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Abstract. We introduce hydra (hyperbolic distance recovery and approxima-

tion), a new method for embedding network- or distance-based data into hyper-
bolic space. We show mathematically that hydra satisfies a certain optimality

guarantee: It minimizes the ‘hyperbolic strain’ between original and embedded

data points. Moreover, it recovers points exactly, when they are located on a hy-
perbolic submanifold of the feature space. Testing on real network data we show

that the embedding quality of hydra is competitive with existing hyperbolic em-

bedding methods, but achieved at substantially shorter computation time. An
extended method, termed hydra+, outperforms existing methods in both com-

putation time and embedding quality.

1. Introduction

Embeddings of networks and distance-based data into hyperbolic geometry have
received substantial interest in recent years. Such embeddings have been used for vi-
sualization [23], link prediction [19, 20] and community detection [20, 16]. They offer
insight into the tradeoff between popularity and similarity effects in network growth
[19] and have interesting implications for routing, network navigability [10, 1] and
efficient computation of shortest network paths [25, 5]. Moreover, such embedding
methods can be seen as alternatives to classic visualization and dimensionality reduc-
tion techniques based on Euclidean geometry, such as principal component analysis
or multidimensional scaling. However, the hyperbolic embedding methods as yet pro-
posed in the literature have either been based on specific assumptions about network
growth (e.g. [20, 16]), or methods with strong theoretical properties, but requiring
costly non-linear numerical optimization procedures (e.g. H-MDS of [23], Rigel of
[25] and HyPy of [5]). Here, we introduce hydra (hyperbolic distance recovery and
approximation), a novel method for embedding network or distance-based data into
hyperbolic space, which has strong mathematical foundations and does not depend on
specific assumptions on network growth or structure. At the same time, the method is
computationally efficient and based on reduced matrix Eigendecomposition. We show
mathematically, that when presented with mutual distances of data points located on
a low-dimensional hyperbolic submanifold of the feature space, hydra will recover
these points exactly. For general data, the method satisfies a certain optimality prop-
erty, similar to the strain-minimizing property of multidimensional scaling. Finally,
we introduce hydra+, an extension where the result of hydra is used as inital condi-
tion for hyperbolic embedding methods based on optimization, such as Rigel/HyPy,
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2 HYDRA: STRAIN-MINIMIZING HYPERBOLIC EMBEDDING

substantially improving their efficiency. When tested on real network data, hydra

and its variants typically outperform existing hyperbolic embedding methods. All
new methods introduced are available in the package hydra [9] for the statistical
computing environment R [21].

2. Embeddings into Hyperbolic Space

2.1. Hyperbolic Space. We summarize the key features of the hyperboloid model of
hyperbolic geometry (cf. [22, 3]) in dimension d. This will provide the mathematical
framework in which we formulate our embedding method. To start, we define for
x,y ∈ Rd+1 the indefinite inner product

(1) x ◦ y := x1y1 − (x2y2 + . . .+ xd+1yd+1) ,

also called Lorentz product. The real vector space Rd+1 equipped with this inner
product is called Lorentz space and denoted by R1,d. As nested subsets, it contains

the positive Lorentz space R1,d
+ =

{
x ∈ R1,d : x1 > 0

}
and the single-sheet hyperboloid

(2) Hd =
{
x ∈ R1,d : x ◦ x = 1, x1 > 0

}
.

The hyperboloid model with curvature −κ, (κ > 0), consists of Hd endowed with the
hyperbolic distance

(3) dκH(x,y) =
1√
κ

arcosh (x ◦ y) , x,y ∈ Hd.

The hyperbolic distance dκH is a distance on Hd in the usual mathematical sense; in
particular it takes only positive values and satisfies the triangle inequality, cf. [22,
§3.2]. In fact, it can be shown that Hd endowed with the Riemannian metric tensor

ds2 =
1

κ
(dx ◦ dx)

is a Riemannian manifold and dκH(x,y) is the corresponding Riemannian distance.1

The sectional curvature of this manifold is constant and equal to −κ, which explains
the role of κ as curvature parameter. Just as Euclidean space is the canonical model
of geometry with zero curvature, hyperbolic space is the canonical model of geometry
with negative curvature.

2.2. The Poincaré ball Model. In addition to the hyperboloid model, we intro-
duce the Poincaré ball model of hyperbolic geometry, which is more appealing for
visualizations of hyperbolic space and hyperbolic embeddings. In Rd, consider the
open unit ball

Bd :=
{
z ∈ Rd : |z| < 1

}
,

where |z| =
√
z21 + · · ·+ z2d is the usual Euclidean norm. The stereographic projection

ξ : R1,d → Rd defined by

(4) ξ(x) =

(
x2

1 + x1
, . . . ,

xd+1

1 + x1

)
restricts to a bijective mapping from the hyperboloid Hd onto Bd (cf. [22, §4.2]). It
transfers the hyperbolic distance from Hd to Bd, by setting

dκB(ξ(z1), ξ(z2)) = dκH(z1, z2), z1, z2 ∈ Bd.

1That is, dκH(x,y) is the length of the shortest path from x to y, where lengths are measured using

the length element ds =
√
ds2.
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Endowed with this distance, (Bd,dκB) is isometric to (Hd,dκH) and therefore an equiv-
alent model of hyperbolic geometry.
It will be convenient to parameterize Bd by the radial coordinate r ∈ [0, 1) and the
directional coordinate u (a unit vector in Rd), given by

r :=
√
z21 + · · ·+ z2d, u :=

z

r
.

An easy calculation shows that the conversion from coordinates in Hd is given by

r = ξr(x1) :=

√
x1 − 1

x1 + 1
and(5)

u = ξu(x2, . . . , xd+1) := (x2, . . . , xd+1) /
√
x22 + · · ·+ x2d+1.(6)

In dimension d = 2, the Poincaré ball becomes the Poincaré disc, and each of its
points can be described by the radius r and the unique angle θ ∈ [0, 2π) such that

z1 = r cos θ, z2 = r sin θ.

2.3. Embedding of Distances and Networks. To formulate the embedding prob-
lem, let a symmetric matrix D = [dij ] ∈ Rn×n>0 with zero diagonal be given, which
represents the pairwise dissimilarities between some objects o1, . . . ,on. The basic
premise of hyperbolic embedding is that the matrix D can be approximated by a
hyperbolic distance matrix H = [dκH(xi,xj)], i.e., that we can find points x1, . . . ,xn
in low-dimensional hyperbolic space Hd, such that

(7) dκH(xi,xj) ≈ dij .

The points x1, . . . ,xn give a low-dimensional representation in hyperbolic space of
the configuration of o1, . . . ,on induced by their dissimilarities. In Euclidean space,
such approximations are well studied and can be calculated e.g. by multidimensional
scaling (MDS), see also Section A.2 and [2].
An important special case is the network embedding problem, where a (unweighted,
undirected) graph G = (V,E) is given and D = [dij ] is the graph distance matrix of
G, i.e., dij is the length of the shortest path in G from vertex vi to vj . In particular
for graphs with locally tree-like structure it can be expected that hyperbolic geometry
gives a better representation than Euclidean geometry, see e.g [10]. Instead of the
shortest-path distance, other dissimilarity measures based on the structure of G can
be used, such as the repulsion-attraction (RA) rule or edge-betweenness-centrality
(EBC), cf. [16].

2.4. Connection to prior work and innovations. Most existing methods for hy-
perbolic embedding can be placed into one of two classes: Stress-based methods or
network-specific methods.

• Stress-based methods aim to solve the embedding problem (7) by minimizing
the stress functional

(8) Stress(x1, . . . ,xn)2 :=

n∑
i,j=1

(dij − dκH(xi,xj))
2

over all x1, . . . ,xn ∈ Hd. This minimization problem is a challenging high-dimensional
non-convex optimization problem, and methods largely differ in their numerical ap-
proach to minimize (8). The H-MDS method proposed in [23] is a gradient descent
scheme for minizing (8) based on explicit calculation of the gradient. [4] propose
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a neural-network-based approach to minimizing (8), while [25] and [5] develop so-
called ‘landmark-based’ minimization algorithms (Rigel and HyPy respectively)
based on iterative quasi-Newton minimization. Due to the ‘landmark’ heuristic,
these methods are able to deal with large-scale instances of (8) and do not require
full knowledge of D, see [5] for details.
• Model-based methods focus on the network embedding problem and rely on un-

derlying assumptions on the generating mechanism of the graph G, see e.g. [19] for
a model of ‘hyperbolic network growth’. In HyperMap of [20] and the coalescent em-
bedding of [16], the radial coordinate ri of the embedded points in the Poincaré ball
model is determined directly from the degree of the vertices vi, using the assump-
tion of a power-law relationship. The directional component ui of the embedding
is then determined by maximizing likelihood in an underlying probabilistic model
(cf. [20]) or by applying existing nonlinear dimensionality reduction methods (such
as Laplacian Eigenmapping or ISOMAP) to the underlying data (cf. [16]).

Here, our main innovation is to replace the stress functional (8) by the strain func-
tional

(9) Strain(x1, . . . ,xn)2 :=

n∑
i,j=1

(
cosh(

√
κ dij)− xi ◦ xj

)2
,

which results from (8) when all distances are transformed by hyperbolic cosine. Fur-
thermore, we introduce a highly efficient method for the minimization of hyperbolic
strain, called hydra (hyperbolic distance recovery and approximation). Contrary to
stress-minimization, hydra is based on matrix Eigendecomposition, similar to prin-
cipal component analysis or classic multidimensional scaling.2 In Theorems 3.1 and
3.2 we show that hydra satisfies important theoretical optimality properties, in par-
ticular, it returns a guaranteed global minimum of (9). For instances based on real
data, the embedding results of hydra are comparable to those based on pure stress-
minimization, even when embedding quality is measured by the stress functional (8);
see Section 4 below. This shows, that even when minimization of stress is the final
goal, the strain functional (9) is a valuable and useful proxy for stress, as it can be
minimized in a highly efficient way. The best results in terms of stress are obtained
when strain- and stress-minimization are combined. This is the basis of the hydra+

method, introduced in Section 3.2, where the embedding result of hydra is used as
initial condition for a stress-minimization run.

3. A new hyperbolic embedding method

3.1. The hydra algorithm. We introduce the hydra algorithm, displayed as Algo-
rithm 1, which calculates an embedding into the Poincaré ball model of hyperbolic
space by efficiently solving the strain-minimization problem

(10) min
xi∈R1,d

∑
i,j

(cosh(
√
κ dij)− (xi ◦ xj))2.

The algorithm proceeds as follows:

• In steps A1 and A2 the strain-minimization problem is solved by means
of a matrix Eigendecomposition. These steps return a coordinate matrix

X = [xij ], whose rows x1, . . . ,xn are elements of positive Lorentz space R1,d
+

2In fact, the relation between hyperbolic strain- and stress-minimization is similar to the relation
between ‘classic’ and ‘metric’ multidimensional scaling in the Euclidean case, cf. [2].
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and the optimizers of (10). The optimality of x1, . . . ,xn is the subject of
Theorem 3.2 below.

• In steps B1 and B2, the points x1, . . . ,xn are projected onto the Poincaré ball
Bd using the stereographic projection (4) and converted to radial/directional
coordinates (ui) using (5) and (6). No adjustment is necessary for the direc-
tional coordinates, which are computed in step B1.

• Due to (5), the radial coordinates (ri) depend only on the first column
(x11, . . . , xn1) of X and can be obtained by applying ξr elementwise. But
ξr(x1i) may be undefined for elements with x1i ∈ (0, 1).3 Therefore, ri is
calculated in step B2 as

ri = ξr

(
xi1
xmin

)
,

that is, after rescaling the first column of X by dividing by its smallest element
xmin.

Algorithm 1 hydra(D,d,κ)

Input: • A symmetric matrix D = [dij ] ∈ Rn×n>0 with zero diagonal
• Embedding dimension d ≤ n− 1
• Hyperbolic curvature parameter κ > 0 (actual curvature: −κ)

Step A1: Set

(11) A = [aij ] := [cosh(
√
κ dij)]

and compute the Eigendecomposition

(12) A = QΛQ>,

where Λ is the diagonal matrix of the Eigenvalues λ1 ≥ · · · ≥ λn and the columns
of Q are the Eigenvectors q1, . . . , qn.

Step A2: Allocate the n× (d+ 1)-matrix

(13) X :=
[√

λ1 q1
√

(−λn−d+1)+ qn−d+1 · · ·
√

(−λn)+ qn

]
,

where x+ denotes the positive part x+ = max(x, 0).
Step B1: (‘Directional projection’) For i ∈ 1, . . . , n set

ui :=
(xi2, . . . , xi(d+1))√
x2i2 + · · ·+ x2i(d+1)

,

with xij the elements of X.
Step B2: (‘Radial projection’) For i ∈ 1, . . . , n set

xmin := min(1, x11, . . . , xn1)

and

ri :=

√
xi1 − xmin

xi1 + xmin

Return: Matrix X and embedding (ri,ui)i=1,...,n as radial and directional coordi-
nates in the Poincaré ball Bd.

3By Theorem 3.2, steps A1 and A2 guarantee that all x1i are positive, but not that they are larger
than one.
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The key theoretical properties of the hydra algorithm are summarized in the fol-
lowing theorems, whose proofs are given in Appendix A. The first theorem shows that
hydra recovers any configuration of points in d-dimensional hyperbolic space up to
isometry:

Theorem 3.1 (Exact Recovery). Let a1, . . . ,an be points in hyperbolic d-space Hd,
and let D = [dij ] = [dκH(ai,aj)] be the matrix of their hyperbolic distances with
curvature −κ. Then hydra(D, d, κ) recovers the points a1, . . . ,an up to isometry. In
particular, the rows x1, . . . ,xn of the matrix X and the points (r1,u1), . . . , (rn,un)
returned by hydra(D, d, κ) satisfy

dκB

(
(ri,ui), (rj ,uj)

)
= dH(xi,xj) = dij , i, j = 1, . . . , n.

For applications to real data, exact recovery is an atypical situation. However,
hydra enjoys an optimality guarantee for strain minimization, expressed in the fol-
lowing theorem:

Theorem 3.2 (Optimal Approximation). The rows x1, . . . ,xn of the matrix X re-
turned by hydra(D, d, κ) are the globally optimal solutions of the strain minimization
problem (10). Moreover, the first column of X is strictly positive; equivalently, all xi
are elements of positive Lorentz space R1,d

+ .

3.2. Practical guidelines and extensions. While the result of hydra satisfies the
theoretical optimality guarantees in Theorem 3.1 and 3.2, it can still be advantageous
to adjust the results in order to improve the attractiveness of visualization or the
embedding quality in terms of stress (8) (as opposed to strain, which is globally
minimal). The so-called equiangular adjustment has been introduced in [16] and
can be applied to two-dimensional hyperbolic embeddings. Here we propose a slight
modification, which allows to interpolate smoothly between no adjustment and full
equiangular adjsutment.

Equiangular adjustment: Let λ ∈ [0, 1] be the adjustment parameter and define
ark(θi) as the angular rank of xi, i.e. when the embedded points are ordered by
increasing angular coordinate θ, then ark(θi) is defined as the rank (from 1 to n) of
xi in this list. The adjusted angular coordinate is then set to

θ′i := λθi + (1− λ)(ark(θi)− 1)
2π

n
, i = 1, . . . , n.

If λ = 0, no adjustment takes place. If λ = 1 then the angles θ′i are regularly
spaced (‘equiangular’) and only the ordering given by θi is retained.4 Values of
λ ∈ (0, 1) interpolate between these two extremes. We propose a values of λ = 1/2,
which typically leads to improvements in both visual appeal and stress value of the
embedding; see also method hydra-equi in Figure 1.

hydra+: If minimization of stress is the ultimate objective and strain is used only
as a proxy, the result of hydra can be used as an initial condition for a direct
minimization of the stress functional (8). This can be seen as a chaining of hydra

and HyPy/Rigel [25, 5], where hydra substitutes the random initial condition of
HyPy/Rigel. For the minimization of stress, efficient quasi-Newton routines, such
as LBFGS [26] can be used and supplied with the explicit gradient of stress, given
in [5, Eqs. (3.1),(3.2)].

In terms of efficiency, the following simple improvement can be made to hydra:

4This is the equiangular adjustment as proposed in [16].
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Reduced Eigendecomposition: The numerically dominating part of hydra is the
Eigendecomposition in (12). Note, however, that in (13) only the single first and the
last d Eigenvalues and Eigenvectors of the matrix A are needed. There are efficient
numerical routines (see e.g. [12]) to perform such a reduced Eigendecomposition
without computing the full Eigendecomposition of A. These routines substantially
improve efficiency if n� d and are used in our implementation of hydra.

Using the reduced Eigendecomposition, we expect the time complexity of hydra to
be O(nα) with α slightly above, but close, to 2, cf. [8, Ch. 55]. For hydra+, the
time complexity is harder to estimate, since it is based on iterative minimization of a
non-convex objective function. In a single step of LBFGS both the stress functional
and its gradient have to be evaluated at a complexity of O(n2). Depending on the
number of steps to convergence, we thus also expect a complexity of O(nα), with α
strictly larger than 2. Empirical estimates of α are given in Section 4 below.

3.3. Remarks on strain-minimizing graph embeddings. In the seminal paper
[19] it has been argued that the inherent negative curvature in hyperbolic geometry
resolves the trade-off between the conflicting attractive forces of popularity and sim-
ilarity in network growth models. For this reason [19] have proposed to interpret the
radial coordinate r in the Poincaré disc as dimension of ‘popularity’ and the angu-
lar coordinate θ as dimension of ‘similarity’. Interestingly, the strain minimization
problem (10) and its solution by hydra gives additional mathematical support for
this interpretation. More precisely, revisiting Algorithm 1 in the graph embedding
context, we observe that:

• The radial coordinates ri are determined only from the Perron-Frobenius Eigen-
vector5 q1 of the matrix A. This provides a remarkable connection to the Eigenvec-
tor centralities (corresponding to the popularity dimension) of the nodes vi, which
are determined from the Perron-Frobenius Eigenvector of their adjacency matrix.

• The directional coordinates ui are determined only through the Eigenvectors
qn−d+1, . . . , qn (and corresponding Eigenvalues) at the low end of the spectrum of
A. This provides a remarkable connection to Cheeger’s inequality (cf. [6, Ch. 9]),
which shows that the low end of the spectrum of the graph Laplacian matrix encodes
the separability of the graph into sparsely connected ‘communities’ (corresponding
to the similarity dimension).

We remark that while the connections described above are a first step towards a
mathematization of the popularity-similarity paradigm in hyperbolic network geome-
try, the matrix A = [cosh (

√
κdij)] is in general neither identical to the adjacency nor

to the Laplacian matrix of a given graph, and thus further research into the rigorous
mathematical underpinning of these connections is warranted.

4. Numerical Results

4.1. Methods and Data. In our numerical experiments, we evaluate different vari-
ants of hydra and compare them to existing hyperbolic embedding methods, using
stress as performance criterion. We focus on small to medium sized networks (see
Table 1), for which it is still feasible to compute the full distance matrix as input to
our methods. Edge weights (when available) were discarded, i.e., all networks were

5The Perron-Frobenius Eigenvector is the Eigenvector associated to the largest Eigenvalue of a
positive matrix (i.e. a matrix consisting only of positive entries) and is itself a positive vector, cf.
[8, Ch. 10].
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treated as unweighted undirected graphs. This network data was used as input for
the following methods:

hydra: The hydra method (without equi-angular adjustment) as described in Algo-
rithm 1

hydra-equi: The hydra method with equiangular adjustment λ = 0.5, as described
in Section 3.2

hydra+: The hydra+ method as described in Section 3.2 and using the result of
hydra-equi as initial condition.

HyPy/Rigel: The HyPy algorithm from [5], which is based on Rigel from [25]. Both
methods are based on direct minimization of the stress functional (8). Landmark
selection, as proposed in [5] was not implemented, since it serves to reduce runtime
and memory use for large networks, but is not expected to improve embedding
results. As in [5], the initial condition for minimization was chosen at random and
we repeated the embedding 100 times.

CE-LE: The coalescent embedding (CE) using Laplacian Eigenmapping (LE) as
dimension-reduction method, full equiangular adjustment and repulsion-attraction
(RA) pre-weighting; see [16] for details. Among the methods developed in [16], this
was the best performing method to invert the PSO generating model of [20] for
hyperbolic networks.

For the methods hydra, hydra-equi, hydra+ and HyPy/Rigel we used our own imple-
mentations in R, which are available in the R-package hydra, [9]. For CE-LE we used the
MATLAB implementation of the methods of [16] available from github.6 The stress-
optimization in hydra+ and HyPy/Rigel was performed using the LBFGS method
(see [26]) as implemented in the R-function optim and using the analytic form of the
gradient of the stress functional (8) from [5]. Note that all methods except CE-LE

use the shortest-path matrix as input dissimilarities; CE-LE uses repulsion-attraction
(RA) weights as input dissimilarities, see [16]. For all methods hyperbolic curvature
was fixed to −κ = −1 and we embed into dimension d = 2.

Network Description Source # Nodes

karate Social interaction network (‘Zachary’s karate club

network’) from [24]

igraphdata [7] 34

UKfaculty Personal friendship network of a UK university fac-

ulty from [17]

igraphdata [7] 81

opsahl One-node projection of message Exchange Net-
work from [18]; two isolated nodes have been re-

moved

toreopsahl.com 897

facebook Facebook social circles network from [15]; com-

bined edge sets

snap.stanford.edu 4039

collaboration Co-authorship network from ArXiv submissions to
category Hep-Ph (High Energy Physics); largest
connected component. From [14]

snap.stanford.edu 8638

oregon Autonomous systems peering information inferred
from route-views in Oregon on March 26, 2001.

From [13]

snap.stanford.edu 11174

Table 1. Networks used for numerical experiments

6https://github.com/biomedical-cybernetics/coalescent_embedding

toreopsahl.com
snap.stanford.edu
snap.stanford.edu
snap.stanford.edu
https://github.com/biomedical-cybernetics/coalescent_embedding
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4.2. Results and Discussion. Results on embedding quality (measured by stress)
for all networks and methods (except CE-LE) are shown in Figure 1. Note that stress
values are normalized by using the average result of HyPy/Rigel as a reference. This
facilitates the comparison of results between different networks. As HyPy/Rigel de-
pends on randomized initial conditions we indicate the 5%- and 95%-quantiles (over
100 runs) in addition to its average result. The stress-values of the embeddings pro-
duced by CE-LE were substantially larger (by a factor from 13 to 26) than the reference
method and we have therefore excluded this method from the plot and from the fur-
ther analysis of computation times.

Figure 1. Embedding performance on real network data.
Embedding quality (measured by stress (8), relative to the average
result of HyPy/Rigel) of different hyperbolic embedding methods
applied to the six networks listed in Table 1. For HyPy/Rigel a 5%–
95% error bar is shown, corresponding to 100 runs with randomized
initial condition.

Computation times of the different methods is shown in Figure 2 in doubly loga-
rithmic coordinates. As should be expected, the methods split into two groups with
computation times for hydra and hydra-equi being shorter than for hydra+ and
HyPy/Rigel by two orders of magnitude. The seemingly small gap between hydra+

and HyPy/Rigel still corresponds to a difference of about 50% in runtime. Based on
the discussion in Section 3.2 we have added regression lines to estimate the exponent
α in the conjectured complexity O(nα). To avoid clutter, regression lines are only
shown for hydra-equi and hydra+; the estimates for all methods are α ≈ 2.0 for
hydra, α ≈ 2.1 for hydra-equi and α ≈ 2.3 for both hydra+ and HyPy/Rigel. As
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setup costs seem to dominate the computation times for the smallest network, we
have excluded it from the regression analysis.

Figure 2. Computation time of embedding methods. Com-
putation time (in seconds) of different hyperbolic embedding meth-
ods, in relation to the number of nodes in the six networks listed in
Table 1. Coordinate axes are doubly logarithmic. For HyPy/Rigel,
average computation time and a 5%–95% error bar is shown, cor-
responding to 100 runs with randomized initial condition. For
hydra-equi and hydra+ dotted regression lines (excluding observa-
tions from the smallest network) are indicated.

Finally, an exemplary embedding result produced by the hydra-equi method for
the facebook network is shown in Figure 3. Nodes are placed into the Poincaré disc
model of hyperbolic geometry according to their embedding coordinates (the full disc
is indicated in grey) and a random subsample of links is drawn as hyperbolic geodesics.
Visually, the embedding conforms well with the popularity-vs-similarity paradigm of
[19] for hyperbolic networks: Nodes with a function as hubs between communities or
individuals (popularity dimension) are placed closer to the center of the hyperbolic
disc. Communities are identified along the angular coordinate (similarity dimension)
with the effective distance between communities indicated by angular separation.

Summarizing our numerical experiments, we conclude the following:

• In general, the strain-minimization performed by hydra seems to be a good
proxy for stress-minimization, but is faster by a factor of 100 or more in com-
parison to stress-minimization from a random initial condition (HyPy/Rigel).
Note that hydra also eliminated the uncertainty associated with the random-
ized nature of HyPy/Rigel, which can lead to large variations in embedding
quality in some instances (e.g., the facebook network).

• The simple equi-angular adjustment performed in hydra-equi consistently
improves embedding quality in terms of stress at negligible numerical costs.
The returned embeddings outperform HyPy/Rigel for two networks (karate,
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facebook) and are competitive for all others, with a largest observed differ-
ence of 23% in terms of stress.

• Using the results of hydra as a starting value for stress-minimization, instead
of a random initial condition, i.e., replacing HyPy/Rigel by hydra+ reduces
computation time by approx. 30% - 50% and leads to better (average) em-
bedding quality in all cases. The reduction in stress is considerable in the
facebook network, where stress is reduced by approx. 40%.

• The CE-LE method, based on the PSO network growth model of [20], is not
competitive with the other methods in terms of embedding quality. This sug-
gests that the structure of the real networks that we have considered deviates
from the theoretical growth model (PSO-model) of [20] upon which CE-LE is
build.

As a next step, we plan to make strain-minimizing hyperbolic embedding methods
feasible for large and very large networks. For such networks the computational
complexity of O(nα) (with α > 2) of the proposed methods, but also of the graph
distance calculation itself, are prohibitive. For this reason, heuristics such as the
landmark heuristic of [5] will have to be adapted to strain-minimizing embedding
methods.
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Figure 3. Embedding example. The hyperbolic embedding of
the facebook network produced by the method hydra-equi. All
4039 network nodes are shown as red dots. A random subsample
of the 88234 total edges are also shown and drawn as hyperbolic
geodesics in black. The edge subsample was produced by randomly
sampling two incident edges from each network node, allowing for
repetitions.

Appendix A. Theoretical Results

To prove the theoretical properties of the hydra method, it is convenient to refor-
mulate the strain minimization problem (10) in matrix form. To this end, let D = [dij ]
be the given dissimilarity matrix, set A = [cosh(

√
κ dij)] and write

X = (x1, . . . ,xn)
> ∈ Rn×(d+1)

for the coordinate matrix of some points x1, . . . ,xn in Rd+1. Finally, let J be the
(d+ 1)× (d+ 1) diagonal matrix

(15) J = diag(1,−1, . . . ,−1),

cf. [22, §3.1]. The strain minimization problem (10) can now be written in compact
form as

(16) min
X∈Rn×(d+1)

∥∥A−X>JX∥∥2
F
,
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where ‖.‖F denotes the Frobenius norm. Imposing the constraint that all xi are
elements of the hyperboloid Hd is equivalent to requiring that

diag(X>JX) = (1, . . . , 1) and Xe1 > 0,

where e1 is the first standard unit vector. In particular, the first condition guarantees
xi ◦ xi = 1, and the second one selects the upper sheet of the two-sheet hyperboloid
thus described.

A.1. Hyperbolic strain minimization and exact recovery. For a real symmetric
matrix A, denote by n+(A) and n−(A) the number of positive and negative Eigenval-
ues of A. The following Lemma characterizes matrices that can be written as inner
product matrices (‘Gram matrices’) with respect to the Lorentz product (1):

Lemma A.1. Let G = [gij ] ∈ Rn×n>0 be positive and symmetric, and let d ≤ n − 1.
The following are equivalent

a) G satisfies n+(G) = 1 and n−(G) ≤ d.
b) G is a ‘Lorentzian Gram matrix’, i.e., there exist x1, . . . ,xn in R1,d, such

that

gij = xi ◦ xj , ∀ i, j ∈ 1, . . . , n.

c) There exists X ∈ Rn×(d+1), such that

(17) G = XJX>,

where J is given by (15).

In addition,

• The first column of X is positive if and only if x1, . . . ,xn are in the positive

Lorentz space R1,d
+ ;

• The points x1, . . . ,xn are in Hd if and only if diag(G) = (1, . . . , 1) and the
first column of X is positive.

Proof. The equivalence of (b) and (c) follows directly from the definition of the Lorentz
product in (1). Next, we show that (c) implies (a): From [11, Ch. 10.3] it follows
from (17) that n+(G) ≤ n+(J) = 1 and n−(G) ≤ n−(J) = d. But G is a positive
matrix and Perron’s theorem (cf. [11, Ch. 16]) guarantees that its leading Eigenvalue
is positive, i.e., n+(G) ≥ 1, and we conclude (a). To show that (a) implies (c), assume
first that n−(G) = d. By Sylvester’s law of inertia, there exists a decomposition

G = X̂ĴX̂>, where Ĵ = diag
(

+1, 0, . . . , 0,−1, . . . ,−1︸ ︷︷ ︸
d times

)
.

This decomposition can be reduced to (17), by simply dropping all rows and columns

containing only zeroes from Ĵ and by also dropping the corresponding columns from
X̂. If n−(G) = d′ < d, the same procedure yields a decomposition withX of dimension
n× (d′+ 1) and J of dimension (d′+ 1)× (d′+ 1). Padding X with zero columns and
J ’s diagonal with −1s, (17) also follows in this case.
The additional statements follow directly from the following observations: The first
column of X contains exactly the first coordinate of all points x1, . . . ,xn. If the first
coordinate of a point x is positive, it is an element of positive Lorentz space and vice
versa. The diagonal of G contains the values xi ◦ xi, i = 1, . . . , n. If xi ◦ xi = 1 and

xi ∈ R1,d
+ then xi is an element of the hyperboloid Hd and vice versa. �
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Proof of Theorem 3.2. Let A = [aij ] = [cosh(
√
κ dij)] and let B = [bij ] be another

symmetric matrix in Rn×n. Let (λi(A))i=1,...,n and (λi(B))i=1,...,n be their Eigen-
values in descending order, and denote by ‖.‖F the Frobenius norm. By a result of
Wielandt-Hoffmann, cf. [11, Ch. 10, Thm. 18],

(18)
∑
i,j

(aij − bij)2 = ‖A−B‖2F ≥
n∑
i

(λi(A)− λi(B))2.

Assume now that B is a ‘Lorentzian Gram matrix’ with elements given by

bij = bi ◦ bj , i, j = 1, . . . , n

for some b1, . . . , bn ∈ R1,d. By Lemma A.1 this implies that n+(B) = 1 and n−(B) ≤
d. Hence all Eigenvalues of B with index 2, . . . , n− d are zero, and we obtain∑

i,j

(aij − bi ◦ bj)2 = ‖A−B‖2F ≥

≥ (λ1(A)− λ1(B))2 +

n−d∑
i=2

λi(A)2 +

n∑
i=n−d+1

(λi(A)− λi(B))2.

For the first summand on the right hand side we have the trivial lower bound 0. In
the last sum, all λi(B) are negative or zero, and hence, for any i = (n− d+ 1), . . . , n,
we can estimate

(λi(A)− λi(B))2 ≥

{
0 if λi(A) ≤ 0

λi(A)2 if λi(A) > 0,

which is the same as (λi(A)+)2. Together, we obtain that

(19)
∑
i,j

(aij − bi ◦ bj)2 ≥
n−d∑
i=2

λi(A)2 +

n∑
i=n−d+1

(λi(A)+)2.

Denote byA = QΛAQ
> the Eigendecomposition ofA with ΛA = diag(λ1(A), . . . , λn(A)).

Let X be the matrix returned by hydra(D, d, κ) and x1, . . . ,xn the rows of X. By
(13) the associated Lorentzian Gram matrix G = XJX> has the Eigendecomposition
G = QΛGQ

> with

ΛG = diag(λ1(A), 0, . . . , 0, (−λn−d+1(A))+, . . . , (−λn(A))+).

Using the unitary invariance of the Frobenius norm and the trivial identity x −
(−x)+ = x+, we obtain∑

i,j

(aij − xi ◦ xj)2 =
∥∥QΛAQ

> −QΛGQ
>∥∥2

F
= ‖ΛA − ΛG‖2F =(20)

=

n−d∑
i=2

λi(A)2 +

n∑
i=n−d+1

(λi(A)+)2.

This shows that setting bi := xi for all i ∈ 1, . . . , n achieves equality in (19) and
hence that the points xi minimize (16). �

Proof of Theorem 3.1. Let D = [dij ] be the hyperbolic distance matrix of a1, . . . ,an
in Hd. Then A = [aij ] = [cosh(

√
κdij)] is the associated Lorentzian Gram matrix

with elements

aij = ai ◦ aj .
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By Lemma A.1 A satisfies n+(A) = 1 and n−(A) ≤ d, i.e. the Eigenvalues of A satsify
λi(A) = 0 for i = 2, . . . , n−d and λi(A) ≤ 0 for i = n−d+ 1, . . . , n. Hence, it follows
from (20) that

∑
i,j(aij − xi ◦ xj)2 = 0 or, equivalently, that

xi ◦ xj = ai ◦ aj
for all i, j ∈ 1, . . . , n. Applying cosh(

√
κ ·) to both sides, we see that

dκH(xi,xj) = dκH(ai,aj)

and hence that (xi) and (ai) are isometric. �

A.2. Comparison to classic multidimensional scaling. In several aspects, the
hydra method can be seen as the ‘hyperbolic analogue’ of classic multidimensional
scaling (MDS), cf. [2], which is based on Euclidean geometry. Below, we summarize
the classical MDS method and point out parallels to (and differences from) hydra.
Classical MDS also takes a matrix D = [dij ] ∈ Rn×n>0 with zero diagonal as input.

Using the centering matrix C = I − 1
n1 ∈ Rn×n, where 1 denotes a matrix of ones of

matching dimension, the ‘doubly centered’ matrix

A = −1

2
C>DC [compare (11)]

is derived from D, and its Eigendecomposition

A = QΛQ> [compare (12)]

computed. Again, Λ is the diagonal matrix of the Eigenvalues λ1 ≥ · · · ≥ λn and
the columns of Q are the Eigenvectors q1, . . . , qn. MDS then returns the (Euclidean)
coordinate matrix

X =
[√

λ1 q1
√
λ2 q2 · · ·

√
λd qd

]
, [compare (13)]

whose rows xi are interpreted as points in Euclidean space Rd. This coordinate matrix
X solves the strain minimization problem

min
X∈Rn×d

∥∥A−X>X∥∥2
F
, [compare (16)]

cf. [2, Ch. 12]. Moreover, if the input matrix D is a matrix of squared Euclidean
distances, i.e., dij = |xi − xj |2 then MDS recovers the points xi exactly (up to
Euclidean isometry). Note that X>X appearing above is the Gram matrix of the
points x1, . . . ,xn, i.e. the matrix of their scalar products x>i xj , whereas the matrix
X>JX in (16) is the ‘Lorentzian Gram matrix’ of the Lorentz products xi ◦ xj .
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