
ar
X

iv
:2

10
6.

13
54

3v
3

 [
cs

.S
I]

 2
3

Se
p

20
22

A Variance-aware Multiobjective Louvain-like Method for Community

Detection in Multiplex Networks

Sara Venturini∗, Andrea Cristofari†, Francesco Rinaldi‡, Francesco Tudisco§

Abstract. In this paper, we focus on the community detection problem in multiplex networks, i.e., net-
works with multiple layers having same node sets and no inter-layer connections. In particular, we look
for groups of nodes that can be recognized as communities consistently across the layers. To this end, we
propose a new approach that generalizes the Louvain method by (a) simultaneously updating average and
variance of the modularity scores across the layers, and (b) reformulating the greedy search procedure in
terms of a filter-based multiobjective optimization scheme. Unlike many previous modularity maximiza-
tion strategies, which rely on some form of aggregation of the various layers, our multiobjective approach
aims at maximizing the individual modularities on each layer simultaneously. We report experiments on
synthetic and real-world networks, showing the effectiveness and the robustness of the proposed strategies
both in the informative case, where all layers show the same community structure, and in the noisy case,
where some layers represent only noise.

Key words. community detection, multilayer networks, multiplex networks.

1 Introduction

Networks represented as graphs with nodes and edges have emerged as effective tools for modelling and
analysing complex systems of interacting entities. In fact, graphs arise naturally in many disciplines, such
as social networks, information networks, infrastructure networks, biological networks (see, e.g., [14, 31]).
One of the most relevant issues in the analysis of graphs representing real systems is the identification
of communities, i.e., groups of nodes that are densely connected to each other and loosely connected to
the nodes in the other communities. While many community detection and clustering algorithms have
been developed over the recent years, most of these are designed for standard single-layer graphs. On the
other hand, having one single graph is often an oversimplifying assumption, which can lead to misleading
models and results. Fortunato conducted a survey on this topic [15].
Advances in the study of networked systems have shown that the interconnected world is often composed
of networks that are coupled to one another through different layers, where each layer represents one
of many possible types of interactions [20]. Multi-layer networks arise naturally in diverse applications
such as transportation networks [16], financial-asset markets [1], temporal dynamics [47, 48], semantic
world clustering [42], multivideo face analysis [6], mobile phone networks [19], social balance [7], citation
analysis [46], and many others.

∗Department of Mathematics “Tullio Levi-Civita”, University of Padova, 35121 Padova, Italy
(sara.venturini@math.unipd.it)

†Department of Civil Engineering and Computer Science Engineering, University of Rome “Tor Vergata”, 00133 Rome,
Italy (andrea.cristofari@uniroma2.it)

‡Department of Mathematics “Tullio Levi-Civita”, University of Padova, 35121 Padova, Italy (rinaldi@math.unipd.it)
§School of Mathematics, Gran Sasso Science Institute, Italy, (francesco.tudisco@gssi.it)
A. Cristofari, F. Rinaldi and F. Tudisco contributed equally to this work.

1

http://arxiv.org/abs/2106.13543v3

As for standard (single-layer) models, community detection is one key problem in the analysis of multi-layer
networks and the presence of multiple layers poses several additional challenges. For instance, networks
may have different types of multi-layer structures and communities may or may not be consistent across
the layers.
Here, we focus on multiplex networks, modeled by a sequence of graphs (the layers) with a common set of
nodes and no edges between nodes of different layers. We also assume that each layer is undirected and
simple. Moreover, with the terminology introduced in [26], our aim is to find a set of communities that
is total (i.e., every node belongs to at least one community), node-disjoint (i.e., no node belongs to more
than one cluster on a single layer), and pillar (i.e., each node belongs to the same community across the
layers).
Several community detection algorithms for multiplex networks have been proposed in recent years.
Among the successful approaches, we find methods that suitably reduce the multiplex to a single-layer
graph, methods that are based on adaptations of single-layer consensus and spectral clustering, meth-
ods based on information-theoretic flow diffusion, and methods that infer communities by fitting suitable
planted partition models. We attempt to summarize the related literature in §2 and refer to the survey [26]
for further details.
In this paper, we propose a new strategy that directly approaches the multiobjective optimization problem
of maximizing the modularity score of each individual layer. To this end, we adapt the popular Louvain
heuristic method for single-layer networks [4], a locally greedy modularity-increasing sampling process
over the set of node partitions. A natural extension of this method to the multiplex case, already studied
in the literature, e.g. in [30, 1], is to locally maximize a weighted average MQ of the modularity of the
layers, instead of the modularity of a single layer. One of the advantages of using a linear combination of
the layer modularities is that the increment of MQ can be directly computed using the increment of the
modularity of each layer, whose computation is efficiently handled by the original Louvain technique.
In a similar spirit, in §3 we consider a variant of the Louvain strategy which directly aims at maximizing
the vector-valued function of the modularities of all the layers. To address the resulting multiobjective
optimization problem, we propose a technique to memorize and dynamically update a list of several
solutions, according to a suitably developed Pareto search. The size of the list as well as the final
community assignment are controlled by means of a scalar cost function which takes into account for
the variance of the layer modularities, in addition to their average. The use of either a positive or a
negative variance regularization term allows us to better control the amount of variability of the modularity
scores across the layers and allows us to effectively handle both purely informative layers as well as the
presence of noise. Moreover, while the resulting scalar cost function is a nonlinear combination of the
layer modularities, we show that iteratively computing the modularity of each layer allows us to efficiently
update their variance as well, resulting in an efficient variance-aware multiobjective Louvain-like scheme.
As such, an important feature of the proposed approach is that, unlike many methods presented in the
literature, it does not need to preassign the number of classes at the beginning. This is particularly useful
as we usually do not have information about the community structure of the multiplex and one must
make some a-priori (possibly unjustified) assumption about the number of clusters otherwise.
To verify the performance and robustness of our technique, in our experimental set-up we study multiplex
graphs in two settings: in the first one all layers are informative, i.e., all layers contain information about
the community structure, whereas in the second setting at least one of the layers is a noisy layer, which
accounts for corrupted measurements. In §4.1 and §4.2, we compare our method with nine baselines on
synthetic multilayer networks generated via the Stochastic Block Model (SBM) [29] and the Lancichinetti-
Fortunato-Radicchi (LFR) Benchmark [23], properly extended to the multiplex setting. Then, in §4.3, we
compare the performance on several real-world multiplex graphs. Our results show that directly taking
into account the variance across the layers may lead to much better performance, especially in the presence
of noisy data. In particular, the proposed filter-based algorithm often leads to the best or second-best

2

classification results, thus confirming the added value of the multiobjective approach.

2 Related work

In the following, we attempt to review and summarize some recent approaches to community detection for
multi-layers. As in [26], we focus on algorithms explicitly designed to discover communities in multiplex
networks.
Flattening methods reduce the multiplex network into a single-layer unweighted network and then apply a
traditional community detection algorithm. The simplest algorithm of this type constructs a single-layer
graph where two nodes are adjacent if they are neighbours in at least one layer [2]. An alternative is to
create a weighted single-layer graph, where weights reflect some structural properties of the multiplex [2,
18].
Layer flattening coincides with summing the adjacency matrices of each layer into an aggregated adjacency
matrix. More powerful community detection algorithms can be obtained, i.e., by merging modularity
matrices or specific node embeddings. A study of these types of extensions is done in [44], with a novel
method that integrates the layer-based node structural features.
Another popular approach is to perform aggregation at the cost function level, by extending single-layer
community detection cost functions to the multilayer setting. The Generalized Louvain (GL) method
proposed by Mucha et al. [30] is used to maximize a multilayer version of Newman’s modularity [32].
Bazzi et al. [1] propose a related approach with a Louvain-based modularity-maximization method for
community detection in multilayer temporal networks. Both these approaches use a cross-layer modularity
function that is essentially based on a weighted arithmetic mean of the modularities of the single layers.
As we will discuss in the next section, our proposed approach defines a new variance-aware Louvain-
like method, which leverages this idea as starting point. A related approach is proposed by Pramanik
et al. [39], where a weighted linear combination of the modularities of each layer is used to define a
multilayer modularity index. Their approach focuses on the case of two-layer networks with both inter-
and intra-layer connections and aims at detecting inter- and intra-layer communities simultaneously.
A variety of alternative strategies has been developed in relatively recent years. Pizzuti and Socievole
[38] develop a genetic algorithm for community detection in multilayer networks that makes use of a
multiobjective optimization formulation. In particular, the proposed algorithmic scheme exploits the
concept of Pareto dominance when creating new populations at a given iteration, and returns a family of
solutions that represent different trade-offs between the objectives at the end of the optimization process
(the best solution is finally chosen using some tailored strategies).
De Domenico et al. [10] extend the famous information-theoretic approach of [41], by proposing a method
that generalizes the so-called map equation for single graphs and identifies communities as groups of nodes
that capture flow dynamics within and across layers for a long time.
De Bacco et al. [9] proposed a method based on likelihood maximization. They define a mixed-membership
multilayer stochastic block model and propose a method that infers the communities by fitting this model
to a given multilayer dataset via log-likelihood maximization.
Wilson et al. [49] propose a technique for multilayer data that aims at identifying densely connected sets of
vertex-layer pairs via a significance-based score that quantifies the connectivity of such sets as compared
to a suitable fixed-degree random graph model.
Methods inspired by data clustering techniques are another popular line of work. Zeng et al. [52] proposed
a pattern mining algorithm for finding closed quasi-cliques that appear on multiple layers with a frequency
above a given threshold. A cross-graph quasi-clique is defined as a set of vertices belonging to a maximal
quasi-clique that appears on all layers [36].
Tang et al. [46] and Dong et al. [12] proposed graph clustering algorithms for multilayer graphs based

3

on matrix factorization. The key point is to extract common factors from multiple graphs to be used
for various clustering methods. Tang et al. [46] factorize adjacency matrices while Dong et al. [12]
factorize graph Laplacian matrices. Liu et al. [25] proposed a nonnegative matrix factorization based
multiview clustering algorithm, where the factors representing clustering structures from multiple views
are regularized toward a common consensus.
Another popular line of research tries to extend spectral clustering to multilayer graphs. In general,
these algorithms aim to define a graph operator that contains all the information of the multilayer graph
such that the eigenvectors corresponding to the smallest eigenvalues are informative about the clustering
structure. These methods usually rely on some sort of “mean operator”, e.g., the Laplacian of the average
adjacency matrix or the average Laplacian matrix [35]. Further examples are the work of Zhou and Burges
[56], which developed a multiview spectral clustering via generalizing the usual single view normalized cut
to the multi-view case and tried to find a cut which is close to optimal on each layer, and the algorithm
designed by Chen and Hero [8], which performs convex aggregation of layers based on signal-plus-noise
models.
Alternative approaches are proposed for instance by Dong et al. [11], where spectral clustering is extended
by merging the informative Laplacian eigenspaces of different layers via a subspace optimization analysis
on Grassmann manifolds. Zhan et al. [53], [54], [55] developed several multiview graph learning approaches
which merge multiple graphs into a unified graph with the desired number of connected components. Other
multiview clustering approaches exploit the idea of maximizing clustering agreement. Zong et al. [57]
introduced Weighted Multi-View Spectral Clustering, where the largest canonical angle is used to measure
the difference between spectral clustering results of different views. Nie et al. [33] proposed a self-weighted
scheme for fusing multiple graphs with the importance of each view considered, called Procrustes Analysis
technique.
A common limitation of the proposed multiview clustering methods is that they do not consider to deal
with possibly noisy or corrupted data, because they focus on the consistency of multiple layers and do
not consider the inconsistency. To address this issue, Xia et al. [51] proposed Robust Multi-view Spectral
Clustering, a Markov chain method that aims to learn an intrinsic transition matrix from multiple views
by restricting the transition matrix to be low-rank. This aspect has also been considered by Mercado et
al. [29], [28], where they propose a Laplacian operator obtained by merging the Laplacians from different
layers via a one-parameter family of nonlinear matrix power means. Recently, Liang at al. [24] proposed a
multiview graph learning framework, which simultaneously models multi-view consistency and multiview
inconsistency in a unified objective function.
Another line of work adopts Bayesian inference [50], in which certain hypotheses about connections
between nodes are made to find the best fit of a model to the graph through the optimization of a suitable
likelihood [37].
Bickel and Scheffer [3] extended the semi-supervised co-training approach [5] to multi-view clustering.
The basic idea of co-training is to iterate over all views and optimize the objective function in the next
view using the result obtained from the latter one. A co-training approach is proposed by Kumar and
Daumé [21], where the algorithm aims to find a consistent clustering that agrees across the views under
the main assumption that all layers can be independently used for clustering. Under the same assumption,
Kumar et al. [22] proposed Co-regularized Spectral Clustering, where they concentrated on this approach
under the notion of co-regularization, maximizing the agreement between different views.

3 Multiobjective Louvain-like method for multiplex networks

In this section, we present our method for community detection in multiplex networks which, based on
the popular Louvain heuristic method for single-layer networks [4], aims at maximizing the modularity

4

of all layers simultaneously. Unlike many alternative strategies, where either the multiplex or the cost
function are aggregated into a single-layer representative of the original multiple layers, our approach
directly takes into account the multiobjective nature of the problem under analysis, i.e., the existence of
more than one objective to optimize. To this end, we maintain and update a list of suitable community
assignments during the algorithm, each of them being preferable over the others with respect to a specific
criterion.
More formally, consider a multiplex with k layers G1, . . . , Gk, where Gs = (V,Es) is the graph forming
the s-th layer. Thus, consider the vector of layer modularities Q = (Q1, . . . , Qk). Here and everywhere in
the text, we shall always assume vectors are column vectors, unless otherwise specified. The modularity
score of the s-th layer is defined as

Qs =
1

2ms

∑

ij

(

A
(s)
ij −

d
(s)
i d

(s)
j

2ms

)

δ(Ci, Cj) , (1)

where the sum runs over all pairs of vertices, A(s) is the adjacency matrix of Gs, ms the total number

of edges in Es (or the sum of all their weights, in the case of weighted graphs), d
(s)
i is the degree (or

weighted degree) of the node i in Gs, Ci is the community node i belongs to, and the function δ yields
one if vertices i and j are in the same community (i.e., Ci = Cj) and zero otherwise.
We aim at maximizing all entries of Q simultaneously, i.e., we consider the following multiobjective
optimization problem:

max
{partitions of V }

(Q1, . . . , Qk) (2)

In multiobjective optimization, there is not a unique way to define optimality, since there is no a-priori
total order for Rk and each partial order leads to different strategies. Here, we consider the well-established
definition of optimality according to Pareto [34]:

Definition 3.1. Given two vectors z1, z2 ∈ R
k, we write z1 �P z2 if z1 dominates z2 according to Pareto,

that is:

z1i ≥ z2i for each index i = 1, .., k and

z1j > z2j for at least one index j = 1, .., k .

A vector z∗ ∈ R
k is Pareto optimal if there is no other vector z ∈ R

k such that z �P z∗. Moreover, the
Pareto front is the set of all Pareto optimal points.

To address (2), we proceed by adapting the standard Louvain method with the aim of approaching a
suitable candidate solution on the Pareto front of the modularity vector. To this end, we start with an
initial partition where each node represents a community, to which corresponds the initial modularity
vector Q. Then, we proceed with a two-phase scheme which generates a list L of community assignments
and corresponding modularity vectors such that no one is Pareto-dominated by the others. The final
approximate solution is then chosen in terms of a scalar function F used to asses the “quality” of a
partition across the multiple layers. The choice of F is discussed in §3.1. To start with, the list L consists
of the initial vector Q = (Qs)s, the initial community partitioning and the corresponding value of F .
In the first phase, the algorithm picks one node at a time, following a given initial node ordering. For each
node i, for every layer s, and for every neighbor j of node i (among the js that have not been considered

yet), we compute the change of modularity ∆Q
(i→j)
s as the sum of the change in modularity on layer

s obtained by removing i from its community Ci and the variation of modularity on layer s obtained
by including i in the community Cj . For each such change of community assignment we evaluate the

5

new modularity vector Q(i→j) = (Q1 +∆Q
(i→j)
1 , . . . , Qk +∆Q

(i→j)
k) by efficiently updating the previous

modularity scores as in the original Louvain scheme. If Q(i→j) is not Pareto-dominated by any of the
modularity vectors in L, Q(i→j) is a good candidate to be added to L. However, as in the original Louvain
method, we want to consider only new modularity vectors that yield a “strict improvement”. To this

end, we use the modularity updates ∆Q
(i→j)
s to efficiently evaluate the variation ∆F (i→j) of the scalar

function F . If additionally the new modularity vector Q(i→j) corresponds to a positive increment ∆F (i→j)

of the quality function F , we add Q(i→j), the new value of the quality function F + ∆F (i→j) and the
corresponding partition to L. Thus, we remove from L all the partitions whose modularity vectors are
dominated by the newly inserted one. Moreover, in order to avoid the list computed this way to grow
exponentially in size, we add a final control on the length of L by filtering out the elements of L that have
small value of F , maintaining only the h partitions that achieve the largest value.
We proceed this way until the list stops changing and contains only vectors that do not dominate each
other. At this point, the method selects from L the best partition with respect to F and uses this as the
new starting point. We then move to the second phase, which consists of an aggregation step where the
communities in the selected partition are merged into single vertices, forming a smaller graph. The whole
procedure is then repeated iteratively, until no further improvement in the Pareto sense is possible, in the
same spirit of the original Louvain method for single-layer graphs. The overall scheme is summarized in
Algorithm 1.
Clearly, the choice of the function F may significantly affect the performance of the proposed strategy,
both in terms of the final community assignment and in terms of computational time, as evaluating F
may be an expensive operation. We argue below that a reasonable choice of F takes into account both
average and variance of the layer modularities, and we show how these can be evaluated via an inexpensive
iterative update.

3.1 Variance-aware cross-layer modularity function

One possibility to quantify the quality of a partition into communities for a multiplex is to measure the
average of the corresponding modularity functions across all the layers. This corresponds to choosing
F = MQ, with

MQ =
1

k

k
∑

s=1

Qs . (3)

The idea of considering a linear (possibly weighted) combination of the modularity functions of single
layers is relatively natural and has been considered, for instance, in [1, 30, 39]. A key advantage of this
choice is that the gain ∆F (i→j), measuring how the chosen function F changes when node i is moved
from Ci to Cj during phase one of the algorithm, can be straightforwardly computed due to the linearity
of F with respect to Qs:

∆M
(i→j)
Q =

1

k

k
∑

s=1

∆Q(i→j)
s (4)

This observation is at the basis of the GL method, proposed in [30], see also [26, 1].
While the average yields a reasonable overview of the graph community structure across the layers, in
many situations this may lead to an oversimplification [29, 28]. For instance, in the presence of noisy
layers, linear averages over the multiple layers perform poorly [29]. To overcome this issue, we consider
two functions that embed the sampled variance of the modularity of the layers:

F− = (1− γ)MQ − γVQ and F+ = (1− γ)MQ + γVQ (5)

6

Algorithm 1 Louvain Multiobjective Method

Input G multiplex graph, F scalar quality function
Output final partition

L initialized with node-based partition, the corresponding modularity vector Q and the value of F
Set terminate = false
repeat

Set updateL = true
repeat

for all node i of G do

for all partition C in list L do

place i in every neighboring community which yields a positive increment of F . If the corre-
sponding modularity vector Q is not Pareto-dominated by any of the modularity vectors in
L, insert in L the vector Q, the corresponding partition and the F value. Delete from L all
terms corresponding to modularity vectors that are dominated by Q.

end for

end for

If L is longer than h, cut it to length h using F
if L does not change then

updateL = false
end if

until (updateL == false)
Consider the partition of the list L which maximizes the function F gain
if L has changed then

G = reduced graph where each community of the selected partition is a node
else

Set terminate = true
end if

until (terminate == true)

where γ ∈ (0, 1) is a parameter and VQ is the sampled variance of the modularity of the layers, which we
compute as

VQ =
1

k − 1

k
∑

s=1

(Qs −MQ)
2 . (6)

While F± is now quadratic in Qs, we observe below that, as for the linear choice F = MQ, the increment

∆F
(i→j)
± of both F− and F+ can be computed in an efficient way during the algorithm. In fact, a direct

computation shows that the following formula holds:

∆F
(i→j)
± = (1− γ)∆M

(i→j)
Q ± γ R

(i→j)
Q ,

where R
(i→j)
Q is the coefficient

R
(i→j)
Q = V

(i→j)
∆Q +

2

k − 1
(Q−MQ1)

⊤(∆Q(i→j) −∆M
(i→j)
Q 1) ,

1 = (1, . . . , 1) is the vector of all ones, Q = (Q1, . . . , Qk) is the vector of the layer modularities, ∆Q(i→j)

is the column vector whose s-th component is the gain ∆Q
(i→j)
s , and V

(i→j)
∆Q is the sampled variance of

7

∆Q
(i→j)
s , which we compute as follows:

V
(i→j)
∆Q =

1

k − 1

k
∑

s=1

(∆Q(i→j)
s −∆M

(i→j)
Q)2 . (7)

These formulas show that, as for MQ, iteratively updating ∆Q
(i→j)
s allows us to iteratively update the

nonlinear quality functions F± during Algorithm 1 in a computationally efficient way, using the increment

∆F
(i→j)
± . This allows us to efficiently compute the quality of the new community assignments keeping

simultaneously track of both mean and variance of the layer modularities.

3.2 Positive vs negative variance regularization

The quality functions F+ and F− allow us to consider different types of variability of modularity across
the layers. In particular, in the setting where all the layers have consistent community structure, we use
F−. The rationale behind this choice is that we want to obtain a trade-off between large modularity and
sufficiently small variability in the layers (the larger γ, the smaller the variance in the final solution),
which is what an ideal solution would look like if the community structure of all layers is in agreement.
On the other hand, in the presence of some noisy layers, i.e., layers with no community structure, F+ is a
better choice. In fact, in this case we want to favor solutions which have at the same time a good level of
variability across the layers and a large enough modularity (the larger γ, the greater the level of allowed
variability).
Overall, we study three variants of the proposed Louvain Multiobjective Method in Algorithm 1, which
correspond to the following three different choices of the function F : the modularity average MQ, defined
in (3), and the functions F− and F+ defined in (5). We refer to the corresponding algorithms respectively
as Louvain Multiobjective Average (MA), Louvain Multiobjective Variance Minus (MVM) and Louvain
Multiobjective Variance Plus (MVP).
All these methods require to choose the length of the list L, that we called h. The longer such list is, the
better is the way we approach the Pareto front and explore the space related to the layer modularities.
At the same time, this comes at a higher computational cost, which grows exponentially with h. Our
experiments show that already h = 2, 3 leads to remarkable performance in terms of accuracy and NMI,
as compared to h = 1. We emphasize that, when we limit the length to h = 1, the method boils down to
a form of aggregation strategy where the multiobjective approach is completely ignored and, instead, we
aim at maximizing the chosen scalar function F by means of a Louvain-like greedy strategy. Thus, for
example, MA with h = 1 essentially corresponds to the GL method [30]. From this point of view, the
methods MVP and MVM for h = 1 are particularly interesting as they yield a variance-aware extension of
the popular GL approach, whereas MA for h > 1 provides a form of multiobjective GL. Moreover, when
h = 1, the whole procedure of the method significantly simplifies. For these reasons, we use a separate
notation for the case h = 1, referring to the method that uses the function F− as Louvain Expansion
Variance Minus (EVM) and to the method that uses the function F+ as Louvain Expansion Variance
Plus (EVP).

4 Experiments

We implemented the methods described in §3 using Matlab. Our codes are all available at the GitHub page:
https://github.com/saraventurini/A-Variance-aware-Multiobjective-Louvain-like-Method-for-

Community-Detection-in-Multiplex-Networks.
We considered both synthetic and real-world networks, performing extensive experiments to compare the
proposed methods against nine multilayer community detection baselines (see §2 for details), namely:

8

• GL: Generalized Louvain [1, 30, 39];

• CoReg: Co-Regularized spectral clustering, with parameter λ = 0.01 [22];

• AWP: Multi-view clustering via Adaptively Weighted Procrustes [33];

• MCGC: Multi-view Consensus Graph Clustering, with parameter β = 0.6 [55];

• PM: Power mean Laplacian multilayer clustering, with parameter p = −10 [29];

• MT: Multitensor expectation maximization [9];

• SCML: Subspace Analysis on Grassmann Manifolds, with parameter α = 0.5 [11];

• PMM: Principal Modularity Maximization, with parameters l = 10 and maxKmeans = 5 [45, 44];

• IM: Information-theoretic generalized map equation [10].

Notably, all these algorithms, except for GL and IM, require the user to specify the number of communities
we look for a-priori. This is a potential drawback in practice, as we usually do not have information about
the community structure of the graph and would have to make some (possibly unjustified) assumptions
about the number of clusters.
Methods’ performance is evaluated using two metrics: the accuracy, measured as the percentage of nodes
assigned to the correct community [55], and the Normalized Mutual Information (NMI) [43].
For all experiments, we considered two settings: the informative case, i.e., all the layers carry useful
information about the underlying clusters, and the noisy case, where some of the layers are just randomly
generated noise. As discussed in §3.1, a negative variance contribution as in F− is suitable for the
informative setting, while a positive variance term as in F+ may help in the presence of noisy layers.
Thus, we test EVM and MVM for the informative case, while we use EVP and MVP in the noisy setting.
Moreover, in order to confirm the advantages of the variance term in F±, we further report the performance
of MA, which only accounts for the sum of modularities across the layers (and thus provides a form of
multiobjective version of GL). For the Louvain Multiobjective model, we consider the two list lengths
h = 2, 3 which we indicate by adding a number to the method’s acronym (e.g., MA2 stands for the
Louvain Multiobjective Average method with list length h = 2).
In order to evaluate the performance of the method as the variance regularizing parameter changes, we
let γ ∈ {0.1, 0.3, 0.5, 0.7, 0.9} in the definition of F− and F+. In Figures 1-4 and Tables 2-4, we report the
scores obtained with the parameter achieving the highest NMI on each dataset. However, a comparable
performance is achieved for a large number of parameters. In particular, analyzing the performance of
the methods as the parameter γ varies, provides an experimental guiding principle on the choice of γ,
suggesting that a balanced contribution γ ≈ 0.5 is most appropriate in the informative setting, while a
larger γ ≈ 0.9 seems to perform best in the presence of noise.
Being locally-greedy algorithms, the initial ordering of the nodes in phase one of all our methods may affect
the final performance, just like the standard Louvain method. Based on our computational experience,
it seems that choosing a specific ordering has a minor effect on the cost function itself, while it may
have an impact on the computational time. Choosing the appropriate initial ordering is a nontrivial
question and a well-known issue of this type of greedy strategies. In our experiments, we choose the
initial ordering depending on the specific network setting we deal with. More specifically, we order the
nodes according to the community size in the informative setting, while we list the nodes in random order
in the noisy setting. This is mainly due to computational reasons: sorting the nodes according to the size
of the corresponding community is more expensive than assigning a random order. The sorting cost is
reasonable in the experiments for the informative case, while it becomes prohibitive for the noisy case.

9

4.1 Synthetic Networks via SBM

We consider here networks generated via the (multi-layer) Stochastic Block Model (SBM), a generative
model for graphs with planted communities generated through the parameters p and q. These parameters
represent the edge probabilities: given nodes i and j, the probability of observing an edge between them
is p (resp. q), if i and j belong to the same (resp. different) cluster.
We set p > q in order to generate synthetic informative layers, while we simply let p = q for the noisy
ones. More precisely, we created networks with 4 communities of 125 nodes each and with k = 2, 3 layers,
by fixing p = 0.1 and varying the ratio p/q in the generation of the informative layers. In the noisy
layers, we fixed p = q = 0.1. For each value of the pair (p, q) we sample 10 random instances and we
report average scores. Results are shown in Figures 1 and 2, where we consider the following four settings:
1(a)(b) two informative layers; 1(c)(d) three informative layers; 2(a)(b) two informative layers and one
noisy layer; 2(c)(d) two informative layers and two noise ones. In general, our proposed approaches
show good performance in almost all parameter settings, as compared to the baselines, and overall the
variance-based multiobjective approaches (MVM and MVP) perform best, reaching very high accuracy
and NMI even in the presence of two noisy layers (Fig. 2(b)). It is also interesting to notice that, while
the community detection problem becomes easier when the ratio p/q grows, our proposed approaches
still show performance advantages in that setting. In order to verify how the difference in the size of
the communities can influence the performances, we tested the methods on networks with communities
of different sizes. In particular, we generated networks by the SBM with 3 communities of 100, 150 and
200 nodes, respectively. We keep the same values for p and p/q, and we studied the same cases. Results
are shown in Figures 3 and 4: 3(a)(b) two informative layers, 3(c)(d) three informative layers, 4(a)(b)
two informative layers and one noisy layer, 4(c)(d) two informative layers and two noise ones. We do not
report the results of IM, because it achieves very low results with respect to the others, mostly including
all the nodes in just one community. In general, we see that the performances of the methods are not
really affected by the dimension of the communities.

4.2 Synthetic Networks via LFR

Our second test setting is on synthetic networks generated via the Lancichinetti-Fortunato-Radicchi (LFR)
benchmark [23], which allows us to model networks with more heterogeneous node degrees and community
sizes than the SBM. We extended this benchmark to the multi-layer case, generating an independent
network for each layer, using the same parameters. In particular, following [10], we considered graphs
with 128 nodes and 4 communities, each with 32 nodes with an average degree of 16 and maximum degree
32. We let the fraction of inter-community links µ vary. For the noisy layers, we forced the network
to have just one community and we fixed µ = 0, as suggested by the authors. As for the SBM, in our
experiments we consider different combinations of informative and noisy layers. Results are shown in
Figures 5 and 6, where the different pairs of panels correspond to accuracy and NMI for the settings:
5(a)(b) two informative layers; 5(c)(d) three informative layers; 6(a)(b) two informative layers and one
noisy layer; 6(c)(d) two informative layers and two noise ones. We can observe that the proposed methods
give high values of both accuracy and NMI overall and are very competitive with respect to the baseline
approaches. It is important to highlight that when µ = 0.6, each node has more neighbors in other
communities than in its own community, thus communities are no longer well-defined. This is the reason
why all the methods struggle to find a good solution in that case.

10

32.82.52.32

0.6

0.8

1

0.7

0.9

p/q

A
cc

(a)

32.82.52.32

0.4

0.6

0.8

1

0.3

0.5

0.7

0.9

p/q
N
M
I

(b)

(a)

32.82.52.32

0.6

0.8

1

0.7

0.9

p/q

A
cc

(c)

EVM MA2 MA3 MVM2 MVM3
GL CoReg AWP MCGC PM MT SCML PMM

32.82.52.32

0.4

0.6

0.8

1

0.3

0.5

0.7

0.9

p/q

N
M
I

(d)

(b)

Figure 1: Average values of accuracy and NMI over 10 random networks sampled from SBM with equally
distributed informative layers (2 layers (a)(b) and 3 layers (c)(d)) with four clusters of equal size, for
p = 0.1 and p/q ∈ {2, 2.3, 2.5, 2.8, 3}.

11

3.53.332.82.52.32

0.4

0.6

0.8

1

0.3

0.5

0.7

0.9

p/q

A
cc

(a)

3.53.332.82.52.32

0.5

1

0.1
0.2
0.3
0.4

0.6
0.7
0.8
0.9

p/q
N
M
I

(b)

(a)

3.53.332.82.52.32

0.4

0.6

0.8

1

0.3

0.5

0.7

0.9

p/q

A
cc

(c)

EVP MA2 MA3 MVP2 MVP3
GL CoReg AWP MCGC PM MT SCML PMM

3.53.332.82.52.32

0.5

1

0.1
0.2
0.3
0.4

0.6
0.7
0.8
0.9

p/q

N
M
I

(d)

(b)

Figure 2: Average values of accuracy and NMI over 10 random networks sampled from SBM with both
informative and noisy layers (two informative and one noisy in (a)(b); two informative and two noisy
in (c)(d)). The informative layers are equally distributed SBM graphs with four clusters of equal size,
p = 0.1 and p/q ∈ {2, 2.3, 2.5, 2.8, 3, 3.3, 3.5}. The noisy layers are SBM graphs with p = q = 0.1.

12

32.82.52.32

0.6

0.8

1

0.7

0.9

p/q

A
cc

(a)

32.82.52.32

0.4

0.6

0.8

1

0.3

0.5

0.7

0.9

p/q
N
M
I

(b)

(a)

32.82.52.32

0.6

0.8

1

0.7

0.9

p/q

A
cc

(c)

EVM MA2 MA3 MVM2 MVM3
GL CoReg AWP MCGC PM MT SCML PMM

32.82.52.32

0.4

0.6

0.8

1

0.3

0.5

0.7

0.9

p/q

N
M
I

(d)

(b)

Figure 3: Average values of accuracy and NMI over 10 random networks sampled from SBM with equally
distributed informative layers (2 layers (a)(b) and 3 layers (c)(d)) with three clusters of 100, 150 and 200
nodes, respectively, for p = 0.1 and p/q ∈ {2, 2.3, 2.5, 2.8, 3}.

13

3.53.332.82.52.32

0.4

0.6

0.8

1

0.5

0.7

0.9

p/q

A
cc

(a)

3.53.332.82.52.32

0.2

0.4

0.6

0.8

1

0.3

0.5

0.7

0.9

p/q
N
M
I

(b)

(a)

3.53.332.82.52.32

0.4

0.6

0.8

1

0.4

0.5

0.7

0.9

p/q

A
cc

(c)

EVP MA2 MA3 MVP2 MVP3
GL CoReg AWP MCGC PM MT SCML PMM

3.53.332.82.52.32

0.2

0.4

0.6

0.8

1

0.3

0.5

0.7

0.9

p/q

N
M
I

(d)

(b)

Figure 4: Average values of accuracy and NMI over 10 random networks sampled from SBM with both
informative and noisy layers (two informative and one noisy in (a)(b); two informative and two noisy
in (c)(d)). The informative layers are equally distributed SBM graphs with three clusters of 100, 150
and 200 nodes, respectively, for p = 0.1 and p/q ∈ {2, 2.3, 2.5, 2.8, 3, 3.3, 3.5}. The noisy layers are SBM
graphs with p = q = 0.1.

14

0.1 0.2 0.3 0.4 0.5 0.6

0.4

0.6

0.8

1

0.3

0.5

0.7

0.9

µ

A
cc

(a)

0.1 0.2 0.3 0.4 0.5 0.6

0

0.5

1

0.1
0.2
0.3
0.4

0.6
0.7
0.8
0.9

µ
N
M
I

(b)

(a)

0.1 0.2 0.3 0.4 0.5 0.6

0.4

0.6

0.8

1

0.3

0.5

0.7

0.9

µ

A
cc

(c)

EVM MA2 MA3 MVM2 MVM3
GL CoReg AWP MCGC PM MT SCML PMM

0.1 0.2 0.3 0.4 0.5 0.6

0

0.5

1

0.1
0.2
0.3
0.4

0.6
0.7
0.8
0.9

µ

N
M
I

(d)

(b)

Figure 5: Average values of accuracy and NMI over 10 random networks sampled from LFR with
equally distributed informative layers (2 layers (a)(b) and 3 layers (c)(d)), with four clusters and
µ ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6}.

15

0.1 0.2 0.3 0.4 0.5 0.6

0.4

0.6

0.8

1

0.3

0.5

0.7

0.9

µ

A
cc

(a)

0.1 0.2 0.3 0.4 0.5 0.6

0

0.5

1

0.1
0.2
0.3
0.4

0.6
0.7
0.8
0.9

µ
N
M
I

(b)

(a)

0.1 0.2 0.3 0.4 0.5 0.6

0.4

0.6

0.8

1

0.3

0.5

0.7

0.9

µ

A
cc

(c)

EVP MA2 MA3 MVP2 MVP3
GL CoReg AWP MCGC PM MT SCML PMM

0.1 0.2 0.3 0.4 0.5 0.6

0

0.5

1

0.1
0.2
0.3
0.4

0.6
0.7
0.8
0.9

µ

N
M
I

(d)

(b)

Figure 6: Average values of accuracy and NMI over 10 random networks sampled from LFR with
both informative and noisy layers (two informative and one noisy in (a)(b); two informative and two
noisy in (c)(d)). The informative layers are equally distributed LFR graphs with four clusters and
µ ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6}. The noisy layers are LFR graphs with one community and µ = 0.

16

Table 1: Basic statistics for the real-world datasets. For each dataset it shows the number of nodes N ,
the number of layers k, the number of communities c, the size of each community and, for each layer, the
number of edges |E|, the edge density δ and the average and standard deviation of the nodes’ degrees,
〈deg〉 and σ, respectively.

3sources BBCSport cora UCI Wikipedia

N 169 544 2708 2000 693

k 3 2 2 6 2

c 6 5 7 10 10

|Ci|
56, 21, 11,

18, 51, 12

62, 104, 193,

124, 61

298, 418, 818, 426,

217, 180, 351
200 each

34, 88, 96, 85, 65,

58, 51, 41, 71, 104

|E| δ 〈deg〉 σ |E| δ 〈deg〉 σ |E| δ 〈deg〉 σ |E| δ 〈deg〉 σ |E| δ 〈deg〉 σ

L1 1168 0.04 12.82 3.37 4075 0.01 13.98 5.22 5278 7e-4 3.90 5.23 14447 3e-3 13.45 3.54 5606 0.01 15.18 5.37

L2 1223 0.04 13.47 4.55 4127 0.01 14.17 6.42 21273 3e-3 14.71 9.52 14600 3e-3 13.60 3.7 5385 0.01 28.83 5.37

L3 1272 0.04 14.05 5.13 - - - - - - - - 14498 3e-3 13.50 3.48 - - - -

L4 - - - - - - - - - - - - 12729 3e-3 11.73 1.67 - - - -

L5 - - - - - - - - - - - - 14561 3e-3 13.56 3.73 - - - -

L6 - - - - - - - - - - - - 14421 3e-3 13.42 3.43 - - - -

4.3 Real World Networks

We consider five real-world datasets frequently used for evaluation in multilayer graph clustering, [29]:

• 3sources is a text dataset of articles from three online news sources (BBC, Reuters, and The
Guardian), one for each layer, which have been manually assigned to one of six topical labels:
business, entertainment, health, politics, sport and technology [17, 25].

• BBCSport is a news dataset of sports articles with five annotated topic labels. The two layers are
created splitting each document into segments and assigning them randomly to layers [17].

• Cora is a citation dataset of research papers labeled with seven classes. The first layer is a citation
network, whereas the second one is built on documents features [27].

• UCI is a dataset of features of handwritten digits (0-9). These digits are represented in terms of six
different feature sets, forming the layers: Fourier coefficients of the character shapes, profile correla-
tions, Karhunen-Love coefficients, pixel averages, Zernike moments and morphological features [13,
25].

• Wikipedia is a dataset of Wikipedia articles classified in ten categories: art & architecture, biol-
ogy, geography, history, literature & theatre, media, music, royalty & nobility, sport & recreation,
Warfare. These categories are assigned to both the text and image components of each article,
corresponding to the two layers [40].

All the layers built from feature sets are formed by means of a symmetrized k-nearest neighbor graph
with k = 10, based on the Pearson linear correlation between nodes, i.e., the higher the correlation the
smaller the nodes’ distance. Thus, if Nk(u) denotes the set of k nodes that have highest correlation with
node u, to each node u we connect all nodes in the set

Nk(u) ∪ {v : u ∈ Nk(v)}.

The main properties of the various multilayer networks are reported in Table 1.

17

Given the ground truth community structure of the graphs, we analyzed both the informative and the
noisy case. For the noisy case, we study two settings. In the first one, we added a noisy layer to the
informative layers, whereas in the second setting we considered networks with 2 layers, where the first
one is the graph obtained aggregating all the layers and the other one is just noise. The noisy layers
are generated via uniform (Erdős–Rényi) random graphs with edge probability p ∈ {0.01, 0.03, 0.05}. For
each value of p, and each dataset, we generated 10 random instances and for each instance, we run our
methods 10 times with different random initial community orderings.
In Tables 2–4 we report the average accuracy and NMI scores over the samples and the random initial-
izations. The best and second best values are highlighted with a gray box, with the best values having a
bold font. We further consider the average performance ratio score values ρAcc and ρNMI, quantified as
follows: for a given measure Ma,d (where Ma,d is either accuracy or NMI obtained by algorithm a over the
dataset d), the performance ratio is ra,d = Ma,d/max{Ma,d over all a}. The average performance ratios
of each algorithm ρAcc and ρNMI (for accuracy and NMI, respectively) are then obtained averaging ra,d
over all the datasets d. For any algorithm, the closer the average performance ratio to 1, the better the
overall performance.
We can see that in many cases the proposed methods overcome the baselines. In particular, the methods
that consider the variance in addition to the average of the modularity across the layers usually work
better, with the multiobjective approaches MVM and MVP achieving the best results in almost all cases.
This is in agreement with the more sophisticated Pareto-based strategy and is consistent with what is
observed in the experiments with synthetic data. Moreover, the last two tables highlight the robustness of
the proposed methods with respect to noise. In fact, in the presence of noisy layers, the proposed methods
— in particular the multiobjective ones — achieve very high performance ratios as well as overall high
values of accuracy and NMI.
Finally, we aim to analyze the behavior of the methods subject to the addition of a larger number of
noisy layers. To this end, we compare the performance of the different methods on the 3sources dataset
adding to it up to 5 noisy layers. In Table 5, we report the average accuracy and NMI scores over the
samples and the random initializations for the noisy cases. For the sake of comparison, we also report the
values for the informative case, studied in Table 2, which correspond to the addition of 0 noisy layers. We
can see that, in all cases, the proposed methods overcome the baselines. In particular, the multiobjective
approaches MVM and MVP achieve the best results in almost all cases. Note that we use MVM for
the informative setting (as in Table 2) and MVP for all the settings with a different number of noisy
layers. This is because we want to enforce a larger variance across the layers in each of those cases. It is
interesting to notice that, unlike the competing baselines, the proposed multiobjective MVP approaches
are almost insensitive to the number of noisy layers. The accuracy, for these methods, seems to be only
marginally affected when moving from 1 to 5 layers of noise and, in some cases, more noise seems to yield
better accuracy. This is probably due to the ability of the methods to exploit a high modularity variance
as beneficial, rather than being negatively affected by it.
In Figure 7, we report the computational time in seconds. In 7(a) we report the computational time for
all the methods, whereas in 7(b) we remove the values for the most time-consuming method (MT), to
have a clearer comparison. We can see the proposed methods are comparable to the baselines in terms of
time efficiency.

5 Conclusions

In this paper, we presented a new method for community detection in multiplex graphs that extends
the Louvain heuristic method by introducing a variance-aware quality function and by performing a
vector-valued modularity ascending scheme based on a tailored Pareto search.

18

We considered different versions of this method to better analyze two situations: the informative case,
where each layer shows the same community structure, and the noisy case, where some layers present a
community structure and all the others contain only noise. We provided extensive experiments comparing
with nine baselines borrowed from both the network science and the machine learning communities. We
tested the performance of the proposed methods on synthetic networks, using the LFR and the stochas-
tic block models, as well as five real-world multilayer datasets (i.e., 3sources, BBCSport, cora, UCI,
Wikipedia). In both cases, we studied informative and noisy settings. The experimental results demon-
strate that the proposed method is competitive with the baselines. In particular, the multiobjective
approach combined with the modularity variance shows the best performance in almost all cases.

Table 2: Real-world dataset setting one: no noisy layers. Average accuracy, NMI and performance
ratio scores over 10 random initializations. All layers are informative. Best and second best values are
highlighted with gray boxes.

3sources BBCSport cora UCI Wikipedia Perf. Ratios

Acc NMI Acc NMI Acc NMI Acc NMI Acc NMI ρAcc ρNMI

EVM 0.876 0.789 0.833 0.798 0.617 0.537 0.882 0.921 0.548 0.520 0.951 0.966

MA2 0.858 0.749 0.899 0.825 0.407 0.434 0.753 0.862 0.525 0.521 0.863 0.912

MA3 0.876 0.789 0.596 0.731 0.425 0.428 0.876 0.910 0.558 0.546 0.838 0.920

MVM2 0.888 0.812 0.844 0.784 0.597 0.514 0.883 0.925 0.544 0.508 0.952 0.959

MVM3 0.888 0.812 0.915 0.851 0.603 0.502 0.883 0.925 0.530 0.504 0.966 0.965

GL 0.858 0.749 0.748 0.753 0.523 0.520 0.877 0.913 0.556 0.544 0.904 0.947

CoReg 0.651 0.658 0.858 0.617 0.530 0.380 0.958 0.911 0.522 0.445 0.905 0.840
AWP 0.686 0.662 0.616 0.722 0.534 0.293 0.869 0.891 0.462 0.332 0.843 0.758

MCGC 0.544 0.595 0.919 0.795 0.273 0.034 0.898 0.855 0.221 0.135 0.676 0.580

PM 0.734 0.707 0.778 0.690 0.551 0.456 0.876 0.879 0.569 0.560 0.896 0.892
MT 0.651 0.610 0.748 0.656 0.453 0.289 0.553 0.666 0.342 0.229 0.692 0.638

SCML 0.686 0.661 0.864 0.767 0.616 0.447 0.862 0.872 0.560 0.535 0.919 0.889
PMM 0.692 0.666 0.518 0.514 0.336 0.238 0.638 0.662 0.417 0.302 0.658 0.625
IM 0.539 0.624 0.531 0.401 0.431 0.477 0.721 0.761 0.123 0.11 0.570 0.630

19

Table 3: Real-world dataset setting two: informative layers plus one noisy layer. Average accuracy,
NMI and performance ratio scores over 10 random initializations and 10 random edge probabilities p ∈
{0.01, 0.03, 0.05} for the noisy layer. Best and second best values are highlighted with gray boxes.

3sources BBCSport cora UCI Wikipedia Perf. Ratios

Acc NMI Acc NMI Acc NMI Acc NMI Acc NMI ρAcc ρNMI

EVP 0.703 0.649 0.825 0.797 0.541 0.517 0.880 0.916 0.577 0.556 0.964 0.988

MA2 0.692 0.609 0.790 0.761 0.551 0.519 0.881 0.920 0.558 0.518 0.950 0.955

MA3 0.683 0.612 0.789 0.758 0.549 0.519 0.881 0.921 0.559 0.518 0.947 0.955

MVP2 0.717 0.668 0.828 0.797 0.543 0.518 0.881 0.920 0.578 0.555 0.970 0.994

MVP3 0.730 0.677 0.817 0.792 0.543 0.520 0.881 0.919 0.579 0.556 0.971 0.996

GL 0.678 0.607 0.777 0.754 0.555 0.521 0.881 0.920 0.561 0.520 0.945 0.953

CoReg 0.652 0.650 0.849 0.753 0.407 0.191 0.957 0.912 0.435 0.324 0.874 0.767
AWP 0.658 0.602 0.737 0.593 0.411 0.123 0.924 0.897 0.410 0.266 0.835 0.662
MCGC 0.546 0.585 0.812 0.694 0.303 0.005 0.804 0.816 0.201 0.107 0.686 0.563

PM 0.714 0.658 0.730 0.645 0.548 0.444 0.876 0.880 0.568 0.556 0.943 0.916
MT 0.624 0.627 0.519 0.355 0.187 0.011 0.660 0.723 0.170 0.051 0.556 0.453

SCML 0.639 0.593 0.772 0.604 0.222 0.028 0.964 0.930 0.185 0.057 0.701 0.558
PMM 0.538 0.508 0.387 0.167 0.255 0.060 0.667 0.677 0.172 0.047 0.528 0.377
IM 0.538 0.624 0.531 0.401 0.431 0.477 0.721 0.761 0.123 0.110 0.620 0.671

Table 4: Real-world dataset setting three: one aggregated informative layer plus one noisy layer. Average
accuracy, NMI, and performance ratio scores over 10 random initializations and 10 random edge proba-
bilities p ∈ {0.01, 0.03, 0.05} for the noisy layer. Best and second best values are highlighted with gray
boxes.

3sources BBCSport cora UCI Wikipedia Perf. Ratios

Acc NMI Acc NMI Acc NMI Acc NMI Acc NMI ρAcc ρNMI

EVP 0.655 0.575 0.886 0.799 0.550 0.432 0.869 0.903 0.556 0.526 0.938 0.943
MA2 0.348 0.217 0.664 0.555 0.541 0.418 0.853 0.890 0.431 0.361 0.761 0.717
MA3 0.332 0.207 0.659 0.550 0.537 0.416 0.858 0.893 0.427 0.359 0.754 0.711

MVP2 0.744 0.675 0.914 0.826 0.546 0.430 0.872 0.905 0.564 0.538 0.969 0.980

MVP3 0.754 0.689 0.914 0.828 0.544 0.431 0.873 0.906 0.566 0.540 0.969 0.984

GL 0.327 0.203 0.664 0.549 0.537 0.418 0.866 0.898 0.427 0.360 0.756 0.713
CoReg 0.566 0.436 0.608 0.338 0.435 0.190 0.761 0.642 0.446 0.305 0.753 0.542
AWP 0.549 0.416 0.644 0.376 0.444 0.179 0.750 0.622 0.439 0.292 0.754 0.531
MCGC 0.512 0.479 0.682 0.480 0.276 0.020 0.702 0.691 0.347 0.291 0.654 0.514

PM 0.512 0.363 0.729 0.658 0.569 0.414 0.834 0.828 0.457 0.360 0.831 0.764
MT 0.693 0.614 0.729 0.614 0.272 0.113 0.634 0.699 0.406 0.306 0.714 0.534

SCML 0.514 0.410 0.797 0.661 0.600 0.416 0.846 0.835 0.479 0.365 0.867 0.783
PMM 0.440 0.304 0.424 0.206 0.311 0.108 0.641 0.535 0.386 0.249 0.591 0.392

IM 0.793 0.742 0.730 0.751 0.323 0.376 0.199 0.338 0.496 0.532 0.687 0.827

20

Table 5: Real-world dataset setting four: 3-sources dataset with an increasing number of noisy layers
(from 0 to 5). Average accuracy and NMI over 10 random initializations (for the noisy cases) and 10
random edge probabilities p ∈ {0.01, 0.03, 0.05} for the noisy layers. Best and second best values are
highlighted with gray boxes.

0 1 2 3 4 5

Acc NMI Acc NMI Acc NMI Acc NMI Acc NMI Acc NMI

EVM/P 0.876 0.789 0.703 0.649 0.729 0.677 0.735 0.688 0.767 0.708 0.777 0.717
MA2 0.858 0.749 0.692 0.609 0.615 0.538 0.577 0.495 0.526 0.442 0.503 0.426

MA3 0.876 0.789 0.683 0.612 0.602 0.529 0.576 0.494 0.535 0.449 0.503 0.420

MVM/P2 0.888 0.812 0.717 0.668 0.748 0.693 0.752 0.700 0.778 0.718 0.787 0.721

MVM/P3 0.888 0.812 0.730 0.677 0.751 0.692 0.738 0.699 0.779 0.722 0.790 0.720

GL 0.858 0.749 0.678 0.607 0.615 0.541 0.571 0.492 0.508 0.443 0.506 0.424
CoReg 0.651 0.658 0.652 0.650 0.650 0.645 0.654 0.645 0.650 0.637 0.645 0.631
AWP 0.686 0.662 0.658 0.602 0.664 0.580 0.632 0.539 0.622 0.521 0.599 0.462
MCGC 0.544 0.595 0.546 0.585 0.541 0.577 0.550 0.575 0.538 0.551 0.486 0.503
PM 0.734 0.707 0.714 0.658 0.671 0.609 0.675 0.592 0.671 0.583 0.640 0.543
MT 0.651 0.610 0.624 0.627 0.629 0.619 0.650 0.654 0.642 0.632 0.665 0.633
SCML 0.686 0.661 0.639 0.593 0.658 0.641 0.666 0.632 0.652 0.620 0.649 0.596
PMM 0.692 0.666 0.538 0.508 0.649 0.608 0.637 0.603 0.581 0.555 0.570 0.563
IM 0.539 0.624 0.538 0.624 0.538 0.650 0.574 0.635 0.580 0.617 0.527 0.610

0 1 2 3 4 5

0

10

20

30

added noisy layers

T
im

e

(a)

EVM/P MA2 MA3 MVM/P2 MVM/P3
GL CoReg AWP MCGC PM MT SCML PMM

0 1 2 3 4 5

0

1

2

3

added noisy layers

T
im

e

(b)

Figure 7: Computational time of different methods on the 3-sources dataset, with an increasing number
of noisy layers (from 0 to 5). In (a) all methods’ runtimes are shown, in (b) excluding MT.

21

References

[1] Marya Bazzi et al. “Community detection in temporal multilayer networks, with an application to
correlation networks”. In: Multiscale Modeling & Simulation 14.1 (2016), pp. 1–41.

[2] Michele Berlingerio, Michele Coscia, and Fosca Giannotti. “Finding and characterizing communities
in multidimensional networks”. In: 2011 International Conference on Advances in Social Networks
Analysis and Mining. IEEE. 2011, pp. 490–494.

[3] Steffen Bickel and Tobias Scheffer. “Multi-view clustering.” In: ICDM. Vol. 4. 2004. Citeseer. 2004,
pp. 19–26.

[4] Vincent D Blondel et al. “Fast unfolding of communities in large networks”. In: Journal of Statistical
Mechanics: Theory and Experiment 2008.10 (2008), P10008.

[5] Avrim Blum and Tom Mitchell. “Combining labeled and unlabeled data with co-training”. In:
Proceedings of the Eleventh Annual Conference on Computational Learning Theory. 1998, pp. 92–
100.

[6] Xiaochun Cao et al. “Constrained multi-view video face clustering”. In: IEEE Transactions on
Image Processing 24.11 (2015), pp. 4381–4393.

[7] Dorwin Cartwright and Frank Harary. “Structural balance: a generalization of Heider’s theory.” In:
Psychological Review 63.5 (1956), p. 277.

[8] Pin-Yu Chen and Alfred O Hero. “Multilayer spectral graph clustering via convex layer aggrega-
tion: Theory and algorithms”. In: IEEE Transactions on Signal and Information Processing over
Networks 3.3 (2017), pp. 553–567.

[9] Caterina De Bacco et al. “Community detection, link prediction, and layer interdependence in
multilayer networks”. In: Physical Review E 95.4 (2017), p. 042317.

[10] Manlio De Domenico et al. “Identifying modular flows on multilayer networks reveals highly over-
lapping organization in interconnected systems”. In: Physical Review X 5.1 (2015), p. 011027.

[11] Xiaowen Dong et al. “Clustering on multi-layer graphs via subspace analysis on Grassmann mani-
folds”. In: IEEE Transactions on Signal Processing 62.4 (2013), pp. 905–918.

[12] Xiaowen Dong et al. “Clustering with multi-layer graphs: A spectral perspective”. In: IEEE Trans-
actions on Signal Processing 60.11 (2012), pp. 5820–5831.

[13] Dheeru Dua and Casey Graff. UCI Machine Learning Repository – Multiple Features Data Set. 2017.
url: https://archive.ics.uci.edu/ml/datasets/Multiple+Features.

[14] Ernesto Estrada. The structure of complex networks: theory and applications. Oxford University
Press, 2012.

[15] Santo Fortunato. “Community detection in graphs”. In: Physics Reports 486.3-5 (2010), pp. 75–174.

[16] Riccardo Gallotti and Marc Barthelemy. “The multilayer temporal network of public transport in
Great Britain”. In: Scientific Data 2.1 (2015), pp. 1–8.

[17] Derek Greene and Pádraig Cunningham. “A matrix factorization approach for integrating multiple
data views”. In: Joint European Conference on Machine Learning and Knowledge Discovery in
Databases. Springer. 2009, pp. 423–438.

[18] Jungeun Kim, Jae-Gil Lee, and Sungsu Lim. “Differential flattening: A novel framework for commu-
nity detection in multi-layer graphs”. In: ACM Transactions on Intelligent Systems and Technology
(TIST) 8.2 (2016), pp. 1–23.

22

[19] Niko Kiukkonen et al. “Towards rich mobile phone datasets: Lausanne data collection campaign”.
In: Proc. ICPS, Berlin 68 (2010).

[20] Mikko Kivelä et al. “Multilayer networks”. In: Journal of Complex Networks 2.3 (2014), pp. 203–
271.

[21] Abhishek Kumar and Hal Daumé. “A co-training approach for multi-view spectral clustering”. In:
Proceedings of the 28th International Conference on Machine Learning (ICML-11). 2011, pp. 393–
400.

[22] Abhishek Kumar, Piyush Rai, and Hal Daume. “Co-regularized multi-view spectral clustering”. In:
Advances in Neural Information Processing Systems. 2011, pp. 1413–1421.

[23] Andrea Lancichinetti, Santo Fortunato, and Filippo Radicchi. “Benchmark graphs for testing com-
munity detection algorithms”. In: Physical Review E 78.4 (2008), p. 046110.

[24] Youwei Liang et al. “Multi-view Graph Learning by Joint Modeling of Consistency and Inconsis-
tency”. In: arXiv preprint arXiv:2008.10208 (2020).

[25] Jialu Liu et al. “Multi-view clustering via joint nonnegative matrix factorization”. In: Proceedings
of the 2013 SIAM International Conference on Data Mining. SIAM. 2013, pp. 252–260.

[26] Matteo Magnani et al. “Community detection in multiplex networks”. In: ACM Computing Surveys
(CSUR) 54.3 (2021), pp. 1–35.

[27] Andrew Kachites McCallum et al. “Automating the construction of internet portals with machine
learning”. In: Information Retrieval 3.2 (2000), pp. 127–163.

[28] Pedro Mercado, Francesco Tudisco, andMatthias Hein. “Generalized matrix means for semi-supervised
learning with multilayer graphs”. In: Advances in Neural Information Processing Systems. 2019,
pp. 14877–14886.

[29] Pedro Mercado et al. “The power mean Laplacian for multilayer graph clustering”. In: arXiv preprint
arXiv:1803.00491 (2018).

[30] Peter J Mucha et al. “Community structure in time-dependent, multiscale, and multiplex networks”.
In: Science 328.5980 (2010), pp. 876–878.

[31] Mark Newman. Networks. Oxford University Press, 2018.

[32] Mark EJ Newman. “Modularity and community structure in networks”. In: Proceedings of the
National Academy of Sciences 103.23 (2006), pp. 8577–8582.

[33] Feiping Nie, Lai Tian, and Xuelong Li. “Multiview clustering via adaptively weighted procrustes”.
In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining. 2018, pp. 2022–2030.

[34] Vilfredo Pareto. “Cours d’économie politique, Rouge”. In: Lausanne, Switzerland (1896).

[35] Subhadeep Paul and Yuguo Chen. “Spectral and matrix factorization methods for consistent com-
munity detection in multi-layer networks”. In: The Annals of Statistics 48.1 (2020), pp. 230–250.

[36] Jian Pei, Daxin Jiang, and Aidong Zhang. “On mining cross-graph quasi-cliques”. In: Proceedings
of the eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining.
2005, pp. 228–238.

[37] Tiago P Peixoto. “Bayesian stochastic blockmodeling”. In: Advances in Network Clustering and
Blockmodeling (2019), pp. 289–332.

23

[38] Clara Pizzuti and Annalisa Socievole. “Many-objective optimization for community detection in
multi-layer networks”. In: 2017 IEEE Congress on Evolutionary Computation (CEC). IEEE. 2017,
pp. 411–418.

[39] Soumajit Pramanik et al. “Discovering community structure in multilayer networks”. In: 2017 IEEE
International Conference on Data Science and Advanced Analytics (DSAA). IEEE. 2017, pp. 611–
620.

[40] Nikhil Rasiwasia et al. “A new approach to cross-modal multimedia retrieval”. In: Proceedings of
the 18th ACM International Conference on Multimedia. 2010, pp. 251–260.

[41] Martin Rosvall and Carl T Bergstrom. “Maps of random walks on complex networks reveal com-
munity structure”. In: Proceedings of the National Academy of Sciences 105.4 (2008), pp. 1118–
1123.

[42] Joao Sedoc et al. “Semantic word clusters using signed spectral clustering”. In: Proceedings of the
55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers).
2017, pp. 939–949.

[43] Alexander Strehl and Joydeep Ghosh. “Cluster ensembles—a knowledge reuse framework for com-
bining multiple partitions”. In: Journal of Machine Learning Research 3.Dec (2002), pp. 583–617.

[44] Lei Tang, Xufei Wang, and Huan Liu. “Community detection via heterogeneous interaction analysis”.
In: Data Mining and Knowledge Discovery 25.1 (2012), pp. 1–33.

[45] Lei Tang, Xufei Wang, and Huan Liu. “Uncoverning groups via heterogeneous interaction analysis”.
In: 2009 Ninth IEEE International Conference on Data Mining. IEEE. 2009, pp. 503–512.

[46] Wei Tang, Zhengdong Lu, and Inderjit S Dhillon. “Clustering with multiple graphs”. In: 2009 Ninth
IEEE International Conference on Data Mining. IEEE. 2009, pp. 1016–1021.

[47] Dane Taylor, Rajmonda S Caceres, and Peter J Mucha. “Super-resolution community detection for
layer-aggregated multilayer networks”. In: Physical Review X 7.3 (2017), p. 031056.

[48] Dane Taylor et al. “Enhanced detectability of community structure in multilayer networks through
layer aggregation”. In: Physical Review Letters 116.22 (2016), p. 228301.

[49] James DWilson et al. “Community extraction in multilayer networks with heterogeneous community
structure”. In: The Journal of Machine Learning Research 18.1 (2017), pp. 5458–5506.

[50] Robert Winkler. Introduction to Bayesian Inference and Decision. Probabilistic Publishing, Gainesville,
2003.

[51] Rongkai Xia et al. “Robust multi-view spectral clustering via low-rank and sparse decomposition”.
In: Proceedings of the AAAI conference on Artificial Intelligence. Vol. 28. 1. 2014.

[52] Zhiping Zeng et al. “Coherent closed quasi-clique discovery from large dense graph databases”. In:
Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. 2006, pp. 797–802.

[53] Kun Zhan et al. “Graph learning for multiview clustering”. In: IEEE Transactions on Cybernetics
48.10 (2017), pp. 2887–2895.

[54] Kun Zhan et al. “Graph structure fusion for multiview clustering”. In: IEEE Transactions on Knowl-
edge and Data Engineering 31.10 (2018), pp. 1984–1993.

[55] Kun Zhan et al. “Multiview consensus graph clustering”. In: IEEE Transactions on Image Processing
28.3 (2018), pp. 1261–1270.

24

[56] Dengyong Zhou and Christopher JC Burges. “Spectral clustering and transductive learning with
multiple views”. In: Proceedings of the 24th International Conference on Machine Learning. 2007,
pp. 1159–1166.

[57] Linlin Zong et al. “Weighted multi-view spectral clustering based on spectral perturbation”. In:
Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 32. 1. 2018.

25

