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Many applications require randomly sampling bipartite graphs with fixed degrees, or randomly sampling
incidence matrices with fixed row and column sums. Although several sampling algorithms exist, the
“curveball” algorithm is the most efficient with an asymptotic time complexity of O(n log n), and has
been proven to sample uniformly at random. In this paper, we introduce the “fastball” algorithm, which
adopts a similar approach but has an asymptotic time complexity of O(n). We show that a C++ imple-
mentation of fastball randomly samples large bipartite graphs with fixed degrees faster than curveball,
and illustrate the value of this faster algorithm in the context of the fixed degree sequence model for
backbone extraction.
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1. Introduction

Many applications require randomly sampling bipartite graphs with fixed degrees, or randomly sampling
incidence matrices with fixed row and column sums. In network science the sample provides an empir-
ical null model for evaluating graph properties such as nestedness [7] and co-occurrence [13, 15, 18]. It
also arises in other fields: in physics where the space of fixed-degree graphs can be viewed as a micro-
canonical ensemble representing a thermodynamic system [2, 23, 25]; in mathematics where the sample
can give insight into the cardinality of the space [3]; and in quantitative psychology where it is useful for
estimating Rasch models [26]. These applications typically require drawing a large number of samples,
therefore an efficient and unbiased sampling algorithm is essential.

We begin by formally stating the problem: Let G be the space of all bipartite graphs G containing
n top nodes with degrees N = N1,N2 . . .Nn and m bottom nodes with degrees M = M1,M2 . . .Mm. How
can we randomly sample G ∈ G with uniform probability? This question can also be formulated in
matrix terms: Let M be the incidence matrix of G, and M be the space of all n×m binary matrices with
given row sums N = N1,N2 . . .Nn and column sums M = M1,M2 . . .Mm. How can we randomly sample
M ∈ M with uniform probability?

In this paper, we propose and demonstrate the “fastball” algorithm, which provides an efficient
and unbiased method to sample G ∈ G or M ∈ M . Fastball’s asymptotic time complexity is O(n)
time, making it algorithmically more efficient than the existing “curveball” algorithm, which has an
asymptotic time complexity of O(n log n). We use a numerical experiment to demonstrate that when
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FIG. 1. Example of the curveball algorithm
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A = {a c e f}
B = {b d f}

C = {a b c e}
D = {c e}

A = {a c e f}
B = {b d f}

I = A ⋂ B = {f}
S = A Δ B = {a b c d e}

SA = |A| - |I| = 3
SB = |B| - |I| = 2

A = {a b d f}
B = {c e f}

A = {a b d f}
B = {c e f}

C = {a b c e}
D = {c e}
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Adjacency List
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a b c d e f
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Pick two

Sort

implemented in a low-level language such as C++, fastball is also practically faster than curveball for
drawing samples of bipartite graphs. We use the example of extracting the backbone of a legislative co-
sponsorship network to illustrate fastball’s practical application in network science, where fastball draws
the samples necessary to extract a signed network in 11 minutes compared to curveball’s 27 minutes.

The remainder of the paper is organized in four sections. In section 2 we briefly review bipartite
randomization algorithms, focusing on the curveball algorithm, which is currently the fastest. In section
3 we introduce the fastball algorithm as a more efficient randomization and sampling algorithm. In
section 4 we compare the running time of fastball and curveball, then illustrate a practical application
of fastball for extracting the backbone of bipartite projections. Finally, in section 5 we conclude by
identifying directions for future research.

2. Background

Several methods have been proposed for randomizing and sampling bipartite graphs and incidence
matrices [21]. Fill methods proceed by filling an initially empty graph by adding vertices via the
configuration model [5], or filling an initially empty matrix with 0s and 1s following the Gale-Ryser
theorem [14, 22]. Alternatively, swap methods proceed by swapping (i.e. re-wiring) edges in a graph
[6], or swapping checkerboard patterns (e.g., swapping 0

1
1
0 with 1

0
0
1) in a matrix. Other more sophisti-

cated methods have been proposed that rely on sequential importance sampling [1, 12, 26] or simulated
annealing [4].

The curveball algorithm is the current state-of-the-art, and is distinguished from these other methods
in two ways. First, while it relies on the swap method, it performs multiple swaps simultaneously in
each iteration called a ‘trade,’ which makes it more efficient [11, 24]. Second, it has been proven to
sample uniformly at random [8], which makes it unbiased.

Figure 1 outlines the steps of the curveball algorithm, which illustrates how a starting bipartite graph
G is randomized to yield a new graph G′ that is randomly chosen from G . The algorithm developers
noted that this randomization process resembles how children may trade baseball cards, giving the
algorithm its name, so we use this metaphor to make the example concrete [24]. The input is a bipartite
graph G. We use uppercase letters A–D to denote the top nodes (i.e., children), and lowercase letters
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a–f to denote the bottom nodes (i.e., baseball cards). For the purposes of the algorithm, G is represented
as an adjacency list that records each top node’s neighbors (e.g., child A has cards a, c, e, and f).

First, two top nodes i and j are randomly selected (e.g., children A and B will engage in card
trading). Second, we find i and j’s intersection I (e.g., both children have card f), symmetric difference
S (e.g., only one child has cards a, b, c, d, and e), and cardinality of their contribution to the symmetric
difference Si and S j (e.g., child A has 3 unique cards and child B has 2 unique cards). Third, we
randomly shuffle S, and assign the first Si elements of S plus I to i (e.g., child A now has cards a, b, d,
and f), and the last S j elements of S plus I to j. Finally, top nodes i’s and j’s new adjacency lists are
sorted and updated in the complete adjacency list, at which point the process can repeat. Using a card
trading metaphor, this process mirrors two children placing all their unique cards in a pile, shuffling it,
then randomly drawing the same number of cards from the pile that they put in.

The curveball algorithm offers two notable advantages over alternative approaches to randomizing
G and sampling from G . First, it has been proven to sample G ∈ G uniformly at random [8]. Second,
it has been shown to mix more rapidly than swap methods because while swap methods change the
position of only one edge in each iteration, a single curveball trade can perform many such swaps
[9, 11].

Algorithm 1 Curveball Trade algorithm, O(n log n)
Input: Sorted vector of i’s neighbors Ni & Sorted vector of j’s neighbors N j
Output: Sorted vector of i’s neighbors N′i & Sorted vector of j’s neighbors N′j

Let I = Ni∩N j and let S = Ni ∆ N j O(n)
Shuffle S O(n)
Let N′i = I + the first |Ni|− |I| elements of S O(n)
Let N′j = I + the last |N j|− |I| elements of S O(n)
Sort N′i O(n log n)
Sort N′j O(n log n)

Recent work has improved curveball’s efficiency by performing trades for multiple pairs of top
nodes in parallel [9] and by using I/O-efficient techniques to manage the handling of adjacency lists
[10]. However, these innovations still rely on the same algorithm for performing each curveball trade,
which we aim to improve. The algorithm for performing a curveball trade is shown in Algorithm 1,
which also shows the time complexity of each step. The input vectors of i’s and j’s neighbors must be
sorted so that their intersection I and symmetric difference S can be found efficiently and simultaneously
in O(n) time. Because in practice curveball trades are performed repeatedly by the curveball algorithm,
the output vectors must also be sorted so they are ready for the next trade, which requires O(n log n)
time.

3. The fastball algorithm

The fastball algorithm is very similar to the curveball algorithm, but performs trades differently. In this
section we first review a concrete example of the fastball algorithm, again using the baseball card trading
metaphor, then present the more efficient fastball trade algorithm.

Figure 2 outlines the steps of the fastball algorithm, which illustrates how a starting bipartite graph G
is randomized to yield a new graph G′ that is randomly chosen from G . Like curveball, G is represented
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FIG. 2. Diagram and example of the fastball algorithm
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as an adjacency list, from which two top nodes are randomly chosen to participate in a trade, and which
later rejoin the complete adjacency list after the trade. Here, we focus only on performing the fastball
trade itself (the steps enclosed in the dashed line).

First, we compute the cardinality of i and j’s intersection (e.g. child A and B have 1 card in com-
mon), and from this compute i’s and j’s number of unique neighbors, Si and S j (e.g., child A has 3
unique cards and child B has 2 unique cards). Second, we construct a vector V that contains Si is and S j
js, and shuffle it. Finally, we make a single simultaneous pass through i and j, comparing the elements.
When two elements match, they are retained in both lists (e.g., Round 6). When two elements differ, the
lower-valued element becomes adjacent to the node identified in V (e.g., Rounds 1-5).

Using a card trading metaphor, this process mirrors the two children holding their alphabetically
sorted cards face down in a deck. Each child turns over the top card. If the face up cards match, both
children get to keep them. If the face-up cards do not match, then the child identified by the ‘victory
vector’ V ‘wins’ the alphabetically-earlier face up card, while the losing child turns a new card face up.
For example, in Round 3 of figure 2, child A turns card c face up and child B turns card d face up. In
this round, child B wins card c because they are identified by the current element of the victory vector.

Algorithm 2 Fastball Trade algorithm, O(n)
Input: Sorted vector of i’s neighbors Ni & Sorted vector of j’s neighbors N j
Output: Sorted vector of i’s neighbors N′i & Sorted vector of j’s neighbors N′j

Let |I|= |Ni∩N j| O(n)
Let V be a vector of |Ni|− |I| is and |N j|− |I| js O(n)
Shuffle V O(n)

Let a = 0, b = 0, c = 0 Explicit steps of
while a 6= |Ni| and b 6= |N j| do a simultaneous pass

if Ni[a] = N j[b] then through Ni and N j,
Append Ni[a] to N′i collectively O(n)
Append N j[b] N′j
Increment a and b

else if Ni[a]< N j[b] then
Append Ni[a] to N′V [c]
Increment a and c

else if Ni[a]> N j[b] then
Append N j[b] to N′V [c]
Increment b and c

end if
end while
if a 6= |Ni| and c 6= |V | then Append Ni[a...|Ni|] to NV [c...|V |]
if b 6= |N j| and c 6= |V | then Append N j[b...|N j|] to NV [c...|V |]

Algorithm 2 formalizes the process for performing a fastball trade, and shows the time complexity
of each step. The while loop and two if commands describe the explicit steps of the simultaneous pass
through the Ni and N j adjacency lists, which collectively can be performed in O(n) time when Ni and
N j are sorted. Therefore, like curveball, the efficiency of fastball’s key steps requires that the input
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vectors be sorted, and that the output vectors be sorted in preparation for the next trade. However,
unlike curveball’s approach, fastball’s simultaneous pass approach ensures that the new adjacency lists
N′i and N′j are assembled in sorted order, and therefore eliminates the computationally costly need to sort
them later. Despite this algorithmic modification, the outcome of fastball trades are identical to those
performed by curveball, which ensures that fastball also samples G ∈ G uniformly at random [8, 17].

4. Results

4.1 Practical Running Time

To compare the running times of curveball and fastball, we first implemented each algorithm in C++.
By using a low-level language, as opposed to a higher-level language such as R or Python, we are able to
more closely match the theoretical time complexities shown in Algorithms 1 and 2. We then used these
functions to perform 100 trades on bipartite graphs with two top nodes and differing numbers of bottom
nodes, where each top node is adjacent to a unique half of the bottom nodes. This type of bipartite graph
is likely quite unusual in practice, but is ideal for this experiment for two reasons. First, as Figures 1 and
2 illustrate, curveball and fastball trades only involve two top nodes; additional top nodes that might be
present in the bipartite graph play no role in the (time required for the) trade. Using a bipartite graph
with only two top nodes allows us to consider the running time for trades in bipartite graphs with many
bottom nodes (here, up to 106), while minimizing the amount of memory needed to hold the graph.
Second, ensuring that each top node is adjacent to a unique half of the bottom nodes maximizes the
number of possible swaps within a trade, and therefore represents a ‘worse case scenario’ in terms of
running time.

Figure 3 shows the time required on an Apple M1 Max processor for curveball (red solid line)
and fastball (blue dashed line) to perform 100 trades, as a function of the number of bottom nodes in
the bipartite graph. For each number of bottom nodes we performed 10 replications, and for selected
numbers we report how much faster fastball is compared to curveball. We find that for these numbers of
bottom nodes, fastball is always faster than curveball. As expected given these algorithms’ asymptotic
time complexities, the improvement in running time offered by fastball is larger when the bipartite graph
contains more bottom nodes. For example, fastball is 2.2 times faster in smaller bipartite graphs (e.g.,
m = 103) , and four times faster in larger bipartite graphs (e.g. m = 106).

4.2 Applying fastball for backbone extraction

Bipartite graph sampling algorithms have many possible applications. In this section we illustrate one
practical application of the fastball algorithm: the fixed degree sequence model for extracting the back-
bone of bipartite projections. Additionally, this illustration contextualizes the running time improvement
offered by fastball when applied to a more realistic bipartite graph than studied in section 4.1.

Given a bipartite graph, network researchers often study the bipartite projection, which captures
co-occurrences of the bottom nodes among pairs of top nodes. Bipartite projections are weighted,
which can complicate their analysis. Additionally, bipartite projections are typically very dense and
highly clustered, which can obscure underlying structures [16]. For these reasons, it can be useful
to focus on the backbone of a bipartite projection, which is an unweighted graph that preserves only
the edges whose weights are statistically significant. While many null models exist for determining
an edge’s statistical significance, the most statistically powerful is the fixed degree sequence model
(FDSM), which compares an edge’s observed weight in the bipartite projection to the distribution of
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FIG. 3. Running times of curveball and fastball algorithms
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its weights in the projection of bipartite graphs with the same degree sequences [20, 27]. The shape of
this null edge weight distribution is unknown and must be approximated using Monte Carlo methods,
which involve repeatedly sampling and constructing the projection of bipartite graphs with given degree
sequences. This sampling step is the most computationally costly part of the FDSM, and therefore is
the bottleneck for its practical application. By performing the sampling more efficiently, the fastball
algorithm improves the practicality of the FDSM as a backbone extraction model [19].

Legislative co-sponsorship networks are one case where bipartite backbone extraction is helpful, and
offer an example of the advantages of fastball sampling. In the 116th US Senate, 102 Senators sponsored
5086 bills. These data can be arranged as a bipartite graph where Senators are connected to the bills they
sponsored. The top node Senator degree sequence captures the number of bills each Senator sponsored,
while the bottom node bill degree sequence captures the number of Senators sponsoring each bill. This
bipartite graph can be transformed into a bipartite projection where Senators are connected to other
Senators by their number of co-sponsored bills. The left panel of Figure 4 illustrates this bipartite
projection, with Republican Senators colored red, Democratic Senators colored blue, and Independent
Senators colored green. This network is so dense that no underlying structure, including the known
polarized structure of the US Senate, can be discerned. Extracting the backbone of this projection can
reveal such an underlying structure by preserving only the statistically significant edges. Determining
edges’ statistical significant under the FDSM requires randomly sampling bipartite graphs with the same
degree sequences as the observed 102×5086 bipartite graph.

Using trade algorithms to perform the sampling required by the FDSM involves making two cal-
culations. First, how many trades are necessary to ensure that the sampled bipartite graph G′ is uni-
formly drawn from the space of all graphs with the same degrees G ? The precise mixing time of trade
algorithms is unknown, however numerical experiments have shown that 5n is typically sufficient to
ensure uniformly random sampling [8, 11, 24]. Therefore, drawing each sample requires performing
102×5 = 510 trades. Second, how many samples must be drawn to approximate the null edge weight
distribution with sufficient precision to determine whether an observed edge’s weight is statistically sig-
nificantly larger (or smaller) than the null model expectation? The statistical test involved in backbone
extraction compares one proportion (an edge’s p-value under the null model) to another proportion (the
chosen α statistical significance level), and therefore the number of required samples is equivalent to
the required sample size for comparing two proportions with a given statistical power [20]. In this case,
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FIG. 4. Example of bipartite backbone extraction

Raw Projection FDSM Backbone

conducting a two-tailed statistical test of an edge’s weight at the α = 0.05 significance level with 95%
power requires drawing 164,710 samples.

Drawing these samples using our C++ implementation of the curveball algorithm takes about 27
minutes on an Apple M1 Max processor. In contrast, drawing these samples using our C++ implemen-
tation of the fastball algorithm takes only about 11 minutes. These sampling methods yield the same
FDSM backbone shown in the right panel of Figure 4, where significantly larger-than-expected edges
are drawn in green and significantly smaller-than-expected edges are drawn in red, which clearly high-
lights the polarized structure of the US Senate. However, the fastball algorithm allows the extraction of
an FDSM backbone substantially faster, thereby making the analysis of such data more practical.

5. Discussion

The fastball algorithm represents a more theoretically efficient and practically faster variant of the exist-
ing curveball algorithm. Theoretically, we show that fastball has an asymptotic time complexity of O(n),
making it more computationally efficient than curveball, which has an asymptotic time complexity of
O(n log n). Practically, we show that when implemented in a low-level language such as C++, the
fastball algorithm performs trades faster than curveball. Specifically, we show that it draws the samples
necessary to extract the backbone of a US Senate co-sponsorship network using the FDSM roughly 2.5
times faster, and can perform trades in very large bipartite graphs (m = 106) roughly four times faster.

Like curveball, fastball has applications in a range of fields including network science, mathematics,
ecology, thermodynamics, and statistical physics [2, 3, 7, 13, 15, 18, 23, 25]. However, it is important to
be clear about their relationship and relative advantages. While both fastball and curveball are trade-type
randomization algorithms, fastball might be regarded as an efficient variant of curveball, rather than as
an entirely novel algorithm. Curveball might be preferable for the randomization of a small bipartite
graph G, or for drawing a small number of samples from G, because it is only negligibly slower than
fastball, but can be efficiently implemented in high-level languages such as R and Python that are easier
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to understand and modify. In contrast, while fastball is also suitable in such cases, it is most useful for
randomizing larger bipartite graphs or drawing many samples, but requires implementation in a lower-
level language such as C++. However, the R function fastball() in the backbone package [19]
provides a user-friendly wrapper that does not require knowledge of C++, and can be used seamlessly
with other R functions.

In addition to its practical applications, the fastball algorithm also offers a starting point for both
theoretical and algorithmic future directions. First, relatively little is known about trade-type algorithms’
mixing times. Because fastball can perform trades faster than curveball, it can be used to extend earlier
numerical experiments of mixing time on larger matrices or matrices with unique structures [8, 11].
Second, still greater computational efficiency may be achievable by combining fastball’s efficient trade
algorithm with the parallelization and I/O-efficient techniques that have been applied to curveball [9, 10].

Data Availability

Algorithm implementations in C++, and R code to reproduce the analyses, are available at https:
//github.com/zpneal/fastball.
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