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Abstract

Real world network datasets often contain a wealth of complex topological information. In the face of these data,

researchers often employ methods to extract reduced networks containing the most important structures or pathways,

sometimes known as ‘skeletons’ or ‘backbones’. Numerous such methods have been developed. Yet data are often

noisy or incomplete, with unknown numbers of missing or spurious links. Relatively little effort has gone into un-

derstanding how salient network extraction methods perform in the face of noisy or incomplete networks. We study

this problem by comparing how the salient features extracted by two popular methods change when networks are

perturbed, either by deleting nodes or links, or by randomly rewiring links. Our results indicate that simple, global

statistics for skeletons can be accurately inferred even for noisy and incomplete network data, but it is crucial to have

complete, reliable data to use the exact topologies of skeletons or backbones. These results also help us understand

how skeletons respond to damage to the network itself, as in an attack scenario.

Keywords: mathematical and numerical analysis of networks, network stability under perturbation and duress, net-

work percolation, centrality measures, network skeletons and backbones.
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1 Introduction

Many systems consist of discrete elements that are coupled to one another in sophisticated ways. Modeling these

systems as networks often exposes more clearly the fundamental properties of the dataset [1–4]. While modeling

systems as networks is not a new approach, it has become more prevalent due to the greater availability of large data

sets [5]. The brain’s neurons have been mapped using these methods [6], as have air traffic patterns [7], and the flow

of cargo throughout the world [8].

The explosion of research on complex networks in recent years has led to the discovery of various properties of

networks and has allowed us to find ways of reducing the complexity while preserving certain key features. Many of

these methods focus on reducing the number of nodes in the network. Aside from simple thresholding, more sophis-

ticated coarse-graining techniques have also been used [9] to reduce the number of distinct entities in the network.

Here we will focus on methods of reducing the number of links in the network while preserving the nodes. This is

advantageous since it reduces the complexity of the system while still preserving scale-free properties.

Further, there has been considerable effort in understanding how networks as a whole respond to damage [10–13].

These studies have explored different methods of perturbing the network such as intentional attack and random failure.

Despite the significant amount of research in both of these areas separately, there has been little work in combining

the study of backbone and skeleton methods with stress applied to the system. Here we examine how skeletons and

backbones respond to different methods of stress applied to the system.

1.1 Network data

In exploring the response of network skeletons to perturbations to the network as a whole, we use three different

transportation networks, three biological networks and one network model. The transportation networks used are the

world air transportation network from 1995 (Airport), the network of global cargo shipments (Cargo), and the network

of human migrations provided by the IRS (Migration). The Airport network was taken from OAG Worldwide Ltd.

and has been examined in various previous studies [7, 14, 15]. The Cargo network comes from the IHS Fairplay data

and contains information about 16, 323 container ships [8].

For biological networks we examine the network containing the neural interactions of C. elegans (Neural), the

Florida Bay food web (Food Web), and the metabolic network of E. coli (Metabolic). The Neural network comes

from work by White et al. [16] and was explored in [17]. The Food Web is from a collection of public data sets

available online [18]. Finally, the Metabolic network comes from experimental research and has also been previously

analyzed [19].
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Network N L 〈k〉 ρ CV(k) CV(w) r

Airport 1227 18050 29.42 0.024 1.29 2.25 −0.06
Migration 3056 71551 46.83 0.015 1.94 6.13 −0.06

Cargo 951 25819 54.30 0.057 1.22 6.85 −0.14
Neural 297 2141 14.46 0.049 0.89 1.35 −0.16

Food Web 121 1763 29.14 0.24 0.45 11.77 −0.10
Metabolic 311 1304 8.39 0.027 1.79 7.91 −0.25

Random 1000 15028 30.06 0.03 0.177 1.44 −0.005

Table 1: Summary of the networks. Presented here: N, the number of nodes in the network; L, the number of links; 〈k〉, the average
degree; CV(k) the cofficient of variation of degree; CV(w), the coefficient of variation of weight; ρ = L/

(
N
2

)
, the network density;

and r, the degree assortativity coefficient.

Lastly, we analyze an Erdös-Rényi network with link weights drawn from a power-law distribution (Random).

Basic summary statistics for the networks, such as the number of nodes N and links L, is provided in Table 1.

1.2 Skeleton methods

While there are many ways to extract the most central links, the two methods explored here are the salience skeleton

of Grady et al. [20] and the disparity backbone of Serrano et al. [21]. Both of these methods involve using the weights

on the network links and therefore require that the data be presented as a weighted network. Note that while the terms

’backbone’ and ’skeleton’ are generally synonymous, for clarity we will refer to the salience skeleton and disparity

backbone for these methods.

The salience skeleton is an analysis based on the shortest path trees (SPTs) of a network and is similar to the

method used by Wu et al. to find superhighways [22]. First we compute the SPT rooted at each node of the network

using Dijkstra’s algorithm. The salience S i j of edge i j is then the fraction of SPTs in which i j appears [20]:

S i j =
1
N

N∑
c=1

[
(i j) ∈ Tc

]
(1)

where Tc is the set of all edges in the SPT rooted at node c and [P] = 1 if statement P is true and zero otherwise.

In real networks salience is distributed bimodally (Fig. 1), meaning that links occur in nearly all SPTs (S ≈ 1) or

in almost none (S ≈ 0). This makes it a natural way of extracting a network skeleton without having to choose an

arbitrary cutoff for S . Note that Eq. (1) is very similar to edge betweenness but subtly distinct in that it counts each

tree whereas betweenness counts each path [20].

The disparity backbone method focuses on statistically significant deviations in link weight. One begins by defin-

ing a null model that determines the expected distribution of link weights around a node with k links, if those weights

were distributed randomly between the links. The method then compares the actual link weights around the node to
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Figure 1: The salience distribution of the networks used in the analysis. For all the networks which use real data the distribution

displays a bimodal characteristic. Notably, the curve of the random network does not have the same shape. Values not shown are at

zero.

the null model. A significance level α ∈ (0, 1) is chosen and all links that are statistically significant at α belong to the

disparity backbone [21].

1.3 Robustness methods

In perturbing the networks we explore (i) node percolation, (ii) link percolation and (iii) link switching. We define

the percolation either of links or nodes by the number pperc which is the fraction of links or nodes removed from the

network. The classic result from percolation involves a phase transition in the size of the giant connected component

(GCC) for random networks. For most real networks there is no phase transition (while pperc < 1) and the size of

the giant connected component is robust. We repeat this experiment and examine how the giant connected component

changes under link percolation for our datasets. We confirm the previous results, which have shown that real networks

are robust to link percolation.

There are a variety of methods of performing link rewiring and the process is somewhat subtle. We use the method

introduced by Karrer et al. [23], which involves rewiring in such a way that the expectation value of the degree of each

node is preserved. This is done by defining the probability of an edge, ei j, existing between nodes i and j according to

their degrees:

ei j =
kik j

2L
, (2)

where ki is the degree of node i. To rewire, we go through each edge in the network and with some probability ps we

remove that edge and insert a new edge between nodes i and j, with i and j chosen with probability ei j/L. Otherwise,
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Figure 2: The giant connected component under link percolation. We observe that the fraction of nodes in the giant connected com-

ponent, NGCC, of the network is robust under link percolation meaning most links must be removed before the network fragments.

This holds for all networks studied here.

with probability 1− ps, we leave that original edge in place. Karrer et al. show that this rewiring scheme preserves the

expected degree of each node in the network while allowing us to tune the quantity of randomness with the parameter

ps.

2 Results

We now study how our skeleton methods perform in the face of noisy and missing data by applying them to perturbed

versions of our networks and comparing their results to those obtained for the original networks.

In the case of node percolation we observe that the size or fraction of links in the skeleton, |S |, is roughly propor-

tional to N, the number of nodes in the network. This can be seen by the fact that d|S |
dpperc

≈ −1. For the salience skeleton

this is true for all values of pperc while for the disparity backbone the linear regime terminates earlier. This is shown

in Fig. 3. This suggests that for the salience skeleton it is mainly the path to the removed node that is affected by the

percolation while paths to other nodes may change slightly but contain about the same number of links as the original

path. For the disparity backbone the decrease is faster than for the salience skeleton which shows that the size of the

disparity backbone is more sensitive to the number of nodes in the network.

In examining changes to the links in the network we look at several other quantities. First the skeleton giant

connected component, S GCC is intuitively defined as the fraction of the network that is connected when the network

is reduced to its skeleton. Second, we examine how many links are added to the skeleton, LA, after perturbation, and

how many links are deleted from the skeleton, LD, after perturbation. The comparisons are always made to the original
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Figure 3: How site (or node) percolation changes the size of the (left) salience skeleton and the (right) disparity backbone. The

linear decrease in the size of the skeleton skeleton as pperc increases shows that the size of the skeleton is proportional to N,

the number of nodes in the network. (The noise in the Neural and Metabolic networks is likely due to the smaller size of those

networks.) Meanwhile, the disparity backbone decreases in size more quickly than the salience skeleton for pperc < 1/2. The

disparity backbone is more sensitive to site percolation than the salience skeleton, especially for small amounts of percolation.

skeleton without any perturbation.

For link percolation we observe in Fig. 4 that for the salience skeleton both the size of the skeleton and the size of

the skeleton giant connected component (S GCC) are robust to change. However, the plots of LA and LD make clear that

the salience skeleton itself is undergoing significant changes. Essentially this suggests that under link percolation the

salience skeleton is able to find replacement pathways and those paths are not considerably longer than the original

paths. Links are being added and deleted, yet the skeleton is simply rerouted and maintains its connectivity and size.

The one exception to this is the simulated Random network which has a very fragmented skeleton. This behavior

corresponds to the fact that in the Random network there is a weaker preference for shortest paths, i.e. the salience is

not bimodal as shown in Fig. 1. However, after we remove a large fraction of the links each node only has a couple of

links and the shortest paths all go through the same links.

To analyze this hypothesis and confirm that this is not an artifact of the specific salience cutoff value chosen (0.5),

we examine the S GCC of the Random network with different salience cutoff values. In Fig. 6 we observe that the S GCC

vs. pperc curve has the same shape until the salience cutoff is very low. At that point the S GCC of the Random network

is also robust to percolation and increasing the amount of percolation never leads to a larger S GCC. The different

behavior of the Random network shows that real networks have intrinsic properties which lead the S GCC to be robust

under link percolation.

Meanwhile, in Fig. 5 we consider how link percolation affects the disparity backbone. The backbone size de-

creases, yet its giant connected component remains robust. Comparing LA to LD shows that many links are deleted

and very few are added to compensate for those removed. We also observe that the backbone of the Random network

is less robust than the backbones of the real networks, as it was for the salience skeleton.
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Figure 4: Changes to the salience skeleton under link percolation. (top left) The size of the skeleton is robust to link percolation

since d|S |
dpperc

≈ 0 until pperc → 1. (bottom left) The giant connected component of the skeleton itself is also robust to link percolation

(except in the case of the random network). This is similar to the giant component of the network as a whole which was previously

shown to be robust to link percolation. (top right) Despite the robustness of the size of the skeleton, there are many new links that

are added to the skeleton as we increase pperc. (bottom right) Further we observe that an equivalent number of links are removed

from the skeleton which leads to the lack of change in its size. This demonstrates that the skeleton performs a balancing act where

removed links are compensated with new links. New shortest paths are found and these new paths contain approximately the same

number of links as the old ones.
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Figure 5: Changes to the disparity backbone under link percolation. (top left) The size of the backbone is not robust to link

percolation which is in contrast to the salience skeleton. (bottom left) In agreement with the salience skeleton, the giant connected

component of the disparity backbone is also robust to link percolation, yet not quite to the same extent. (top right) Relatively few

links are added to the disparity backbone as links are deleted. Again, this is in contrast to the salience skeleton where enough links

were added to compensate for the links deleted from the skeleton. (bottom right) The rate at which links are deleted from the

backbone is similar to that for the salience skeleton. The main difference however is that this removal of links is not compensated

for by the addition of new links.
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Figure 6: The skeleton giant connected component, S GCC, of the Random network with different salience cutoffs. For salience

cutoff values > 0.3 the S GCC increases at pperc ≈ .8 and then begins decreasing at pperc ≈ .95. The unique shape of the salience

distribution of the Random network leads to different cutoffs being required for robustness.

Similarly, upon switching links using the method of Karrer et al. [23], we observe that S and S GCC are robust for

both the salience skeleton (Fig. 7) and the disparity backbone (Fig. 8). The significant decrease and large variation

in the airport network’s salience skeleton giant component is likely due to a specific, unstable hierarchical structure

present in that network which, when altered, leads to fragmentation. Further work is needed to determine the exact

nature of this structure. The neural network exhibits similar behavior likely due to this. The low S GCC of the random

network occurs for the same reason as seen under link percolation. Once again, we observe that similar to link

percolation, despite the robustness of the skeleton size and giant connected component, there are significant changes

in the links that actually make up the skeleton. Specifically we see large changes in LA and LD just as we did with link

percolation.

3 Discussion

These results show that global summary statistics of skeletons, such as the size of the skeleton and the size of the

skeleton giant connected component, are robust to changes in the network structure. In contrast the specific details of

the skeleton, such as the exact links it contains, will vary, potentially greatly, as the network is perturbed. This suggests

that while skeleton extraction methods are useful for understanding the global properties of a network, caution should

be applied when attempting to understand local properties based on extraction methods.
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Figure 7: Changes to the salience skeleton under link switching. (top left) The size of the skeleton is again robust. (bottom left)
The skeleton giant component of the migration and cargo networks is robust to link switching, yet the airport network’s skeleton

becomes dramatically fragmented. This is likely due to a specific, unstable hierarchical (or hub-spoke) structure present in the

airport network that dictates the paths for the salience skeleton. Such a hub-spoke structure may also account for the slight decrease

in the skeleton size for the neural network. (top and bottom right) Many links are added and removed from the skeleton, once

again in a way that maintains its size. Further, this reveals that while the size of the skeleton can be determined by the number

of nodes and the degree distribution, knowing which particular links will be present in the skeleton requires having the complete

dataset.
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Figure 8: Changes to the disparity backbone under link switching. (top left) As was true for the salience skeleton under link

switching and link percolation, we find the size of the disparity backbone to be robust under link switching. (bottom left) The giant

connected component of the disparity backbone is similarly robust. (top and bottom right) Again there are a significant number

of links added and deleted yet they once again balance to maintain the size of the skeleton.
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We further showed that different methods of computing the skeleton respond quite differently under perturbation in

many cases. Lastly, the response of skeletons of real networks is significantly different than the response of a random

network. The methods used to compute network skeletons and backbones exploit properties of real networks and these

properties are not present in the simulated network. This leads the skeleton of the random network to respond quite

differently under perturbation.

An obvious application of this work is to damage or change in transportation networks, where skeletons will be

responsible for carrying the majority of the system’s traffic. This change often occurs in the real world scenario of

transport reroutings and cancellations. The results here show that as these changes occur the specific composition of

the backbone or skeleton changes significantly. Nonetheless global properties can still often be extracted from the

skeleton.

A second application is in protein-protein networks. These networks often contain noisy data and are considered

incomplete in the interactions they show [24,25]. Significant work to map these networks entirely and obtain a full set

of all the connections present is ongoing [26]. Despite the lack of the full dataset, much analysis has already been done

on the data that is available [27, 28]. Our results suggests that caution should be applied when looking at structural

skeletons or backbones for many biological data sets that contain noisy data because the errors will have a profound

impact on the resulting skeleton and backbone structures.

Lastly, these results have implications to temporal networks. In this case it is not that our knowledge is lacking

about the network, but that the links change as time progresses [29]. Social networks often display this sort of time

dependence [30] and many neural networks also change through time [31, 32]. For these networks caution must be

taken before applying methods of extracting skeletons or backbones since their changing states will lead to different

results.
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