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Abstract

We introduce L-hydra (landmarked hyperbolic distance recovery and approximation), a method
for embedding network- or distance-based data into hyperbolic space, which requires only the distance
measurements to a few ‘landmark nodes’. This landmark heuristic makes L-hydra applicable to large-
scale graphs and improves upon previously introduced methods. As a mathematical justification, we
show that a point configuration in d-dimensional hyperbolic space can be perfectly recovered (up to
isometry) from distance measurements to just d + 1 landmarks. We also show that L-hydra solves
a two-stage strain-minimization problem, similar to our previous (unlandmarked) method ‘hydra’.
Testing on real network data, we show that L-hydra is an order of magnitude faster than existing
hyperbolic embedding methods and scales linearly in the number of nodes. While the embedding
error of L-hydra is higher than the error of existing methods, we introduce an extension, L-hydra+,
which outperforms existing methods in both runtime and embedding quality.
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1 Introduction
Embeddings of networks and distance-based data into hyperbolic geometry have received substantial
attention in the recent decade. Such embeddings have been used for link prediction [15, 16], visualization
[19], and community detection [16, 14] in networks. In addition to providing insight into the tradeoff
between popularity and similarity effects in network growth [15], they have interesting implications for
routing, network navigability [11, 1] and efficient computation of shortest paths [21, 5]. In [10] we have
introduced hydra (hyperbolic distance recovery and approximation) and hydra+ as efficient methods to
compute such embeddings. Similar to classic multidimensional scaling in Euclidean space, hydra uses an
Eigendecomposition technique to minimize strain, a functional based on the hyperbolic Gram matrix of
embedded points. Due to this technique, hydra provides an efficient alternative to methods like Rigel
of [21] and HyPy of [5], which minimize stress, i.e., the least-squares embedding error, by numerical
optimization. However, as hydra requires the full shortest path matrix of the input network, it can not
be scaled to large and very large networks beyond the order of 100.000 nodes. Rigel and HyPy on the
other side use a clever landmark heuristic (see also [6]), which replaces the full shortest path matrix by
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only the shortest paths terminating at a small number of (randomly selected) landmark nodes. Here,
we show that this landmark heuristic can also be applied to the method of strain minimization, and
introduce L-hydra (Landmarked hyperbolic distance recovery and approximation) as a new hyperbolic
embedding method for very large networks. On the theoretical side, we show that L-hydra perfectly
recovers (up to isometry) any n-point configuration in d-dimensional hyperbolic space from its distances
measured to just d + 1 landmarks. This result provides, for the first time, a theoretical basis to the
use of landmark methods for hyperbolic network embeddings. In particular it shows that the required
number of landmarks depends only on the intrinsic dimension d of the network, but not on the number n
of vertices; hence the computational load of L-hydra scales only linearly with the number n of vertices.
Finally, we present in Section 4 numerical results for L-hydra and its extension L-hydra+, showing that
they provide an improvement over HyPy in both runtime and embedding error.

2 Background

2.1 Hyperbolic space
Our embedding method is formulated in the mathematical framework of the d-dimensional hyperboloid
model of hyperbolic geometry (cf. [17, 3]). For x,y ∈ Rd+1 the Lorentz product, an indefinite inner
product, is defined by

x ◦ y := x1y1 − (x2y2 + . . .+ xd+1yd+1) . (1)

The real vector space Rd+1 equipped with this inner product is called Lorentz space and denoted by
R1,d. It contains, as subset, the positive Lorentz space R1,d

+ =
{
x ∈ R1,d : x1 > 0

}
. Within R1,d

+ , the
single-sheet hyperboloid Hd is given by

Hd =
{
x ∈ R1,d : x ◦ x = 1, x1 > 0

}
. (2)

The hyperboloid model in dimension d with curvature −κ, (κ > 0), consists of Hd endowed with the
hyperbolic distance

dκH(x,y) =
1√
κ

arcosh (x ◦ y) , x,y ∈ Hd. (3)

The hyperbolic distance dκH is a distance onHd in the usual mathematical sense; in particular it takes only
positive values and satisfies the triangle inequality, cf. [17, §3.2]. In fact, equipped with the metric tensor
ds2 = 1

κ (dx ◦ dx), the hyperboloid Hd becomes a Riemannian manifold of constant sectional curvature
−κ and dκH is exactly its geodesic distance. Note that the curvature parameter does not enter into the
description of the hyperboloid Hd, but only in the distance metric dκH . Just as Euclidean space is the
canonical model of geometry with zero curvature, hyperbolic space is the canonical model of geometry with
negative curvature. Aside from the hyperbolid model, other equivalent models of hyperbolic geometry
exist, including the Poincaré ball model and the upper half-space model, see [17, §4.2, §4.6] and [3].

2.2 Embedding of distances and networks
To formulate the problem of embedding network or other data into hyperbolic space, let some objects
o1, . . . ,on be given. Let D = [dij ] ∈ Rn×n>0 be a symmetric matrix with zero diagonal, which represents
the induced pairwise dissimilarities between the objects. The goal is to find a low dimensional coordinate
representation x1, . . . ,xn of the objects in hyperbolic space Hd, such that the hyperbolic distances



between the coordinate representations approximate the given dissimilarities as closely as possible, i.e.,
such that

dκH(xi,xj) ≈ dij . (4)

In Euclidean space, such approximations are well studied and can be calculated e.g. by multidimensional
scaling (MDS), see also [2]. A survey of the hyperbolic setting, discussing in particular the properties of
hyperbolic distance matrices, is given in [18].
An important special case is the network embedding problem, where a (unweighted, undirected) graph
G = (V,E) is given. In this setting, the objects o1, . . . ,on are given by the vertices v1, . . . , vn of G and
as dissimilarities dij between two vertices vi and vj for i, j ∈ V we consider the length of the shortest
path between i and j, i.e., D = [dij ] is the graph distance matrix of G. We assume that the graph is
connected, i.e., that the shortest path distances dij are finite for any pair of vertices vi and vj .
While the volume of Euclidean space expands polynomially, exponential expansion can be observed in
hyperbolic space, see e.g. [8]. Because of this property, hyperbolic space is expected to give a better
representation for hierarchical or tree-like structures than Euclidean geometry, and therefore is a favorable
target space for graph embeddings, see e.g [8, 11].

2.3 Landmark-based network embeddings
For large graphs or data sets, embedding methods encounter several limitations: First, the embedding
method may become computationally too costly; second, the dissimilarity matrix D may become too
large to hold in memory; and third, the pre-computation of the dissimilarities dij themselves may become
infeasible. In the network embedding problem, for instance, computation of the full distance matrix of an
unweighted, undirected graph requires O(|V |3) computations with the Floyd-Warshall algorithm ([7]).∗
To alleviate this problem, landmark-based embedding methods can be applied; see [6] for an application
to MDS. For these methods, a comparatively small number of nodes, indexed by L ⊂ V are designated
as landmarks. These landmarks are embedded into the target space, based on their pairwise distances.
The remaining non-landmark points (indexed by N = V \ L) are then embedded by ‘triangulation’, i.e.,
based on their distances with respect to the landmarks, but not to each other. Overall, only all shortest-
paths sourced at landmark nodes have to be computed, reducing the cost of distance-computations to
O(|L| · |V |2). This represents an asymptotic increase in efficiency, if |L| scales sublinear with |V |, i.e. if
the number of landmarks does not need to be scaled up proportional to |V |. In Theorem 3.1 we show
that the number of landmarks required to recover point configurations in hyperbolic space Hd depends
only on the dimension d, not on the number of points. In this way, we provide a theoretical basis for the
application of landmark methods to hyperbolic embeddings.

2.4 Stress- vs. strain-based embeddings
Stress-based embeddings solve the embedding problem (4) by minimizing the squared stress functional

Stress(x1, . . . ,xn)2 =

n∑
i,j=1

(dij − dκH(xi,xj))
2. (5)

Equivalent loss functions are the root-mean-square error

RMSE =

√
1

n(n− 1)
Stress(x1, . . . ,xn)2 (6)

∗Other methods may be more efficient under additional assumptions on the graph structure, e.g., under bounds on the
number of edges.



and the relative embedding error

REE = Stress(x1, . . . ,xn)/

√√√√ n∑
i,j=1

dij , (7)

which can be compared across different dissimilarity matrices D and input sizes n. Due to the properties
of the hyperbolic distance dκH(xi,xj), minimizing (5) is a challenging non-convex optimization prob-
lem, which has to be solved by numerical minimization with no guarantee of convergence to the global
minimum. Approaches by gradient descent and neural-network-based minimization are given in [19, 4].
Stress-minimization has been combined with a landmark-based approach and with advanced optimiza-
tion methods by [21] and [5] under the names of Rigel and HyPy respectively. While Rigel uses the
derivative-free Nelder–Mead simplex optimization method, HyPy provides an improvement by replacing
the simplex optimization with iterative quasi-Newton minimization, for which efficient routines such as
LBFGS [22] can be used and supplied with the analytic gradient of stress, given in [5, Eqs. (3.1),(3.2)]. As
an alternative, in our previous work [10], we have introduced hydra, a strain-based hyperbolic embedding
method, based on minimization of the squared strain functional

Strain(x1, . . . ,xn)2 :=
∑
i,j

(cosh(
√
κ dij)− (xi ◦ xj))2. (8)

The strain functional is obtained from the stress functional by the transformation of all distances by
hyperbolic cosine. As shown in [10], hydra has two important theoretical properties. The algorithm
recovers any configuration of points in d-dimensional hyperbolic space up to isometry and it is guaranteed
to return the globally optimal solutions of the strain-minimization problem (8). In numerical experiments,
hydra is faster than HyPy and Rigel by several orders of magnitudes, see [10]. While these are attractive
properties, the strain functional (8) is not as interpretable as the stress functional (5), which aligns with
the popular ‘least-squares’ paradigm of regression analysis and numerical approximation. Therefore, if
we accept RMSE/REE as the target measure of embedding quality, there are two practical uses of the
hydra method, cf. [10]:

• Use hydra as a stand-alone method. This gives a very fast embedding method (several orders of
magnitude faster than HyPy/Rigel), but with a relative embedding error (REE) that is approx. 1.0
to 1.5 times larger than the REE of stress-based embeddings produced by HyPy/Rigel.

• Use the result of hydra as an initial condition for stress minimization. This gives an embedding
method (called hydra+ in [10]) that is typically 20% - 50% faster than HyPy/Rigel and results in
a smaller REE in all numerical tests with improvements up to 40%.

We emphasize that these properties are limited by the fact that hydra is not a landmark-based method,
and therefore can not be scaled up to the very large network instances considered for HyPy in [5].

2.5 Strain-minimization with landmarks
Both the Rigel algorithm of [21] and the HyPy algorithm of [5] combine the method of stress-minimization
with the landmark heuristic. That is, the stress functional is first minimized on landmarks only, and then
the stress between landmark and non-landmark-nodes is minimized. In addition, HyPy applies heuristics
of gradually expanding the landmark set during optimization and of restarting the optimization procedure
from multiple random initial point configurations. Due to the landmark approach, Rigel/HyPy are able
to deal with very large instances of the network embedding problem with millions of nodes. The hydra
method, as proposed in [10], on the other side, requires knowledge of the full dissimilarity matrixD = [dij ]
and is therefore only applicable to small or medium sized networks. This is our motivation, to introduce



here a landmarked version of hydra, and to show that strain-minimization can be combined with the
landmark heuristic while retaining all its attractive theoretical properties. In particular, we show in
Theorem 3.1 that the necessary size of the landmark set only depends on the intrinsic dimension d of the
embedding space, but not on the total number of nodes (or other objects) to be embedded. This gives,
for the first time, a sound theoretical basis for the application of the landmark heuristic for hyperbolic
embedding problems. In terms of practical applications, we demonstrate in Section 4 that the landmarked
hydra method L-hydra can be scaled up to all network embedding problems considered in [5] with up to
almost 4 million nodes. The advantages of hydra as compared with HyPy/Rigel are effectively retained
in the landmarked setting (see Section 4 for details):

• As a stand-alone method, L-hydra is a very fast embedding method (about ten times faster than
HyPy with landmarks), but with a higher relative embedding error than the stress-based embedding
produced by HyPy.

• Using the result of L-hydra as an initial condition for stress minimization (we call this method
L-hydra+) gives an embedding method that is both faster than HyPy and produces embeddings
with smaller error.

3 The landmarked hydra algorithm

3.1 Formulation of the embedding problem
Consider a set of objects o1, . . . ,on, which are partitioned into landmarks (oi)i∈L and non-landmarks
(oi)i∈N . The pairwise dissimilarity dij of oi and oj is only assumed to be known when oi or oj is a
landmark. By permuting objects, the dissimilarity matrix D can be arranged as D =

(
DL D>

N

DN DR

)
where

only DL – containing all pairwise dissimilarities between landmark nodes – and DN – containing all
dissimilarities between one landmark and one non-landmark node – are known.
We first discuss the problem of exact recovery in hyperbolic space. That is, we assume that for a given
embedding dimension d, the objects oi can be perfectly described by points xi in the hyperbolic manifold
Hd, i.e. the dissimilarity dij between any pair of objects (oi,oj) can be described exactly by the hyperbolic
distance between the corresponding points xi, xj ∈ Hd:

dij = dκH(xi,xj) =
1√
κ

arcosh(xi ◦ xj).

Transforming all distances by the hyperbolic cosine, we obtain

cosh(
√
κ dij) = xi ◦ xj . (9)

We set A = cosh (
√
κD), where the hyperbolic cosine is applied elementwise to the dissimilarity matrix

D. Setting l = |L| and m = |N | we write

X =

(
XL

XN

)
= (x1, . . . ,xl,xl+1, . . . ,xl+m)

> ∈ R(l+m)×(d+1)

for the coordinate matrix of some points x1, . . . ,xl+m in Hd. Finally, let J be the (d + 1) × (d + 1)
diagonal matrix

J = diag(1,−1, . . . ,−1),

cf. [17, §3.1]. Equation (9) for i ∈ L ∪N and j ∈ L can now be written in compact form as(
AL
AN

)
=

(
XL

XN

)
J X>L . (10)



Thus, the coordinate matrix X =
(
XL

XN

)
can be recovered from the known dissimilarities DL, DN if we

can solve (10) for XL and XN . Due to its block structure, equation (10) can be split into two parts and
solved in two stages, where the coordinates for landmarks must be determined from the first equation
and the coordinates of non-landmarks from the second one:{

AL = XLJX
>
L (11a)

AN = XNJX
>
L .. (11b)

However, we can only hope to recover (XL, XN ) from these equations up to hyperbolic isometry, i.e., up
to a distance-preserving transformation ψ : Hd → Hd. From [17, Sec. 3.1,3.2], any hyperbolic isometry
can be written as

ψ(x) = Tx, (12)

where T ∈ R(d+1)×(d+1) is an invertible matrix, which has T11 > 0 and satisfies

T>JT = TJT> = J. (13)

Matrices with this property are called positive Lorentz matrices and both Hd and R1,d
+ are invariant under

such transformations. Our observation can now be formalized as follows:

Lemma 3.1. Let T ∈ R(d+1)×(d+1) be a positive Lorentz matrix and (XL, XN ) a solution of (11). Then
(X̃L, X̃N ) = (XLT,XNT ) is also a solution of (11). If XL and XN are hyperbolic coordinate matrices of
points (x1, . . . ,xl+m) ∈ Hd , then X̃L and X̃N are also hyperbolic coordinate matrices of hyperbolically
isometric points (x̃1, . . . , x̃l+m) ∈ Hd.
Proof. The first statement follows directly from

X̃LJX̃
>
L = XLTJT

>X>L = XLJX
>
L = AL

and

X̃NJX̃
>
L = XNTJT

>X>L = XNJX
>
L = AN .

The second statement follows from the invariance of Hd under the positive Lorentz matrix T .

3.2 Solving the embedding problem
In general, one cannot expect given dissimilarities dij to be represented exactly by hyperbolic distances
in Hd, and therefore should not expect an exact solution to (11). For this reason, we replace (11) by its
relaxation

X̂L = arg min
{∥∥AL −XLJX

>
L

∥∥
F

: XL ∈ Rl×(d+1)
}

(14a)

X̂N = arg min
{∥∥AN −XNJX

>
L

∥∥
F

: XN ∈ Rm×(d+1)
}
, (14b)

where ‖.‖ indicated the Frobenius norm on matrices. Note that the relaxation consists of two parts:
First, equality has been replaced by minimality of the Frobenius distance. Second, X̂L and X̂N are no
longer constrained to coordinate matrices of points in Hd, but of points in the ambient Lorentz space
R1,d.
The L-hydra algorithm consists of the stepwise solution of (14a):

• In step 1 and 2, the minimization problem (14a) is solved by a matrix Eigendecomposition. This is
equivalent to the hydra embedding of [10], applied to the landmarks only.

• In step 3, the least-squares problem (14b) is solved using the Moore-Penrose inverse of X̂LJ .

The details of each step are listed in Algorithm 1.



Algorithm 1 L-hydra (DL, DN , d, κ)

Input • Two matrices DL ∈ Rl×l>0 and DN ∈ Rm×l>0 , of which the first represents the dissimilarities
between pairs of landmarks and the second between pairs of landmarks and non-landmarks. The
matrix DL must be symmetric with zero diagonal.

• Embedding dimension d ≤ (l +m− 1)

• Parameter κ > 0; the negative of the hyperbolic curvature −κ.

Step 1 Set{
AL = cosh

(√
κDL

)
(15a)

AN = cosh
(√
κDN

)
(15b)

with cosh applied elementwise, and compute the Eigendecomposition of the matrix AL

AL = QΛLQ
>, (16)

where ΛL is the diagonal matrix of the Eigenvalues λ1 ≥ · · · ≥ λl and the columns of Q are the cor-
responding Eigenvectors q1, . . . , ql.

Step 2 Assuming that the last d Eigenvalues are negative, allocate the l × (d+ 1)-matrix

X̂L :=
[√

λ1 q1
√

(−λl−d+1) ql−d+1 · · ·
√

(−λl) ql
]
. (17)

If not all of the last d Eigenvalues are negative, return Null. The algorithm must be rerun with smaller
embedding dimension d for non-null result.

Step 3 Allocate the m× (d+ 1)-matrix

X̂N : = AN X̂L diag

(
1

λ1
− 1

λl−d+1
· · · − 1

λl

)
= AN

[
q1√
λ1

− ql−d+1√
−λl−d+1

· · · − ql√
−λl

]
.

(18)

Return Matrix X̂ =

(
X̂L

X̂N

)
whose rows are coordinates in positive Lorentz space R1,d

+ .



3.3 Theoretical Properties
The key theoretical properties of the L-hydra algorithm are summarized in the following theorems.

Theorem 3.1 (Exact Recovery). Let x1, . . . ,xm+l be points in hyperbolic d-space Hd, of which the first
l ≥ d are designated as landmarks. Assume that the landmarks are not all contained in a single hyperplane
of Hd and let D = [dij ] = [dκH(xi,xj)] be the matrix of their hyperbolic distances with curvature −κ,
partitioned as

D =

(
DL D>N
DN DR

)
.

Then the algorithm L-hydra (DL, DN , d, κ) recovers all points x1, . . . ,xl+m up to isometry. That is, the
rows x̂1, . . . , x̂l+m of the matrix X̂ returned by L-hydra (DL, DN , d, κ) are points in Hd and satisfy

dH(x̂i, x̂j) = dH(xi,xj) for all i, j = 1, . . . , l +m. (19)

Theorem 3.2 (Optimal Approximation). Suppose that AL = cosh (
√
κDL) has at least d ∈ N strictly

negative Eigenvalues. Then, the matrices X̂L, X̂N returned by the algorithm L-hydra (DL, DN , d, κ) solve
the minimization problem (14a). Moreover, the first columns of X̂L and X̂N are strictly positive; equiv-
alently, all rows of X̂L and X̂N represent points in positive Lorentz space R1,d

+ .

The first part of the result, i.e., the optimality of the embedding of landmarks, follows from [10]. For
convenience, we provide a self-contained proof of both parts:

Proof. Let AL = QΛLQ
> be the Eigendecomposition of AL = XLJX

>
L , where Λ is the diagonal matrix

of the Eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λl of AL in descending order and Q is unitary, i.e., Q>Q = I. By
the unitary invariance of the Frobenius norm, solving the minimization problem (14a) is equivalent to
solving

ŶL = arg min
{∥∥YLJY >L − Λ

∥∥
F

: YL ∈ Rl×(d+1)
}
, (20)

where ŶL is related to X̂L by XL = QŶL. We claim that (20) is minimized by

ŶL :=
[√

λ1 e1
√

(−λl−d+1) el−d+1 · · ·
√

(−λl) el
]
. (21)

To see this, note that on the one hand,∥∥∥ŶLJŶ >L − Λ
∥∥∥ =

l−d∑
i=2

λ2i .

On the other hand, for an arbitrary YL ∈ Rl×(d+1), denote the Eigenvalues of YLJY >L by η1 ≥ η2 ≥ · · · ≥
ηl. By Sylvester’s law of inertia, owing to the structure of J , only η1 is strictly positive, only the last d
Eigenvalues ηl−d+1, . . . , ηl are strictly negative, and all other Eigenvalues must be zero. Hence, using the
Wielandt-Hofmann inequality, we obtain

∥∥YLJY >L − Λ
∥∥
F
≥

l∑
i=1

(ηi − λi)2 ≥
l−d∑
i=2

λ2i =
∥∥∥ŶLJŶ >L − Λ

∥∥∥
F

for all YL ∈ Rl×(d+1), showing the optimality of ŶL for (20). Transforming back to X̂L = QŶL yields
(17) and shows that X̂L solves (14a). It remains to solve (14b), which is a least-squares problem, whose
solution can be written as

X̂N = AN (JX̂>L )+, (22)



where (JX̂>L )+ denotes the Moore-Penrose-Pseudoinverse; see [12, Theorem. (8.1) and Remark. (8.2)].
Since JX̂>L has full row rank, we can write

(JX̂>L )+ = X̂LJ(JX̂>L X̂LJ)−1 = X̂L(X̂>L X̂L)−1J = X̂L diag

(
1

λ1
− 1

λl−d+1
· · · − 1

λl

)
. (23)

Inserting this into (22) yields (18), completing the main part of the proof. Finally, note that by the
Perron-Frobenius theorem, the leading Eigenvector q1 of the positive matrix AL must also be positive.
Together with (18), this shows that the first columns of both X̂L and X̂N are positive.

Proof of Thm. 3.1. Denote by X =
(
XL

XN

)
the coordinate matrix of the original points x1, . . . ,xl+m and

by X̂ =
(
X̂L

X̂N

)
the coordinate matrix of the points x̂1, . . . , x̂l+m returned by L-hydra. Since the points

x1, . . . ,xl are not all contained in a single hyperplane of Hd, it follows from [17, §3.2] that there are d+1
among them which are linearly independent as points in Rd+1, and thus that XL has the full column
rank d+ 1. Let λ1 ≥ λ2 ≥ · · · ≥ λl be the Eigenvalues of AL = XLJX

>
L . By the same argument as in the

proof of Theorem 3.2 it follows that only λ1 is strictly positive, only the d last Eigenvalues λl−d+1, . . . , λl
are strictly negative and all others are zero. From the proof of Theorem 3.2 we find that the residual of
(14a) is∥∥∥AL − X̂LJX̂

>
L

∥∥∥2
F

=

l−d∑
i=2

λ2i = 0,

i.e., the embedding of the landmarks is exact. This means that XLJX
>
L = X̂LJX̂

>
L , i.e., X̂L and XL are

hyperbolically isometric and by (12), there exists a positive Lorentz matrix T such that

X̂L = XLT.

For the Moore-Penrose-Pseudoinverse (JX>L )+ it follows that

(JX̂>L )+ = (JX>L )+T.

Moreover, since XL has the full column rank, (JX>L )+ is a right-inverse of (JX>L ), and we have

X̂N = AN (JX̂>L )+ = AN (JX>L )+T = XNJX
>
L (JX>L )+T = XNT.

Together, it follows that X̂ = XT , i.e., X̂ and X are hyperbolically isometric and (19) must hold for all
(both landmark and non-landmark) points.

Corollary 3.1 (Consistency of landmark and non-landmark embedding). The landmark embedding is
consistent with the non-landmark embedding, meaning that re-embedding the j-th landmark point (j ∈
{1, . . . , l}) as a non-landmark will not change its representation x̂j, or equivalently

X̂L = AL

[
q1√
λ1

− ql−d+1√
−λl−d+1

· · · − ql√
−λl

]
. (24)

Remark 3.1. Re-embedding of landmarks is equivalent to inserting the transformed landmark dissimilarity
matrix AL, instead of AN , into (18). Hence, consistency can be expressed by equation (24).

Proof. For each eigenvector qj with j = l − d, . . . , l of AL we have

ALqj√
−λj

=
λjqj√
−λj

=
√
−λjqj ,

and – omitting the minus sign – also for j = 1. Applying this column-by-column and taking into account
(17) we obtain (24).



3.4 Practical implementation
After having analyzed the theoretical properties of L-hydra, we point out some more practical issues in
the implementation of L-hydra:

Reduced Eigendecomposition. In (17) only the first and the last d Eigenvalues and Eigenvectors of
the matrix AL are needed. There are efficient numerical routines to perform such a reduced Eigendecom-
position without computing the full Eigendecomposition of AL.

Optimizing Curvature. The L-hydra algorithm treats the curvature parameter κ as fixed input. In a
practical implementation it is usually desirable to also optimize over κ by running L-hydra for several
different values of κ. In a similar way, curvature is optimized in HyPy by treating it as an additional free
variable of the stress functional (5).

Projection to Hd. L-hydra returns points x̂1, . . . , x̂l+m in positive Lorentz space R1,d, which are ‘rea-
sonably close’ to Hd, due to Theorem 3.1, but typically not exactly located on the hyperboloid Hd. To
obtain points on Hd, a projection method must be applied, cf. [10]. Here, we project parallel to the
x1-axis, i.e. given x ∈ R1,d we set

x̃1 :=
√

1 + x22 + · · ·+ x2d+1

to obtain a projected point x̃ = (x̃1, x2, . . . , xd+1) ∈ Hd for each point returned by L-hydra.

Analysis of Runtime. Recall that the total number of points, the number of landmarks and the number
of non-landmarks are denoted by n, l and m = n− l respectively. For Step 1 and 2 of hydra, we expect
a runtime of O(lα) with α slightly above, but close, to 2, cf. [10, 9], using reduced Eigendecomposition.
For Step 3 of hydra, we expect a runtime of O(lm) for the multiplication of a m × l and a l × (d + 1)
matrix, resulting in an overall runtime of O(lα−1n). On the basis of Theorem 3.1, the necessary size of
the landmark set depends only on the intrinsic dimension d, but not on the total number of points to be
embedded. This implies, that the runtime of L-hydra scales effectively linear as O(n) in the number of
points to be embedded.

The L-hydra+ method. If minimization of the stress functional (5) (or, equivalently, relative embedding
error (7)) is the ultimate goal, then the result of L-hydra can be used as an initial condition for its
numerical minimization. Effectively, this corresponds to a chaining of L-hydra and HyPy, where L-hydra
replaces the random initial condition of HyPy.

4 Numerical Results
We test the practical performance of L-hydra and L-hydra+ on five social networks from SNAP ([20]),
with ∼300,000 up to almost 4 million nodes and ∼1 million up to ∼117 million edges; see Table 1 for
a brief description of the networks. The same networks were used in [5] to evaluate the performance of
HyPy, which serves as a benchmark for our methods. All networks are unweighted and undirected. The
l = 100 landmark nodes are chosen with probability proportional to the node degrees without replacement
as proposed by [5], which combines the benefits of random sampling and the selection of highest-degree
nodes. All shortest-path distances are computed using SNAP for Python ([13]). L-hydra and L-hydra+
were implemented in Python as described in Algorithm 1 and Section 3.4, i.e., with curvature optimiza-
tion, reduced Eigendecomposition and projection to Hd, using parallelized routines for matrix operations.
For HyPy, we used the Python code kindly supplied by the authors of [5], using the same parallelization
as for L-hydra and L-hydra+. All calculations were performed on a Dual socket Intel server using an



Network Description Source #Nodes #Edges
http://snap.stanford.edu/data/...

Amazon Network based on the ’Customers
Who Bought This Item Also Bought’
feature of the Amazon website

.../com-Amazon.html 334, 863 925, 872

DBLP Collaboration network of the DBLP
computer science bibliography

.../com-DBLP.html 317, 080 1, 049, 866

YouTube Friendships in the YouTube social
network

.../com-Youtube.html 1, 134, 890 2, 987, 624

Live Journal Friendship network of a free online
blogging community

.../com-LiveJournal.html 3, 997, 962 34, 681, 189

Orkut Friendships in an online social net-
work

.../com-Orkut.html 3, 072, 441 117, 185, 083

Table 1: Description of networks used for numerical experiments

Intel Xeon CPU E5-2680 v3 with 12 cores at 2.50GHz and with 64GB RAM.

The embedding results for all methods are shown in Figures 1 and 2. For each method and network,
we calculate the network embedding for dimensions d = 2, 3, . . . , 10. Following [5], we show the relative
embedding error (7) in three variations: calculated over all pairs of landmark nodes; calculated over all
pairs consisting of one landmark and one non-landmark node; and over 100,000 randomly chosen pairs of
non-landmark nodes (‘validation error ’). Note that due to the size of the networks, calculation of the full
embedding error over all node pairs is computationally infeasible, but the validation error should provide
a good proxy. Since HyPy starts from a random initial condition, we show the 5%− and 95%−quantiles
in addition to its average result over 20 runs.
The runtimes for embedding into dimension d = 2 are shown in Figure 3; results for other dimensions are
similar. Note that the runtime can be split into distance calculation – which is the same for all methods
– and embedding calculation – which differs from method to method. We summarize our observations as
follows:

Consistency with [5]. The results obtained for HyPy are consistent with the results reported in [5];
note that we report REE while RMSE is reported in [5].

Performance of L-hydra. As expected, the strain-minimizing algorithm L-hydra typically achieves
poorer results in terms of the relative embedding error (REE) than the stress-minimizing algorithms
L-hydra+ and HyPy. Compared to the average performance of HyPy, the validation REE of L-hydra is
on average (median over all networks and dimensions) 2.17 times larger. However, the total runtime of
L-hydra (the bulk of which is spent on distance calculation) is between 5 and 10 times faster than the
average runtime of HyPy. In essence, replacing HyPy by L-hydra trades a moderate increase in embedding
error against a substantial decrease in computation time.

Performance of L-hydra+. The embedding result of L-hydra+ – which combines L-hydra with stress
minimization – is consistently (over all networks, dimensions and error types) better than the average
result of HyPy, and in the large majority of cases even better than the 5%−quantile of HyPy results.
Averaged over all dimensions and networks, the validation REE of L-hydra+ is 12% smaller than the
validation REE of HyPy. At the same time, L-hydra+ is faster than HyPy for all network embeddings
except for YouTube, with a relative difference in average runtime from −52.5% (DBLP network) to +5.7%
(YouTube network).

Stability and Reproducibility. Both L-hydra and L-hydra+ do not suffer from the noise introduced

http://snap.stanford.edu/data/...
.../com-Amazon.html
.../com-DBLP.html
.../com-Youtube.html
.../com-LiveJournal.html
.../com-Orkut.html


by the random initial condition of HyPy, which – in particular for small dimension – causes a notable
variation in embedding quality of HyPy and yields different embedding results upon each rerun.

Runtime analysis. In panels A, B of Figure 3 we show regression lines to estimate the exponent α in the
conjectured complexity O(nα) for distance calculation and embedding. For distance calculation we obtain
the estimate αdist ≈ 1.31, showing that due to the sparsity of the networks, shortest path computations are
more efficient than the upper bound α = 2 obtained from the Floyd-Warshall method. For the embedding
step of L-hydra+ we estimate αL-hydra+ ≈ 1.32, while for L-hydra we obtain αL-hydra+ ≈ 0.99, confirming
the linear scaling of the method.
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l = 100 landmarks are used for all three methods. For L-hydra a 5−95% error bar is shown, corresponding
to 20 runs with randomized initial condition.
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