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Abstract. The crossing resolution of a non-planar drawing of a graph
is the value of the minimum angle formed by any pair of crossing edges.
Recent experiments have shown that the larger the crossing resolution
is, the easier it is to read and interpret a drawing of a graph. However,
maximizing the crossing resolution turns out to be an NP-hard problem
in general and only heuristic algorithms are known that are mainly based
on appropriately adjusting force-directed algorithms.

In this paper, we propose a new heuristic algorithm for the crossing reso-
lution maximization problem and we experimentally compare it against
the known approaches from the literature. Our experimental evaluation
indicates that the new heuristic produces drawings with better cross-
ing resolution, but this comes at the cost of slightly higher aspect ratio,
especially when the input graph is large.

1 Introduction

In Graph Drawing, there exists a rich literature and a wide range of techniques
for drawing planar graphs; see, e.g., [I027J33]. However, drawing a non-planar
graph, and in particular when it does not have some special structure (e.g., degree
restriction), is a difficult and challenging task, mainly due to the edge crossings
that negatively affect the drawing’s quality [38]. As a result, the established
techniques are significantly fewer (e.g., crossing minimization heuristics [21J39],
energy-based layout algorithms [T9123]); for an overview refer to [12I35/40)].

In this context, Huang et al. [30/31] a decade ago introduced some important
experimental evidence, that edge crossings may not negatively affect the draw-
ing’s quality too much (and hence the human’s ability to read and interpret it),
when the angles formed by the crossing edges are large. In other words, while
prior to these experiments it was commonly accepted that mainly the number of
crossings is the most important parameter for judging the quality of a non-planar
graph drawing, it turned out that the types of edge crossings also matter. As a
result, a new and prominent research direction was initiated, recognized under
the term “beyond planarity” [29J34I36], which focuses on graphs and their prop-
erties, when different constraints on the types of edges crossings are imposed;
refer to [I5] for a recent survey.
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Fig. 1: (a) A RAC drawing of the complete graph K5, and (b) a drawing of the complete
graph Kg, whose crossing resolution is arbitrarily close to 90°.

The value of the minimum angle formed by any two crossing edges in a
drawing is referred to as its crossing resolution; the crossing resolution of a graph
is defined as the maximum crossing resolution over all its drawings. Clearly,
the crossing resolution of a non-planar graph is at most 90°, while a graph
that admits a drawing with crossing resolution 90° is called right-angle-crossing
(RAC) graph; see Figure Notably, RAC graphs are sparse with at most 4n—10
edges [14], while deciding whether a graph is RAC is NP-hard [4].

The latter result is an indication that the problem of finding drawings with
high crossing resolution might also be difficult, even though, formally, its com-
plexity has not been settled yet for values of the crossing resolution smaller
than 90°. Also, the literature is significantly more limited, when restricting the
crossing resolution to be smaller than 90°, as also evidenced by Section

From a practical point of view, we are only aware of two methods that aim at
drawings with high crossing resolution; both of them are adjustments of force-
directed algorithms [I9]. The first one is due to Huang et al. [32], while the second
one is due to Argyriou et al. [5]. Common in both algorithms is that they apply
appropriate forces on the endvertices of every pair of crossing edges. Each of
them uses a different way to compute (the direction and the magnitude of) the
forces, but the underlying idea of both is the same: the smaller the crossing angles
are, the larger are the magnitudes of the forces applied at their endvertices.

In this work, we approach the crossing resolution maximization problem from
a different perspective. We suggest a simple and intuitive randomization method,
which, in a sense, mimics the way a human would try to increase the crossing
resolution of a drawing. How would one increase the crossing resolution of a
given drawing? First, she would try to identify the pair of edges that define the
crossing resolution of the drawing (we call them critical edges); then, she would
try to move an endvertex of this pair (which we choose at random), hoping that
by this move the crossing resolution will increase. Of course, we cannot consider
all possible positions for the vertex to be moved. Instead, we consider a small set
of randomly generated ones. If there exists a position among them, that does not
lead to a reduction of the crossing resolution, we move the vertex to this position.

In general, randomization is a technique that has not been deeply examined in
Graph Drawing, as it seems difficult to even speculate about the expected quality
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of the produced drawings; a notable exception is the randomized approach by
Goldschmidt and Takvorian [26] for computing large planar subgraphs. Since
we also could not provide any theoretical guarantee on the expected quality of
the produced drawings, we followed a more practical approach. We implemented
our algorithm and the force-directed ones of [5] and [32], and we experimentally
compared them on standard benchmark graphs. Our evaluation indicates that
our method significantly outperforms the force-directed ones [5I32] in terms of
crossing resolution, but this comes at the cost of slightly worse running time for
large and dense graphs. Analogous results are obtained, when our algorithm and
the ones of [5] and [32] are adjusted to maximize the angular resolution (i.e., the
minimum value of the angle between any two adjacent edges [22]) or the total
resolution (i.e., the minimum of the angular and the crossing resolution [5]).

Preliminaries: Unless otherwise specified, in this paper we consider simple undi-
rected graphs. Let G = (V, E) be such a graph. The degree of vertex u € V of
G is denoted by d(u). The degree d(G) of graph G is defined as the maximum
degree of its vertices, i.e., d(G) = maxycy d(u). Given a drawing I'(G) of G, we
denote by p(u) = (4, y,) the position of vertex u € V of G in I'(G).

Structure of the paper: The remainder of this paper is structured as follows. Sec-
tion [2) overviews related works. Our algorithm is presented in detail in Section
and is experimentally evaluated against the ones of Huang et al. [32] and Ar-
gyriou et al. [5] in Section where we also discuss our insights from this project.
In the appendix, we provide experimental results on grid restricted drawings, on
more test sets and on the graphs from the Graph Drawing Competition in 2017.

2 Related Work

As already mentioned, the study of the crossing resolution maximization problem
has mainly focused on its optimal case, i.e., on the study of RAC graphs. An n-
vertex RAC graph has at most 4n—10 edges [14], while deciding whether a graph
is RAC is NP-hard [4]. The maximally-dense RAC graphs are 1-planar [20], i.e.,
they can be drawn with at most one crossing per edge. Actually, several rela-
tionships between the class of RAC graphs and subclasses of 1-planar graphs are
known [79]. Deciding, however, whether a 1-planar graph is RAC is NP-hard [§].
Note that the problem of finding RAC drawings has also been studied in the
presence of bends [2/6/T4/25] and by imposing restrictions on the degree [3], the
structure [I3] and the drawing [24I28] of the graph. The results are fewer, when
the right-angle constraint is relaxed. Dujmovic et al. [18] proved that an n-vertex
graph with crossing resolution at least « radians, has at most (3n—6)7/« edges.
Corresponding density results are also known in the presence of bends [II25].
An immediate observation emerging from the above overview is that the focus
has been primarily on theoretical aspects of the problem. Most of the approaches
that could be useful in practice are based on force-directed techniques [12J19].
COWA is a system that supports conceptual web site traffic analysis [16]; its
algorithmic core is a force-directed heuristic to compute simultaneous embed-
dings of two non-planar graphs with high crossing resolution. Didimo et al. [17]
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describe topology-driven force-directed heuristics to achieve good trade-offs in
terms of number of edge crossings, crossing resolution, and geodesic edge ten-
dency; the obtained drawings, however, are not straight-line. For straight-line
drawings, Nguyen et al. [37] suggest a quadratic-program to increase the cross-
ing angles of circular drawings. Of more general scope are the already mentioned
force-directed algorithms of Argyriou et al. [5] and Huang et al. [32].

3 Description of our Heuristic Approach

In this section, we describe our heuristic for obtaining drawings with high cross-
ing resolution. The input of our heuristic consists of a graph G and an initial
drawing I of G with crossing resolution ¢(Ip). We assume that no two edges
of G overlap in Iy, i.e., ¢(Iy) > 0. A circular drawing or a drawing obtained by
applying a force-directed algorithm on G clearly meets this precondition.

Our algorithm is iterative and at each iteration performs some operations
that are mainly based on randomization. At the i-th iteration, we assume that
we have computed a drawing I';_; of crossing resolution ¢(I;_1) > ¢(I}p). In other
words, we assume, as an invariant for our algorithm, that the crossing resolution
cannot be decreased at some iteration. Then, a vertex of I;_1 is chosen arbitrarily
at random based on the so-called vertez-pool, which may contain: (i) either all
vertices of I;_1, or (ii) a prespecified subset of the vertices of I;_1, called critical.

Intuitively, the critical vertices are the endpoints of the edges that define
the crossing resolution of drawing I5_1. To formally define them, we first need
to introduce the notion of critical edge-pairs. A pair of edges e and €’ is called
critical in I;_1, if e and €’ cross in I;_; and the minimum angle that is formed
at their crossing point is equal to ¢(I5—1). The set of critical vertices of I;_1 is
then defined by the four endvertices of each critical edge-pair.

The role of critical vertices is central in our algorithnﬂ By appropriately
changing the location of a critical vertex or of a vertex in the neighbourhood of
the critical vertices, we naturally expect to improve the crossing resolution of the
current drawing. We turned this observation into an algorithmic implementation
through a probabilistic random selection procedure, so that the vertices at graph-
distance i from the ones of the vertex-pool have higher probability for selection
than the corresponding ones at distance j in the graph, when 0 < i < j. So, if
the vertex-pool contains only critical vertices, then the closer a vertex is to the
critical vertices, the more likely it is to be chosen. Otherwise, the vertex-pool
contains all vertices and each vertex can be chosen with the same probability.

What we quickly realized from our practical analysis, is that the crossing
resolution of the initial drawing improves rapidly during the first iterations of the
algorithm. However, by focusing only at the critical vertices, it is highly possible
that the algorithm will get trapped to some local maxima after a number of

L If the focus is not on the critical vertices for a large graph, then our algorithm will
need a large number of iterations to converge to a good solution, because it is simply
very unlikely to select to move one of the vertices that define the crossing resolution.
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(a) (b)
Fig. 2: Tllustration of an iteration step of our algorithm: (a) The chosen vertex is the
white one; the computed rays ro,...,r7 have been rotated by 8°; the black-colored
points along these rays are points o, ..., 77; among them, 74 yields the best solution.

(b) The resulting drawing after moving the vertex at position ms.

iterations. So, special care is needed to avoid these bottlenecks, especially when
the input graph is large. We will discuss ways to avoid them later in this section.

So far, we have described the main idea of our algorithm, which at each
iteration chooses uniformly at random a vertex of the current drawing to move
(based on the content of the vertex-pool), so to improve the crossing resolution.
Next, we describe how to compute its new position in the next drawing. Note
that our method resembles probabilistic hill climbing approaches.

Let v; be the vertex of I';_; that has been chosen to be moved at the i-th
iteration. To compute the position of v; in the next drawing I;, we consider a
set of p rays rg,71,...,7,-1 that all emanate from p(v;) in I;_1, such that the
angle formed by ray r;, with j = 0,1,..., p—1, and the horizontal axis equals to
2j7/p, where p > 0 is an integer parameter of the algorithm. These rays are then
rotated by an angle that is chosen uniformly at random in the interval [0, 27];
see Fig. [2l The position of vertex v; in I; will eventually be along one of the
rays r9,71,...,7p—1. More precisely, for each ray r; we choose a distance value
0; uniformly at random from the interval [0,in, Omaz], Where dpin and dp,q. are
two positive parameters of the algorithm. For each j = 0,1,...,p — 1, a new
point 7; is obtained by translating p(u) along r; by a distance d;; point =; is
feasible, if the crossing resolution of the drawing obtained by placing vertex v;
at m; and by keeping all other vertices of G in their positions in I5_ is at least
as large as the crossing resolution of I;_1, and there is no vertex of I';_; at ;.

If none of the points m;, with j = 0,1,...,p—1 is feasible, then the position
of v; in I5 is p(v;), i.e., same as in I';_1, since ¢(I;) > ¢(I;—1) must hold. If there
is one or more feasible points, then one may consider two different approaches
to determine the position of v; in I';. The most natural is to choose the feasible
point that maximizes the crossing resolution of the obtained drawing. As an
alternative, one may rely again on randomization and chose uniformly at random
one of the feasible points as the position of v; in I;. We note that we did not
observe any significant difference between these two approaches (in terms of the
crossing resolution of the obtained drawings), so we simply adopted the first one.
The termination condition of our algorithm is simple and depends on an input
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parameter 7. More specifically, if the crossing resolution has not improved during
the last 7 iterations, we assume that the algorithm has converged and we stop.

Avoiding local maxima. To avoid getting trapped to locally optimal solu-
tions, we mainly investigated two approaches, which are both parametrizable by
two input parameters ¢ and ¢’. The first mimics the human behaviour. What
would one do to escape from a locally optimal solution? She would stop trying
to move the endvertices of the edges defining the crossing resolution; she would
rather start moving “irrelevant” vertices hoping that by doing so a better solu-
tion will be easier to be computed afterwards. Our algorithm is mimicking this
idea as follows: (i) if during the last ( iterations the crossing resolution has not
been improved, then the vertex-pool becomes wider by including all the vertices,
and the algorithm is executed with this vertex-pool for ¢’ iterations; (ii) after-
wards, the vertex-pool switches back to the critical vertices. While this approach
turned out to be effective for smaller graphs, for graphs with more than 100 ver-
tices, it was not so efficient; in most iterations with the wider vertex-pool, the
embedding could not change in a beneficial way for the algorithm to proceed.

Our second approach is based on parameters p, 0pmin and dmq, of the al-
gorithm. Our idea was that if the algorithm gets trapped to a locally optimal
solution, then a “drastic” or “sharp” move may help to escape. We turned this
idea into an algorithmic implementation as follows: (i) if during the last ¢ itera-
tions the crossing resolution has not been improved, we double the values of p,
Omin and 6,4z, and the algorithm is executed with these values for ¢’ iterations;
(ii) afterwards, p, Omin and dpq, switch back to this initial value. This approach
may lead to drawings with larger area, but this is “expected”, as it turns out
that drawings with high crossing resolution may require large area [2l[9].

Complexity issues. A factor that highly affects the efficiency of our algorithm is
the computation of the crossing points of the edges and the corresponding angles
at these points. Given a drawing, a naive approach to compute its crossings
requires O(m?) time, which can be improved by a plane-sweep technique to
O(mlogm + ¢) time, where m and ¢ denote the number of edges and crossings.

Instead of computing all crossing points and the corresponding angles for
each candidate position of each iteration, we adopted a different approach for
determining the set of feasible candidate positions, which turned out to be quite
efficient in practice. Recall that we denoted by v; the vertex chosen at the i-
th iteration step, and by mg,...,m,—1 the candidate positions to move v;. Let
€0, ... €d;,—1 be the edges incident to v;, where d; = deg(v;). Next, for each
edge e with £ =0,...,d; — 1 we compute the crossings and the corresponding
crossing angles of e with all other edges in I;_1. Let ¢; be the minimum crossing
angle computed; this is our reference angle. Also, for each candidate position =;
with j =0,...,p — 1, and for each edge e;, with £k =0,...,d; — 1, we compute
the crossings and the corresponding crossing angles of e, with all other edges of
the drawing, assuming that v; is at m;. Let x; be the minimum crossing angle
computed with this approach, when v; is at position 7;. Clearly, 7; is feasible only
if x; > ¢;. Note that the complexity of this approach is O(deg(v;)m) = O(nm).
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3.1 Some interesting variants

In general, aesthetically pleasant drawings of graphs are usually the result of
compromising between different aesthetic criteria. Towards this direction, we
discuss in this section interesting variants of our algorithm, which are motivated
by the following observation that we made while working on this project (see
Section : Drawings that are optimised only in terms of the crossing resolution
tend to have bad aspect ratio and poor angular resolution.

Aspect ratio. It was easy to instruct our algorithm to prevent producing draw-
ings with aspect ratio either higher than the one of the starting layout or higher
than a given input value. What we simply had to do was to reject candidate
positions, which violate this precondition.

Total resolution. Similarly as above, we could adjust our algorithm to yield
drawings with high total resolution by simply taking into account also the angu-
lar resolution of the drawing. In particular, if the total resolution of the drawing
is defined by its angular resolution, then the way we compute the critical vertices
of this drawing has to change; the critical vertices must be the endvertices of the
pairs of edges that define the angular resolution. Also, at each iteration of our
algorithm we have to ensure that the total resolution does not decrease. We do
so by rejecting candidate positions which yield a reduced total resolution.

Angular resolution. As it is the case with the force-directed algorithms of
Huang et al. [32] and Argyriou et al. [5], our algorithm can be also restricted to
maximize only the angular resolution (by neglecting its crossing resolution). We
already described in the previous paragraph the necessary changes in the defini-
tion of the critical vertices and the rule according to which a candidate position
is rejected (i.e., when it yields a drawing with a reduced angular resolution).

Grid drawings. Our algorithm, as it has been described so far, does not neces-
sarily produce grid drawings, i.e., drawings in which the vertices are at integer
coordinates. However, it can be easily adjusted to produce such drawings. More
precisely, if we round the candidate positions computed at each iteration of our
algorithm to their closest grid points and use these grid points as candidates for
the next position of the vertex to be moved, then the obtained drawing will be
grid (assuming, of course, that the starting drawing is grid). One can even bound
the size of the grid, by rejecting candidate grid positions outside the bounds. In
Appendix [A] we report experimental results on this variant.

4 Experimental Evaluation

In this section, we present the results of our experimental evaluation. For compar-
ison purposes, apart from our algorithm, we also implemented the force-directed
algorithms of Argyriou et al. [5] and Huang et al. [32]. The implementationﬁ
were in Java using yFiles [4I]. The experiment was performed on a Linux laptop
with four cores at 2.4 GHz and 8 GB RAM. As a test set for our experiment, we

2 Qur implementation is available on request from the authors.
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used the non-planar Rome graphs [I1], which form a collection of around 8.100
benchmark graphs; in Appendix [B] we also report on the AT&T graphs.

The experiment was performed as follows. Initially, each Rome graph was laid
out using the SmartOrganic layouter of yFiles [4I]. Starting from this layout,
every graph was drawn with (i) our algorithm, (ii) our algorithm restricted not
to violate the aspect ratio of the initial layout, and the force-directed algo-
rithms (iii) by Argyriou et al. and (iv) by Huang et al. Since all algorithms of
the experiment can easily be adjusted to maximize only the crossing resolution,
or only the angular resolution or both (by maximizing the total resolution),
we adjusted each of the algorithms to maximize exclusively the corresponding
measures; see Figs. [ ] and [5} In our algorithm, this can be achieved by mod-
ifying appropriately the content of the vertex-pool (as we saw in Section ,
while in the algorithms of Argyriou et al. and of Huang et al. by switching on
only the forces that maximize the corresponding properties under measure (note
that, each of these two algorithms has a different set of forces to maximize the
crossing and the angular resolution, such that together they maximize the total
resolution). The reported results are on average across different drawings with
same number of vertices. Finally, we mention that for our algorithm, we chose
Omaz = %max{w, h}, where w and h are the width and the height of the initial
drawing, respectively, 0, = ﬁémaw and p = 10.

Crossing resolution. Our results for the crossing resolution are summarized in
Fig. 8] Here, each algorithm was adjusted to maximize exclusively the crossing
resolution (i.e., by ignoring the drawing’s angular resolution). It is immediate
to see that our algorithm outperforms all other ones in terms of the crossing
resolution of the produced drawings, when we do not impose any restriction on
the aspect ratio of the computed drawings; refer to the solid-black curve, denoted
as Unrestricted, in Fig. [3al The variant of our algorithm, which does not violate
the aspect ratio of the initial layout, leads to drawings with slightly smaller
crossing resolution; refer to the solid-gray curve, denoted as AR-restricted, in
Fig. Finally, the two force-directed algorithms seem to produce drawings
with worse crossing resolution; refer to the dotted-gray and dotted-black curves
of Fig. (by Argyriou et al. and by Huang et al., respectively).

While our unrestricted algorithm produces drawings with better crossing res-
olution, this comes at a cost of drastically increased aspect ratio (see Fig. [3b)),
which, however, is still better that the corresponding aspect ratio of the draw-
ings produced by the algorithm of Argyriou et al. For the latter algorithm, it
seems that the forces due to the angles formed at the crossings outperform the
corresponding spring forces, which try to keep the lengths of the edges short.
Going back to our unrestricted algorithm, its behaviour is up to a certain degree
expected, mainly due to the fact that there is no control on the lengths of the
edges. On the other hand, the restricted variant of our algorithm, which does
not allow the aspect ratio to increase, has more or less comparable performance
(in terms of aspect ratio) with the one of Huang et al.

Regarding the number of crossings, the restricted variant of our algorithm
and the force-directed algorithm of Huang et al. yield drawings with comparable
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Fig. 3: Experimental results on the crossing resolution for the Rome graphs.

number of crossings, which at the same time is significantly smaller than the
number of crossings produced by the two other algorithms; see Fig.

A different behaviour can be observed in the number of iterations, which are
required by the algorithms to converge; refer to Fig. We note here that we
used different criteria to determine whether the algorithms of our experiment had
converged. For our algorithms and for the force-directed algorithm by Huang et
al., we assumed that the algorithm had converged, if the crossing resolution be-
tween 500 consecutive iterations was not improved by more than 0.001 degrees.
For the algorithm by Argyriou et al., we decided to use a much more restricted
convergence criterion, because the produced layouts can change vastly between
consecutive iterations. We made this choice mainly to have “comparable” num-
ber of iterations among the algorithms of the experiment. In this direction, we
adopted the convergence criterion that the authors used in their previous ex-
perimental analysis that is, we assumed that the algorithm had converged, if
the crossing resolution between two consecutive iterations was not improved by
more than 0.001 degrees. Observe that even under this more restricted conver-
gence criterion, the algorithm needs significantly more iterations to converge
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than the remaining three algorithms of the experiment; see Fig. [3d] The maxi-
mum number of iterations that each of the algorithms could perform in order to
converge was set to 100.000, but that limit was never reached. We observe that
both force-directed algorithms seem to require a great amount of iterations to
converge for small graphs, where a drawing with really good crossing resolution
is possible. However, for larger graphs the algorithm by Huang et al. requires
the least amount of iterations. On the other hand, both the unrestricted and the
restricted variant of our algorithm require comparable number of iterations to
converge, but clearly more than the ones of the algorithm by Huang et al.

Total resolution. Our results for the total resolution are summarized in Fig. [4
Here, each algorithm was adjusted to maximize both the crossing and the an-
gular resolution. For the vast majority of the graphs in the experiment, both
our unrestricted algorithm and its restricted variant yield drawings with better
total resolution than the corresponding ones by Argyriou et al. The drawings
produced by the algorithm by Huang et al. seems to have worse total resolution;
see Fig. [fal Note, however, that both variants of our algorithm as well as the
force-directed algorithm by Argyriou et al. tend to produce drawings of the same
total resolution for larger graphs with a small difference in our favor.

Contrary to the results for the total resolution, the results for the aspect ratio
show that the drawings produced by the algorithm by Huang et al. are better
(in terms of aspect ratio) than the drawings produced by remaining algorithms;
see Fig. More concretely, the drawings produced by the restricted variant of
our algorithm have slightly worse aspect ratios. Then, the ones produced by the
force-directed algorithm by Argyriou et al. follow. Again, we observe that our
unrestricted algorithm leads to drawings with very high aspect ratio.

The restricted variant of our algorithm and the algorithm by Huang et al.
yield drawings with the least number of crossings; see Fig. Comparable but
slightly worse (in terms of the number of crossings) are the drawings produced
by the force-directed algorithm by Argyriou et al. Our unrestricted algorithm
seems to require the largest number of crossings, which turn out to be notably
higher than the corresponding ones of the other three algorithms.

On the negative side, both the unrestricted and the restricted variant of our
algorithm require more iterations than the force-directed algorithm by Huang et
al.; see Fig. Recall, however, that the latter algorithm is clearly outperformed
by both our variants in term of total resolution. The algorithm by Argyriou et al.
clearly requires the highest number of iterations (especially for large graphs). We
note that the convergence criterion was the same as for the crossing resolution;
however, the measured quality was (not the crossing but) the total resolution.

Angular resolution. We conclude the analysis of our experimental evaluation
with the results for the angular resolution; see Fig. |l Here, each algorithm was
adjusted to maximize only the angular resolution (i.e., by ignoring the drawing’s
crossing resolution). A notable observation is that, for small graphs the best
results are achieved by the algorithm by Argyriou et al., while for medium-size
graphs by our unrestricted algorithm; see Fig. For large graphs, the two
algorithms tend to have the same performance. The restricted variant of our
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Fig. 4: Experimental results on the total resolution for the Rome graphs.

algorithm yields drawings with slightly worse angular resolution. The algorithm
by Huang et al. is outperformed by all algorithms of the experiment.

The results for the aspect ratio, the number of crossings and the required
number of iterations are very similar with corresponding ones for the total reso-
lution; see Figs. [fb}Hbd] This observation suggests that, for most of the graphs of
our experiment, the angular resolution dominates the crossing resolution (and
thus is the one defining the total resolution) in the constructed drawings, which
explains the similarity in the reported results. The small differences result from
the fact that the crossing resolution cannot be entirely neglected.

Discussion. While working on this project, we made some useful observations
and obtained some interesting insights. In particular, there is a recent hypothesis
(also supported by experiments) that drawings, in which the crossing angles, are
large are easy to read and understand. We observed that drawings that are
optimized only in terms of the crossing angles might be arbitrarily bad and may
have several undesired properties. In particular, in these drawings it was very
common to have adjacent edges to run almost in parallel and vertices to be very
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Fig. 5: Experimental results on the angular resolution for the Rome graphs.

close to each other. Hence, angular resolution and aspect ratio were often poor.
The additional restrictions that we imposed regarding the angular resolution and
the aspect ratio helped significantly improving the readability of the drawings,
without loosing too much of their quality in terms of the crossing resolution.

We conclude by noting that our motivation to work with this problem was
our participation to GD2017 contest, where we performed miserably using a
force-directed algorithm; for details see Appendix [C} As our evaluation shows,
the performance of such algorithms is good, only when several aesthetic criteria
are taken into account; our new approach is definitely more promising than our
previous as evidenced by our experiments. The framework that we developed
seems to be quite adaptable to optimize or to take into account also other desired
aesthetic properties of a drawing.
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Appendix

A Experiments on Grid Drawings

In addition to the experiments described in Section [ we also evaluated how
our algorithm performs, if we restrict its vertices to integer grid coordinates. In
particular, we were interesting to see how the different quality measures that
we evaluated in Section [4 are affected by the restrictions imposed on having the
vertices of the graph on integer grids of different sizes: (i) 10° x 10° (ii) 10* x 10*
(iii) 103 x 103, and (iv) 102 x 102. The test suite for this experiment was again
the non-planar Rome graphs [I1]. However, since our algorithm is guaranteed to
produce a grid drawing, only if its initial drawing is grid, each of the Rome graphs
was initially laid out by randomly placing its vertices on the grid, ensuring that
neither two vertices nor two edges overlap. The layouts for each of the different
sizes of the grid were computed with the variant of our algorithm that optimizes
the crossing resolution; Fig. [f] summarizes the results.
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Fig. 6: Our experimental results on the crossing resolution with different grid restric-
tions. The double line corresponds to our unrestricted algorithm.
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Regarding the crossing resolution, we can observe that with increasing grid
size, we could achieve better crossing resolution; see Fig. [fal More precisely, a
grid of size 10?2 x 10?2 was too restrictive for the vast majority of the graphs.
As a result, the reported drawings were often the initial ones (as our algorithm
could not improve them), especially for large graphs. Significantly fewer were
the graphs for which our algorithm could not report an improved drawing, when
the grid size was set to 103 x 103. For grid size 10 x 104, the drawings produced
by our algorithm were on average by only 10° worse than those produced by the
unrestricted version of our algorithm (double line in Fig. @, while the gap was
closer for grid size 10% x 10°.

The aspect ratio of the computed drawings was more or less the same re-
gardless of the size of the underlying grid, with the exception of the drawings
computed on the grid of size 102 x 10?; see Fig. The fact that the aspect
ratio of these drawings was worse can be explained of course by the fact that in
most cases an improved drawing could not be reported.

As expected, the smaller the underlying grid is, the more crossings the com-
puted drawings contain; see Fig. As a result, the unrestricted variant of our
algorithm clearly outperforms all other ones. It is worth noting that the differ-
ences are clear between grid sizes 102 x 102, 103 x 10 and 10* x 10%. Notably,
there is only a slight improvement (in terms of the number of crossings) from
grid size 10* x 10* to 105 x 105. On the other hand, the number of iterations
needed for convergence increases with the grid size (see Fig. , with the ex-
ception of the grid of size 102 x 102, which verifies our previous observation that
for the vast majority of the graphs an improved drawing could not be reported.

In conclusion, we can state that our algorithm is still able to compute draw-
ings with high crossing resolution when restricted to a grid, as long as the grid is
not too small. However, the computation of a grid drawing takes longer, which is
of course expected. Finally, note that the choice of the initial grid drawing seems
to affect the performance of our algorithm, both with respect to the quality of
the produced drawings (counted here in terms of the crossing resolution) but
also with respect to the number of iterations needed to converge.

B Experiments on the AT&T Graph Test Set

In this section, we report the results of our expertimental evaluation (on the
crossing, total and angular resolutions) for the non-planar AT&T graphs, which
form a collection of 424 benchmark graphs (also known as Graph Catalog and
North graphs; available at http://graphdrawing.org/data). Note that we did
not impose any grid constraint on our algorithms. The corresponding results
are illustrated in Figs. [7} [§] and 0] In general, we observed that the variance of
the results is much larger than in the experiments on the Rome graphs. This
manifests in spikes of large magnitude in the illustrations of the results and
indicates that the structural properties of the graphs in this second test set
varies vastly between different graph sizes.
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Fig. 7: Experimental results for the crossing resolution on the AT&T graphs.

For the crossing resolution, we observed that both variants of our algorithm
again outperformed the two force-directed algorithms; see Fig. [Ta] Remarkable
is the synchronous behaviour of all four algorithms regarding the crossing res-
olution, as the curves are nearly parallel. By all these results, we can classify
the graphs into “hard” or “easy” when maximizing their crossing resolution.
In particular, graphs with 50 to 70 vertices appear to be harder to improve
than graphs with 70 to 80 vertices. Regarding the aspect ratio of the produced
drawings, we observe that while our algorithms show a slight increase with the
number of vertices, the behaviour for both force-directed algorithms appears to
be unstable resulting in a large variance. Again the restricted variant of our
algorithm and the two force directed approaches produce drawings with similar
aspect ratio, which is much lower than the one of our unrestricted algorithm for
larger graphs. All four algorithms behave nearly the same in terms of the number
of crossings; see Fig. In terms of the number of iterations, we observe that
somewhat surprisingly the algorithm of Argyriou et al. converges in the least
amount of iterations, while the remaining three algorithms behave nearly the
same; see Fig. [7d]
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Fig. 8: Experimental results for the total resolution on the AT&T graphs.

In the total resolution experiment, we observed similar results as in the exper-
iment on the Rome graphs for small graphs, that is, our unrestricted algorithm
outperforms the other three ones, while the restricted variant of our algorithm
yields drawings and then the algorithm by Argyriou et al.; see Fig. [8al For larger
graphs, however, these three algorithms achieve similar results while still out-
performing the algorithm by Huang et al. The results for the aspect ratio and
number of crossings are similar to those of the crossing resolution experiment,
with the exception of the fact that the algorithm of Huang et al. performs more
stable with respect to the aspect ratio; see Figs. [Bb] and With respect to the
number of iterations, our two algorithms and the one by Argyriou et al. show
similar behavior needing more iterations than the algorithm by Huang et al. in
order to converge; see Fig.

In the angular resolution experiment, we again obtain a not-so-clear picture
concerning the ranking of the algorithms, especially for higher number of vertices
the ranking varies; see Fig. [0al Only the algorithm by Huang et al. seems to be
mostly at the last rank. Concerning the aspect ratio we see very good behaviour
for our restricted variant and the algorithm by Huang et al. while the remaining
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Fig.9: Experimental results for the angular resolution on the AT&T graphs.

two algorithms show large variance and much worse values; see Fig.[0b] For the
number of crossings, we again observe that all algorithms achieve similar values,
however, our unrestricted algorithm and the algorithm by Argyriou et al. achieve
slightly higher values for larger graphs; see Fig. Finally, both our algorithms
and the one by Huang et al. need a similar number of iterations for convergence
which is lower than the one by Argyriou et al.; see Fig. [0d]

Summarizing, we conclude that compared to the Rome graphs, the AT&T
graphs show a much higher variance regarding the various resolution measures.

C Graph Drawing Contest 2017 Graphs

Our primary motivation for this work was our participation to the Graph Draw-
ing contest in 2017, where we miserably performedEl; the topic was the maxi-
mization of the crossing resolution. Our approach for the contest in 2017 was a
mixture of the two force directed algorithms by Argyriou et al. and Huang et al.

3 http://www.graphdrawing.de/contest2017/results.html
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Table 1: Summary of the results for the Graph Drawing Contest Graphs.
Graph ‘ CoffeeVM ‘ TuebingenMidnight ‘ Time restricted ‘ Our best

1 90 7 89.99 89.99
2 88.23 42 88.21 88.7
3 90 89 87.86 89.95
4 88.97 89 77.13 89.05
5 80.4 30 78.68 86.96
6 90 78 89.96 89.96
7 56.537 34 55.77 63.62
8 84.95 61 81.18 89.28
9 59.885 9 54.63 88.2
10 20.978 4 23.60 23.72
11 46.684 6 57.00 72.00
12 36.47 5 26.24 35.86
13 25.456 4 22.43 33.68
14 33.52 5 29.69 43.08
15 20.512 4 13.51 29.18

We give a comparison of our new approach to the performances of the clear
winner “CoffeeVM” of last year’s graph drawing contest and our previous team
“TuebingenMidnight” in Table [I} Note that in the contest the teams had only
one hour to compute layouts for all 15 contest graphs. For our algorithm, we
provide results that were achieved with the same time limit (see column “Time
restricted”), as well as our best results which were achieved without a strict time
limit (see column “Our best”).

We can observe that for almost all graphs, our new approach achieves only
slightly worse results than the ones of the last year’s contest winner. On a few
graphs (namely, graphs 10 and 11), we even achieve better results. With a single
exception (namely, graph 4), we easily outperformed our results from last year.
If we neglect the time restriction, for all the graphs, the results are (sometimes
considerably) better than or at least about the same as last year’s contest winner.
We can conclude that our new approach has good potential for the application in
this year’s graph drawing contest, however, we also note that more careful graph
dependent parameterization will be needed to compute competitive solutions
within the provided time.

D Sample Drawings

In this section, we present drawings of the 5th and of the 9th graph given in
the Graph Drawing contest 2017 that are produced by different variants of our
algorithm and of the algorithms by Argyriou et al. [5], and by Huang et al. [32];
see Figures|l1|and respectively. Each variant was obtained by adjusting each
of the aforementioned algorithms to optimize the crossing resolution, the angular
resolution and the total resolution, respectively; the aesthetic criterion optimized
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by each variant is reported in the caption of its corresponding subfigure. As
initial drawings for all algorithms, we used the layouts shown in Figure [I0] that
we computed with the SmartOrganic layouter of the yFiles library [41].

Fig.10: Illustration of (a) the 5th, and of (b) the 9th graph of the Graph Drawing
contest 2017.
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Fig. 11: Different drawings of the 5th graph given in the Graph Drawing 2017 contest
produced by different variants of (a)—(c) the variant of our algorithm without restric-
tions on the aspect ratio, (d)—(f) the variant of our algorithm forced to maintain the
input aspect ratio, (g)—(i) the algorithm by Argyriou et al. [5], and (j)—(1) the algorithm
by Huang et al. [32]. The aesthetic criterion optimized by each variant is reported in

the caption of its subfigure.
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Fig. 12: Different drawings of the 9th graph given in the Graph Drawing 2017 con-
test produced by different variants of (a)—(c) the variant of our algorithm without
restrictions on the aspect ratio, (d)—(f) the variant of our algorithm forced to main-
tain the input aspect ratio, (g)—(i) the algorithm by Argyriou et al. [5], and (j)—(1) the
algorithm by Huang et al. [32]. Each variant was obtained by optimizing a different
aesthetic criterion, which is named in the caption of each subfigure.
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