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Abstract

We present a method to construct a network null–model based on

the maximum entropy principle and where the restrictions that the rich–

club and the degree sequence impose are conserved. We show that the

probability that two nodes share a link can be described with a simple

probability function. The null–model closely approximates the assortative

properties of the network.

1 Introduction

In complex networks there are topological patterns that are presumed to be
important to network structure and its behaviour. The question is how to val-
idate if patterns are a random occurrence or if there is a mechanism, perhaps
unknown, responsible for them. A common technique in analysing properties
of a complex network is to use a statistical randomisation method to create an
ensemble of surrogate networks. The ensemble is used as a reference null–model
for comparison purposes. To take into consideration the intrinsic structure of
the network, the randomisation procedures are restricted to preserve the number
of connections of individual nodes, the degree sequence, as this is considered a
basic property of a network [1]. Two common procedures to generate surrogates
with a given degree sequence are the reshuffling of end points of a pair of links
[2, 3], or to creating “stubs” nodes with the desired degree and then joining a
pair of randomly selected stubs to form a link [4]. Both procedures have disad-
vantages, the reshuffling procedure can create sampling biases [3, 5–7] and the
stubs procedure can create undesired networks, for example, self loops [1]. Many
of these difficulties can be overcome using sophisticated statistical methods, for
example, to remove the bias in the reshuffling method [8, 9]. An extension in
the generation of null–models is to take into consideration network properties
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beyond the degree distribution. The aim is to generate random networks with
a priori degree distribution and degree–degree correlations. A common tech-
nique to generate this random network is to extend the stub method to include
higher order statistics [10, 11]. The null–model is generated by averaging over
an ensemble of networks generated by these methods.

Shannon’s entropy and related information measures are widely in use to
describe the complexity and properties of networks [12–21]. For instance, the
entropy of the degree distribution has been used to obtain networks that are
robust to networks attacks [21]. Shannon’s entropy can also be used to obtain
a null–model that best describes our state of knowledge of the network struc-
ture. In this case the maximal entropy approach (MaxEnt) is used to describe
our state of knowledge in a way that is “maximally noncommittal” by certain
criterion [22]. The maximal entropy method is attractive because it produces
null–models with probabilistic characteristics only warranted by the data. The
maximisation of entropic measures have been used to describe the complex-
ity of networks [15–17] and to construct null–models that conserve the degree
distribution P (k), the degree–degree correlation P (ki, kj) and the community
structure [15, 18]. The MaxEnt approach has many other uses. It has been
used to design random walks in a network such that the random walkers ex-
plore every possible walk with equal probability [19, 20]. It has also been used
to propose that scale–free networks defined only by their degree sequence, are
most likely to be disassortative [23]. This result was obtained using the ansatz
that the average degree of the nearest neighbour of a node can be described
with a power law.

As a method to construct a null–model the MaxEnt method has been used
to measure how a structural constraint, like the degree sequence P (k) or/and
the degree–degree correlations P (k′, k), shape the network structure [18]. A
common difficulty shared by the randomisation, stubs and MaxEnt methods in
the creation of null–models based on the conservation of the degree sequence
and degree–degree correlation is the lack of a faithful portray of the degree–
degree correlation. In a network with heavy–tailed degree distribution it is not
possible to obtain from measurements a reliable characterisation of the degree–
degree correlation P (k′, k), in particular for large degrees, due to insufficient
data [4,24]. To overcome this limitation it is common to use the average degree
of the nearest neighbour of a node with degree k, 〈knn(k)〉 =

∑

k′ k′P (k′|k). This
quantity is use to classify the assortativiness of a network [24]. This quantity has
some limitations: it conveys less information than the degree–degree correlation,
it is the average of an average, and could be ambiguous when classifying the
assortativity of a network [25]. These limitations mean that using P (k′, k) or
〈knn(k)〉 as network constraints generate statistical inaccuracies in the null–
model which will affect our ability to discern if a network property could have
been caused by chance.

In here we present a method to construct a MaxEnt null–model that is
defined by the degree sequence and the rich–club coefficient [26]. The rich–club
coefficient measures the density of connections between nodes with degree higher
or equal to a given degree. We conserve the rich–club since it is known that
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it is a projection of the degree–degree correlation [27, 28] and can be evaluated
accurately from the data.

2 The method: Rich–club and maximal entropy

To distinguish the nodes, we rank them in decreasing order of their degrees,
the node with the highest degree is ranked first and so on. As a consequence of
the ranking, two nodes with equal degrees will be distinguishable as they would
have different ranks. Under this ranking scheme we also evaluate the number of
links k+r that node r shares with nodes of higher rank, r′ ≤ r. The number of
links that a node has is divided into the number of links with nodes of higher
rank k+r and the number of links with nodes of lower rank kr − k+r . Notice
that k+r could be large enough to allow multiple links between two nodes. The
network is characterised by the sequences {k1, k2 . . . kN} and {k+1 , k

+
2 . . . k+N}.

The total number of links in the network is L =
∑N

i=1 ki and the rich–club
coefficient [26] is Φr = 2

∑r
i=1 k

+
i /(r(r − 1)). An ensemble of networks that

have the same sequence {k+1 , k
+
2 . . . k+N} will also have the same rich–club Φr.

Let us assume that Pr′,r is the probability that node r connects to node r′

and that Pr,r = 0 as self–loops are not allowed. Given the k+r links, we constrain
the connectivity of a network by imposing the condition that the expected value
of the number of links, 〈k+r 〉 satisfies

〈k+r 〉 =

r−1
∑

i=1

Pi,r = k+r , (1)

and the expected value of the degree 〈kr〉 is

〈kr〉 =
N
∑

j=1

Pj,r = k+r +
N
∑

j=r+1

Pj,r = kr. (2)

To formulate the MaxEnt problem it is convenient to normalise the above
constraints, that is to consider {k1/L, . . . , kN/L} and {k+1 /L, . . . , k

+
N/L} instead

of {k1, . . . , kN} and {k+1 , . . . , k
+
N}, and to represent the interaction between node

i and node j with the link ℓ that joins them. The MaxEnt solution is formulated
using the probabilities pℓ of the normalised constraints instead of Pi,j . If the
interaction between nodes i and j is represented by a random variable and if
this interaction is labeled by ℓ = g(i, j) = (i − 1)N − i(1 + i)/2 + j if i > j,
then the entropy associated with this interaction is s(pℓ) = −pℓ log pℓ where
pℓ = pg(i,j) is the probability that i and j interact via a link. The total entropy
of the network is

S(p1, . . . , pN(N−1)/2) = −

N(N−1)/2
∑

ℓ=1

pℓ log pℓ. (3)
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The maximal entropy solution is the set of probabilities pℓ where the entropy S
is maximal under certain constraints. In here, the constraints are the normali-
sation

N(N−1)/2
∑

ℓ=1

pℓ = 1 (4)

the conservation of k+r

r−1
∑

i=1

pg(i,r) =
k+r
L

, r = 1, . . . , N − 2 (5)

and the conservation of kr

N
∑

j=1

pg(j,r) =
k+r
L

+

N
∑

j=r+1

pg(j,r) =
kr
L
, r = 1, . . . , N − 1. (6)

The common procedure to obtain the MaxEnt solution uses the transformation
pℓ = exp(−qℓ) and represents the constraints Eq. (5)–(6) as the single relation-
ship

N(N−1)/2
∑

ℓ=1

fm(ℓ)e−qℓ = cm, m = 1, . . . ,M (7)

where cm are M constraints that are related to qℓ via the map fm(ℓ). For the
case of cm = km/L the number of constraints is N − 1 corresponding to the
number of degrees conserved. The number of constraints is N − 1 and not N
as the total number of links L =

∑

i ki is conserved by the normalisation of pℓ.
For the case cm = k+m/L the number of constraints is N − 2 as by construction
k+1 = 0 and k+N = kN , giving M = 2N−2 constraints. To clarify the relationship
between the links, nodes and constraints labels, Fig. 1 shows their relationship
for a five nodes network.

If the Lagrangian multipliers are λ0, . . . λM then the MaxEnt solution is ob-

tained by the maximisation of the function F(q1, . . . , qN(N−1)/2) =
∑N(N−1)/2)

ℓ (qℓ+

λ0) e−qℓ+
∑M

m λm

∑N(N−1)/2
ℓ fm(ℓ) e−qℓ . The maximisation condition ∂F((q1, . . . , qN(N−1)/2)/∂qℓ =

0 for ℓ = 1, . . . , N(N − 1)/2 gives the MaxEnt solution

qℓ = 1 − λ0 −

M
∑

m=1

λmfm(ℓ). (8)

Equations (4)–(6) and (8) define N(N−1)/2+M+1 equations with the N(N−
1)/2 + M + 1 unknowns p1, . . . , pN(N−1)/2, λ0, . . . , λM . Usually the solution of
the MaxEnt problem is formulated using the Partition function formalism as it
gives a smaller set of non–linear equations which are solved numerically. Here
we do not use this formalism as we can obtain a recursive solution for the set of
equations. The main observation to obtain this recursive solution comes from
the term fm(ℓ) in Eq. (8). Given a link ℓ = g(i, j) there are only two values
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Figure 1: (a) A five node network where the nodes are labelled in decreasing
order of their degree and the links’ labels are given by the map ℓ = g(i, j). (b)
Relationship between the links’ label (inside the matrix), with the nodes’ rank
(i/j) and the constraint equations labels m (show inside the rectangles). As
an example how to read this table, the constraint equation m = 3 is related
to conservation of k+4 which is given by the sum of the probabilities of links 3,
6 and 8. These links correspond to the connections between the pair of nodes
1–4, 2–4 and 3–4. The constraint equation m = 5 is related to the conservation
of k2 which is given by the sum of the probabilities of links 1, 5, 6, and 7.

of m where fm(ℓ) contributes to Eq. (8). For example in Fig. 1 (b), the link
ℓ = 6 is related to the values of m = 3 (read vertically from the table), and
m = 5 (read horizontally from the table), these two values can be related to
the rank i and j labels, in this case j = 4 gives m = j − 1 = 3 and i = 2 gives
m = N − 2 + i = 5 − 2 + 2 = 5.

If the Lagrangian multipliers are labelled using the nodes’ rank instead of
the label m then Eq. (8) becomes

pg(i,j) = e−1+λ0+λj−1eλN−2+i, (9)

where we used pg(i,j) = e−qg(i,j) .
From the constraints given by Eq. (5) these probabilities satisfy

j−1
∑

i=1

pg(i,j) = e−1+λ0+λj−1

j−1
∑

i=1

eλN−2+i =
k+j
L

. (10)

If u(i) = eλN−2+i then the probability function pg(i,j) = e−1+λ0+λj−1eλN−2+i

can be written as

pg(i,j) =

(

u(i)
∑j−1

m=1 u(m)

)

k+j
L

, i < j ≤ N, (11)

where e−1+λ0+λj−1 = (1/
∑j−1

i=1 e
λN−2+i)(k+j /L). The probability that there is a

link between nodes i and j can be expressed with two factors. The factor k+j /L

5



is the fraction of links that node j have with nodes of rank i < j. How these
k+j links are distributed between the i < j nodes is given by u(i)/

∑j−1
m=1 u(m).

Notice that in the case j = 2 then u(i)/
∑j−1

m=1 u(m) = 1, which implies that if
there is one or several links between node j = 2 and node i = 1, that is k+j 6= 0,
these links are always shared between these two nodes.

Figure 2(a) shows a typical example of the function u(r), in this case the
network is the giant component of the scientists working in the field of Com-
plex Networks [29]. The function u(r) was obtained by solving numerically the
MaxEnt problem. This network has characteristics that are interesting in our
context. The nodes of degree one do not share any links with nodes of degree
two. There is a tendency of nodes of similar low degree to connect with each
other. This is expected as by construction all the co–authors of a paper are
represented by a clique, that is, if there is an article with four authors, the
degree of these nodes is as least four. For small r, u(r) captures the preferential
attachment between nodes of high degree and low degree. As the value of r
increases u(r) decreases and around r > 40 increases again and has a discon-
tinuous shape. For large values of r, u(r) increases as there is a preferential
attachment between the low ranking nodes, capturing the property that there
are papers with a small number of authors who form cliques. To describe the
characteristics of u(r) the first observation is that if kr is the degree of node r
and k+r is the number of links that connect to nodes of higher rank, then kr−k+r
is the number of links that connect to nodes of lower rank. If kr−k+r = 0 means
that a node r′ > r does not share a link with r. In other words, u(r) = 0 if
kr − k+r = 0 which are the zeros shown in Fig. 2(a). The discontinous nature
of u(r) can be explained using the case kr = 3 with kr − k+r = i and i > 0,
(Fig. 2(b)). If i = 1 means that from the three links that node r has, only one
link connects to nodes with rank r′ > r, we denote the probability of this hap-
pening as p. Now if i = 2, there are two links that can connect nodes r′ and r.
If the MaxEnt solution is non–biased then the probability that node r connects
with r′ is p+p, that is the probability that one of the free links connects the two
nodes plus the probability that the other free link connects the two nodes. In
Fig. 2(a), when kr = 3, the case kr−k+r = 1 corresponds to the lower “branch”
and kr − k+r = 2 to the upper branch. The implication of this observation is
that the function w(r) = u(r)/(kr − k+r ) where kr − k+r 6= 0 lies on a smooth
curve.

From these observations Eq. (11) can be rewritten as

pg(i,j) =
w(i)

(

ki − k+i
)

∑j−1
n=1 w(n)

(

kn − k+n
)

k+j
L

, i < j (12)

with pg(i,i) = 0 and pg(j,i) = pg(i,j) if j < i. The values of w(i) are obtained
recursively by using Eq. (12) in Eq. (6), that is

kr
L

+

N
∑

j=r+1

(

w(r) (kr − k+r )
∑j−1

n=1 w(n)
(

kn − k+n
)

k+j
L

)

=
k+r
L

(13)
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Figure 2: Giant component of the co–authorship Network Scientists, the network
has 379 nodes and 916 links. (a) The linking term u(r) and (b) its rescaled
version. (c) Dependency of the MaxEnt solution with the ranking of the nodes.
For clarity we only plotted the solution of two different ranking schemes for the
case kr = 3, shown with an open and closed circle.
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which gives that for all r

N
∑

j=r+1

k+j
∑j−1

i=1 w(i)(ki − k+i )
=

1

w(r)
. (14)

Taking the difference of two consecutive terms, i.e. r = m and r = m− 1

1

w(m)
−

1

w(m − 1)
=

N
∑

j=m+1

k+j
∑j−1

i=1 w(i)(ki − k+i )
−

N
∑

j=m

k+j
∑j−1

i=1 w(i)(ki − k+i )

=
k+m

∑m
i=1 w(i)(ki − k+i )

=
k+m

w(m)(km − k+m) +
∑m−1

i=1 w(i)(ki − k+i )
(15)

and solving the above equation for w(m) we obtain

w(m) =
w(m− 1)

∑m−1
i=1 w(i)(ki − k+i )

∑m−1
i=1 w(i)(ki − k+i ) − k+mw(m− 1)

(16)

where w(1) = 1 without loss of generality. Eq. (12) in combination with Eq. (16)
define the probability that there is an interaction between two nodes of the null–
model.

Note that the constraints given by Eqs. (5)–(6) were considered in Eq. (10)
and Eq. (13), respectively. The constraint Eq. (4) is satisfied as we formu-
lated the problem using the normalised sequences. The Lagrangian multipliers
λN−2+m with m = 1, . . . , N−2 can be evaluated recursively from Eq. (16) using
w(m) = u(m)/(km − k+m) and u(m) = exp(λN−2+m).

There is an ambiguity when labelling the nodes via a degree–dependent rank.
For high degree nodes this is not a problem, as the degree tends to be unique so
the rank labels these nodes unambiguously. For lower degree nodes, there are
many nodes with the same degree. In this case the labelling of the nodes is not
unique. We evaluated the MaxEnt solution using different ranking schemes for
the nodes with equal degree. Fig. 2(c) shows an example of how this ambiguity
is reflected in the evaluation of the sequence w(r) obtained using a random
ranking scheme. This ambiguity is reflected in the evaluation of the entropy
and therefore in the null–model. We measured the change of entropy due to the
re–labelling in different real networks and observed that the variation is very
small (see Table 1) and has a minor effect on the properties of the null–model.

The table also show the effect that the conservation of degree sequence and
rich–club connectivity have in the properties of the null–model. The entropy
of the C. elegans and Power grid is larger than the entropy of the Internet,
even that the number of nodes of these networks is smaller than the Internet.
Small entropy means that the number of networks that satisfy the constraints
is also small, that is, the number of networks encompassed by the null model is
small. The reason for this difference is that in the AS–Internet, the top nodes
tend to form a clique, a fully connected mesh [30]. This structure is not present
in the C. elegans or the Power grid network. The conservation of this clique

8



Network nodes links entropy
Karate club [31] 34 78 5.44 ± 0.02
C. elegans [32] 297 2,148 34.06 ± 0.02
Power grid [32] 4,941 6,594 18.09 ± 0.01
Internet 22,963 48,436 17.734 ± 0.001

Table 1: Variation of the entropy per node S/N due the ambiguity of the
ranking scheme. The evaluation was done by randomising the ranks of nodes
with equal degree. The averages were evaluated considering 40 randomised net-
works. Internet data available from University of Oregon Route Views Project
http://www.routeviews.org, dataset collected May 26, 2001.

imposes a strong restriction in the number of networks that have the same degree
distribution and rich–club, this is reflected on the relatively small entropy per
node in the AS–Internet.

3 Results

In order to evaluate how well the null–model can reproduce network properties
that are related to the degree–degree correlation we compared the average degree
of the nearest neighbours from the data against the null–model. For the null–
model the evaluation of the expected degree is given by

〈knn(k)〉 =
1

Nk

N
∑

i=1





1

k

N
∑

j=1

pg(i,j)Lkj



 δki,k, (17)

where pg(i,j)L is the number of links from node i to node j if the network has
L links. In general we observed very good agreement for disassortative, neutral
and assortative networks; see Fig 3.

We also evaluated the number of links n(ki, kj) that nodes with degree ki
share with nodes of degree kj . We compared the number of links obtained from
the network data nD(k1, kj) against the number obtained from the null–model
nN (k1, k2). For the null–model the number of links is given by

nN (ki, kj) =

N
∑

m=1

N
∑

n=1

pg(i,j)L δ(km, ki)δ(kn, kj) (18)

and their standard deviation is evaluated from the variance

var(ki, kj) =

N
∑

m=1

N
∑

n=1

pg(m,n)(1 − pg(m,n))Lknδ(km, ki)δ(kn, kj). (19)

We compared these quantities, nD and nN , for many different networks.
Fig. 4 shows these quantities for the case of the C. elegans [32]. To check

9
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Figure 3: Comparison of the average degree of nearest neighbours obtained
from the data (filled squares) against the one obtained from the null–model
(open circles). (a) For the protein (disassortative) (b) for the random network
(neutral) and (c) for the astrophysics co–authorship (assortative) [1]. For the
random graph 〈knn〉 = 〈k2〉/〈k〉 (line) which is reproduced by the null–model.
In this case the fluctuations seen in the data are due to statistical fluctuations
in the evaluation of 〈knn〉 from the data.
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if the discrepancies between the two quantities are statistically significant we
also evaluated the z–score as z(ki, kj) = (nD(k1, kj) − nN (k1, k2))/σN (k1, k2)
where σN (k1, k2) is the standard deviation of the number of links obtained from
the null–model. We noticed that the value of this score is low, less than two
standard deviations, showing that for this case the null–model closely reproduces
the degree–degree correlations of the data.

4 Conclusions

In summary, we have presented a technique to construct null–models based on
the maximal entropy and the conservation of the degree sequence and rich–club
coefficient. As many real networks tend to have non trivial correlations between
their nodes [4], the method presented here provides good null–models to study
these networks, in particular scale–free networks where it is not possible to ob-
tain a good approximation of the degree–degree correlation. For example, the
null–models closely approximate the correlations of assortative networks, which
up to now has been a difficult property to reproduce with a null–model. We
envisage that the null–model presented here can be useful when testing hypoth-
esis where the rich–club plays a crucial part in the network’s structure [33, 34].
From a practical context, the probability function describing the connectivity of
the null–model was obtained without explicitly evaluating the Lagrangian mul-
tipliers. The method can be applied to generate null–models of large networks
as the most onerous step is the node–ranking scheme which requires sorting in
decreasing order the degree sequence.
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