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While network science has become an indispensable tool for studying complex systems, the conventional
use of pairwise links often shows limitations in describing high-order interactions properly. Hypergraphs,
where each edge can connect more than two nodes, have thus become a new paradigm in network
science. Yet, we are still in lack of models linking network growth and hyperedge expansion, both of
which are commonly observable in the real world. Here, we propose a generative hypergraph model by
employing the preferential attachment mechanism in both nodes and hyperedge formation. The model
can produce bi-heterogeneity, exhibiting scale-free distributions in both hyperdegree and hyperedge size.
We provide a mean-field treatment that gives the expression of the two scaling exponents, which agree
with the numerical simulations. Our model may help to understand the networked systems showing both
types of heterogeneity and facilitate the study of complex dynamics thereon.
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Glossary of Terms
Hypergraph: a hypergraph is an extension of a graph, where an edge can connect any number of

vertices/nodes. Formally, a hypergraph is defined as H = (V,E), where V = {v1,v2, ...,vn} is a finite set
of nodes, and E = {e1,e2, ...,em} is a group of subsets of elements in V , corresponding to the hyperedge
set. When all hyperedge include only two nodes (i.e. |ei|= 2), the hypergraph is recovered into a graph.
In this work, we use this term interchangeable with hypernetwork.

u-uniform Hypergraph: a hypergraph where all its hyperedges are of the same size, |ei| = u,u ∈
{2,3, ...}.

Hyperdegree: the number of hyperedges that include node i, denoted as dH(i).
Hyperedge degree: the number of hyperedges that connect hyperedge ei, denoted as dHd(i). Two

hyperedges ei, j are connected if they include at least one same node, i.e. ei ∩ e j ̸= φ .
Size of hyperedge: the number of nodes that a hyperedge ei includes, denoted as S(i).

© The author 2023. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
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1. Introduction

A network is a simplest abstraction of a complex system [1], where the components of the system are
represented as nodes, which are usually linked by edges depicting interactions or relationships between
two involved components. Since the seminal work of Watts-Strogatz model [2] and the Barabási-Albert
model [3], network science has rapidly developed into a powerful paradigm for studying complex natural
and socio-economic systems [4–8].

However, some scenarios often arise where interactions go beyond pairwise as in the traditional
network paradigm, such as in scientific collaborations [9], neuronal activities [10], biological pro-
cessed [11], social networks [12] and cell-to-cell communications [13]. There, more than two com-
ponents can be simultaneously engaged in a group interaction, also termed as higher-order interactions.
In this regard, hypergraphs or hypernetworks were coined where the components, still represented by a
set of nodes, can be linked by hyperedges that are allowed to connect multiple nodes [14]. This extension
has proved to be more powerful in describing many complex systems in reality, where the traditional
pairwise network formulation can be taken as special cases of hypergraphs. Owing to its efficacy, the
concept of hypergraphs has boomed to a widely adopted framework, which is undoubtedly helpful for
depicting numerous real circumstances [15–17].

To understand the features of hypergraphs, a useful way is to build generative models that reproduce
the properties of real networks. Prominent examples include Erdős-Rényi (ER) random network model,
Watts-Strogatz model [2], and Barabási-Albert (BA) model [3] that have been leveraged to understand
the basic pictures within the classic network framework. In this regard, there are a few works that have
started to model the realistic instances within the hypergraph framework. One example is the folkson-
omy, where the tripartite structure of users, resources, and tags are often seen, and a random hypergraph
model is proposed and results are compared with data from Flickr [18], this website together with
the bookmarking site CiteULike share similar properties with many previously studied complex net-
works [19]. Within the context of knowledge generation and diffusion, the hypernetwork is also found
more proper for description, and two models are proposed by integrating the hypernetwork structure
and the knowledge generation processes [20]. From the hypergraph perspective, Vazquez constructs
a statistical model to solve the population stratification problem, which is tested upon phenotypic or
genetic information [21].

In the meantime, there are a few work devoting to building minimal generative model for hyper-
graphs, and focusing on the statistical properties. For example, a class of evolving models for hyper-
graphs are proposed [22–25], where by adopting the growth and linear preferential attachment the
degree or hyperdegree distribution renders scale-free property. In addition, nonlinear preferential attach-
ment is also adopted [26], where the number of newly added nodes is also draw from a distribution, thus
resulting a nonuniform hypergraph. A combination of linear preferential attachment and/or nonpref-
erential mechanism is also developed in [27]. Ref. [28] propose a hypergraph model inspired by ER
random graphs, where the node hyperdegree distribution obeys a Poisson distribution; they also build
bilayer hypergraph model with ER or BA property in each layer. Besides, there are also some efforts for
generative hypergraph construction based upon different preferential mechanisms aiming to model the
real-world data [29–34].

However, a common feature of most proposed hypergraph models is the homogeneous distribution
in the hyperedge size. This is in sharp contrast with the observations in reality, where the sizes of
hypergraphs are often heterogeneous. For example, in social hypernetworks where nodes represent the
individuals while hyperedges link groups such as classes, companies, and even towns, the hyperedges
generally vary in their sizes. The sizes of hyperedges (i.e. the firm size) in company hypernetworks
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FIG. 1. A schematic description of our DHH model with m0 = 2, mnew = 1 and mold = 1. The arrow represents the growth process
through either the occurrence of hyperedge formation labeled as A or the hyperedge expansion labeled as B. When executing
A −B−A in the first three steps respectively, the top network can be obtained; when executing A −B−B, the bottom network
is generated.

are found to follow a power-law distribution [35]. Similar observations were also be made for the
urban sizes [36] , where each town or city can be taken as a hyperedge. We also give two examples
showing the heterogenous property in the SM [37]. One is the number of publications distribution for
researchers in four scientific journals, demonstrating power law distributions in the hyperdegree. The
other is urban population distribution in China in 2000, showing the heterogeneity in the hyperedge.
It is hence natural to develop a hypergraph model that is able to produce skewed distributions in both
hyperdegree and hyperedge size, which is able to embrace the empirically observed two heterogeneities
in a unified framework.

In this work, we develop a double heterogeneity hypergraph model. By incorporating a continual
growth mechanism with preferential attachment, in both nodes or hyperedges, such a simple model
can generate scale-free graphs exhibiting the signature skewed distributions in both hyperdegrees and
hyperedges. We develop a mean-field theory that provides the exact expressions of the two scaling
exponents, which are in good agreement with the numerical simulations.

The reminder of this paper is organized as follows. In Sec. 2, we introduce our model. The numerical
results are given in Sec. 3, with a theoretical treatment to derive the two associated power exponents in
Sec. 4. Sec. 5 provides the comparison between the numerical results and the theoretic prediction.
Conclusions and discussions will be given in Sec. 6.

2. Double heterogeneous hypergraph model

The generative model of the double heterogeneous hypergraph (DHH) incorporates two most commonly
adopted ingredients as proposed in the BA model [3]: growth and preferential attachment. The former
is due to the continuous expansion of networked systems, such as the growth of the internet, company
networks, and the social networks etc; the latter is based on the observations that the newly added node
is more likely to connect the already highly connected nodes or hyperedges. A simple example is the
job application, where the applicants generally tend to join the big companies for higher salaries and a
better platform. Here, the difference from the BA model is that the preferential attachment is engaged
in both node degrees and hyperedges in our model rather than merely the degrees in BA model.

The scheme of construction of DHH is illustrated in Fig. 1. The procedure is as follows:
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1. Initially, m0 nodes form a hyperedge;

2. mnew new node are added in batch, with a probability p, which form a new hyperedge by con-
necting to mold existing nodes. The probability of the existing node i to be chosen follows
Π(dH(i)) = dH(i)/∑ j dH( j), where dH(i) is the hyperdegree of node i and ∑ j dH( j) is the sum
over all existing nodes;

3. Otherwise, the newly added nodes join one of the existing hyperedges without forming a new
hyperedge. The selection probability of an existing hyperedge is Π(S(i)) = S(i)/∑ j S( j), where
S(i) is the size of the hyperedge i and ∑ j S( j) represents the sum over all existing hyperedges.

4. Step 2-3 repeat until the hypergraph size reaches a preset size N.

Fig. 1 shows an example of network growth with m0 = 2 and mnew = mold = 1. Note that, in this
case, our model recovers to the classic BA network model when p = 1, because there is no growth in
the hyperedges, all edges including only two nodes, and the preferential attachment acts exclusively on
the degrees. For arbitrary values of mnew and mold in this extreme, the model recovers to a u-uniform
hypergraph, where u = mnew +mold . In the other extreme case with p = 0, there is only one hyperedge
that includes all nodes. Generally, we are interested in cases in between (i.e., 0 < p < 1), where both
the number of hyperedges and their sizes evolve.
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FIG. 2. Distribution of hyperdegree and hyperedge size in our DHH model for two different sizes N, with p = 0.5. (a) The
hyperdegree distributions for two system size (N = 5× 105 and 8× 105). The slope of the dashed line is 3.86. (b) The size
distribution of hyperedges for the same two sizes. The slope of the dashed line is 3.85. Parameters: m0 = 2, mnew = mold = 1.

3. Simulation results

Following the description of the model in Sec. 2, we first present simulation results with m0 = 2, mnew =
mold = 1 for simplicity. Bear in mind that the coevolving process includes the hyperedge formation with
probability p and the hyperedge expansion with 1− p. After t timesteps, the model yields a network of
size Nt = mnewt +m0, and pt +1 hyperedges on average.
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FIG. 3. Hyperdegree distributions. (a-c) are the PDF of node hyperdegree for p = 0.3, 0.5, 0.7, respectively. (d-f) are CDF of the
same data as (a-c). The red line are the fitted power law by the least squares method, while the orange are the power law predicted
by our mean-field theory given by Eq. (4.8). Parameters: m0 = 2, mnew = mold = 1, and N = 5×105.

Fig. 2 shows that both hyperdegree and hyperedge sizes evolve to scale-invariant distributions, each
showing a power law profile. Especially, for the given probability p = 0.5, when the two evolutionary
processes are equally addressed, their exponents become close to each other. These plots show that,
despite its continual growth, the system organizes itself into a scale-free stationary distribution. In the
following study, we set N = 5× 105 as the preset size and the results are averaged over 10 ensembles.
Within this setup, we show the hyperdegree distribution and the size distribution of hyperedges in Fig. 3
and Fig. 4 respectively, both with probabilities p = 0.3, 0.5, and 0.7.

The probability density function (PDF) in Fig. 3 (a-c) show that the network evolves into a scale-
invariant distribution, where the probability that a node has dH hyperedges follows a power law, but its
exponent depends on the probability p instead of being constant as in the BA model. Fig. 3 (d-f) show
the corresponding cumulative distribution function (CDF) distributions, confirming the estimated power
exponents in PDF profiles. As can be seen, the exponent γ decreases (5.89, 3.86, 3.37) as the probability
p becomes larger, which is reasonable since the process involves more new hyperedge formation as the
probability p becomes larger.

Fig. 4 shows the size distributions of hyperedges. Similarly, for the three given probabilities, the
sizes of hyperedges all exhibit power law distributions, as seen in both PDF and CDF. By comparison,
the exponent increases with the probability p. This is due to less hypergraph expansion as expected in
this trend, which leads to a more homogeneous distribution.

4. A mean-field theory

To understand the evolutionary process in the DHH model, we develop a mean-field theory which adapts
the idea from Ref. [38]. We first derive the probability P(dH) and calculate the exponent for the hyperde-
gree distribution. Assuming that dH(i) is continuous, any given node i receives new hyperedges accord-
ing to the probability Π(dH(i)) = dH(i)/∑ j dH( j). Thus, the hyperdegree dH(i) of node i approximately



6 of 11 ZHAO LI, JING ZHANG, GUOZHONG ZHENG ET AL.

10
0

10
1

10
2

10
3

10
4

10
-5

10
0

P
D

F

p=0.3

 = 2.83
e  = 2.86

10
0

10
1

10
2

10
3

10
4

10
-5

10
0

C
D

F

 = 1.83

e -1 = 1.86

10
0

10
1

10
2

10
3

10
-5

10
0

p=0.5

 = 3.85
e  = 4.00

10
0

10
1

10
2

10
3

S 

10
-5

10
0

 = 2.85

e -1 = 3.00

10
1

10
2

10
-5

10
0

p=0.7

 = 5.86

e  = 6.67
predict

   fit

10
1

10
2

10
-5

10
0

 = 4.86

e -1 = 5.67

(a)

(d)

(b)

(e)

(c)

(f)

FIG. 4. The size distributions of hyperedges. (a-c) are the PDF of hyperedge size distributions when p= 0.3, 0.5, 0.7, respectively.
(d-f) are CDF of the same data as (a-c), respectively. The light blue line are the fitted power law by the least squares method, while
the dark blue are the power law predicted by our mean-field theory given by Eq. (4.12). Parameters: m0 = 2, mnew = mold = 1,
and N = 5×105.

satisfies the following equation:

∂dH(i)
∂ t

≈ pmoldΠ(dH(i)) = pmold
dH(i)

∑ j dH( j)
. (4.1)

For the long-term evolution, we have ∑ j dH( j) = m0 +(mnew +mold)pt +mnew(1− p)t ≈ (mnew +
mold p)t and thus

∂dH(i)
∂ t

≈ mold pdH(i)
(mnew +mold p)t

. (4.2)

Given the initial hyperdegree dH(i, ti) = 1 of the node i when it joins the network, the solution of this
equation is

dH(i, t) = (
t
ti
)

mold p
mnew+mold p . (4.3)

With this relation between hyperdegree and joining time, the probability that a node with a hyperdegree
being smaller than dH is

P(dH(i, t)< dH) = P(ti >
t

d(mnew+mold p)/mold p
H

)

= 1−P(ti ⩽
t

d(mnew+mold p)/mold p
H

). (4.4)

Since we assume that mnew nodes are added to the network uniformly at each time step, we have

P(ti) =
1
t
. (4.5)

By plugging it into Eq. (4.4), we have

P(dH(t)< dH) = 1− t

d(mnew+mold p)/mold p
H t

. (4.6)
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The hyperdegree distribution P(dH , t) of the network at time t can eventually be written as

P(dH , t) =
∂P(dH(t)< dH)

∂dH

=
mnew +mold p

mold p
d
−(2+ mnew

mold p )

H . (4.7)

Note that Eq. (4.7) does not include time explicitly, which indicates that the hyperdegree distribution is
time-invariant. The hyperdegree distribution exhibits a power-law with an exponent

γd = 2+
mnew

mold p
, (4.8)

where γd ∈ (2,∞).
Next, we turn to the evolution of the hyperedge expansion. Similarly, by assuming the continuous

change of the size Si of any given hyperedge i, we have

∂S(i)
∂ t

≈ mmew(1− p)Π(S(i)) = mmew(1− p)
S(i)

∑ j S( j)
. (4.9)

When t is large enough, ∑ j S( j) = (mnew +mold)pt +mnew(1− p)t = (mnew +mold p)t. So the solution
to the equation (4.9) is

S(i, t) = (
t
ti
)

mnew(1−p)
mnew+mold p . (4.10)

Following the same logic as for Eqs.(4.4-4.7), the probability of S is expressed as

P(S) =
mnew +mold p
mnew(1− p)

S−γe , (4.11)

with the exponent

γe = 1+
mnew +mold p
mnew(1− p)

, (4.12)

where γe ∈ [2,∞). In fact, by defining the ratio λ = mnew/mold , the temporal evolution in Eqs. (4.3) and
(4.10) can be rewritten as

dH(t) = (
t
ti
)

p
λ+p , S(t) = (

t
ti
)

λ (1−p)
λ+p . (4.13)

whereas the exponents can also be rewritten in a compact way as

γd = 2+
λ

p
, γe = 1+

λ + p
λ (1− p)

. (4.14)

Notably, both the temporal evolution and the two power exponents depend only on the ratio of mnew
to mold and the probability p, not on the specific values of mnew or mold . A slightly different analytical
treatment based on the Poisson process method is also developed, with the same results as in Eqs. (4.13)
and (4.14) being obtained. Details see Sec. II in SM [37].
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FIG. 5. Comparison between the numerical estimation of power exponents and theoretical prediction for a range of probability p.
(a) The estimated power exponent of the hyperdegree distribution (a) and the hyperedge size distribution (b). Numerical results are
averaged over 20 ensembles, the solid lines are the theoretical predictions from Eq. (4.14). Parameters: m0 = 2, mnew = mold = 1,
and N = 5×105.

5. Comparison

To justify the mean-field calculation, we plot the theoretic predictions against the numerical results as
in Fig. 3 and Fig. 4 for comparison. We first see that the theoretic results are in line with the numerical
results, meaning that the mean-field treatment correctly captures the dependence of the exponents on
the probability p. However, by detailed comparison, we notice that the error becomes larger when the
distribution is more skewed (with a larger exponent), as displayed in Fig. 3(a,d) and Fig. 4(c,f).

A more systematic comparison is given in Fig. 5, where we plot the two estimated exponents from
numerical simulations and their theoretic predictions (i.e. Eq. (4.14)) for a wide range of probability p.
Fig. 5(a) shows that at the higher end of p, the theoretical prediction is in a good agreement with the
numerical estimation, but overestimates the value at the lower end. Similar observations can be made for
the hyperedge size distribution in Fig.5 (b), but an opposite trend is displayed. The theoretic prediction
is in a good agreement with a smaller p, while the error increases with p.

The opposite trend of the dependence on the probability p is reasonable since the two processes of
hyperedge increase and the hyperedge expansion are complementary. When p is small, the preferential
attachment works preferably on the hyperedge expansion. The newly joining node may thus face more
choices among the existing nodes than in a pure increasing process of hyperedges as in the BA model.
It turns out to dilute the “rich-get-richer” effect regarding the hyperdegree and leads to a less heteroge-
neous network with a large γd . In the opposite case when p is large, the process of hyperedge increase
dominates, the hyperdegrees exhibit strong heterogeneity with a smaller power exponent. As a conse-
quence, the newly added nodes have much more hyperedges to join when they are going to contribute to
the hyperedge expansion, therefore the “rich-get-richer” effect regarding the hyperedge size is leveled
down, with a less heterogeneity (i.e. a large γe) as expected. In fact, Eq. (4.14) reveals that the two
exponents are correlated with each other, i.e., (re−1)(1− p) = 1+1/(rd −2), which vary in oppositely
when p is varied as we indeed observed in Fig. 5. Notice that there is an overestimation for those cases
with a large exponent, one potential reason for that could be due to the fact that for those cases with less
heterogeneity, there is a lack of data due to the less frequent occurrence, which may cause an enhanced
error.
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The validation is also conducted for the temporal evolution for both the hyperdegree dH(t) or hyper-
edge size S(t), as shown in Fig. 6. For the two chosen nodes, we observe that the growth profile in both
cases follows power law, and the estimated power exponents in a good agreement the theoretic predic-
tion given in Eq. (4.13). Notice that, once the node is added earlier in the growth process, its advantage
over the latter one remains for the whole time evolution on average [see Fig. 6(a)], showing the “first-
move advantage” phenomena [39], which are widely observable in realistic contexts. The same is also
true for the hyperedge size, as seen in Fig. 6(b) that early formed hyperedge are generally larger than
the latter one, and the advantage remains as time goes by.
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FIG. 6. Typical growth of hyperdegree and hyperedge size in our DHH model with p = 0.5. (a) Time evolution of the hyperdegree
for two nodes added to system (the 10th and 100th nodes). (b) Time evolution of the hyperedge size for two hyperedges added to
system (the 10th and 100th hyperedges). Simulation results are obtained by averaging 100 independent runs. Both dashed lines
are with the slope given by the theoretic predictions (i.e. Eq. (4.13)). Parameters: m0 = 2, mnew = mold = 1.

6. Conclusions and discussions

Motivated by the gap between the observations and the state-of-the-art modeling work, we propose
a simple double heterogeneity hypergraph generative model. Our model captures the coevolution of
hyperedge formation and expansion, capable of showing double heterogeneous distributions, which
provides a unified perspective towards many real hypernetworks. We introduce a probability that medi-
ates two complementary processes, which leads to power-law distributions in both hyperdegree and
hyperedge size. Interestingly, the scaling behaviors of the two processes are negatively correlated with
each other in an intricate manner. We also develop a mean-field theory to grasp the essence of the evolu-
tionary process. It gives explicit expressions for the two power exponents which are in good agreement
with the numerical results. The derived temporal evolution indicates “rich-get-richer” effect for both
hyperdegree and the hyperedge size.

As a more versatile formulation, our DHH model degenerates into the classical BA model or u-
uniform hypergraph model for some special parameter choices. Note that, there are a few works that
are able to generate non-uniform hypergraphs, such as Ref. [26], but there the size heterogeneity of
hyperedges comes from some preset distribution, while ours are time-evolving according to the law
of growth. A formally similar but different model is Ref. [40], there they propose a model of the
coevolution of the hyperedge formation and weight evolution, a rich interplay between the topology and
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the weights is discussed.
Given the flexibility and expressive power of the hypergraph conception with regard to the classic

network formulation, we hope this simple model is to shed more light on the understanding towards the
evolution of realistic networks in a more unified way. In a practical sense, we hope that our model may
also provide a useful platform allowing the study of various dynamics involving high-order interactions
thereon, ranging from synchronization [41], game evolution [42] to epidemic spreading [43], among
other dynamical processes [17, 44].
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6. Réka Albert and Albert-László Barabási. Statistical mechanics of complex networks. Review of Modern

Physics, 74:47–97, Jan 2002.
7. Mark E. J. Newman. The structure and function of complex networks. SIAM Review, 45:167–256, 2003.
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