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Abstract. Motivated by the methods and results of manifold sampling

based on Ricci curvature, we propose a similar approach for networks.

To this end we make appeal to three types of discrete curvature, namely

the graph Forman-, full Forman- and Haantjes-Ricci curvatures for edge-

based and node-based sampling. We present the results of experiments

on real life networks, as well as for square grids arising in Image Pro-

cessing. Moreover, we consider fitting Ricci flows and we employ them

for the detection of networks’ backbone. We also develop embedding

kernels related to the Forman-Ricci curvatures and employ them for the

detection of the coarse structure of networks, as well as for network vi-

sualization with applications to SVM. The relation between the Ricci

curvature of the original manifold and that of a Ricci curvature driven

discretization is also studied.

1. Introduction

People study and make appeal to the coarse geometry of networks, con-

stantly and for a long time now, whether they do it conscientiously (rarely)

or not (in most cases). We shall demonstrate this shortly, however, to make

this even clear, let us specify what we, informally, mean by “Coarse Geome-

try”: The study of the geometric (topological) properties, without “looking

at” the small scales. In other words, one does not discern between objects

that, viewed from sufficiently far away, look the same. Perhaps the simplest

and immediate example of such a large scale geometry (or, in John Lott’s

suggestive words, “Mr. Magoo geometry”) is given by the integer grid in the

Euclidean plane. (For more insights and technical definitions and results,

see, e.g [21], [45], [30], as well as Appendix 1.)

The Complex Networks community has been exposed to this approach –

and makes by now use of it – via the notion of Gromov hyperbolicity, it-

self stemming from Gromov’s seminal work on hyperbolic groups [20]. The

J. Jost and E. Saucan were partly supported by the German-Israeli Foundation Grant

I-1514-304.6/2019.

1

ar
X

iv
:2

01
0.

15
22

1v
2 

 [
m

at
h.

D
G

] 
 3

 M
ar

 2
02

1
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– perhaps somewhat theoretical in the eyes of many practitioners – notion

above is connected to the notion of network backbone, underlying the long-

distance relations between major network regions. Indeed, the connection

between negative curvature and these “communication highways” in net-

works has been emphasized in [40]. We recall below its formal definition, as

introduced in [69]:

Definition 1.1. We denote the backbone of a network G = {V,E} as a

subnetwork G′ = {V ′, E′} (V ′ ⊆ V , E′ ⊆ E) that captures structurally im-

portant nodes (hubs) and edges (bridges). A node is typically termed hub if

it has a high degree and a high betweenness centrality. Bridges denote edges

that govern the mesoscale structure of G, for instance by forming long-range

connections between communities. The backbone G′ is structure-preserving,

i.e., its structural features (e.g., node degree distribution, community struc-

ture) are representative of G.

The intuition behind this definition is quite simple: Since high-degree

nodes (hubs) form the centers of the major network communities, the edges

that form strong connections between them bridge the corresponding com-

munities. The motivation for the study of the network backbone stemmed

from Communication Networks, more precisely from that of the Internet,

where it is a quite technical and specific term: The edges belonging to the

backbone represent the Internet’s “highways”, and are therefore physically

implemented by the fastest existing optical connections. Moreover, they are

owned and operated by the so called network backbone providers (NBPs),

who are mainly governments and the largest telecommunication companies

(see, e.g., [39]). However, the rational behind the notion of backbone is

not restricted solely to the Internet, but it also arises naturally in Social

Networks [3], and beyond [6].

Before passing further on, let us mention here that the network backbone

is also referred to the core of the network [39]. It is precisely this more geo-

metric term which we have in mind in our approach here in, where networks

are viewed as 1-dimensional versions of manifolds, endowed with a coarse

geometry.

Another, older, far better known, and permeating almost (if not) all

of large scale applications of Computer Science, inadvertent application of

coarse geometry is sampling. Indeed, by choosing certain points in a space,
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and discarding the “less important” points in their neighborhood, in con-

junction (in many instances), with the related process of clustering, one in

effect discards the small scale structure, as encoded in the discarded vicini-

ties, and rather concentrates on the large scale, i.e. coarse structure. Clearly

sampling the “heavy” curvature nodes or edges in a network, and using them

as clustering centers is natural. In fact, such clustering based on the com-

binatorial version of Gaussian curvature, that is the clustering coefficient

has been employed for clustering in networks for quite some time now [65],

and it was only natural to extend this method to a proper notion of metric

curvature that allows of the incorporation of weights, be they node or edge

weights, accounting for the simultaneous presence of the two types of weights

as well [53]. Thus we connect the two interpretations of the notion of coarse

geometry, namely the global one, motivated largely by Gromov’s hyperbol-

icity, and the local one, (as opposed to the infinitesimal one), obtained by

the approximation of manifolds by networks. We shall show, moreover, that

sampling by Ricci curvature, is not just an heuristic, empirical procedure,

and it has, in fact, deep mathematical justifications that also point to its

full potential. We shall prove our assertion in Section 5 below.

The reminder of this paper is structured as follows: In the next section we

bring the mathematical background, motivating our thrust for a Ricci curva-

ture driven sampling of networks. Section 3 is dedicated to the introduction

of three types of discrete Ricci curvature, namely graph Forman, full For-

man and Haantjes Ricci curvatures, that we deem particularly suited for the

networks’ sampling task as well to first experiments, on real-life networks as

well as square grids that arise in Imaging. Furthermore, fitting Ricci flows

are considered and applied to the networks’ backbone detection. By “fit-

ting”, we mean Ricci flows in which the role of the Ricci curvature is taken

by any of the consider discretization. We follow in Section 4 with an appli-

cation of the Forman Ricci curvatures and associated Bochner Laplacians to

the study of the coarse geometry of networks, via the development of fitting

embedding kernels. An application to the visualization of kernel spaces and

networks is also presented. In Section5we return to the motivating manifold

sampling and show the connections between the Ricci curvature of the given

manifold and the Forman curvatures of the resulting discretizations. The

last section comprises a terse summary of the paper and an outlook towards

the directions of further study that we deem more important.
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2. Background: Ricci Curvature Based Sampling of Manifolds

Sampling by curvature, namely choosing the sampling points whose met-

ric density is inverse proportional to curvature has been rediscovered and

applied in Imaging and Graphics, as well as in more theoretical problems a

number of times. (The relevant bibliography is far too extensive to include

in the present paper, therefore we rather point the reader to the articles

mentioned above and to the sources mentioned therein.) The most general

method is perhaps the one in [54], that also extends it to the sampling of

more general signals.

However, all the approaches mentioned above are based on extrinsic cur-

vature, thus in practice necessitating first finding an isometric embedding in

Rn, a problem that is highly nontrivial for abstract manifolds.1 Therefore, it

is highly desirable to find a sampling method based on intrinsic curvature.

Fortunately, it turns out that the basis for such a method exists for a long

time in Geometry [22], and it is based on Ricci curvature (see, e.g. [29]),

which is an intrinsic quantity.

Before proceeding further, let us emphasize that the choice of Ricci curva-

ture, instead, for instance, of scalar curvature [29], is not just a whim or fad,

and stems from the absorption of the fundamental fact that networks are

determined not by their members (nodes), but rather by their connections

(edges), and Ricci curvature is, on networks, a quantity attached to edges

(as discretizations of vectors).

The basic idea resides in the constriction of so called efficient packings:

Definition 2.1. Let ∈ Mn be a Riemannian manifolds and let p1, . . . , pn0

be points ∈Mn, satisfying the following conditions:

(1) The set {p1, . . . , pn0} is an ε-net on Mn, i.e. the balls βn(pk, ε),

k = 1, . . . , n0 cover Mn;

(2) The balls (in the intrinsic metric of Mn) βn(pk, ε/2) are pairwise

disjoint.

Then the set N = {p1, . . . , pn0} is called a minimal ε-net and the pack-

ing with the balls βn(pk, ε/2), k = 1, . . . , n0, is called an efficient packing.

The set {(k, l) | k, l = 1, . . . , n0 and βn(pk, ε) ∩ βn(pl, ε) 6= ∅} is called the

intersection pattern of the minimal ε-net of the efficient packing.

1This being in contrast with the Imaging/Graphics case where images/meshes are al-

ready embedded in R3.
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There exists a canonical simplicial complex having as vertices the centers

of the balls βn(pk, ε), which is constructed by adding a k-simplex for every

collection of k + 1 balls with nonempty intersection.

Following Kanai [30], we call the graph G(N ) given by the 1-skeleton of

the simplicial complex constructed above a discretization of X, with sepa-

ration ε and covering radius ε (or a ε-separated net). Further more, we say

that G(N ) has bounded geometry iff there exists ρ0 > 0, such that ρ(p) ≤ ρ0,
for any vertex p ∈ N , where ρ(p) denotes the degree of p (i.e. the number

of neighbours of p). Furthermore, in the case of unbounded manifolds, we

add, to the conditions in Definition 2.1 above, the following requirement:

(3) The graph N is maximal with respect to inclusion.

IfMn is a closed, connected n-dimensional Riemannian manifold such that

it has sectional curvature kM bounded from below by k, diamMn bounded

from above by D, and VolMn is bounded from below by v, such ε-nets can

be constructed by taking any maximal set of points with disjoint ε/2-balls,

and the geometric generation process of such a maximal set is based on

the close connection between the growth rate of volumes of balls in mani-

folds and Ricci curvature. Moreover, since only volumes of balls arguments

are employed, one can replace the last condition by the more general one

RicM ≥ (n − 1)k (see, e.g., [32]). Furthermore, the connection between

volume and Ricci curvature can be extended to more general measures and

to the generalized Ricci curvature developed by Lott-Villani [36] and Sturm

[61]. Therefore, it is natural to seek and generalize the results of Grove and

Petersen [22] to metric measure spaces. Such an extension of the classical

case construction to the metric measure spaces context does, indeed exist

[50].

Most importantly, the discretizations rendered in the process of proof,

are, indeed, coarsely equivalent (coarsely isometric) – see Definition 4.1 –

to the original metric measure space, in a manner that is quite deep (see

[50], Theorem 5.6 and Theorem 5.11, as well as their corollaries). Still, the

most important consequence, from our point of view, appears already in [50],

Corollary 4.6, namely the fact that the graphs (networks) obtained encode

the essential topology (homotopy) of the sampled space. Moreover, it is a

byproduct of the construction (see [22], [50]) that even if the graph-based

reconstruction of the given space is only a coarse one, the number of such
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“guesses” is finite, and is, moreover, independent of the specific geometry of

the manifold and the measure, and it depends only on bounds on dimension,

volume, curvature and diameter.

It is therefore, only natural and intuitive to expect that a similar Ricci

curvature based sampling should apply to weighted networks, viewed as

metric measure spaces (with measures concentrated at the nodes and metric

prescribed by the edge weights), should encode the essential topology of the

network.

Remark 2.2. However, while most researchers have come to view graphs/networks

as metric spaces, the model of metric measure spaces for weighted networks,

is yet to be widely adopted by the Complex Networks community, even

though it is a most natural way of describing the properties of such objects.

To this end, a natural idea is to incorporate the node weights and edge

weights into one expressive metric, thus rendering any weighted network

into a “honest to God” metric space, whose geometric properties (curvature,

geodesics, embeddings, etc.) can than be investigated with (more-or-less)

classical tools. (An example of such a comprehensive metric is the so called

degree path metric – see, e.g. [31]. Another well known such metric is the

resistance metric (see, e.g. [15]). For the convenience of the reader we have

expanded on these important metrics in Appendix 3.)

It is worth noting that, initially, only edge weights were considered, and

for such weights a global metric is standard, namely the so called path metric

(which Computer Science students commonly confuse with the most pop-

ular algorithm for its computations, namely the Dijkstra algorithm.) A

number of modeling problems, in particular some of Mathematical Biology

motivated lately the search for “good” metrics that take into account node

weights exclusively. (For such an example see, for instance, [53].) From

the applications viewpoint it become clear quite early that a comprehensive

model of networks should include both edge and node weights (and that

the combinatorial model is, a fortiori, quite unsatisfactory). The reason

that such complete sets of weights were not previously employed in large

scale experimental studies was due to the lack of a large enough sample

of available data sets. However, as the field of Complex Networks evolved

and expanded, better data sets have been published, thus the focus of the

community is finally shifting towards the study of such networks.
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The discussion above raises the natural question whether there exists

an optimal metric, at least for understanding of the problems studied in the

present paper. The somewhat disappointing (but expectable) answer is that

there is no “best” metric fitted for the study of all networks, not even for

the study of a certain type of discrete Ricci curvature and its flow. From the

empirical networks viewpoint this fact is easily understandable: Each com-

munity has developed its specific metric or set of metrics which best serve

its needs, in the sense that they closely model the type of network that rep-

resents the object of interest for that group. (In certain settings, a natural

metric, up to minor variations, imposes itself, such in the case of Imaging

– see the relevant examples in the sequel. The same holds true for electric

networks, where the resistance metric is the default one.) These ad hoc

metrics might differ widely from the standard, mathematically motivated

ones mentioned above and, as such, they do not necessarily behave as well

in concordance with the various type of curvatures. From a mathematical

viewpoint, it is important to remember that the discrete Ricci curvatures

captures different aspects of the classical notion (the Forman-Ricci curva-

tures vs. the Haantjes curvature), or include higher dimensional aspects of

the networks (full Forman and Haantjes, vs. graph Forman). Therefore,

their behaviors in conjunction with the various metrics also diverge widely.

It is, therefore, advisable to understand their comparative behavior using

the same background metric. This is the approach adopted herein, where

the standard path metric was employed. Note that using that, when using

a common metric, various discretization capture the same essential behav-

ior of evolving networks – see [47]. Moreover while from a mathematician’s

viewpoint, the degree path metric is apparently ideal (as the number of

studies employing it seems to suggest), in practice its connection with a

specific type of discrete curvature, e.g. Olliver-Ricci curvature, is far less

strong than expected. In fact, for certain types of Semantic Networks, the

probabilistic version of the resistance metric (see Appendix 3) is by far the

best suited [13]. Thus the problem of determining the best suited metric to

be used with a specific discrete Ricci curvature, for each type of network,

deserves an extensive experimental study, whose scope and breadth are far

beyond those of the present paper.

Yet another – and simpler – generalization of Ricci curvature to metric

measure spaces has been devised, based on the works of Bakry, Emery and
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Ledoux [1, 2]. More specifically, they consider manifolds with density, i.e.

Riemannian manifolds Mn, additionally endowed, with a smooth, positive

density function Ψ = Ψ(x), that induces weighted n- and (n − 1)-volumes,

e.g. in the classical cases n = 2 and n = 3, volume, area and length. More

precisely, the volume, area and length elements dV, dA, ds of the weighted

manifold (Mn,Ψ) are given by:

dV = ΨdV0, dA = ΨdA0, ds = Ψds0 ,

where dV0 represents the natural (Riemannian) volume element of Mn, etc.

Usually density functions of the type Ψ(x) = e−ϕ(x) are considered. (How-

ever more general density functions have also been studied – see [37].)

The Bakry, Emery and Ledoux generalization to manifolds with density

of Ricci curvature is defined as:

(2.1) Ricϕ = Ric + Hessϕ ,

(where Hess denotes the Hessian matrix). It is important for us to note

that, for surfaces, Ricci curvature reduces, essentially, to Gaussian curvature

K, more precisely K = 1
2Ric. Another, closely related, but perhaps more

intuitive, generalization of Gaussian curvature for weighted surfaces is due

to Corwin et al. [14], namely:

(2.2) Kϕ = K + ∆ϕ ,

where ∆ϕ denotes the Laplacian of ϕ. It should be stressed that this rep-

resents a natural generalization: It reduces to the usual Gaussian curvature

(up to a multiplicative constant) for ϕ ≡ const. and, moreover, it also sat-

isfies a generalized Gauss-Bonnet Theorem. The reader should note that,

unlike Morgan [37], but following other authors, and, moreover, in concor-

dance with Forman’s work, we adopt here the “+” convention for the sign

of the Hessian and Laplacian commonly, since this is more intuitive, at least

in the context of Imaging where weights, that is grayscale values are always

positive. This simpler approach can be indeed applied to the sampling of

images, where grayscale value can be interpreted as a measure (distribution)

over the pixels’ grid [35]. This fact further encourages us to extend the Ricci

curvature-based sampling to Complex Networks.
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3. Discrete Ricci Curvature

There are several ways of incorporating both node and edge weights into

a comprehensive Ricci curvature for networks. Since a full explanation of

the ideas and techniques employed in devising the notions below would take

us too far afield, and, furthermore, we have detailed this in previous works

and, moreover, in the present paper we employ these discrete notions of

Ricci curvature only in the practical, network context, we do not develop

these definitions here, but rather restrict ourselves essentially to bringing

the relevant formulas.

The simplest (from a computational viewpoint) type of network Ricci

curvature is the 1-dimensional (graph) version introduced in [60] of For-

man’s Ricci curvature [24], originally devised for weighted CW complexes

of dimension ≥ 2. It is derived from the classical Bochner-Weitzenböck for-

mula of Riemannian Geometry [29], that connects the Bochner (or Hodge)

Laplacian on a manifold and its various curvatures, namely

(3.1) 2p = dd∗ + d∗d = ∇∗p∇p + Curv(R) ,

where 2p denotes the Riemann-Laplace operator 2p on p-forms, ∇∗p∇p is the

Bochner (or rough) Laplacian and Curv(R) is an expression of the curvature

tensor with linear coefficients where ∇p denotes the covariant derivative

operator.

Forman [24] demonstrated that an analogue of the Bochner-Weitzenböck

formula holds in the general setting of CW complexes, of which graphs and

polyhedra are particular cases. More precisely, he showed that there exists

a canonical decomposition of the form:

(3.2) 2p = Bp + Fp ,

where Bp is a non-negative operator and Fp is a diagonal matrix. Bp and Fp

are called, in analogy with the classical Bochner-Weitzenböck formula, the

combinatorial Laplacian and the combinatorial curvature function, respec-

tively.

In particular, for p = 1, we obtain

21p(e) = 21(e, e) =
w(v1)

w(e)
+
w(v2)

w(e)
;(3.3)
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where v1, v2 are the end nodes of the edge e, and w(v1), w(v2), w(e) represent

their respective weights. (For the definition in the general case, see Appendix

2.)

Then, given a p-dimensional cell α = αp, one defines the curvature func-

tion Fp : Cp → Cp

Fp(α) = 〈Fp(α), α〉.(3.4)

In the special case of dimension p = 1 one defines, by analogy with the

classical case, the discrete (weighted) Forman-Ricci curvature on α = α1,

i.e. 1-cells (edges), namely

RicF(α) = F1(α).(3.5)

Before proceeding further, let us note the similarity between Formula (2.2)

and Forman’s Formula (3.2), and the (essential) identification of Gaussian

and Ricci curvature in the surface case, further suggest Forman’s Ricci cur-

vature as a possible sampling tool. Furthermore, this similarity suggests

that theleft-hand term 21 can be interpreted not just like a “corrected”

Laplacian, but also as a “adjusted” curvature. Thus, one is conducted to-

wards a possible sampling of networks based on Forman-Bochner Laplacian,

instead of its Ricci curvature counterpart. This coupling with a Laplacian,

that opens further directions for possible applications, represents yet another

advantage, besides its computational simplicity, of Forman’s curvature over

Ollivier’s one.

While the formula of RicF in the case of generic n-dimensional CW com-

plexes is quite complicated (see Appendix 2), in the 1-dimensional case, that

is of graphs/networks, it reduces to the following elementary formula:

(3.6)

F(e) = w(e)

w(v1)

w(e)
+
w(v2)

w(e)
−

∑
e(v1) ∼ e, e(v2) ∼ e

[
w(v1)√

w(e)w(e(v1))
+

w(v2)√
w(e)w(e(v2))

] ;

where F denotes the Forman-Ricci curvature for networks2, and where

• e denotes the edge under consideration between two nodes v1 and

v2;

• w(e) denotes the weight of the edge e under consideration;

2notice the change of notation for clarity reasons
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• w(v1), w(v2) denote the weights associated with the nodes v1 and v2,

respectively;

• e(v1) ∼ e and e(v2) ∼ e denote the set of edges incident on nodes v1

and v2, respectively, after excluding the edge e under consideration

which connects the two nodes v1 and v2, i.e. e(v1), e(v2) 6= e.

While, as discussed above, we are mainly interested in edge-centric mea-

sures, and more specifically in Ricci curvature, one can also define the

Forman-scalar curvature, in manner similar to the PL manifolds case pi-

oneered by Stone [61] (see also [18]), to be

(3.7) κF(v) = F(v) =
∑
ek∼v

RicF (ek) ;

where ek ∼ v denotes the edges ek adjacent to the vertex v.

For 2-dimensional complexes the formula of the Forman-Ricci curvature

is only slightly more complicated:

(3.8) RicF(e) = w(e)

∑
e∼f

w(e)

w(f)
+
∑
v∼e

w(v)

w(e)



−
∑
ê‖e

∣∣∣∣∣∣
∑
ê,e∼f

√
w(e) · w(ê)

w(f)
−

∑
v∼e,v∼ê

w(v)√
w(e) · w(ê)

∣∣∣∣∣∣
 ;

where “ê ‖ e” denotes that the edges ê and e are parallel, that is they can

both belong to a common 2-dimensional face, or have a common vertex, but

not both, simultaneously; and where “∼” has the same significance as in the

previous formula (i.e. incidence).

There are two special cases extremely important in applications. The first

case is that of square grids, as they arise most naturally in Imaging. Due

to the specific (and evident) parallelism relationship, the resulting formula

attains the following simple form:

(3.9)

RicF (e0) = w(e0)

[(
w(e0)

w(c1)
+
w(e0)

w(c2)

)
−

(√
w(e0)w(e1)

w(c1)
+

√
w(e0)w(e2)

w(c2)

)]
,

The second special case is that of PL manifolds and, more generally, of

graphs and networks where the only 2-cycles are triangles. This type of

structure is, again, relevant in Graphics and related fields. Moreover, it

is precisely the type of graph (network) that we developed and discussed
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above. The fitting formula is

(3.10) RicF (e) = w(e)

[∑
t>e

w(e)

ω(t)
+

(
w(v1)

w(e)
+
w(v2)

w(e)

)

−
∑
ẽ∼e

∣∣∣∣∣∣
∑

t>e, t>ẽ

√
w(e)w(ẽ)

w(t)
−

∑
v<e, v<ẽ

w(v)√
w(e)w(ẽ)

∣∣∣∣∣∣
 .

where “t > e” denotes that the edge e is a face of the triangle (2-cycle) t.

To differentiate between the 1- and 2-dimensional versions of Forman-

Ricci curvature, we shall refer to the former as the graph or reduced Forman-

Ricci curvature, and to the later as the full Forman-Ricci curvature (or

simply the Forman-Ricci curvature).

Again, we can define the fitting scalar curvature, in a similar manner:

(3.11) κRicF (v) = RicF (v) =
∑
ek∼v

RicF (ek) ;

where, again, ek ∼ v stands for all the edges ek adjacent to the vertex v.

Remark 3.1. Note that, while we concentrated above on Forman’s Ricci

curvature, one can substitute instead Ollivier’s discretization [42], [43], as

it is widely employed in Network Theory (see, e.g. [64], [40], [41], [48],

[49]). We preferred Forman’s curvature for a number of reasons, perhaps

not the least of them being its clear computational advantages, as well as

for the easy manner in which it extends to higher dimension. An additional

advantage we already mentioned above, namely that by its defining formula

it comes coupled with a Laplacian, also allows us to explore new directions

of study – See Section 4 below.

The third type of discrete Ricci curvature that we have considered in

our experiments is one that we recently introduced [56], [57], namely the

Haantjes-Ricci curvature [25]. In contrast with Forman-Ricci curvature,

whose definition is based on the discretization of and advanced techniques

in Riemannian Geometry, namely the Bochner-Weitzenböck formula (see for

instance [29]), Haantjes curvature is derived from a purely metric notion [25]

devised originaly to study curves in metric spaces. Before we can define this

new type of Ricci curvature, we first have to introduce the curvature of paths

and cycles:
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Given a curve c in a metric space (X, d), and p, q, r points on c, p between

q and r, the Haantjes curvature of the curve c, at the point p is defined as

(3.12) κ2H(p) = 24 lim
q,r→p

l(q̂r)− d(q, r)(
d(q, r)

)3 ;

where l(q̂r) denotes the length, in the intrinsic metric induced by d, of the

arc q̂r. In the network case, q̂r is replaced by a path π = v0, v1, . . . , vn, and

the subtending chord by edge e = (v0, vn). When discretizing this notion we

should start from the following two observations: (a) The limiting process

has no meaning in this discrete case; (b) The normalizing constant “24”

which ensures that, the limit in the case of smooth planar curves will coincide

with the classical notion, is redundant in the discrete setting setting. We

are thus led to the following definition of the Haantjes curvature of a simple

path π:

(3.13) κ2H(π) =
l(π)− l(v0, vn)

l(v0, vn)3
;

where l(v0, vn) = d(v0, vn), where, as above, e = (v0, vn) represents an edge

and where l denotes the length, in the considered metric d. (If no specific

metric is given, one can always metricize an edge weighted graph using the

standard path metric – see, e.g. [15].) In particular, in the case of the

combinatorial metric, we obtain that, for path π = v0, v1, . . . , vn as above,

κH(π) =
√
n− 1. It is important to note that considering simple paths does

not represent any restriction, since a metric arcs are, by definition, simple

curves. However, to capture in the discrete context the local nature of the

Ricci (and scalar) curvature, as well as to make computations feasible, we

shall restrict to paths π such that π∗ = v0, v1, . . . , vn, v0 is an elementary

cycle.

In the case of general edge weights, one can not apply directly the Haantjes

curvature, since in this case the network is not necessarily a metric space,

given that the total weight w(π) of a path π = v0, v1, . . . , vn is not necessarily

smaller than the weight of its subtending chord e = (v0, vn). In fact, a

graph endowed with general weighted graphs will not constitute a metric

space, since such weights can (and usually will) fail the triangle inequality.

However, it is still possible to use the Haantjes curvature, and we even can

turn this to our own advantage, by reversing the roles of w(π) and w(v0, vn)

in the definition of the Haantjes curvature and assigning a minus sign to
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the curvature of cycles for which this occurs. In consequence, this approach

allows us to define a variable sign Haantjes curvature of cycles (hence, as it

will become clear below, a Ricci curvature as well), even if the given network

is not a directed one.

Before proceeding further, it should be noted that the case when w(v0, v1, . . . , vn) =

w(v0, vn), i.e., that of zero curvature of the 2-cell c with ∂c = v0, v1, . . . , vn, v0,

straightforwardly corresponds to the splitting case for the path metric in-

duced by the weights w(vi, vi+1).

We can now define Haantjes-Ricci curvature in a straightforward manner,

as

(3.14) κH(e) = RicH(e) =
∑
π∼e

κH(π) ;

where π ∼ e denote the paths that connect the vertices adjacent to the edge

e.

Moreover, as for the Forman-Ricci curvatures, one can also define the

Haantjes-scalar curvature:

(3.15) κH(v) = scalH(v) =
∑
ek∼v

RicH(ek) ;

where ek ∼ v stands for all the edges ek adjacent to the vertex v.

3.1. Curvature Based Sampling. As we have already emphasized in the

introduction, Ricci curvature allows us not only to focus on the edge-centric

study of networks, but also to analyze the distribution and role of higher

order correlation in networks. It follows, therefore, that an edge-based sam-

pling is the natural one, if one wishes to explore the edge and higher order

correlations structure. Nevertheless, the classical graph-theoretical approach

to networks is still relevant, thus we also explore the vertex-based networks’

sampling and compare it to the edge based one.

We first exemplify the network sampling using all the types of curvatures

introduced above on two examples of real-life weighted networks:3 The clas-

sical “Kangaroo” one, which due to its small size allows one to better relate

the computations to the network structure, and the increasingly popular

“Les Misérables” one, describing the relationships between the characters in

the classical Hugo novel. The data for all the networks, except that for the

“C. elegans”, was downloaded from the KONECT website [32]; in the later

3We restrict only to these so not to overextend the experiments section.
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Figure 1. A small combinatorial network (i.e. with all

vertex and edge weights equal to 1) based on the well

known “Dolphins” social network [32], emphasizing the dif-

ferences between the three types of Ricci curvature consid-

ered. RicH(e1) is zero, since there are no cycles (faces) adja-

cent to e1 and F(e1) also equals 0 (as it is really seen from the

degrees of its end vertices) and, moreover, so does RicF (e1),

since in this case it coincides, due to the absence of adjacent

faces, with F(e1). RicH(e2) =
√

2, given that there is only

one face – a triangle – adjacent to e2. Degree counting easily

renders F(e2) = −1, and RicF (e2) = 2. In the case of e3,

degree counting renders F(e3) = −4. Since the edge e3 is ad-

jacent to 2 triangles and a quadrangle, RicH(e3) = 2
√

2+
√

3,

while given the fact that there is only one edge parallel to e3,

namely (v7v8), we obtain that F(e2) = −4.

case the source is [12]. For each network and each type of curvature, both

edge (Ricci curvature) based and vertex (scalar curvature) are included. In

the original network, Ricci curvature is depicted according to the standard

method, i.e. edge thickness being proportional to the absolute value of the

curvature, whereas sign is indicated using the (standard) color code: Red

color for negative curvature and blue color for positive one. All the con-

sidered networks are weighted ones – for the nature of the specific weights

the reader is referred to [32], [12] and the references therein. The sampling

method adopted here is the simplest, yet widely adopted one of high-pass

filtering the curvature with high absolute curvature. More precisely, for
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a prescribed percentage of absolute curvature, the vertices with curvature

below the chosen threshold are removed, together with the edges adjacent

to them, in case that vertex-based sampling is adopted. I the case when

edge-based sampling is chosen, the procedure is similar, with the evident

difference that, in this case, edges are removed. Note that in this case the

ends of the deleted edges are not removed, except in the case of so called

leaves (i.e. edges with at least one vertex of degree 1). The percentages

differ from a network to another and from a type of curvature to another

and they were chosen such that approximatively the same number of vertices

would be retained.

Figure 2. The graph Forman-Ricci curvature based sam-

pling by vertices (middle) and by edges (below) of a Kan-

garoo social network (above). Here 40% of the edges were

retained, yet the main features of the image is still clearly

visible.
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Figure 3. The Graph Forman-Ricci curvature edges-based

sampling (middle) and by vertices-based (below) of the Les

Misérables social network (above).

Ideally one should include in the computation of the full Forman-Ricci

curvature all the cycles. However, determining them is a computationally

costly operation, especially so since higher order cycles (faces) are quite

common in real-life networks [69]. Nevertheless, in the study of real-life

networks, one can discard, at least in first approximation, the higher order

faces. Indeed, both in social and biological networks, higher order cycles

represent weaker connections, that should be taken, at best, with a lower

weight signifying their reduced contribution (or probability of existence).

In fact, and due partially to the powerful theoretical tools available in this
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Figure 4. The Graph Forman-Ricci curvature based sam-

pling (left) of a classical test image (right). Here 20% of the

edges were retained, yet the main features of the image is

still clearly visible. Note the mostly red coloring of the re-

sulting curvature images, showing that, except at a sparse

set of pixels, the graph Forman-Ricci curvature is negative.

case, the study of higher order correlations is commonly restricted only to

order 3 ones (i.e. triangles). Given these considerations, and the fact that

we are here only proposing a new paradigm for networks sampling, rather

than concentrating for the extensive study of a specific (type of) network,

we restrict our computations to 3- and 4-cycles, that is to faces that are

triangles or quadrangles.

The results of the vertex- and edge-based sampling, using the various

considered Ricci curvatures, of a couple of well-known social networks are

depicted in Figures 2-4 and 5-7. Let us note that at least for medium sized

and large scale networks, the “common core” of obtained by the intersection

of the sampling results using the different curvatures can be quite small, illus-

trating the fact that each of the curvatures captures quite different different

properties of the network, as it is the case with the various discretizations

of any classical curvature. Thus the core represents the subgraph that com-

prises the essential geometric properties of a network. Note also that for

smaller networks and/or larger percentage of remaining nodes, the cores are

both larger and closer to each of the sampling results.
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Figure 5. The full Forman-Ricci curvature-based sampling

by vertices (middle) and by edges (below) of a Kangaroo

social network (above). Here 40% of the edges were retained.

In addition to these real life networks we are also including the example

of a regular square grid as it arises naturally in Imaging – See Figures 4,

8 and 9. More precisely, nodes denote centers of pixels and edges connect

adjacent pixels, edge weights (lengths) are given by the differences in height,

that is gray scale intensity of the image, and areas of the resulting 2-cells

(quadrangles) are obtained, via Heron’s formula from the edge lengths. (For

details and illustrations see [4].) The color scheme adopted for sign depiction

is the same as before. Given the construction of the network and its weights,

only vertex sampling sampling is considered. As one can see from the results

depicted in Figure 4, when the sampling was applied to a classical test image,

even when retaining only 25% of the original nodes (pixels) the original
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Figure 6. The full Forman-Ricci curvature-based sam-

pling by vertices (middle) and by edges (below) of the Les

Misérables social network (above). Here 10% of the edges

were retained.

image is still quite easily recognizable and, moreover, curvature does indeed

function as an edge detector, as expected. (See also [50] and the references

therein.)

Besides the two versions of Forman-Ricci curvature we experimented with

the Haantjes-Ricci curvature. Again, as in case of the full Forman-Ricci

curvature (and for the same reasons), we restrict ourselves to 3- and 4-

cycles. In addition to its applicability to networks, it is a natural curvature

measure for images [51]. However, in this case the obtained results are not

as promising as those obtained using the full Forman-Ricci curvature, given
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Figure 7. The common “core” (below), i.e. set of vertices

of the “Les Misérables” network after sampling by all of the

curvatures considered (above, from left to right: Haantjes,

graph Forman, full Forman). In each of the cases 15% of

the original vertices were retained. Note that the resulting,

sampled networks are widely different. Moreover, note that

the common nodes (in red, below) is quite restricted. This is

a direct consequence of the fact that different discretizations

of Ricci curvature capture diverse properties of the classical

notion, thus rendering a small set of nodes and edges that

capture the most essential geometric properties of the net-

work.

than for images, that is for surfaces embedded in R3, it takes only positive

values – see Figure 9.

3.1.1. Ricci flow. Besides the simple, direct approach to sampling that filters

out a certain, prescribed percentage of edges, a more automatic – and with

far deeper theoretical motivation – exists, namely the one based on the Ricci

flow [68], [69], [59]. This approach not only is preferable, since it captures

the evolution of the network “under its own pressure”, but it also seems

especially effective in determining the so called network backbone [67].

In contrast with our previous experiments in [66], [67], [69], we employ

here the normalized flow, in order to ensure that the metric does not contract
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Figure 8. The full Forman-Ricci curvature based sampling

of the “Cameraman” (left) compared to the graph Forman-

Ricci curvature based one (right). Here, again, 20% of the

edges were retained. Note that both blue and red edges are

visible, showing that full Forman-Ricci curvature takes both

positive and negative values.

(i.e. the weights do not converge to zero) and the network does not collapse

to a node in the limit. This normalized flow for networks is defined, in

analogy with that for surfaces (see, e.g. [23]), as

∂ω(e)

∂t
= −

(
Ric (ω(e))− Ric

)
· ω(e) ;(3.16)

where Ric denotes the mean Ricci curvature, and Ric stand for the graph

Forman, full Forman or Haantjes Ricci curvature, according to the chosen

curvature. Also, since in the setting of networks time is also assumed to

evolve in discrete steps and each “clock” (that is, time step) has a length of

1, the Ricci flow takes the following form:

ω̃(e)− ω(e) = −
(
Ric (ω(e))− Ric

)
· ω(e) ;(3.17)

where ω̃(e) denotes the new (updated) value of ω(e) (and ω(e) is the original

i.e. given - one).

To emphasize its capabilities, we illustrate the flow on a larger network,

more precisely on the “Windsurfers” social network [32] – see Figures 10-

12. Note that a certain lower threshold for the edge weights needs to be

predetermined, so “noise”, that is to say edges with weights close to zero
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Figure 9. The Haantjes-Ricci curvature based sampling

(left) of a classical test image (right). Here again 20% of

the edges were retained and the main features of the image

are still clearly visible. However, it is evident that Haantjes

curvature is outperformed, in the case of images, by both

Forman curvatures. Note the blue coloring of the resulting

curvature image, showing that the Haantjes-Ricci curvature

is positive, a fact that follows from it being computed using

the usual distances in Euclidean space.

would not be included in the next iteration. In the experiments included

here we have chosen to adopt a rather rather high threshold, such that at

each step, at least 90% of the edges appearing in the previous step would be

preserved. Furthermore, in the computations using the graph Forman-Ricci

curvature, the need to normalize curvature arose, in order to prevent abrupt

jumps/collapses in curvature. However, no such normalization was needed

for the Haantjes-Ricci curvature flow, a fact that seems to point to a relative

advantage of this type of curvature, over the graph Forman one, as it seems

to preclude fast collapse.

Note that, even only a very small number of iterations were considered,

Ricci curvature evolves, as expected from the theory in the smooth and

combinatorial (circle-packing based) cases, to a constant. This phenomenon

is most manifest in the Graph Forman-Ricci flow, and the least evident

for the Full Forman-Ricci flow. Beyond the specific convergence speeds of
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Figure 10. The “Windsurfers” network and its evolution

under the graph Forman-Ricci flow. In descending order,

from above: The original network, and the network after 1,

3 and 5 iterations, respectively.

each of the flows, this phenomenon occurs probably because, as already

mentioned above, only triangular and quadrangular faces were considered, a

fact which greatly simplifies and speeds-up computations, but also changes

drastically the topology of the evolving 2-complex.
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Remark 3.2. As noted in [66] a scalar (Yamabe) flow is also possible. How-

ever, here we concentrated on the Ricci curvature, that is to say edge-centric

approach.

4. Coarse Embedding and an Application to SVM

A common theme in Geometry and in many of its applications (in some

cases still in a non-deliberate manner) is the embedding, with least distor-

tion, of a given structure/space, in a familiar, larger ambient space. For

instance, in classical Geometry and Topology, this ambient space is usu-

ally Rn, for some n large enough, whereas any metric space is isometrically

embeddable in l∞. Also, more recently, embeddings of networks in the Hy-

perbolic Plane H2 or Space H3 have become quite common (see, e.g. [7] and

the references therein).

It is therefore most natural to ask, not only if a coarse embedding (viewed

as a metric measure space) of a weighted graph exists, but also whether

there exists an “automatic” procedure to achieve such an embedding. By a

coarse embedding of a metric space (X, d) into another metric space (Y, ρ),

we mean a map i : X → Y , such that there exist increasing, unbounded

functions η1, η2 : R→ R, such that

(4.1) η1(d(x1, x2)) ≤ ρ(i(x1), i(x2)) ≤ η2(d(x1, x2)) ,

for any x1, x2 ∈ X.

The “automatic” embedding method we alluded to above is one that

is canonical in SVM techniques, and classical in Fourier Analysis and its

various applications, in particular in Signal and Image Processing, namely

that of reproducing kernels. Recall the following

Definition 4.1. Given a set X, symmetric kernel is a symmetric function

k : X ×X → R, i.e. k(x, y) = k(y, x), for any x, y ∈ X.

A kernel k is said to have

(1) positive type if the matrix Km = {k(xi, xj)}mi,j=1 is positive semidef-

inite for all m ∈ N;

and

(2) negative type if the matrix Km = {k(xi, xj)}mi,j=1 is negative semi-

definite for all m ∈ N;
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Positive and negative type kernels are interrelated by the following clas-

sical result

Proposition 4.2 (Schoenberg’s Lemma). Let k be a symmetric kernel on

set X. Then the following statements are equivalent:

(1) The kernel k is of negative type;

(2) The kernel κ = exp(−tk) is of positive type, for each t > 0.

(For a proof see, e.g. [45].)

From Schoenberg’s Lemma and the fact that kα can be written as

kα(x, y) = C

∫ ∞
0

(1− e−tκ(x,y))t−α/2−1dt

where C = Cα is a positive constant, it follows (cf. [45]) that following

corollary hods:

Corollary 4.3. Let k ≥ 0 be a kernel of negative type on X. Then κ = κα

is also of negative type, for any 0 < α < 1.

Remark 4.4. An (effectively coarse) embedding method for networks as well

as higher dimensional spaces was proposed in [51]. While the approach

suggested therein applies to more general spaces than networks and, the

embedding space is the familiar Rn, it still is less than intuitive, since it

makes appeal to a family of quasi-metrics. While this approach allows for the

the network to be studied at many scales, it is also more complicated then the

one adopted here (and based on the path degree metric). Furthermore, the

method introduced herein has also the advantage of coming in conjunction

with a reproducing kernel, that allows for the automation required in SVM

related applications. Therefore, the corollary above shows that a way of

studying networks at many scales, akin to the one in [51], exists also in the

coarse embedding (kernel) approach.

Since the operators 21 and B1 are symmetric as functions of the end nodes

u, v of an edge e = (u, v), they define (in analogy to the classical Laplacian)

reproducing kernels k2, kB on any given network. Moreover, since by its

very construction/definition Bp is a positive semidefinite, it follows that kp

is also positive semidefinite (i.e. a “classical” reproducing kernel). By a

direct application of a classical result (for a proof, see, e.g. [45], Theorem

11.15), we get
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Theorem 4.5. Let k be a symmetric kernel on X. Then,

(1) If k is of positive type, then there exists a map Φ : X → H, where

H is a real Hilbert space, such that k(x, y) =< Φ(x), Φ(y) >, for any

x, y ∈ X.

(2) If k is of negative type and, furthermore, k(x, x) = 0 for any x ∈ X,

then there exists a map Φ : X → H, where H is a real Hilbert space,

such that k(x, y) = ||Φ(x)− Φ(y)||2, for any x, y ∈ X.

Moreover, F and RicF are both symmetric functions (again viewed as

acting on pairs of nodes defining edges), thus kernels kF and kRicF can be

defined. However, neither version of Forman’s Ricci curvature is positive,

therefore a mapping into a real Hilbert space, as for the Laplacians, is not

possible for these curvature-based kernels. In fact, F is not negative only if

both its end nodes have degree 2, that is only the degenerate case of cycles

and graph “spurious” vertices of degree 2, i.e graph subdivisions homeomor-

phic to a “good” graph can have edges of non-negative curvature. It can,

therefore, be surmised that proper networks have pure Forman curvature

F < 0. (Note that this does not hold for RicF .)

Unfortunately, part (2) of the theorem above (the one regarding negative

type operators) does not hold, since it requires that k(x, x) = 0, for all

x ∈ X, which, of course, does not hold neither for 21, nor for B1. However,

one can still map the kernels k2, kB to a Hilbert space precisely as above,

after modifying them into fitting related positive operators, by putting k∗2 =

e−k2 ; k∗B = e−kB .4

Moreover (and perhaps more important in our context) there exists a

coarse embedding of any (finite) network into a (real) Hilbert space. This

follows from the fact that, for instance, e−kF is a positive kernel, and from

the fact that the kernel kF , is effective i.e. the edges {e = (x, y) | |k(e)| < K},
K > 0 generate the coarse structure of the network (see [45] for technical

details), which, given in the case at hand, of finite networks, can naturally

to be taken as the discrete coarse structure generated by sets that contain

only a finite number of points (nodes) off the diagonal. Therefore we can

apply the following result:

4In fact, for every t > 0, the kernels k∗,t2 (x, y) = e−tk2(x,y);, k∗,
t

B (x, y) = e−tkB(x,y) are

of positive type (see [45], Proposition 11.12.
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Theorem 4.6 ([45], Theorem 11.16.). Let X be a coarse space. Then the

following statements are equivalent:

(1) X can be coarsely embedded into a Hilbert space.

(2) There exists an effective negative type kernel on X.

In fact, the observation above can be strengthened in more than one way:

On the one hand, the result can be applied to any of the kernels above,

not only the one considered above. Furthermore, due to finiteness, one can

relax the effectiveness condition by dispensing with the absolute value in the

defining inequality. On the other hand, the Forman-Ricci curvature kernels

are effective even if one considers ε-nets obtained from the geometric sam-

pling of non-compact Riemannian manifolds with Ricci curvature bounded

from below, given that the sampling procedure is essentially the same as for

the compact ones (see [30] for the classical case and [50] for the generaliza-

tion to metric measure spaces). The only difference between the compact

case and the one at hand is that one has to relax somewhat the coarseness

isometry definition and the resulting ε-net, endowed with the combinatorial

metric (i.e. with edge lengths ≡ 1), will be only roughly isometric to the

given manifold, where rough isometry is defined as follows:

Definition 4.7 (Rough isometry). Let (X, d) and (Y, δ) be two metric

spaces, and let f : X → Y (not necessarily continuous). f is called a

rough isometry iff

(1) There exist a ≥ 1 and b > 0, such that

1

a
d(x1, x2)− b ≤ δ(f(x1), f(x2)) ≤ ad(x1, x2) + b ,

(2) there exists ε1 > 0 such that⋃
x∈X

B(f(x), ε1) = Y ;

(that is f is ε1-full.)

It follows that all types of kernels based on Forman’s discretization of

the Bochner-Weitzenböck may be applied in the variety of SVM problems

where kernels are usually employed, such as clustering and classification. In

particular, one can compute the so called kernel distance [28], [44]:

Definition 4.8. Given a similarity function (kernel) K : Rd × Rd → R,

such that K(p, p) = 1, for any p ∈ Rd, and given sets P,Q ⊂ Rd, the kernel



GEOMETRIC SAMPLING OF NETWORKS 29

distance DK(P,Q) is defined as

(4.2)

DK(P,Q) =

√∑
p∈P

∑
p′∈P

K(p, p′)− 2
∑
p∈P

∑
q∈Q

K(p, q) +
∑
q∈Q

∑
q′∈Q

K(q, q′) .

Remark 4.9. DK(P,Q) is not a metric if K is not positive definite.

Note that in the special case P = {p}, Q = {q}, we obtain D2
K(P,Q) =

2(1−K(p, q)), thus 1−K(p, q) can be viewed as a proper squared distance,

since 1−K(p, p) = 0.

Remark 4.10. The quantity κ(P,Q) =
∑

p∈P
∑

q∈QK(p, q) is called the

cross-similarity (of P and Q), thus DK(P,Q) can be expressed, more sim-

ply, in terms of the cross similarity, rather then in means of the kernel as

κ(P, P )− 2κ(P,Q) + κ(Q,Q).

A first application of the kernel distance is in the visualization of kernel

spaces and data in general [62], [28]. The embedding method employed here

is the so called mutidimensional scaling (MDS) one (see, e.g. [8]). More

precisely, given N points p1, . . . , pN , we can approximate their position in a

kernel space H ⊂ Rd by y1, . . . , yN ∈ Rd, by minimizing the cost-function

(4.3) J =
N∑
i=1

N∑
j>i

(||yi − yj || −Dij)
2 ;

where Dij = DK(pi, pj).

We illustrate this application below, using the Graph Forman-Ricci cur-

vature, on two real-life networks, namely the simple, illustrative “Kangaroo”

network, and on the larger “Les Misérables” one. As the second example

proves, this visualization method is quite efficient at distinguishing various

clusters in a large network, due to the high degree of separation that higher

dimensional spaces afford. In these examples, to numerically determine the

minimum of the cost-function J we made appeal to the classical Douglas-

Rachford algorithm [17]. We have illustrated these examples in Figures 13

and 14 below.

Furthermore, we have implemented the �1 based embedding. Perhaps

contrary to the common wisdom, and thus somewhat unexpected, the Graph

Forman-Ricci curvature renders a far better separation into clusters than the

considered Laplacian. – See Figure 16.
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The kernel embedding method not only is useful in the visualization of

networks, it also (and perhaps more importantly) allows us to embed large

complex networks into the familiar Euclidean space. Consequently one can

employ well established and intuitive sampling methods of data points and

sets in the usual ambient space.

5. From Manifold Sampling to Network Sampling

Given that the discretizations of sampled manifolds are graphs (more-

over, also named ε-nets), conducts one to pose the following natural ques-

tion, namely weather there is a connection between the curvature bounds of

the given manifold and the discrete curvature of the resulting graph, more

specifically their Forman-Ricci curvature. The answer to this question is

positive, as we shall demonstrate below.

Remark 5.1. This fact , in conjunction with the result in [52] on the con-

nection between classical (smooth) curvature of a given Riemannian man-

ifold and the combinatorial curvature of an approximating PL manifold,

significantly improves our understanding of the interrelations between the

curvature of an underlying smooth manifold and its various discretizations.

The proof follows easily from the following essential properties of effi-

cient packings that are used in the proof of the Grove and Peterson’s result

mentioned in Section 2:

Let Mn be a an n-dimensional Riemannian manifold, such that RicM ≥
(n − 1)k, and let D denote the upper bound of the diameter of Mn. Then

the following lemmas hold:

Lemma 5.2 ([22], Lemma 3.2). There exists n1 = n1(n, k,D), such that if

{p1, . . . , pn0} is a minimal ε-net on Mn, then n0 ≤ n1.

Lemma 5.3 ([22], Lemma 3.3). There exists n2 = n2(n, k,D), such that for

any x ∈ Mn, |{j | j = 1, . . . , n0 and βn(x, ε) ∩ βn(pj , ε) 6= ∅}| ≤ n2, for any

minimal ε-net {p1, . . . , pn0}.

Lemma 5.4 ([22], Lemma 3.4). Let Mn
1 ,M

n
2 , be manifolds having the same

bounds k = k1 = k2 and D = D1 = D2 (see above) and let {p1, . . . , pn0} and

{q1, . . . , qn0} be minimal ε-nets with the same intersection pattern, on Mn
1 ,

Mn
2 , respectively. Then there exists a constant n3 = n3(n, k,D,C), such

that if d(pi, pj) < C · ε, then d(qi, qj) < n3 · ε.
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In other words, by using curvature-based sampling, the resulting ε-nets

(discretizations) have a number of properties, listed below in the same order

as the implying lemmas, that are essential in the sampling task:

(1) There is an upper bound on the number of sampling points.

(2) The vertex degree is bounded from above.

(3) The distances between sampling points are bounded from above, that

is to say the lengths of the edges of the discretization are. Here the

distance is the intrinsic distance on the sampled manifold. However,

in practice on can (and commonly does, in Graphics and Imaging ap-

plications) replace the intrinsic distances with the Euclidean ones in

a piecewise-flat approximation obtained via an isometric embedding

in a higher dimensional Euclidean space. (See [54] and the references

therein, as well as [55] for concrete bounds for the relation between

the intrinsic and approximated distances.)

Remark 5.5. The lemmas above also hold in the more general case of met-

ric measure spaces with a lower bound on the generalized Ricci curvature

CD(K,N) [50]. While we do not cite the precise statements here, in order

to avoid unnecessary technical complications, the reader should recall that

these, as well all the results below also hold for metric measure spaces with

generalized Ricci curvature bounded from below.

Let us examine the implications to the networks’ sampling setting of each

of the properties above:

The implications of Property (1) are the clearest from the Signal and

Image Processing viewpoint: Given a prescribed precision of approximation

(ε), there there exists an upper bound on the number of required sampling

points (that depends on dimension, curvature bound and diameter).

Property (2) is the one that allows for the basic connection with the

Forman-Ricci curvature of the ε-separated net. Indeed, since for networks

endowed with combinatorial weights (that is to say equal to 1), the formula

for the simple graph Forman-Ricci curvature has the following alluring form:

(5.1) F(e) = 4− deg(v1)− deg(v2);

where v1, v2 are the end nodes of the edge e, property (2) translates to the

following
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Lemma 5.6. Let G(N ) be a ε-separated net of a bounded manifold M .

Then the graph Forman-Ricci curvature of G(N ) is bounded from below;

more precisely

(5.2) F(e) ≥ K1; for any e edge of G(N ) ;

where K1 = 1− 2n2 and n2 = n2(n, k,D) is given by Lemma 5.3 above.

In fact, the result above extends, in view to a result of Kanai [30], to all

discretizations of bounded curvature of a given manifold M . More precisely,

we have that

Theorem 5.7 ([30], Lemma 2.5). Let Mn be a complete Riemannian man-

ifold, such that RicM ≥ (n − 1)k, and let G(N ) be a discretization of Mn.

Then (Mn, d) and (G,d), where d is the Riemannian metric and d is the

combinatorial metric, are roughly isometric.

Therefore, it follows that we can also state

Lemma 5.8. Let Mn be a complete Riemannian manifold, such that RicM ≥
(n−1)k, and let G(N ) be a discretization of Mn, endowed with the combina-

torial metric. Then the graph Forman-Ricci curvature of G(N ) is bounded

from below; more precisely

(5.3) F(e) ≥ K2; for any e edge of G(N ) ;

where K2 = 1−2k1, and k1 is the upper bound on the degrees of the vertices

of G(N ).

Remark 5.9. In view of the results in [50], Lemmas 5.6 and 5.8 above both

readily adapt to metric measure spaces with generalized Ricci curvature

bounded from below.

Moreover, the lower bound on the Ricci curvature translates to a similar

bound on the graph Forman-Ricci curvature of a discretization, even if this

is not endowed with the discrete metric, but rather with the (arguably more

natural) induced metric. (By this we mean that the length of an edge equals

the distance on Mn between its edge points.)

Proposition 5.10. Let Mn be a Riemannian manifold with Ricci curvature

bounded from below, i.e. RicM ≥ (n− 1)k and let G(N ) be a discretization
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with bounded geometry, having edge weights equal to the Riemannian dis-

tance between the end points. Then the graph Forman-Ricci curvature is

also bounded.

Proof. First of all, let us note that the node (vertex) weights also need

to be prescribed. There are a number of natural possibilities: The com-

binatorial weight 1, the degree deg(v) and the weighted degree degw(v) =
1

deg(v)

∑
e∼v w(e). The first one is less fitting in this geometric context, while

the last one introduces the edge weights again, thus is repetitive in its model-

ing capacity. We settle, therefore, for the second option, i.e. w(v) = deg(v),

even though, for the purpose of this proof, no specific choice is necessary.

Recall that by Formula (3.6), the graph Forman-Ricci curvature is

F(e) = w(e)

w(v1)

w(e)
+
w(v2)

w(e)
−

∑
e(v1) ∼ e, e(v2) ∼ e

[
w(v1)√

w(e)w(e(v1))
+

w(v2)√
w(e)w(e(v2))

] ;

Therefore, F(e) is bounded iff the edge weights are bounded away from

zero (independently of the specific choice of node weights). For bounded

manifolds this fact follows immediately from the finiteness Property 1. (In

fact, Property 3 gives also an upper bounds for the weights.) For non-

compact manifolds with bounded curvature, it follows from Kanai’s Theorem

that there exists C1, C2 > 0 such that C1 ≤ w(e) ≤ C2, thus the desired

property also holds in this case.

�

Remark 5.11. Again, by applying the results in [50], the proposition above

extends to metric measure spaces with generalized Ricci curvature bounded

from above as well.

However, Property 3 does not suffice to assure a similar connection be-

tween the given upper bound on the curvature of a Riemannian manifold M

and one on the full Forman curvature of a discretization G(N ) of M . Indeed,

in computing the full Forman curvature, one has to take into account not

just the edge weights (lengths), but also the weights of the 2-faces, which

in this case should naturally be taken as the areas of the corresponding PL

(or, rather, piecewise flat approximation). (To this end, we can assume, of

course, that M is isometrically embedded in some RN , for N sufficiently

large.) Recall also that in the sampling process one produces, in fact, sim-

plicial complexes (triangulations), thus 2-face areas are readily computable
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from the edge lengths. Unfortunately, isometry does not imply non-collapse

of area (for some extreme and important examples, see [9]). Therefore, in

order to obtained the desired result, we have to ensure that such collapse

does not occur. This requirement is fulfilled if the given triangulation induce

by the ε-net is thick (or fat); where thickness is defined as follows

Definition 5.12. Let τ ⊂ Rn ; 0 ≤ k ≤ n be a k-dimensional simplex. The

thickness ϕ of τ is defined as being:

(5.4) ϕ = ϕ(τ) = inf
σ6τ

dimσ = j

Volj(σ)

diamj σ
.

The infimum is taken over all the faces of τ , σ 6 τ , and Volj(σ) and diamσ

stand for the Euclidian j-volume and the diameter of σ respectively. (If

dimσ = 0, then Volj(σ) = 1, by convention.) A simplex τ is ϕ0-thick,

for some ϕ0 > 0, if ϕ(τ) ≥ ϕ0. A triangulation (of a submanifold of Rn)

T = {σi}i∈I is ϕ0-thick if all its simplices are ϕ0-thick. A triangulation

T = {σi}i∈I is thick if there exists ϕ0 > 0 such that all its simplices are

ϕ0-thick.

Since any Riemannian manifold, satisfying only mild topological finiteness

conditions (with or without boundary) admits a fat triangulation – see e.g.

[50] and the references therein, it follows that any ε-net can be improved

to render a thick triangulation. Furthermore, during the thickening process

the edge lengths (weights) are modified only slightly, given that one uses to

this end only ε-moves (see [38], [11] for technical details). Given the facts

above and recalling that, by Formula (3.8), the full Forman-Ricci curvature

is expressed by

RicF(e) = ω(e)

∑
e∼f

ω(e)

ω(f)
+
∑
v∼e

ω(v)

ω(e)


−
∑
ê‖e

∣∣∣∣∣∣
∑
ê,e∼f

√
ω(e) · ω(ê)

ω(f)
−

∑
v∼e,v∼ê

ω(v)√
ω(e) · ω(ê)

∣∣∣∣∣∣
 ;

we have in fact proven the following theorem:

Theorem 5.13. Any Riemannian manifold with Ricci curvature bounded

from below admits a discretization with bounded full Forman-Ricci curvature.

Remark 5.14. This result can also be extended to manifolds satisfying a

generalized Ricci curvature bound by applying [50], Proposition 4.7.
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Before concluding this section, let us note that, in the process of simplex

thickening, a (finite) number of subdivisions is required. In consequence,

the resulting triangulation and the discretization associated to it will have

a larger number of vertices, with degrees that do not depend simply on

dimension, diameter and curvature. Therefore, the need for a simplification

of the resulting network might arise in its turn. To this end, a Forman-Ricci

curvature (of either kind) sampling would be applicable. Since the degrees

of the additional vertices are a function depending solely of the dimension

of the subdivided simplex, it is therefore quite probable that, at least when

considering the discrete metric and applying graph Forman-Ricci curvature,

the remaining nodes (and edges) would mostly still be the ones of the initial

triangulation.

6. Conclusion and Outlook

We have introduced a number of curvature measures and derived flows, as

well as developing a family of coarse embedding kernels derived from some

of them or from related operators. Furthermore, we have illustrated the

ideas above on a sample of small and medium size networks, as well as on

test images. However, these can represent only a preamble to an in-depth

examination of these new tools. Therefore, first and foremost, there is the

need for systematic experiments with large scale networks. It should be

noted that this construction of networks, from manifolds to triangulations,

and their subsequent simplification via curvature-based sampling is of high

relevance in Deep Learning [33], [34].

A number of specific further directions of study impose themselves:

• While, as we have discussed in detail, we are driven by the edge and

higher order correlations centered approach, the node based one is

still relevant. Therefore, the exploration of the capabilities of the

(scalar curvature) Yamabe flow is a natural and interesting venue of

research.

• Of particular interest is the exploration of flows in the study of the

long-time evolution of (hyper-)networks [69]. To this end, flows de-

rived from all the types of curvature herein should be examined.
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• Experiments with curvature-driven triangulations of manifolds and

their sampling, especially for such manifolds as arising in Deep Learn-

ing (see references mentioned above) should definitely represent a

future goal.

• One should try other embedding techniques than the one used herein,

for instance the so called local linear embedding [46].

• Besides the kernel embedding method embraced in the present pa-

per, one should explore another, and perhaps better established ap-

proach, that is the one using the eigenvectors and eigenfunctions of

the Laplacian for embedding and sampling, where the classical graph

Laplacian is replaced by the Bochner and rough ones. Furthermore,

given that they exist for each and every dimension up to the maxi-

mal one, they suggest themselves as a potentially powerful method

of studying hypernetworks/complexes at many scales.

• The stronger results connecting Forman curvatures of discretiza-

tions, namely the convergence of the said curvatures to their man-

ifold counterparts, as well as of the associated Laplacians to the

smooth ones, is a goal that definitely should be pursued.
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Appendix 1: Coarse Spaces

We bring below the formal definition of a coarse space and give some basic

examples, which in part are also relevant to our work. To this end we first

need a couple of preliminary definitions:

Definition 6.1. Let X be a set and let E,E1, E2 ⊆ P(X ×X).

(1) E−1 = {(x′, x) | (x, x′) ∈ E} is called the inverse of E.

(2) E1 ◦ E2 = {(x1, x2) | (x1, x) ∈ E1 , (x, x2) ∈ E2} is called the product

of E1 and E2.

Definition 6.2. Let X be a set and let E ⊆ P(X × X), such that the

diagonal ∆(X) ⊂ E and such that E is closed under the formation of subsets,

inverses, products and (finite) unions. E is called a coarse structure on X,
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and (X, E) is called a coarse space. Furthermore, the sets E ∈ E are called

the controlled sets or the entourages for the coarse structure.

Examples 6.3. We bring below a number of important examples.

(1) E = P(X ×X) is called the maximal coarse structure on X.

(2) Let E ⊆ P(X × X) such that it contains only a finite number of

points (p, q) /∈ ∆(X). Then E is a coarse structure on X called the

discrete coarse structure on X.

(3) Let (X, d) be a metric space and let E = {E |E ⊆ P(X ×X)} such

that sup{d(x1, x2) | (x1, x2) ∈ E} is finite. Then E is a coarse struc-

ture on X called the bounded coarse structure on X.

For further properties and characterizations of coarse spaces see [45].

Appendix 2: The General Formulas for the Forman-Laplacian

and Curvature Functions

We bring below the general formulas for the Forman-Laplacian and curva-

ture functions. For more background on CW complexes we refer the reader

to Forman’s paper [24] as well as to [26].

Let M be a (positively) weighted quasiconvex regular CW complex, let

α = αp ∈ M a p-dimensional cell and let w(α) denote its weight. While

general weights are possible, making the combinatorial Ricci curvature ex-

tremely versatile, it is suffices (cf. [24]), Theorem 2.5 and Theorem 3.9) to

restrict oneself only to so called standard weights:

Definition 6.4. The set of weights {wα} is called a standard set of weights

iff there exist w1, w2 > 0 such that given a p-cell αp, the following holds:

w(αp) = w1 · wp2 .

(Note that the combinatorial weights wα ≡ 1 represent a set of standard

weights, with w1 = w2 = 1.)

Using standard weights, we obtain the following formula for the Forman-

Laplacian

2p(α
p
1, α

p
2) =

∑
βp+1>αp

1

βp+1>αp
2

εα1,α2,β

√
ω(αp1)ω(αp2)

ω(βp+1)
+

∑
γp−1<αp

1

γp−1<αp
2

εα1,α2,γ
ω(γp−1)√
ω(αp1)ω(αp2)

,

(6.1)
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where, for instance α < β denotes that α is a face of β, and εα1,α2,β, εα1,α2,γ ∈
{−1,+1} represent the respective incidence numbers of the cells β relative

to αi, and αi relative to γ, i = 1, 2, respectively. (see [26]).

Furthermore, we also obtain the formula for the curvature functions,

namely

F(αp) = ω(αp)
[( ∑

βp+1>αp

ω(αp)

ω(βp+1)
+

∑
γp−1<αp

ω(γp−1)

ω(αp)

)

−
∑

αp
1‖αp,αp

1 6=αp

∣∣∣ ∑
βp+1>αp

1

βp+1>αp

√
ω(αp)ω(αp1)

ω(βp+1)
−

∑
γp−1<αp

1

γp−1<αp

ω(γp−1)√
ω(αp)ω(αp1)

∣∣∣ ] ;

(6.2)

where α < β denotes α being a face of β and α1 ‖ α2 parallel faces α1 and

α2, the notion of parallelism being defined as follows:

Definition 6.5. Let α1 = αp1 and α2 = αp2 be two p-cells. α1 and α2 are

said to be parallel (α1 ‖ α2) iff either: (i) there exists β = βp+1, such that

α1, α2 < β; or (ii) there exists γ = βp−1, such that α1, α2 > γ holds, but not

both simultaneously. (For example, in Fig. 1, e1, e2, e3, e4 are all the edges

parallel to e0.)

Appendix 3: Standard Metrics on Weighted Graphs

We present here briefly the two metric on graphs taking into account both

node and edge weights that we mentioned in the main part of the paper.

• The degree path metric was fist introduced in [16] and further ex-

panded upon in [27]. It is closely associated with the (combinatorial)

Laplacian, as well as with the random walk on a graph, and as such

is widely used in theoretical studies of the Geometry of graphs.

Definition 6.6. Let (X,m,w) be a node and edge weighted graph,

m denoting the node weights, and w the edge weights. Then the

function ρ : X ×X → [0,∞),

ρ(x, y) = inf
π

n∑
i=1

(max{d(xi−1), d(xi)})−1/2 ;
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where the infimum is taken all paths π = x = x0x1 . . . xn = y, and

where d denotes the weighted degree

d(x) =
1

m(x)

∑
y∼x

w(x, y) ,

represents a metric on X.

Since, one the one hand, the larger the degree of a node x, the

faster the random walk leaves it and, on the other hand, by the

definition of ρ, the larger the degree of any of the vertices x, y, the

smaller the distance ρ(x, y) between them, it follows that the faster

the jump along an edge, the shorter the edge is in w.r.t. the metric

ρ. (For more details, such as the analogy with the Riemannian

manifolds case, see [31] and the references contained therein.)

• As its name suggests, the definition of the resistance metric is moti-

vated by electrical networks, and 1/Ω(x, y) represents an abstraction

of the notion of electrical conductance and, as such, measures the

connectivity along the edge e connecting the nodes x and y. More

precisely, we have the following definition:

Definition 6.7. Let G be as above. The resistance metric Ω on G

is defined as

(6.3) Ω(x, y) =
1∑

t∈V f(t)r(t, y)
; ;

where

r =

{
1

w(e) , x ∼ y ;

1 , x 6∼ y

and where f : V → [0, 1] is the unique function such that (a) f(x) =

1, f(y) = 0; and (b)
∑

z∈V (f(t)− f(z))r(t, z) = 0, for any t 6= x, y.

The resistance metric represents the weighted average of all the

paths π of ends x and y, and it is, therefore, best used when the

number of such paths is important.

It is however, essentially a vertex-weights induced metric, except

for the role of the function f which is defined on the set of ver-

tices. The following probabilistic interpretation however allows us

to view the resistance metric as being induce both by vertex and
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edge weights:

Ω(x, y) =
1

d(x)Pr(x→ y)
;

where d denotes here the degree of x and Pr(x→ y) is the probability

of a random walk starting from x to reach y before it returns to

x. (For more details see [15] and the references therein.) If one

considers, as it is commonly done, that the jump probability to any

of the neighbors of a given vertex is equal, than this probability is

viewed as a weight on the said vertex, thus allowing us to consider

Ω as a metric on a node and edge weighted graph.
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Figure 11. The “Windsurfers” network and its evolution

under the full Forman-Ricci flow. In descending order, from

above: The original network, and the network after 1, 3 and

5 iterations, respectively. Note that, at least in this example,

the Haantjes-Ricci flow is decreasing the size of the evolving

network faster than the graph Ricci curvature.
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Figure 12. The “Windsurfers” network and its evolution

under the Haantjes-Ricci flow. In descending order, from

above: The original network, and the network after 1, 3 and

5 iterations, respectively. Note that, at least in this example,

the Haantjes-Ricci flow is decreasing the size of the evolving

network faster than the graph Ricci curvature.
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Figure 13. The evolution of curvature of the “Windsurfers”

network under each of the studied Ricci flows. In descending

order, from above: The Graph Forman-Ricci curvature flow,

Full Forman-Ricci curvature flow and the Haantes-Ricci flow.

Observe the extremely fast convergence towards a constant

under the Graph Forman-Ricci curvature flow.
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Figure 14. Two views of the “Kangaroo” Graph Forman-

Ricci curvature derived, kernel-based, embedding in R3 which

reveal that the network essentially consist from one large

cluster. The the attained minimum for the cost function in

this case is J = 23.841747.
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Figure 15. Two views of the Graph Forman-Ricci curva-

ture derived, kernel-based embedding of the “Les Misérables”

characters network. Here the attained minimum for the cost

function is J = 42.264625. Note that the kernel-based em-

bedding into R3 clearly distinguishes the clusters around each

of the main characters in Hugo’s novel, connected by the re-

lations between them.
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Figure 16. Graph Forman-Ricci (above) vs. �1 (below)

kernel-based embedding of the “C. Elegans” network [12].

Note the far better separation properties of the curvature

based embedding. This ability has as a penalty a higher

minimum of the cost function J , namely 404.342321 for the

curvature-based kernel, as compared to 283.640003 for the

Laplacian-based kernel.
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