation (OSDI), Hollywood, CA, USA, 8-10 October, pp. 265–278. USENIX, Berkeley, CA,
USA.

[40] Dobre, D., Viotti, P., and Vukolić, M. (2014) Hybris: Robust hybrid cloud storage. ACM Symposium on
Cloud Computing (SoCC), Seattle, WA, USA, 3-5 November, pp. 12:1–12:14. ACM Press, New York, NY,
USA.

[41] Vitenberg, R. and Friedman, R. (2003) On the locality of consistency conditions. 17th Int. Conf. Distributed
Computing (DISC), Sorrento, Italy, 1-3 October, pp. 92–105. Springer, Berlin, Germany.

[42] Ceri, S., Negri, M., and Pelagatti, G. (1982) Horizontal data partitioning in database design. Int. Conf.
Management of Data (SIGMOD), Orlando, Florida, 2-4 June, pp. 128–136. ACM Press, New York, NY,
USA.

[43] Curino, C., Zhang, Y., Jones, E. P. C., and Madden, S. (2010) Schism: a workload-driven approach to
database replication and partitioning. Proc. VLDB Endowment, 3, 48–57.

[44] Bernstein, P. A., Cseri, I., Dani, N., Ellis, N., Kalhan, A., Kakivaya, G., Lomet, D. B., Manne, R., Novik, L.,
and Talius, T. (2011) Adapting Microsoft SQL Server for cloud computing. 27th Int. Conf. Data Engineering
(ICDE), Hannover, Germany, 11-16 April, pp. 1255–1263. IEEE-CS Press, Los Alamitos, CA, USA.

[45] Liroz-Gistau, M., Akbarinia, R., Pacitti, E., Porto, F., and Valduriez, P. (2012) Dynamic workload-based
partitioning for large-scale databases. 23rd Int. Conf. Database and Expert Systems Applications (DEXA),
Vienna, Austria, 3-6 September, pp. 183–190. Springer, Berlin, Germany.

[46] Das, S., Agrawal, D., and El Abbadi, A. (2013) ElasTraS: An elastic, scalable, and self-managing transac-
tional database for the cloud. ACM Trans. Database Syst., 38, 5:1–5:45.

[47] Chen, Z., Yang, S., Tan, S., He, L., Yin, H., and Zhang, G. (2015) A new fragment re-allocation strategy for
NoSQL database systems. Frontiers Comput. Sci., 9, 111–127.

[48] Kamal, J., Murshed, M. M., and Buyya, R. (2016) Workload-aware incremental repartitioning of shared-
nothing distributed databases for scalable OLTP applications. Future Generation Comp. Syst., 56, 421–435.

[49] El-Ghamrawy, S. M. and Hassanien, A. E. (2017) A partitioning framework for Cassandra NoSQL database
using Rendezvous hashing. J. Supercomput., 73, 4444–4465.

[50] Muñoz-Escoı́, F. D., Garcı́a-Escrivá, J. R., Sendra-Roig, J. S., Bernabéu-Aubán, J. M., and González de
Mendı́vil, J. R. (2018) Eventual consistency: Origin and support. Comput. Inform., 37, 1037–1072.

[51] Kawell Jr., L., Beckhardt, S., Halvorsen, T., Ozzie, R., and Greif, I. (1988) Replicated document management
in a group communication system. ACM Conf. Computer-Supported Cooperative Work (CSCW), Portland,
Oregon, USA, 26-28 September, pp. 395–. ACM Press, New York, NY, USA.

[52] Cosell, B. S., Johnson, P. R., Malman, J. H., Schantz, R. E., Sussman, J., Thomas, R. H., and Walden, D. C.
(1975) An operational system for computer resource sharing. 5th ACM Symposium on Operating System
Principles (SOSP), The University of Texas at Austin, Austin, Texas, USA, 19-21 November, pp. 75–81.
ACM Press, New York, NY, USA.

[53] Alsberg, P. and Day, J. D. (1976) A principle for resilient sharing of distributed resources. 2nd Int. Conf.
Software Engineering (ICSE), San Francisco, CA, USA, 13-15 October, pp. 562–570. IEEE-CS Press, Los
Alamitos, CA, USA.

[54] Fischer, M. J., Lynch, N. A., and Paterson, M. (1985) Impossibility of distributed consensus with one faulty
process. J. ACM, 32, 374–382.

	Introduction
	System Model
	Basic Specification
	Specification Framework
	Distributed Consistency Models
	CAP-related Definitions

	Finding a Consistency Border
	Starting Point: The Linearisable Model
	Exploring the Frontier
	Revising Inter-Model Relationships
	Configurable Models
	Convergence-based Relations

	Related Work
	Conclusions

