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In the study of networks, it is often insightful to use algorithms to determine mesoscale features such as “com-
munity structure”, in which densely connected sets of nodes constitute “communities” that have sparse connec-
tions to other communities. The most popular way of detecting communities algorithmically is to optimize the
quality function known as modularity. When optimizing modularity, one compares the actual connections in
a (static or time-dependent) network to the connections obtained from a random-graph ensemble that acts as
a null model. The communities are then the sets of nodes that are connected to each other densely relative to
what is expected from the null model. Clearly, the process of community detection depends fundamentally on
the choice of null model, so it is important to develop and analyze novel null models that take into account
appropriate features of the system under study. In this paper, we investigate the effects of using null models
that incorporate spatial information, and we propose a novel null model based on the radiation model of popu-
lation spread. We also develop novel synthetic spatial benchmark networks in which the connections between
entities are based on distance or flux between nodes, and we compare the performance of both static and time-
dependent radiation null model to the standard (“Newman-Girvan”) null model for modularity optimization and
a recently-proposed gravity null model. In our comparisons, we use both the above synthetic benchmarks and
time-dependent correlation networks that we construct using countrywide dengue fever incidence data for Peru.
We also evaluate a recently-proposed correlation null model, which was developed specifically for correlation
networks that are constructed from time series, on the epidemic-correlation data. Our findings underscore the
need to use appropriate generative models for the development of spatial null models for community detection.
Community detection, spatial null model
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I. Introduction

A network formalism is often very useful for describing complex systems of interacting entities [71, 92]. Scholars in a diverse
set of disciplines have studied networks for many decades, and network science has experienced particularly explosive growth
during the past 20 years [71].

The most traditional network representation is a static graph, in which nodes represent entities and edges represent pairwise
connections between nodes. However, many networks are time-dependent [39, 40] or multiplex (include multiple types of
connections between nodes) [12, 48]. Moreover, network structure is influenced profoundly by spatial effects [5]. To avoid
discarding potentially important information, which can lead to misleading results, it is thus crucial to develop methods that
incorporate features such as time-dependence, multiplexity, and spatial embeddedness in a context-dependent manner [5, 39, 48].
Because of the newfound wealth of rich data, it has now become possible to validate increasingly complicated network structures
and methods using empirical data.

In the present paper, we study a mesoscale network structure known as community structure. A “community” is a set of
nodes with dense connections among themselves, and with only sparse connections to other communities in a network [30,
74]. Communities arise in numerous applications. For example, social networks typically include dense sets of nodes with
common interests or other characteristics [90], networks of legislators often contain dense sets of individuals who vote in
similar ways [93], and protein-protein interaction networks include dense sets of nodes that constitute functional units [55].
The algorithmic detection of communities and the subsequent investigation of both their aggregate properties and the properties
of their component members can provide novel insights into the relationship between network structure and function (e.g.,
functional groupings of newly discovered proteins [82]).

Myriad community detection methods have been developed [30, 74]. The most popular family of methods entails the opti-
mization of a quality function known as modularity [67, 69]. To optimize modularity, one compares the actual network structure
to some null model, which quantifies what it means for a pair of nodes to be connected “at random”. Traditionally, most studies
have randomized only network structure (while preserving some structural properties) and not incorporated other features (such
as spatial or other information). The standard null model for modularity optimization is the “Newman-Girvan” (NG) null model,
in which one randomizes edge weights such that the expected strength distribution is preserved [67, 69]. It is thus related to the
classical configuration model [71]. It has become very popular due to its simplicity and effectiveness, and it has been derived
systematically through the consideration of Laplacian dynamics on networks [52]. However, it is also a naive choice, as it does
not incorporate domain-specific information.

The choice of a null model is an important consideration because (1) it can have a significant effect on the community structure
obtained via optimization of a quality function, and (2) it changes the interpretation of communities [9, 34, 58]. The best choice
for a null model depends on both one’s data set and scientific question. In the present paper, we explore the issue of null model
choice in detail in the context of spatially embedded and temporal networks.

Most existing research on community detection does not incorporate metadata about nodes (or edges) or information about
the timing and location of interactions between nodes. However, with the increasing wealth of space-resolved and time-resolved
data sets, it is important to develop community detection techniques that take advantage of the additional spatial and temporal
information (and of domain-specific information, such as generative models for human interactions [26]). Indeed, community
detection in temporal networks has become increasingly popular [7, 10, 15, 16, 27, 46, 66], but the majority of methods use
networks that are constructed from either static snapshots of data or aggregations of data over time windows. Few investigations
of community structure in temporal networks have used methods that exploit temporal structure (see, e.g., [7, 66]). There is
also starting to be more work on the influence of space on community structure [6, 14, 26, 37, 78], but much more research is
necessary.

In the present paper, we use modularity maximization to study communities in spatially embedded and time-dependent net-
works. We compare the results of community detection using two different spatial null models — a gravity null model [26] and
a new radiation null model — to the standard NG null model using novel synthetic benchmark networks that incorporate spatial
effects via distance decay or disease flux as well as temporal correlation networks that we constructed using time-series data
of recurrent epidemic outbreaks in Peru. We also evaluate a recently-proposed correlation null model, which was developed
specifically for correlation networks that are constructed from time series [58], on the epidemic-correlation data.

Our direct analysis of disease data in the present paper provides a complementary (e.g., more systemic) approach to the
majority of studies using network science methodology in this field, which focus on the importance of interpersonal contact
networks on the disease spread on an individual level. These types of network methods have become increasingly prevalent
in the modeling of infectious diseases [4]. Our work also complements other approaches, such as large-scale compartmental
models that incorporate transportation networks to link local populations. Such models have been used to study large-scale
spatial disease spread (e.g., to examine the influence of features such as spatial location, climate, and facility of transportation
on phenomena such as disease persistence and synchronization of disease spread) [3, 5, 20, 95].

The rest of the present paper is organized as follows. In Section II, we give an overview of networks and community detection.
We also discuss the gravity null model and introduce a new radiation null model. We give our results for synthetic spatial
networks in Section III, and we give our results for correlation networks that we construct from disease data in Section IV. We
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summarize our results in Section V. In appendices, we include the results of additional numerical experiments from varying
parameters in the benchmark networks. We also include an additional examination of the similarity between network partitions
for the benchmarks and the dengue fever correlation networks.

II. Networks and Community Structure

A network describes a set of entities (called nodes) that are connected by pairwise relationships (called edges). In the present
paper, we study weighted networks which are spatially embedded: each node represents a location in space. One can represent a
weighted network with N nodes as an N × N adjacency matrix W, where an edge Wi j represents the strength of the relationship
between nodes i and j. We seek to find communities, which are sets of nodes that are densely connected to each other but
sparsely connected to other dense sets in a network [30, 74].

We wish to study the evolution of network structure through time. The simplest way to represent temporal data is through an
ordered set of static networks, which can arise either as snapshots at different points in time or as a sequence of aggregations
over consecutive time windows (which one can take either as overlapping or nonoverlapping).

Static networks provide a good starting point for the development and investigation of new methods — which, in our case,
entails how to incorporate spatial information into null models for community detection via modularity maximization. However,
they do not take full advantage of temporal information in data that changes in time. For example, it can be hard to track the
identity of communities in temporal sequences of networks [66].

To mitigate the community-tracking problem, we also use a type of multilayer network [12, 48] known as a multislice network
[66]. This gives an N ×N ×m adjacency tensor W that has m layers and N nodes in each layer, where each layer has a copy each
node i. The intralayer edges in the network are exactly the same as they were for the sequence of static networks: the tensor
element W i js gives the weight of an intralayer edge between nodes i and j in layer s. Additionally, each node is connected to
copies of itself in consecutive layers s and r using interlayer edges of weight Cisr. In this paper, we will suppose for simplicity
that Cisr = ω ∈ [0,∞), but one can also consider more general situations [22, 48]. A multislice network can have up to (N × m)
multilayer nodes (i.e., node-layer tuples), each of which corresponds to a specific (node, time) pair. Hence, this structure makes
it possible to detect temporally evolving communities in a natural way.

For our computations of community structure, we flatten the N × N ×m adjacency tensor into a (N ×m) × (N ×m) adjacency
matrix, such that the intralayer connections are on the main block diagonal and the interlayer connections occur on the off-
block-diagonal entries. We detect communities by maximizing modularity, which we use to describe the “quality” of a particular
network partition into communities in terms of its departure from a null model [67]. The null model amounts to a prior belief
regarding influences on network structure, so it is important to carefully consider the choice of null model [7, 26, 58].

For a weighted static network W, modularity is [68]

Q =
1

2w

∑
i j

(Wi j − γPi j)δ(ci, c j) , (1)

where 2w =
∑

i j Wi j is the total edge weight, ci denotes the community that contains node i, the function δ is the Kronecker delta,
and Pi j is the i j-th element of the null model matrix. One can examine different scales of community structure by incorporating
a resolution parameter γ [72, 76]. Smaller values of γ tend to yield larger communities and vice versa.

For multislice networks, modularity is given by

Q =
1

2w

∑
i jsr

[(
W i js − γPi js

)
δsr + δi jC jsr

]
δ(cis, c jr) , (2)

where 2w =
∑

i js W i js, the quantity cis denotes the community that contains node i in layer s, and Pi js is the i j-th element of the
null model tensor in layer s [66].

To detect communities via modularity maximization, one searches the possible network partitions for the one with the highest
modularity score. Because exhaustive search over all possible partitions is computationally intractable [13], practical algorithms
invariably use approximate optimization methods (e.g., greedy algorithms, simulated annealing, or spectral optimization), and
different approaches offer different balances between speed and accuracy [30, 74].

In the present paper, we optimize modularity using a two-phase iterative procedure similar to the Louvain method [11].
However, rather than using the adjacency matrix W, we work with the modularity matrix B with elements Bi j = Wi j − γPi j for
static networks and with the modularity tensor with elements Bi js = W i js − γPi js for multislice networks [45].

The employed Louvain-like algorithm [45] is stochastic, and a modularity landscape for empirical networks typically includes
a very large number of nearly-optimal partitions [34]. For each of our numerical experiments, we thus apply the computational
heuristic 100 times to obtain a consensus community structure [53] by constructing an association matrix Arep (where the entries
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Arep
i j represent the fraction of times that nodes i and j are classified together in the 100 partitions) and performing community

detection on Arep using the uniform null model PU
i j = 2w/[N(N − 1)] [7]. We choose the uniform null model in order to detect

the strongest community structure in the association matrix (i.e., one that is often detected by the original optimization process).
For multislice networks, we perform community detection and then consensus clustering using the same basic procedure.

This yields an assignment of each multilayer node (i.e., node-layer tuple) to a community. We are also sometimes interested
in community assignments of the original entities (i.e., a partition of the set of nodes regardless of what layer they are in). For
example, we might wish to compare the result of algorithmic community detection to known partitions, such as grouping a node
(i.e., province) by climate, population, administrative region, etc. To do this, we perform what we call province-level community
detection, which proceeds in two rounds: (1) we detect communities in a multislice network using any method and null model
of choice; (2) we use this partition to construct an N × N province-level association matrix (i.e., a matrix Aprovince where entries
Aprovince

i j represent the fraction of times that nodes i and j are classified together in all layers), and we detect province-level
communities by maximizing modularity on this association matrix using a uniform null model. We choose the uniform null
model to detect the most temporally persistent community structure in the association matrix (i.e., one that is often detected in
multiple layers). We can then follow this with consensus community detection across 100 repeat province-level structures.

A. Null Models for Community Detection

The choice of null model is vital for the detection of communities using modularity maximization [7, 34, 58]. The most
common choice is the Newman-Girvan (NG) null model, which randomizes a network such that the expected strength sequence
of nodes is preserved [70? ]. For static, weighted networks, the NG null model is given by

PNG
i j =

kik j

2w
, (3)

where ki =
∑

j Wi j is the strength (i.e., weighted degree) of node i and 2w =
∑

i j Wi j is the total edge weight in the network.
For multislice networks, the NG null model is [66]

PNG
i js =

kisk js

2w
, (4)

where kis =
∑

j W i js is the intralayer strength of node i in layer s and 2w =
∑

i js W i js.
Despite its popularity and demonstrated effectiveness in many situations, the NG null model is naive in the sense that only

takes node strengths into account and it does not incorporate problem-specific information (such as spatial embeddedness). It is
often important to incorporate additional (domain-specific or even problem-specific) information, and what one considers to be
connected “at random” depends fundamentally on the research question of interest. Consequently, NG null model is not suitable
for all applications.

1. Spatial Null Models: Gravity Model

In many spatially embedded networks, proximity has a strong effect on the connections between nodes, as (all else held equal)
neighboring nodes are more likely to be connected to each other (and their connections are likely to have to have larger weights)
than nodes that are far away [5, 26]. Moreover, proximity can mask other underlying influences. Consequently, incorporating the
expected influence of proximity on edge weights into null models for community detection should make it possible to discover
new and important types of structures.

Expert et al. [26] proposed a spatial null model that was inspired by the “gravity model” of human mobility [83, 84, 94, 96].
A gravity model assumes that the interaction between two locations is proportional to their importance (e.g., population), but it
decays with distance.

In the standard gravity model, the interaction between locations i and j with respective populations ni and n j that are a distance
di j apart is

Gi j = nαi nβj f (di j) , (5)

where the “deterrence function” f (d) describes the effect of space on node interactions. Common choices for the deterrence
function include inverse proportionality to distance (i.e., f (di j) = 1/di j), inverse proportionality to squared distance (i.e., f (di j) =

1/d2
i j), exponential decay (i.e., f (di j) = e−di j ), and other interactions of the form f (di j) = dκi j [5]. It is common to estimate the

parameters α, β, and κ using regression. Gravity models have been employed successfully during the past half century to model
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spatial interactions such as population migration [2, 5, 54], trade [25], and disease spread [95].
The simplest form of a gravity-like interaction in Eq. (5), with α = β = 1 and κ = −1, was incorporated into a gravity null

model [26], to give

Pgrav
i j = IiI j f (di j) , (6)

where Ii is the importance of node i. One estimates the “deterrence function”

f (d) =

∑
{k,l|dkl=d}Wkl∑
{k,l|dkl=d} (IkIl)

, (7)

from data for all nodes at distance d between them in a data set. Expert et al. [26] used ni, the population of province i, as their
measure of node importance. After briefly experimenting with variations, such as using population density or a logarithm of the
population (i.e., Ii = log(ni)) and observing no significant differences in performance, we will follow their lead. Another simple
choice is node strength (i.e., Ii = ki =

∑
j Wi j), though the null model then becomes very similar to the usual NG null model [26].

Moreover, if f (d) does not depend on distance, then the null model becomes exactly the NG null model in that case.
In most data sets, distances are continuous, so one needs to bin distance data to obtain enough nodes in each distance bin to

construct a meaningful deterrence function f (d) in Eq. (7). Possible binning methods include binning into equal-distance bins
(e.g., every b km) and equal-sized bins (e.g., each bin containing c elements). After testing the choice of binning procedure on
the benchmark networks and applying the null model to empirical data and observing no qualitative differences in null model
performance, we selected the equal-distance method for the rest of the paper, while choosing a bin size large enough that there
are always more than 5 elements in each bin. Additionally, for the benchmark networks we can test the influence of bin sizes on
similarity of algorithmic partitions to the planted community structure. We will give the specific bin sizes for spatial benchmark
and dengue correlation networks in their respective Sections.

Combining Eqs. (6) and (7) allows us to write the gravity null model as

Pgrav
i j = IiI j

∑
{k,l|dkl=di j}

Wkl∑
{k,l|dkl=di j}

(IkIl)
. (8)

Expert et al. used the null model (8) to uncover a linguistic partition of a network of Belgian mobile phone calls into the French
and Flemish speaking parts of Belgium. This partition was obscured by geographical communities when using the NG null
model [26].

In the present paper, we generalize the gravity null model to a multislice setting by calculating a separate gravity null model
for each layer s. The resulting multislice gravity null model is

Pgravi js = IiI j

∑
{k,l|dkl=di j}

Wkls∑
{k,l|dkl=di j}

(IkIl)
, (9)

where we have assumed that the population stays constant across time. If one has reliable information about changes in popula-
tion with time, one can incorporate such information into the null model (9) by substituting Ii with an analogous quantity Iis that
depends both on the node i and on the layer s.

2. Spatial Null Models: Radiation Model

Gravity models include multiple parameters that one needs to either choose arbitrarily or estimate from data. Moreover, by
their design, gravity models are unable to predict different fluxes between locations that are the same distance apart but which
have regions with different population densities between them. For example, one would expect a higher flux of infectious disease
between two locations that are separated by a space with high population density than between locations that are separated by
a space with low population density (because of the higher availability of susceptible hosts in the latter case) [44]. By contrast,
one would expect a smaller commuting flux between such locations in the latter case due to higher availability of nearby jobs,
as this reduces peoples’ willingness to commute for longer distances [33].

The radiation model [33] was developed to attempt to address these issues. It was designed for population flows and has
subsequently been applied successfully in several situations [32, 61]. Because the radiation model is designed to capture human
mobility between populations, and the long-distance spread of many infectious diseases — including dengue — is believed to be
largely due to long-distance mobility [85], the radiation model might provide a useful but simplified description for the spread
of disease across space. In this section, we use it to construct a new spatial null model for community detection that we believe
might be well-suited for studying the long-distance spread of dengue.
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The mean commuting flux predicted by the radiation model for locations i and j with populations ni and n j is

Ti j = Ti
nin j

(ni + ri j)(ni + n j + ri j)
, (10)

where ri j is the population between locations i and j, and Ti is the number of commuters in location i. A simple way to calculate
ri j is to use the population qi j in the circle of radius di j centered at i and subtract the total of the populations at the origin and
destination. That is, ri j = qi j − (ni + n j). Although the radiation model is relatively recent [33], several modifications to it have
already been proposed. These include incorporating a normalization for finite systems [61] and the development of a general
framework that includes ideas from the radiation, gravity, and intervening-opportunities models [79].

We propose a novel null model for community detection based on the original formulation of the radiation model [33]. We
use a similar formulation to Eq. (8) to incorporate both the expected distance-dependent flux and the actual network structure.
To avoid creating a directed network, we use a symmetrized predicted flux

T̂i j = (Ti j + T ji)/2 (11)

between nodes i and j. 1 We thereby construct the radiation null model

Prad
i j = T̂i j

∑
{k,l|dkl=di j}

Wkl∑
{k,l|dkl=di j}

T̂kl
. (12)

In Section IV, we will study community structure in empirical data from several years of dengue fever occurrences in Peru.
Because we do not possess detailed data on the commuting patterns in Peru (see the description of our data in Section IV A), we
assume that commuters are distributed uniformly across space. We can then simplify Eq. (10) by substituting Ti = T f ni, where
T f is the fraction of the population that commutes. Because the quantity T f is present in both the numerator and denominator
of Eq. (12), we can now cancel it out. However, if one possesses commuting data, it would be desirable to use it to improve the
radiation null model.

We also extend the radiation null model to a multislice setting in an analogous manner to the gravity null model. The multislice
radiation null model is

Prad
i js = T̂i j

∑
{k,l|dkl=di j}

Wkls∑
{k,l|dkl=di j}

T̂kl
. (13)

Again, one can incorporate temporal data about population sizes and thereby replace Ti j with Ti js to improve the null model.

3. Spatial Null Models: Other Models

The incorporation of spatial information into null models for community detection is an important problem, and several
other ideas have been proposed recently. For example, Cerina et al. [14] focused on disentangling the correlation between
node attributes and space, so they used a simple exponential decay: f (di j) = e−di j/d, where d is the mean distance between
nodes in a network. Shakarian et al. [78] focused on finding geographically-disperse communities, so they introduced a decay
constant θ such that f (di j) = e−di j/θ

2
. Another recently-proposed null model was used to attempt to find geographically-proximate

communities [37].
As the exact nature of the influence of spatial distance on interactions in the dengue fever data is unclear, we decided to focus

only on null models that include a contribution from the data, rather than using null models with an arbitrarily chosen functional
dependence. Thus, we do not test these null models in the present paper.

III. Synthetic Benchmark Networks

To test the performance of the spatial null models, we develop novel synthetic benchmark networks that represent idealized
spatially-embedded networks with planted community structure.

1 Although the directionality of fluxes is an important factor to study, we wish to keep our null models as simple as possible in order to focus on the effect of
incorporating space into them. Additionally (and again for simplicity), we will construct our disease-correlation networks using Pearson correlations, so we
will study the community structure of undirected networks. If one instead constructs a directed network — e.g., by including a time delay when measuring
the similarity of time series, considering ideas such as Granger causality, or otherwise measuring similarity in a way that produces a directed network (see,
e.g., Ref. [81]), then it would also be desirable to construct a directed version of the radiation null model. Clearly, this is an interesting future direction, but it
is beyond the scope of our study.
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TABLE I. Primary characteristics (i.e., population and edge probability) for the distance and flux benchmarks for static networks. The quantity
rand({a, b}) signifies that select a number uniformly at random from the set {a, a + 1, . . . , b}. Additionally, λ(ci, c j) = 1 if nodes ci and c j are in
the same community and λ(ci, c j) = λd otherwise, di j is the distance between nodes i and j in space, and Z1 and Z2 are normalization constants.

Benchmark Population pi j

Distance, uniform population 100 pdist
i j =

λ(ci,c j)
Z1di j

Distance, random population rand({1, 100}) pdist
i j =

λ(ci,c j)
Z1di j

Flux, uniform population 100 pflux
i j =

λ(ci,c j)T̂i j

Z2

Flux, random population rand({1, 100}) pflux
i j =

λ(ci,c j)T̂i j

Z2

In what we call the distance benchmark, the probability of an edge between two nodes depends only on the geographical
distance between nodes and on their community assignments. We assign N nodes uniformly at random to positions on the lattice
{1, 2, . . . , l} × {1, 2, . . . , l}. We assign a population ni to each node i (which is an idealized “city”). We create two versions of
the distance benchmark: the “uniform population distance benchmark” and the “random population distance benchmark”. The
uniform population version corresponds to the benchmark in Expert et al. [26]; we assign the same population (ni = 100) to each
node. In the random population benchmark, we assign an integer population uniformly at random from the set {1, . . . , 100}.

We also assign the nodes uniformly at random to one of two communities. In the distance benchmarks, the probability pdist
i j

that an edge exists between nodes i and j at distance di j is inversely proportional to distance:

pdist
i j =

λ(ci, c j)
Z1di j

, (14)

where ci is the community that contains node i and the function λ(ci, c j) = 1 if nodes i and j are in the same community and
λ(ci, c j) = λd otherwise. The “inter-community connectivity” λd controls the degree of mixing between communities. When
λd = 0, only nodes in the same community are adjacent to each other; when λd = 1, there are no distinct communities. The
normalization constant Z1 ensures that

∑
i> j pdist

i j = 1. We place L = µN(N − 1)/2 edges, where there is an edge between nodes i
and j with probability pdist

i j each, and the parameter µ ≥ 0 determines the network’s edge density. We interpret multiple edges as
weights. We normalize the weights in the network to [0, 1] by dividing each entry by the maximum weight in the network.

With our flux benchmark, we aim to mimic the spread of disease on a network. We allocate its edge weights depending on the
mean flux between pairs of nodes that is predicted by the radiation model. We place N nodes uniformly at random on the lattice
{1, 2, . . . , l} × {1, 2, . . . , l}, and we assign populations and communities in the same manner as for the distance benchmark. Again
as with the distance benchmark, we consider both uniform-population and random-population versions of the flux benchmark.
Now, however, the edge probability pflux

i j is directly proportional to the mean predicted radiation-model flux between nodes i and
j (T̂i j, which is turn is inversely proportional to distance di j):

pflux
i j =

λ(ci, c j)T̂i j

Z2
, (15)

where Z2 is a normalization constant to ensure that
∑

i> j pflux
i j = 1.

In Table I, we summarize the four synthetic benchmark networks that we have just introduced.
We create both static (i.e., single-layer) and multilayer benchmarks networks. The static benchmarks enable us to study the

performance of modularity maximization using a chosen null model in a simple setting without the additional complications of
a multilayer network. However, the multilayer benchmarks are ultimately more appropriate for disease data because they can
incorporate temporal evolution.

We begin by placing nodes in space and assigning populations in the same manner as for the static benchmarks. We then
assign nodes uniformly at random into one of two communities, and we extend this structure into a multilayer planted community
structure with m layers. For the “temporally stable” benchmarks, the planted community structure is the same for each layer. For
the “temporally evolving” multilayer benchmarks, we change the community assignment of a fraction p of the nodes. For each
of these nodes, we select a new community assignment uniformly at random, and we change the community of the node in each
layer; we start at a layer that we select uniformly at random, and we also change the assignment (to the same new community)
in all remaining layers.

We then generate the edges for each layer independently, in the same manner as we generate a static benchmark and using
identical parameter values (N, l, µ, λd) for each; see Fig. 1. Independent generation of each layer based on the same starting
conditions represents differences between observations due to noise and experimental variation.

For each of the above types of multilayer benchmarks, we set the value of the interlayer edges between corresponding nodes
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FIG. 1. Construction of temporally stable multilayer spatial benchmarks. We assign N nodes uniformly at random to positions on a l× l lattice
(which we show in layer 1) and divide them into two equal-sized communities (black and white) whose nodes we choose uniformly at random.
Node i has a population of ni, and each slice has the same set of nodes. For each slice, we allocate edges uniformly at random according to
a probability distribution that depends on the type of benchmark; for details, see the text and Table I. We interpret multiple edges as weights,
and we visualize these weights using edge thickness. We connect copies of nodes in adjacent layers with interlayer edges of weight ω (dashed
lines).

in consecutive layers to be ω ∈ [0, inf]. Thanks to normalizing the intralayer edge weights, we yield synthetic multilayer
benchmark networks in which the relative magnitudes of interlayer edges and intralayer edges are comparable to those in the
disease-correlation networks.

Each of the reported community detection results for these benchmarks is an average over consensus community detection
(over 50 repeats) for 50 independently drawn instances of a benchmark with the same values of the same parameter values
(N, l, µ, λd), (γ, ω), and (when relevant) p.

We evaluate the performance of the NG, gravity, and radiation null models on our benchmarks by comparing algorithmic
partitions with the planted community structure using normalized mutual information (NMI) [86]. NMI is an information-
theoretic similarity measure that is relatively sensitive to small differences in partitions, such as the move of a single node from
one community to another, compared to pair-counting measures such as the Rand coefficient and z-Rand scores [89]. This
sensitivity makes it suitable for assessing performance on benchmarks that are based on well-defined, ground-truth planted
partitions.

NMI is one of many normalized versions of mutual information (MI) [63]. Both MI and NMI are based on the concept of
information entropy, which is a measure of uncertainty. MI measures the amount of information that one can predict about one
random variable (which in the present paper is a partition of a network into communities) based on another one. For a partition
X = {X1, X2, . . . XK} with K communities and a partition Y = {Y1,Y2, . . .YL} with L communities, MI is defined as

I(X,Y) =

K∑
k=1

L∑
l=1

P(k, l) log2

[
P(k, l)

P(k)P(l)

]
, (16)

where P(k) and P(l) are the marginal probabilities of observing communities k and l in partitions X and Y , respectively, and
P(k, l) is the joint probability of observing communities k and l simultaneously in partitions X and Y . MI takes values between
0 and min{H(X),H(Y)}, where H(X) = −

∑K
k=1 P(k) log2 P(k) is the entropy of X.

Normalized mutual information (NMI) [86] is defined as

NMI(X,Y) =
I(X,Y)

√
(H(X)H(Y))

∈ [0, 1] . (17)

The normalization to lie within the range [0, 1] facilitates interpretation and comparisons. We use NMI in the following sections,
and we obtain the same qualitative conclusions using variation of information [50], which is a different normalized measure of
similarity. See Appendix A for our comparisons using VI.

A. Results on Static Benchmarks

To emphasize the difference between the gravity and radiation null models, we take N = 50 and l = 10 to obtain a relatively
densely filled lattice. (See Appendix B for the results for a synthetic network with parameter values N = 10 and N = 90.)
We first compare this benchmark versus a situation with parameter values N = 100 and l = 100 (which are the parameter
values that were used in Expert et al. [26]). We test varying bin sizes in uniformly-spaced bins using the parameter values
b ∈ {10−4, 10−3, 10−2, 0.1} ∪ {1, 2, . . . , 10}, l = 10 and b ∈ {1, 2, . . . , 100}, l = 100. We find that bin width makes a large
difference on both benchmarks: b = 1 produces the highest NMI scores (i.e., it has the “best performance”) and increasing bin
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FIG. 2. Uniform population static benchmarks: Normalized mutual information (NMI) scores between algorithmically detected and planted
community structures in static uniform population distance benchmarks for (left) l = 10, N = 50 and (right) l = 100, N = 100, edge density
parameter µ = 100 and uniform populations of 100 for different bin sizes (colored curves). We detect communities by optimizing modularity
using the (top) NG, (middle) gravity, and (bottom) radiation null models.

width leads to a decrease in performance of both spatial null models (see Fig. 2). This effect is especially pronounced for the
gravity null model.

In both cases, the best aggregate performance of the spatial null models at optimal bin sizes is similar for l = 10 and l = 100,
so we henceforth use the l = 10 benchmark with b = 1 to lower computational time and memory usage. However, one needs to
keep the strong influence of bin size on algorithm results in mind for applications.

We then study the performance of the three null models using several values of the resolution parameter γ ∈ {0.5, 0.75, 1, 1.25, 1.5}
and the inter-community connectivity λd ∈ {0, 0.01, . . . , 0.99, 1} on static benchmarks with N = 50 nodes and lattice size param-
eter l = 10. Smaller values of γ tend to yield larger communities and vice versa. Considering larger λd increases the level of
mixing between the communities and makes community detection more difficult. For simplicity, we fix the density parameter
µ = 100. As we discuss in Appendix C, the value of µ has little effect on the results of community detection when it is above a
certain minimum.

For the uniform population distance benchmark, the only factor that influences edge placement is the distance between nodes.
On this benchmark, the gravity null model has the best performance, as it is able to find the correct partitions for λd / 0.82 (see
Fig. 3). The radiation null model has the second best performance and is able to find partially meaningful partitions for λd / 0.74,
above which we observe a plateau of “near-singleton” partitions in which most nodes are placed into singleton communities.
(We use the term “singleton partition” to refer to a partition in which every node is assigned to its own community.) The NG
null model, which does not incorporate spatial information, does much worse than either of the spatial null models; it suffers a
sharp decline in performance at λd ≈ 0.4. This demonstrates that, although incorporating spatial influence is beneficial for its
own sake, we see that using a null model that incorporates population information to study community structure in networks
whose structure does not depend on population decreases the performance of community detection. That is, incorporating spatial
information is important, but it needs to be done intelligently.

On the uniform population flux benchmark — in which we include the population density in the region between two nodes in
the flux prediction (so the population density influences edge structure) — the radiation null model outperforms the other null
models. The gravity null model comes in second place, and the NG null model is a distant third.

For the random population distance benchmark, we observe a fast deterioration in quality of the detected communities for
λd ' 0.4 for all null models, and all null models reach a “near-singleton” regime by λd ≈ 0.6. The NG null model has the
best performance among the three null models for λd / 0.43. For λd ' 0.43, the gravity null model has the best performance,
although the partitions consist largely of singletons for λd ' 0.6.

For the random population flux benchmark, the radiation null model has the best performance of the three null models. It



10

Pop. Uniform Uniform Random Random
distance flux distance flux

NG

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

NG

N
M

I

λ
d

 

 

1.5

1.25

1

0.75

0.5

γ

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

NG

N
M

I

λ
d

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

NG

N
M

I

λ
d

 

 

1.5

1.25

1

0.75

0.5

γ

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

NG

N
M

I

λ
d

Grav.
1994 1998 2002 2006

0

5

10

Year

z−
R
an
d
to
po
gr
ap
hy

Latitude
-80 -75

-10

-20

-15

-5

0

-70
Lo
n
g
it
u
d
e

Latitude
-80 -75

-10

-20

-15

-5

0

-70

Lo
n
g
it
u
d
e

(a) (b) (c)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Gravity

N
M

I

λ
d

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Gravity

N
M

I

λ
d

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Gravity

N
M

I

λ
d

Rad.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Radiation

N
M

I

λ
d

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Radiation

N
M

I

λ
d

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Radiation

N
M

I

λ
d

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Radiation

N
M

I

λ
d

FIG. 3. Static benchmarks: NMI scores between algorithmically detected and planted community structures in static benchmarks with l = 10,
N = 50, µ = 100 and (columns 1, 2) uniform populations of ni = 100 or (columns 3, 4) populations ni determined uniformly at random from the
set {0, . . . , 100} . We plot NMI for different values of the resolution parameter γ (colored curves) as a function of inter-community connectivity
λd ∈ [0, 1]. We examine both distance benchmarks (in columns 1, 3) and flux benchmarks (in columns 2, 4). We detect communities by
optimizing modularity using the (top) NG, (middle) gravity, and (bottom) radiation null models.

has the slowest decrease in NMI scores with the increase in λd. The gravity null model has the second-best performance, and
NG fails even when there is no mixing between the two communities (see Fig. 3). However, even the best performance is much
worse on random population benchmarks than it is on the uniform population benchmarks. Note additionally that including
population information into the edge placement probability by taking pdistpop

i j =
pi p jλ(ci,c j)

Z1di j
(“distance and population benchmark”)

brings back the advantage for the gravity null model (see Appendix D).
Among the parameter values that we consider (γ ∈ {0.5, 0.75, 1, 1.25, 1.5}), γ = 1 appears to give the best results (i.e., the

largest NMI scores). In the near-singleton regime, γ = 1.5 outperforms it slightly (see Fig. 3), however this partition is vastly
different from the planted partition.

B. Results on Multilayer Benchmarks

We now study the influence of the resolution parameters γ and ω on the community quality of multilayer benchmarks. We
first study the performance of the NG, gravity, and radiation null models on temporally stable uniform population bench-
marks (see Fig. 4) with parameter values N = 50, l = 10, and m = 10 layers using γ ∈ {0.5, 0.75, 1, 1.25, 1.5} and ω ∈
{10−3, 0.1, 0.25, 0.5, 0.75, 1}. We expect that for larger ω values the weight of the interlayer edges outweighs the intralayer
edges, leading to each node being assigned to the same community as its copies in other layers. However, for the temporally
stable benchmarks we did not observe this effect; here, we only show figures for ω = 0.1, as different values of ω give very little
difference in results (in some plots nearly unnoticeable).

We also experimented with “random population” benchmarks (see Appendix E) and smaller and larger values of ω. Our
results on multilayer benchmarks follow our findings from static benchmarks. Once again, we find that the choice of γ has a
large influence on the quality of the algorithmic partitions, and (as with our findings for static benchmarks) γ = 1 seems to yield
the best performance (i.e., the highest NMI scores) in most cases, except the near-singleton regime, where γ = 1.5 outperforms
it slightly.

We now examine the NMI between algorithmic versus planted partitions on temporally stable multilayer benchmarks while
varying ω and λd for fixed γ = 1. As we show in Fig. 5, we find that the value of ω usually has little effect on our ability to
detect the planted communities via modularity maximization on benchmarks with a temporally stable community structure. This
suggests that the small interlayer variation due to the independent creation of layers is not enough to observe the influence of ω
on community detection.

We then study the performance of the three null models on temporally evolving uniform population benchmarks (see Fig. 6)
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FIG. 4. NMI between algorithmically detected and planted community structures in uniform population (ni = 100 for all i) multilayer
temporally stable spatial benchmarks with N = 50, l = 10, m = 10, and µ = 100 for ω = 0.1 and various values of γ (colored curves) as a
function of λd for (left) the distance benchmark and (right) the flux benchmark. We detect communities by optimizing modularity using the
(top) NG, (middle) gravity, and (bottom) radiation null models.

with parameter values of N = 50 nodes, a lattice parameter of l = 10, a fraction p = 0.4 of nodes that change commu-
nity over the whole timeline, and m = 10 layers. We show results for γ ∈ {0.5, 0.75, 1, 1.25, 1.5} for ω = 0.1 and for
ω ∈ {10−3, 0.1, 0.25, 0.5, 0.75, 1} for γ = 1. Compare Fig. 6 to the left panels of Figs. 4 and 5. On temporally evolving
benchmarks varying ω makes a difference, where the structures for ω / 0.1 for the gravity null model and ω / 0.5 for the ra-
diation null model are the most similar to the planted partitions. This is in accordance with our expectation that algorithmically
detected community structure becomes overly biased towards connecting copies of nodes across layers above a critical ω value
(which depends on network structure).

We also perform a “province-level” community detection on the multilayer benchmarks in which we seek assignments of
nodes (regardless of what layer they are in) to communities and compare the results to benchmark networks with planted com-
munity structure. This is analogous to trying to detect community structure in disease data that persists over time — e.g., to
seek the influence of climate on disease patterns. This is easiest to apply to temporally stable multilayer networks. We success-
fully detect the underlying communities, and we obtain similar performance results as with the multilayer communities that we
discussed above (see the discussion in Appendix F).

Our results on synthetic benchmark networks suggest that using a spatial null model on a spatial network does not necessarily
assure a better result for community detection. The quality of results with different null models depends strongly on the data
and the choice of parameter values. For example, incorporating population information into a null model in a situation in which
the population is not influencing connectivity structure might cause community detection to yield spurious communities (as we
discussed in the context of random population benchmarks).

The level of influence of different node properties or events (such as disease flux on edge placement) and the extent of mixing
between communities is often unknown for networks that are constructed from real data. For such networks, we recommend
to try both spatial and non-spatial null models over a wide parameter range and to study the results carefully in light of any
other known information about the network. In Section IV, we will present an example of using such a procedure to study the
community structure of correlation networks that are created from time series of dengue fever cases.
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FIG. 5. NMI between algorithmically detected and planted community structures in uniform population (ni = 100 for all i) multilayer
temporally stable spatial benchmarks with N = 50, l = 10, m = 10, and µ = 100 for γ = 1 and different values of interlayer edge weights ω
(colored curves) as a function of λd for (left) the distance benchmark and (right) the flux benchmark. We detect communities by optimizing
modularity using the (top) NG, (middle) gravity, and (bottom) radiation null models.
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FIG. 6. NMI between algorithmically detected and planted community structures in uniform population (ni = 100 for all i) multilayer
temporally evolving spatial distance benchmarks with N = 50, l = 10, m = 10, and µ = 100 for (left) ω = 0.1 and different values of the
resolution parameter γ (colored curves) and (right) γ = 1 and different values of the interlayer weights omega (colored curves) as a function of
λd. We detect communities by optimizing modularity using the (top) NG, (middle) gravity, and (bottom) radiation null models.



13

IV. Application to Disease Data

In this section, we assess the performance of the NG, gravity, radiation, and correlation2 null models on multilayer correlation
networks that we construct from disease incidence data that describe the spatiotemporal spread of dengue fever (a tropical,
mosquito-borne viral infection) in Peru from 1994 to 2008.

Disease dynamics are strongly influenced by space, as the distance between regions affects the migration of both humans
and mosquitos [44]. Disease dynamics are also affected by climate due to the temperature dependence of the mosquito life
cycle [19], and different regions of Peru have substantially different climates. Therefore it is important to examine and evaluate
the performance of different spatial null models when examining communities in networks that are constructed from disease
data.

A. The Disease and the Data

Dengue is a human viral infection that is prevalent in most tropical countries and is carried primarily by the Aedes aegypti
mosquito [36]. The dengue virus has four strains (DENV-1–DENV-4). Infection with one strain is usually mild or asymp-
tomatic, and it gives immunity to that strain, but subsequent infection with another strain is usually associated with more severe
disease [36].

Although dengue was considered to be nearing extinction in the 1970s, increased human mobility and mosquito abundance
have led to its resurgence in many countries — often as recurrent epidemics with an increasing number of cases and severity
of disease. Dengue is a rising threat in tropical and subtropical climates due to the introduction of new virus strains into many
countries and to the rise in mosquito prevalence since the cancellation of mosquito eradication programs [35]. It is currently the
most prevalent vector-borne disease in the Americas [17, 35].

Peru is located on the Pacific coast of South America. Its population of about 29 million people is distributed heterogeneously
throughout the country. The majority live in the western coastal plain, and there are much smaller population densities in the
Andes mountains in the center and the Amazon jungle in the east. The climate varies from dry along the coast to tropical
in the Amazon and cold in the Andes. Such heterogeneities influence dengue transmission [43]. For example, temperature
[42] and rain [56] affect the life cycle of the main dengue vector Ae. aegypti, and temperature affects its role in disease
transmission [18, 23, 47]. The jungle forms a reservoir of endemic disease; from there, the disease occasionally spreads across
the country in an epidemic [19]. Additionally, as Ae. aegypti typically only travels short distances [38], human mobility can
contribute significantly to the heterogeneous transmission patterns of dengue at all spatial scales [85].

Our dengue data set consists of 15 years of weekly measurements of the number of disease cases across 79 provinces of
Peru collected by the Peruvian Ministry of Health [41] between 1994 and 2008. These data have previously been analyzed by
Chowell et al. to study the relationship between the basic reproductive number, disease attack rate, and climate and populations
of provinces [19].

Until 1995, the DENV-1 strain dominated Peru; it mostly caused rare and isolated outbreaks [17]. The DENV-2 strain was
first observed in 1995–1996, when it caused an isolated large epidemic [49]. DENV-3 and 4 entered Peru in 1999 and led to
a countrywide epidemic in 2000–2001 [64], and there was subsequent sustained yearly transmission [17]. The data contains a
total of 86,631 dengue cases; most of them are in jungle and coastal provinces (47% and 49%, respectively), and only 4% of the
cases occur in the mountains. The disease is present in 79 of the 195 provinces across the data set, and never in all 79 provinces
at once.

In this paper, we use the definition of “epidemic” from the US Agency for International Development (USAID): an epidemic
occurs when the disease count is two standard deviations above the baseline (i.e., mean) [57]. When stating countrywide
epidemics, we apply this definition when considering all nodes. When stating local epidemics, we apply this definition to
individual provinces (though one could also consider particular sets of provinces).

B. Network Construction

Our data set D consists of N = 79 time series of weekly disease counts {D1,D2, . . . ,DN} over T = 780 weeks. The quantity
Di(t) denotes the number of disease cases in province i at time t. (See Fig. 7 for a plot of the number of cases versus time.) We
create networks from this data by calculating the Pearson correlation coefficient between each pair of time series. 3

We seek to study the temporal evolution of the correlations by constructing separate networks for different time windows —
we either construct a set of static networks or a multislice network. To create these networks, we divide each of the time series

2 We discuss the correlation null model, which was recently introduced in [58], in Section IV D.
3 Reference [81] compared several methods to calculate similarity networks from time-series data. Our focus in the present paper is on generalizing and

evaluating null models, so we use Pearson correlations for simplicity.
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into m time windows by explicitly defining a list of the starting points τ = {τ1, τ2, . . . , τm} for each time window and the time
window width ∆ = τt+1 − τt. In the present paper, we use τ1 = 1 unless we state otherwise.

The starting point τt and window width ∆ define a time window that we use to select a portion of the disease time series.
For example, for the time series of disease cases in province i, the time-series portion Ei = {Di(τt),Di(τt + 1), . . . ,Di(τt + ∆)}
represents the numbers of disease cases in province i at times τt, τt + 1, . . . , τt + ∆. By considering all provinces, one can use
such time series either to construct a set of static networks or a multislice network.

For a static network, we define a set of N nodes {1, 2, . . . ,N}, where node i corresponds to province i. The edge weight

Wi j =
1
2

(ρi j + 1) − δi j , (18)

represents the similarity between the time series Ei and E j; the Kronecker delta δi j removes self-edges. The quantity ρi j is the
Pearson correlation coefficient between the disease time series for provinces i and j. That is,

ρi j =
〈EiE j〉 − 〈Ei〉〈E j〉

σiσ j
, (19)

where 〈·〉 indicates averaging over the time window under consideration, and σi is the standard deviation of Ei. Our construction
yields a fully connected (or almost fully connected) network W with elements Wi j ∈ [0, 1]. When studying static networks, we
use τ = {1, 2, . . . ,T − ∆} to form a set of T − ∆ overlapping static networks.

To construct a multislice network, we use the times τ =
{
1, 1 + ∆, 1 + 2∆, . . . , 1 + ∆ ×

(
b T

∆
c − 1

)}
to create nonoverlapping

time windows. The intralayer edge weights are

Wi js =
1
2

(ρi js + 1) − δi j (20)

for each layer s. We connect each node i in the rth time window to copies of itself in an adjacent time window s using interlayer
edges of uniform weight Cisr = ω ∈ [0,∞). This yields a weighted multislice correlation network. The case ω = 0 in the
multislice network corresponds to a sequence of static networks. See Fig. 7 for a schematic that shows the construction of a
multislice network.

Similar constructions of (both static and multislice) networks from time series have been employed for systems such as
functional brain networks [7, 8], currency exchange-rate networks [27], and political voting networks [59, 65, 66].

Many features, such as the number of layers and the mean and variance of the Pearson correlation values, depend on the
parameters that we use in constructing our networks. For example, it is important to consider the choice of the time window size
∆. There is a trade-off between having many layers to obtain a good temporal resolution of events and ensuring that we construct
each layer using enough time points to be confident of the statistical significance of the similarity values in the adjacency-tensor
layer [8]. Larger values of ∆ yield smaller variations in mean correlation across the years and lessen the effects of small, regional
epidemics on the number of cases and on the correlation between disease profiles in different provinces. Therefore, we want to
use a sufficiently large value of ∆ so that we can examine long-term, repetitive disease patterns. Studies based on random matrix
theory (RMT) suggest an additional constraint of ∆/N > 1, because correlation matrices generated from time series that are
shorter than the number of time series being analyzed (i.e., than the number of nodes) are indistinguishable from the correlations
that one calculates from short, uncorrelated sequences of noise [77]. However, choosing a value of ∆ that is too large risks
over-smoothing data and losing important information.4 Unless we state otherwise, we use ∆ = 80 for the (overlapping) static
networks and ∆ = 60 for multilayer networks (which never have more than 59 nodes in one slice) in order to obtain meaningful
correlation matrices while preserving interesting disease patterns.

C. Community Structure in Disease-Correlation Networks

It is well-known that geographical distance has an important influence on disease spread [85, 87, 91]. Additionally, climate
exerts a significant influence on dengue, and it is also necessary to consider Peru’s particular topography (as its mountains form
a barrier to disease spread) [17, 19]. Therefore, we expect the community structure in the disease-spread networks to be strongly
geographical. We also expect to observe large changes in community structure at certain time points — such as when the
introduction of the new disease strains around 1999 led to large epidemics and the onset of yearly countrywide epidemics [17].
In this section, we explore the similarity of algorithmically obtained community structures to spatial and temporal groupings of
nodes across a range of parameter values.

4 See an analogous discussion of time-window choice in Ref. [28] in the context of financial networks.
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FIG. 7. Construction of multislice correlation networks from disease time-series data. The top panel shows the dengue fever time series for
the 79 provinces of Peru. We color the provinces by climate: coastal provinces are in black, mountainous provinces are in brown, and jungle
provinces are in green. Observe the large epidemics in 1996 (focused in the jungle Utcubamba province) and 2000–2001 (countrywide, but
primarily on the northern coast), and the recurrent post-2001 epidemics (which affect various jungle and coastal provinces). The bottom panel
shows an example of the multislice network construction for 9 nodes with τ = {1, 209, 417, 625} and ∆ = 208. (The time points correspond
to 1/1/1994, 27/12/1997, 22/12/2001, and 17/12/2005). The nodes represent provinces and each intralayer edge weight is given by a Pearson
correlation between a pair of single-province time series in a given time window. One set of correlations gives one temporal layer, and we
connect copies of each node in neighboring layers using interlayer edges of uniform weight ω ∈ [0,∞) (dashed lines). The case ω = 0 yields
a set of static networks. (All other aspects of our network construction are the same.)

To compare the algorithmic partitions of the correlation networks versus manual partitions, we use the z-score of the Rand
coefficient [89]. The Rand coefficient is

R = (w11 + w00)/M , (21)

where w11 is the number of node pairs that are in the same community in both partitions, w00 is the number of node pairs that
are in different communities in both partitions, and M is the total number of node pairs.

We use z-Rand scores instead of NMI because the former measure is good at detecting similarities in coarse structure [89, 90]
but is less sensitive to minor changes such as one node changing community assignment. For the disease data, we do not possess
ground-truth partitions as we did for our synthetic benchmark examples, so we seek to evaluate broad organizational similarities
in the algorithmic and manual partitions rather than attempting to conduct a fine-grained evaluation of community structure
versus a planted partition. We thereby aim to inform our understanding of the general structural influences on the spatiotemporal
patterns of disease spread. One can also examine measures of spatial autocorrelation (e.g., Moran’s I) [1].

To examine the spatial community structures in the static and multilayer networks, we compare the results of the partitions
that we obtain algorithmically to manual partitions using z-Rand scores. In the “climate partitions”, we group nodes according
to the topography of their associated provinces — jungle, coastal, and mountainous provinces — and then subsequently divide
the coastal and mountainous communities into northern, central, and southern provinces [see Fig. 8(a,b)]. We use the detailed
climate partition for the subsequent study. In the 19-community “administrative partition”, we assign each node to its associated
administrative region [see Fig. 8(c)]. We compare each of the 700 static networks against these two manual partitions to study
the spatial element of the data. For the multilayer networks, we compare the algorithmic partition versus a manual partition by
taking the same manual partition of nodes for all layers.

We use the term “spatial partitions” to describe partitions that yield high z-Rand scores in comparison to the climate or
administrative manual partitions. For multilayer networks, we also compare the algorithmic partitions to partitions that con-
tain a planted temporal change in community structure. For these comparisons, we group the multilayer nodes into ones
that occur before or after a “critical” time tc, and we use the term “temporal partitions” to describe partitions that yield
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(a) (b) (c)

FIG. 8. Visualization of the three different topographical partitions of Peru’s provinces on a map. (Left) Broad climate partition into coast
(yellow), mountains (brown), and jungle (green); (center) the further division of coast and mountains into northern coast, central coast, southern
coast, northern mountains, central mountains, and southern mountains; and (right) the administrative partition of Peru.

high z-Rand scores in this comparison. Such temporal partitions contain two communities. We test all of the times τ ={
1, 1 + ∆, 1 + 2∆, . . . , 1 + ∆ ×

(
b T

∆
c − 1

)}
that we use to create the multilayer network, and we report the time with the high-

est z-Rand score as the critical time tc. We also test for pairs of critical times (yielding a partition into three communities) by
examining all possible pairs of critical times in the same manner.

1. Community Structure Using the NG Null Model

Before looking at multilayer networks, we first study the community structures of the 700 overlapping static networks formed
by taking τ = {1, 2, . . . , 700} and using ∆ = 80. We select the networks for which the algorithmic partitions score the highest
against manual spatial partitions of the network for further study.

The community structures that we obtain from maximizing modularity have a strong spatial element, as suggested by the high
z-Rand scores when compared to topographical partitions. As one can see in Fig. 9(a), which shows a compact box plot of the
z-Rand scores versus climate partitions for resolution parameter values of γ ∈ 0.1, 0.2, . . . , 3 (each box) across the 700 networks
covering the data set (the horizontal axis), the spatial element is especially evident after the year 2000.

As one can see from a plot of number of epidemic cases over time (see Fig. 7), this transition seems to occur around the time
of the largest countrywide epidemic in the data, and the subsequent period includes recurring yearly epidemics that have been
linked to climatic patterns in prior studies [17]. There are two periods of significantly spatial partitions: one corresponds to the
2000–2001 epidemic and it contains the spatial partition with the highest z-Rand score against climate [see Fig. 9(b)], and the
second occurs in 2002–2004 and it contains the spatial partition with the highest z-Rand score against administrative partition
[see Fig. 9(c)]. Note that the topographical z-Rand scores decrease after 2004 despite the continuing yearly dengue epidemics.

In Figs. 9(b,c), we plot the partitions that have the highest z-scores with respect to the manual climate and administrative
partitions on a map of Peru. We observe that the high-scoring climate partition consists of one community that is dominated by
the jungle (red community) and another community that is dominated by the coast (pink community), whereas the high-scoring
administrative partition is composed of 7 smaller communities. The jungle nodes form the largest communities in both of these
spatial partitions, and it is these communities that contribute the most to the high spatial scores. There was a dengue epidemic
in most of the provinces in these large communities during the time periods covered by the relevant networks. It is possible that
their proximity drove the large amount of synchrony in the epidemic spread in these provinces.

We now consider community structure in the multilayer disease network with nonoverlapping layers that we construct using
the time points τ = {1, 61, . . . , 721} and the time window width ∆ = 60. To find interesting parameter regimes, we compare the
algorithmically computed community structure of the dengue fever multilayer disease-correlation network to manual partitions
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FIG. 9. Properties of algorithmic community structure, which we obtained by maximizing modularity using the NG null model for the dengue
fever static correlation networks with window size ∆ = 80. (a) A box plot of the z-Rand scores versus the detailed climate partition at different
γ values (γ ∈ 0.1, 0.2, . . . , 3), for the 700 static networks covering the whole time period (horizontal axis), (b) community structure with
the highest z-Rand score when compared to the climate partition. The resolution-parameter value is γ = 1, the layer is 293 (which occurs
in December 1999), the z-Rand score is 8.85, (c) community structure with the highest z-Rand score when compared to the administrative
partition. The resolution-parameter value is γ = 1.2, the layer is 453 (which occurs in October 2002), the z-Rand score is 8.76, and we show the
largest community in brown. Our visualization in panels (b,c) uses a map of Peru in which we color provinces according to their community
assignment. White provinces are ones in which our data does not include any reported cases of dengue fever in the indicated time window.

across a range of ω and γ parameter values between 0 and 3 (see Fig. 10). For γ / 1, all nodes are in one community. For
γ ∈ [1, 1.2] and ω / 1, the algorithmically detected partitions have a relatively high z-Rand score when compared to the
temporal partition [see Fig. 10(c)]. When looked at in detail, the partitions exhibit a mixture of spatial and temporal features.
[See Fig. 10(a) for an example.]
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FIG. 10. Algorithmic partitions, which we obtain by maximizing modularity using the NG null model, of the dengue fever multilayer disease-
correlation network that we construct using ∆ = 60. (a) An example of a consensus community structure that we obtain for a resolution-
parameter value γ = 1 and ω = 0.1 across 100 repeats of community detection. Mid-layer timepoints are plotted on the horizontal axis, and
nodes are on the vertical axis. Node community membership is indicated by color. We observe several times when communities die and new
ones are born. (b,c) Results of varying the parameters γ and ω. We show the z-Rand scores for similarity to (b) “spatial” partitions by climate
and (c) temporal partitions before and after a critical time tc. (For this figure and for each set of parameter values, we select the highest scoring
tc; in the majority of cases, tc corresponds to January 2002.)

When studying the qualitative features of the partitions for γ ∈ [1, 1.2] (where the endpoints of this interval are approximate)
and ω / 1, we observe that community detection repeatedly finds 2001 as the single critical time, and 2001 and 2005 as the
most common pair of critical times tc (i.e., the strongest change points in temporal community structure), which agrees with the
visual observations. This finding suggests that a strong shift in the patterns of disease correlations occurred around these times.
Indeed, Peru experienced a large countrywide dengue epidemic in 2000–2001, and this period also marks the onset of new yearly
epidemic dynamics [17]. Thus, our method recovers the most important biological event in this data set in addition to providing
additional information about spatial influences on disease spread. We also observe several other time when new communities are
born, but we do not know the biological significance of these dates. Notably, in this parameter regime, our community structure
does not identify the large epidemic in the jungle Utcubamba province in 1996 (see Fig. 7), which is the other large event in this
data set.

The community structure that we detect depends heavily on parameter values. In many parameter regimes — especially when
γ ' 1 and ω ' 0.5 — communities appear to be predominantly spatial, and we find high z-Rand scores when compared to
the climate and administrative partitions [see Fig. 10(b)]. The high influence of spatial proximity on the community structure
is unsurprising, as spatial distance is an important influence on disease spread [85, 91]. Previous studies have also noted that
the community structure of spatial networks obtained by maximizing modularity using the NG null model tends to be strongly
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influenced by geographical factors [26, 75, 88]. If there are other interactions that shape the dengue fever correlation network,
they might be obscured by the strong influence of spatial proximity. However, such interactions might be revealed by using a
spatial null model that incorporates the expected effect of space on interactions. We pursue this idea in Section IV C 2.

2. Community Structure Using Spatial Null Models

We apply spatial null models to the dengue fever correlation networks. We obtained province locations from the Geonames.
org website [31], and we obtained their populations from the Peruvian Instituto Nacional de Estadı́stica e Informática
(INEI) [41]. We were only able to obtain the 1994 and 2007 populations; due to the limited range of data and the several
changes in Peruvian administrative structures between the two times, we only use the 2007 populations.

The maximum inter-province distance is about 1300 km. We report numerical experiments using a bin size of 400 km after
testing the spatial deterrence for several other sizes (ranging between 50 and 500 km) in the same manner as in Ref. [26]: that is,
we study the shape of the deterrence function [see Eq. 5 and the nearby discussion] with changing distance across bin sizes, and
we then examine the community structures that we obtain using different bin sizes. We find that bin sizes have an effect on the
shape of the deterrent function (with lower sizes giving smoother results), but all of the bin sizes that we tested produced very
similar partitions for both the gravity and radiation spatial null models. We selected the smallest bin size that guaranteed more
than 5 nodes in each bin.

Recall from Section IV A that only 79 of the 195 provinces had reported cases of dengue fever in our data, so we use the
location and population data only for those provinces.

We first study the community structure on static disease-correlation networks using the gravity and radiation null models.
Both null models seem to remove most of the spatial element of the community structures (including temporal variation in the
spatial correlations), as indicated by low values and low variation of spatial z-Rand scores (not shown). For both the gravity
and radiation null models, we observe high similarity between layers for a variety of values of the resolution parameter γ [see
Fig. 11(a)]. These structures contain one dominant community with the majority of nodes present at any given time, and several
singleton communities [see Fig. 11(b)]. By examining the partitions directly using a map of Peru, we see that the singleton
communities tend to consist of the highest-populated nodes.
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FIG. 11. Properties of the algorithmic community structure, which we detected by maximizing modularity using the gravity null model, of the
dengue fever static correlation networks that we construct using a time window of ∆ = 80. (a) NMI between adjacent layers for γ ∈ {0.9, 1, 1.1}.
(b) Maximum community size (blue dashed curve) and number of communities (green solid curve) for γ = 1. (c) Community structure scoring
the highest z-Rand score versus climate among the dengue fever static correlation networks that we construct using ∆ = 80. (The resolution-
parameter value is γ = 2.9, the layer is 66, and the z-Rand score is 4.94.) We show the structure on a map of Peru, and we color provinces
according to their community assignment. White provinces are ones in which our data does not include any reported cases of dengue fever in
the indicated time window.

We also examine the spatial null models for multilayer correlation networks. The community structures again exhibit one
large community containing the majority of multilayer nodes [see Fig. 12(a,b)], and several multilayer nodes corresponding to
provinces with highest populations form singleton communities across time. This situation occurs for all of the tested parameter
values. Additionally, we do not observe any clear pattern in the z-Rand scores as we change γ and ω.

Our findings suggest that the addition of space into a null model for modularity optimization might remove the majority of the
variation in the correlation structure of the dengue fever correlation networks, such that the influence of population size could
be the only major factor that remains. This could relate to the concept that a minimum population size is required for sustained
disease transmission; it has been estimated that this size is between 10,000 and 500,000 for dengue [19, 51]. There are only 5
provinces with populations over 500,000, and these provinces are often assigned to singleton communities when we use a spatial
null model. This suggests that they have different disease patterns from the other provinces.

Geonames.org
Geonames.org
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FIG. 12. Consensus community structure, which we obtain by maximizing modularity using (a) the gravity null model and (b) the radiation null
model, of the dengue fever multilayer disease-correlation network that we constructed using a time window of ∆ = 60 across 100 repeats of
community detection. We use a resolution-parameter value of γ = 1 and consider ω = 0.1. Mid-layer timepoints are plotted on the horizontal
axis, and nodes are on the vertical axis. Node community membership is indicated by color.

D. Community Detection Using a Correlation Null Model

Recently, MacMahon et al. [58] proposed a new null model that they designed specifically for modularity maximization for
networks that are constructed based on the pairwise Pearson correlations between time series. They used ideas from RMT [62]
to generate a null model that represents the “random” component of a correlation matrix and can take into account the single
most strongly influencing factor on the correlation structure. In the context of financial systems, which was the focal example of
Ref. [58], this factor is often called a “market mode”. Given that we often found a single large community when we used spatial
null models, it is interesting to see what results we obtain using such a correlation null model.

To use a correlation null model, we need to construct our network directly from pairwise correlations without subsequently
shifting them to [0, 1] and removing self-edges. We construct networks by selecting time windows and calculating Pearson
correlations in the same manner as in Section IV B, but the here edge weights are left as raw correlations: Ci j = ρi j (Eq. 19).

Because of the special structure of correlation matrices, modularity using the standard NG null model assigns importance to
pairs of nodes i and j whose Pearson correlation is larger than the product of the correlations of each node with the time series
of the total number of disease cases in the country over the chosen time window: Etot, where Etot(t) =

∑N
i=1 Ei(t).

By contrast, the correlation null model that we adopt from Ref. [58] uses ideas from RMT to detect communities of nodes that
are more connected than expected under the null hypothesis that all time series are independent of each other.

For a given correlation matrix constructed from N time series that each have length T (with T/N > 1), one posits based on
RMT that any eigenvalues that are smaller than the eigenvalue ξ+ = (1 +

√
N/T )2 are due to noise. Here, ξ+ is the maximum

eigenvalue predicted for a correlation matrix that is constructed from the same number of entirely random time series.
Additionally, for many empirical correlation matrices, the largest eigenvalue ξm is much larger than the others, and its corre-

sponding eigenvector has all positive signs [58]. In this situation, there is a common factor, which is called the “market mode”
in financial applications, that influences all of the time series [80].

We can thus decompose our correlation matrix C as follows: C = C(r) + C(g) + C(m), where C(r) is the “random” component of
the matrix, C(m) is the “market mode”, and the “group mode” C(g) is embodies the meaningful correlations between time series.
We write C(m) = ξmvm ⊗ vm and C(r) =

∑
{i|ξi≤ξ+}

ξivi ⊗ vi, where ξi and vi are an eigenvalue and its corresponding eigenvector,
vm ⊗ vm is the outer product of the two vectors (a special case of the Kronecker product for matrices), and ξm is the maximum
observed eigenvalue in the correlation matrix C. We can construct a correlation null model either by removing both the “random”
component of the matrix and the influence of the “market mode” (i.e., by using the null model Pcorr = C(r) + C(m)) or by only
removing the random component (i.e., by using the null model Pcorr = C(r)).

To satisfy the T/N > 1 requirement to applying the RMT approach of Ref. [58], we require ∆ ≥ N. For subsequent calcula-
tions, we use ∆ = 80 for static networks, and ∆ = 60 for multilayer networks (which have a maximum of 59 nodes per slice, as
not all provinces experience disease at the same time), unless stated otherwise.

Although our maximum eigenvalue is larger than the other eigenvalues and every component of the associated eigenvector is
positive, the eigenvector does not appear to affect all nodes to the same extent. The above construction thus yields a non-uniform
null model for our data in practice, so we are unable to identify the analog of a market mode. We thus do not incorporate such a
mode into the null models that we employ for community detection. We use the correlation null model

Pcorr = C(r) = γ
∑
{i|ξi≤ξ+}

ξivi ⊗ vi , (22)
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FIG. 13. Algorithmic community structure, which we obtain by maximizing modularity using a correlation null model, for the static dengue
fever correlation networks that we construct using ∆ = 80. (a) A box plot of the z-Rand scores versus the detailed climate partition at different
γ values (γ ∈ 0.1, 0.2, . . . , 3), for the static networks covering the whole time period (horizontal axis). In panels (b,c), we show partitions of
the network with the highest z-Rand score based on (b) climate (γ = 2.4; layer 37, which corresponds to October 1995; and a z-Rand score of
9.04) and (c) administrative divisions (γ = 2.3; layer 132, which corresponds to April 1996; and a z-Rand score of 8.9). We color provinces
according to their community membership on a map of Peru. White provinces are ones in which our data does not include any reported cases
of dengue fever in the indicated time window.

where γ is the resolution parameter. For the multilayer setting, we write

Pcorrs = C(r)
s = γ

∑
{i|ξs

i ≤ξ
s
+}

ξs
i vs

i ⊗ vs
i , (23)

where ξs
i and vs

i are an eigenvalue and its corresponding eigenvector for layer s.
We test the performance of this correlation null model on correlation networks that we construct from dengue fever time series

with ∆ = 80. In most of the static networks, the community structures appear to be affected by spatial proximity — especially for
post-2000 networks, as illustrated by the high z-Rand scores versus the climate partition (particularly in 1995–1996, 2000–2001,
2003–2004, 2005–2006). See Fig. 13(a). These high z-Rand scores result from (1) the classification of the majority of jungle
provinces into one community and (2) the existence of a community that contains many of the northern coastal provinces [see
Figs. 13(b,c)].

We also perform community detection on multilayer networks using the correlation null model Pcorrs for (γ, ω) ∈ [0.1, 3] ×
[0.1, 3]. We obtain partitions with a mixture of temporal and spatial features. We calculate a consensus community structure
across 100 realizations for each value of γ and ω. In Fig. 14(a), we show the best-looking partition, which we obtain for γ = 1
and ω = 0.1. This partition includes 9 communities. Although several communities coexist in each layer, the primary divisions
appear to be largely temporal. For example, community 2 shrinks after layer 6 (January 2001). However, the highest z-Rand
score versus a temporal partition (with either one or two critical times) for this partition is one that has a single critical time tc
at the end of layer 7 (i.e., in July 2002). That is, this manually-constructed temporal partition has one community that contains
layers 1–7 and a second community that contains layers 8–12.

We obtain a temporal partition with one critical time for γ / 1 and ω / 0.3. The other parameter regimes have different critical
times. For ω / 1.5 and the allowance of a pair of critical times, we obtain the highest temporal z-Rand score when the critical
times occur immediately after layer 6 (i.e., January 2001) and immediately after layer 9 (i.e., March 2004). See Fig. 14(d). For
ω ' 1.5, we obtain the highest temporal z-Rand scores with a pair of critical times when those times occur immediately after
layer 5 (i.e., June 1999) and immediately after layer 9. (Note that these z-Rand scores tend to be lower than those for ω / 1.5.)
See Fig. 14(e). In our sweep over the different values of γ and ω, we obtain lower climate z-Rand scores compared to what
we obtained using the NG null model (compare Fig. 14(b) with Fig. 10(b)). We do not observe any clear patterns in the spatial
z-Rand scores as we vary γ and ω.

1. Province-level Multilayer Communities

We now examine the province-level information that we can glean from the data. The simplest approach is to construct a
single static network from the entire length-T time series, but our multilayer approach allows us to aggregate data less severely.
This, in turn, allows us to lose less information.

When we aggregate all time series to construct a single similarity network (i.e., we choose τ = 1 and ∆ = 779), we find that
the community structures that we obtain via modularity maximization with the spatial and correlation null models all consist of
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FIG. 14. Algorithmic community structure, which we obtain by maximizing modularity using a correlation null model, of the dengue fever
multilayer disease-correlation network that we construct using ∆ = 60. (a) Consensus community structure for γ = 1 and ω = 0.1 calculated
across 100 repeats. (b,c) Results of varying γ and ω. We show the z-Rand scores for similarity to (b) “spatial” partitions by administrative
region, (c) temporal partitions before and after a single critical time tc. (For each parameter set, we select the single highest scoring tc). In
(d) we show the z-Rand scores for similarity to temporal partitions with 3 communities determined using a pair of critical times. (e) Pairs of
critical times tc with the largest z-Rand scores.
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FIG. 15. Province-level algorithmic community structure, which we obtain by maximizing modularity, for the static and multilayer dengue
fever correlation networks. We color the provinces according to their community assignments. White provinces are ones in which our data
does not include any reported cases of dengue fever in the indicated time window. (a) NG null model that is fully aggregated (i.e., τ = 1
and ∆ = 779) with a resolution-parameter value of γ = 1. (b) NG null model that is fully aggregated with γ = 1.1. (c) NG null model in a
multilayer network with province-level communities that we obtain from the multilayer network with a time window of width ∆ = 60. (d)
Correlation null model in a multilayer network with province-level communities that we obtain with a time window of width for ∆ = 60.

a single large homogenous community with up to three outlier nodes (see Fig. 26 in Appendix G). Only the NG null model is
able to detect meaningful-looking communities, especially for γ = 1 and γ = 1.1 [see Fig. 15(a)]. For γ = 1, the we find three
communities; one is a singleton, and the middle one consists almost exclusively (15 of 17 nodes) of northern coastal provinces.
This partition has z-Rand score versus climate of 7.3. For γ = 1.1, using the NG null model yields 28 communities, and many
of them are small.

Nodes grouped in the community of northern coastal provinces are the provinces of Peru that were most strongly involved
in the 2000–2001 dengue epidemic; 15 nodes in this community experienced this epidemic, whereas only two other nodes
experienced it.

The data aggregation over the whole time series results in the 2000–2001 epidemic dominating all other events in the time
series. If we use the community structure of the temporally evolving multilayer network to create the province-level structure,
we might be able to shed some more light on other interactions between provinces.

We then study the structure of province-level communities that we obtain from community detection using the uniform null
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model on an association matrix Aprovince. As we discussed in Section II, we create this matrix by counting the number of
multilayer nodes that are classified together in a consensus community detection on a multislice network. We consider the
parameter values γ = 1 and ω = 0.1 over 100 repeats.

Comparing the province-level communities that we obtain using the NG and correlation null models versus the broad to-
pographical categories of coast, mountain, and jungle reveals large-scale climatic influence on disease patterns. The two null
models yield similar results: more than 40 nodes are grouped into one large community that includes central coast, northwestern
and southern jungle, and eastern jungle; and coastal north nodes form smaller, strongly spatial communities [see Fig. 15(c,d)
and Fig. 16]. When we study the disease time series of the provinces grouped into the province-level communities, we observe
distinct types of disease incidence patterns. The NG null model finds one more pattern type (nodes with late onset of disease, as
we illustrate in Fig. 17) than the correlation null model.

(a) (b)

FIG. 16. Membership of the consensus province-level communities, which we computing by maximizing modularity, in multilayer dengue
fever networks for γ = 1. In panels (a) and (b), we compare the climate composition of the communities using (a) the NG null model and (b)
a correlation null model. We order communities according to their size, and the horizontal axis gives the community number.

(a) (b)

FIG. 17. Time series for disease occurrences in the provinces that belong to consensus province-level communities, which we computing by
maximizing modularity, in multilayer dengue fever networks for γ = 1 using (a) the NG null model and (b) a correlation null model.

V. Conclusions

In conclusion, we examined time-dependent community structure and the effect of different null models — including ones
that incorporate spatial information — on the results of modularity maximization. We conducted our computational experi-
ments using novel synthetic benchmark spatial networks and correlation networks constructed from spatiotemporal dengue fever
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incidence data in provinces of Peru (a system that is strongly influenced by spatial effects). We compared our results for the
standard Newman-Girvan null model versus two null models that incorporate spatial information: a gravity null model [26] and
a novel radiation null model. We also compared the NG null model on disease-correlation networks with a recently-developed
correlation null model (and a multilayer generalization of it) that is designed specifically for studying correlation networks that
are derived from time series [58].

Our results indicate that it is very important to incorporate problem-specific information such as spatial information into the
null models for community detection. Our results also illustrate that there are many nuances to consider. That is, it is not simply
a matter of incorporating spatial information in an arbitrary way but rather developing spatial null models that are motivated
by application-appropriate generative models. For example, the NG null model performs better than the spatial null models
(which both use population data) on the random population distance benchmark where populations vary but edge weight does
not depend on them. However, when we remove the variation in population or modify the benchmark to include population in
edge placement probabilities, we find that the gravity null model performs best (as expected).

Parameter choices can also be extremely important, as demonstrated by the large influence of bin size (when binning distances
for the spatial null models) on community detection results, the failure to find meaningful communities with any of the null
models at low edge densities, and the strong influence of resolution parameter γ on the results.

To summarize, one needs to consider seriously what variables that influence the connections in a system of interest one wants
to include in a null model, be careful about including spurious variables, and test how the results change for many parameter
values.

Finally, not incorporating space at all can be more appropriate than incorporating it in a manner that is overly naive. (See, for
example, our results on the random population benchmarks.)

In our consideration of dengue fever data, we observed for static networks that the NG and correlation null models find
structures that are strongly spatial — especially after the onset of yearly epidemics in 2000. In our study, we observed that
spatial partitions are often dominated by large communities of neighboring jungle nodes that experience local epidemics during
the time window.

On a multilayer network, maximizing NG modularity can result in either spatial or temporal partitions (depending on the
parameter regime). Temporal partitions successfully find the most important time point in the history of the disease — namely,
the introduction of a new disease strain that caused a large epidemic in 2000–2001 and a subsequent shift in disease patterns —
and several other potentially interesting time points and periods of high spatial correlation.

When studying province-level connectivity, we illustrated that consensus province-level communities from an association
matrix that we constructed from the multilayer network across time is a far preferable approach to complete data aggregation. For
the aggregation into a static network, maximizing modularity using any of the test null models except the NG null model failed
to detect any meaningful communities; the NG community structure corresponds to the large 2000–2001 epidemic. Aggregating
networks results in loss of information that is desirable to study for meaningful patterns [39, 48].

When we constructed multilayer networks and computed consensus communities, the computed “spatial” multilayer partitions
and province-level partitions highlight the importance of climate to the disease patterns of dengue, as the jungle provinces are
placed into distinct communities from most mountainous and coastal provinces. This is sensible, as the yearly epidemic patterns
tend (on average) to exhibit an earlier epidemic onset in the jungle [17, 19] and the jungle climate is rather distinct from the
climate in coastal and mountainous provinces. The main climatic difference between jungle provinces and other provinces is
temperature, and the influence of temperature on dengue transmission [23, 43, 47] and attack rate and persistence has been
documented [18, 19].

The province-level communities that we detect using both the NG and the correlation null models yield distinct temporal
disease incidence patterns. The NG null model also finds one additional jungle community (with a late disease onset) than
the correlation null model. The assignment of different jungle nodes into separate communities hints that the variables that
influence jungle epidemics may be different than those in other climates. Moreover, the variability in disease patterns between
jungle provinces is high, perhaps due to the year-round disease presence (in contrast to the existence of a summer disease season
on the coast). Chowell et al. [19] reported that the coastal and mountainous provinces exhibit more spatial heterogeneity of
disease incidence than the jungle provinces, and population size appears to play a larger role in disease persistence in the jungle.
Additionally, the jungle climate is more homogenous (especially in the north-south direction) than the other two climates.

When we attempt to remove the influence of space by using the gravity and radiation null models, we obtain one large
community that contains all but the highest-population provinces (which are assigned to singleton communities). In contrast to
the linguistic example in Ref. [26], this suggests for our disease networks that the incorporation of space into the null model
accounts for the majority of the structure present in the network. The spatial structure that we removed likely includes the
structure that corresponds to the climate variation that causes different epidemic patterns in the jungle, coastal, and mountainous
provinces. The only variable that we were able to identify as influencing community structure when using spatial null models
is province population: the highly populated (and typically coastal) provinces forming singleton communities. These highly
populated provinces are likely to be economic centers, with many people traveling there from the other provinces and thereby
transmitting the disease [38, 60, 73, 85].

These provinces could then be the seeds of epidemics for the other coastal and mountainous provinces, and two studies have
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in fact reported (so-called) “hierarchical” transmission of dengue from populous regions to those with low populations in both
Peru and Thailand [19, 21]. This situation could lead to high correlations across atypically long distances compared with the
majority of the data, which could in turn cause populous provinces to be assigned to singleton communities. Additionally, it is
known that population size influences dengue transmission: the basic reproductive number R0 and disease persistence (i.e., the
fraction of weeks with disease cases) are positively correlated with population size, and the attack rates are negatively correlated
with it [17, 19].

The incorporation of spatial information into null models for community detection is both interesting and desirable. As we
have illustrated in the present paper, however, there are many nuances that it is important to consider. We have also demonstrated
that it is important to develop null models that incorporate generative mechanisms for human mobility and flux. We similarly
expect that domain-dependent, mechanistic null models will also be crucial in many other applications.
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A. Spatial benchmarks: Variation of Information

Normalized variation of information (NVI) [63] is a viable alternative similarity measure to NMI for the spatial benchmark
networks. In contrast to NMI, variation of information (VI) and NVI are metrics in the mathematical sense. Both measures are
related to mutual information. For a partition X = {X1, X2, . . . XK} with K communities, VI is defined as

VI(X,Y) = H(X) + X(Y) − 2I(X,Y) , (A1)

where H(X) = −
∑K

k=1 Pk log2 Pk is the entropy of the random variable associated to partition X, the quantity I(X,Y) =∑K
k=1

∑L
l=1 P(k, l) log2

[
P(k,l)

P(k)P(l)

]
is the mutual information, P(k) and P(l) are the respective marginal probabilities of observing

communities k and l in partitions X and Y , and P(k, l) is the joint probability of observing communities k and l simultaneously in
partitions X and Y). VI is equal to 0 if partitions X and Y are identical, and VI(X,Y) < log2 N, where N is the number of nodes
in the whole network. Normalizing VI yields NVI, which is given by [50]

NVI(X,Y) =
1 − VI(X,Y)

H(X,Y)
∈ [0, 1] . (A2)

See Refs. [50, 63] for additional discussions. As one can see in Fig. 18, both NMI and NVI perform similarly and neither gives
visibly better precision.
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FIG. 18. (Left) Normalized mutual information (NMI) and (right) normalized variation of information (NVI) between algorithmically-detected
partitions, which we obtain by maximizing modularity, and planted partitions in the uniform population distance static spatial benchmarks with
N = 50 cities, a grid size of l = 10, and a density parameter of µ = 50. We examine the partitions for different values of the resolution parameter
γ as a function of inter-community connectivity λd using the (top) NG null model, (middle) gravity null model, and (bottom) radiation null
model.
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B. Spatial benchmarks: Variation of the number of cities N

We now vary the number N of cities in benchmarks with a fixed size of l = 10, density parameter of µ = 100, and a uniform
population of 100 people in each city. In Fig. 19, we plot the NMI of algorithmic partitions versus planted partitions for several
values of the resolution parameter γ using the NG null model and both spatial null models. In combination with Fig. 3 in the
main text, which has N = 50 cities, we observe no qualitative changes in NMI aside from an expected increase in variability
when N is small.
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FIG. 19. Uniform population static benchmarks: NMI scores between algorithmically detected partitions, which we obtain by maximizing
modularity, and planted partitions in static uniform population distance benchmarks with l = 10, a density parameter of µ = 100, and uniform
populations of 100 for different numbers of cities in an underlying space of the same size. The number of cities is (left) N = 10, and (right)
N = 90. We use the NG (top), gravity (middle), and (bottom) radiation null models. See Fig. 3 in the main text for plots with N = 50.

C. Variation of Edge Density Parameter µ

We present the results of varying the edge density parameter µ in static benchmarks. The edge density has a strong effect
on the ability of the modularity-maximization methods to detect communities. For µ / 5, we obtain smaller NMI scores than
the maximum attained for each particular λd for larger µ values. (See Figs. 20 and 21.) We therefore focus on using a density
parameter of µ = 100 in the main text to follow the choice that was used for the benchmarks networks in Ref. [26].

D. “Distance and Population” Benchmark

In this section, we construct a “distance and population” spatial benchmark. In Fig. 3 in the main text we observed that
the gravity null model performs best on the uniform population distance benchmark, but the NG null model performs better
than spatial null models on the random population distance benchmark because the edge placement in that benchmark does not
include population information. Here, we study the effects of incorporating population into edge probabilities for the “distance
and population” benchmark.
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FIG. 20. NMI between algorithmically-detected partitions, which we obtain by maximizing modularity with γ = 1, and planted partitions for
uniform population static spatial benchmarks with N = 50, a size parameter of l = 10, uniform city populations of 100, and several values of
inter-community connectivity λd. We plot the NMI scores as a function of the edge density parameter µ for (left) the distance benchmark and
(right) the flux benchmark.

We construct the new type of benchmark network in the same manner as the distance benchmark in Section III, but we now
incorporate population into the edge-placement probability by taking pdistpop

i j =
pi p jλ(ci,c j)

Z1di j
. As expected, this brings back the

advantage that the gravity null model has for the uniform population distance benchmark (compare Fig. 22 with Fig. 3 in the
main text). The radiation null model has the second-best performance on this benchmark, with a better performance than on the
random population distance benchmark. However, it does not do as well as it did on the random population flux benchmark (see
Fig. 3).

E. Community detection on random population multilayer spatial benchmarks

We now study the influence of the parameters γ and ω on the community structure for random-population multilayer
temporally-stable benchmarks. We first compare the results to our findings from static benchmarks by varying γ and λd for fixed
values of ω. We study the performance of modularity maximization with the NG, gravity, and radiation null models on random
population benchmarks (see Fig. 4) with parameter values of N = 50, l = 10, and m = 10 layers using γ ∈ {0.5, 0.75, 1, 1.25, 1.5}
and ω ∈ {0.1, 0.25, 0.5, 0.75, 1}. We only show plots for ω = 0.1, as the values of ω do not noticeably influence the results.

We obtain results that are similar to our results for the corresponding static benchmarks inn Fig. 3.
Once again, we find that the choice of γ has a large influence on the quality of algorithmic partitions, and (as with our findings

for static benchmarks) that γ = 1 seems to yield the best performance (i.e., the largest NMI scores) for low values of λd, whereas
larger values of γ perform better for larger λd (see Fig. 23). The effect of varying γ is most pronounced for the radiation null
model on flux benchmarks.

We now examine the NMI of algorithmic versus planted partitions in temporally-stable multilayer benchmarks for fixed
γ = 1 while varying ω and λd. As we show in Fig. 24, we find that the value of ω usually has very little effect on our
ability to detect the planted communities via modularity maximization — the same as for the uniform population temporally
stable multilayer benchmarks (see Fig. 5). The parameter ω becomes important for the random-population, temporally-evolving
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FIG. 21. NMI between algorithmically-detected partitions, which we obtain by maximizing modularity with γ = 1, and planted partitions for
random population static spatial benchmarks with N = 50, a size parameter of l = 10, city populations n selected uniformly at random from
[0, 100], and several values of inter-community connectivity λd. We plot the NMI scores as a function of the edge density parameter µ for (left)
the distance benchmark and (right) the flux benchmark.

multilayer benchmarks in the same manner as what we observed in the main text for uniform population benchmark networks
(not shown; see Fig. 6 in the main text for the uniform population results).

F. Province-level Communities for Multilayer Benchmarks

In Fig. 25, we present our results for province-level community detection on uniform population temporally stable multilayer
benchmarks. As one can see by comparing these results to those in Fig. 4, we obtain similar NMI scores for the performance of
community detection for province-level communities as we did for the ordinary community detection in multilayer networks.

G. Community Detection on Aggregated dengue fever Data

In Fig. 26, we show additional results of community detection on fully aggregated networks (i.e., we use τ = 1 and ∆ = 779)
from the dengue fever times series. In Section IV D 1 of the main text, in Fig. 15(a) we showed the results of modularity
maximization using the NG null model. We now also show similar results for the gravity, radiation, and correlation null models.
The gravity, radiation, and correlation null models find one large community and a few small communities. Because of the
aggregation, we have lost the rich set of information that we were able to study using multilayer community detection.
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FIG. 22. NMI between algorithmically-detected community structure, which we obtain by maximizing modularity, and planted community
structure in “distance and population” static spatial benchmarks with (left) uniform populations and (right) random populations. We use
N = 50, l = 10, m = 10, µ = 100, and γ = 1 for various values of ω (colored curves) as a function of λd. We detected communities by
optimizing modularity using the (top) NG, (middle) gravity, and (bottom) radiation null models
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FIG. 23. NMI between algorithmically-detected community structure, which we obtain by maximizing modularity, and planted community
structure in random-population, temporally-stable multilayer spatial benchmarks. We choose the population of each of the N = 50 cities
uniformly at random from the set {1, . . . , 100}. We consider various values of the resolution parameter γ, and the other parameter values are
l = 10, m = 10, µ = 100, and ω = 0.1. We plot NMI as a function of λd for (left) the distance benchmark and (right) the flux benchmark using
the (top) NG, (middle) gravity, and (bottom) radiation null models.
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FIG. 24. NMI between algorithmically-detected community structure, which we obtain by maximizing modularity, and planted community
structure in random-population, temporally-stable multilayer spatial benchmarks. We choose the population of each of the N = 50 cities
uniformly at random from the set {1, . . . , 100}. We consider various values of the parameter ω, and the other parameter values are l = 10,
m = 10, µ = 100, and γ = 1. We plot NMI as a function of λd for (left) the distance benchmark and (right) the flux benchmark using the (top)
NG, (middle) gravity, and (bottom) radiation null models.
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FIG. 25. NMI between algorithmically-detected province-level community structures, which we obtain by maximizing modularity, for uniform
population (ni = 100 for all i) temporally stable multilayer spatial benchmarks with m = 10 layers. Each layer has a single-layer planted
partition with N = 50 cities, a size parameter of l = 10, and a density parameter of µ = 100. We use ω = 0.1 and consider various values of
the resolution parameter γ, and we plot NMI as a function of the inter-community connectivity λd for (left) the distance benchmark and (right)
the flux benchmark.
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FIG. 26. Algorithmically-detected community structures, which we obtain using modularity maximization, for static dengue fever correlation
networks that we construct using the entire set of time series (i.e., we use τ = 1 and ∆ = 779) using (a) the gravity null model, (b) the radiation
null model, and (c) the correlation null model for a resolution-parameter value of γ = 1. We color provinces on a map of Peru according to
their community assignments. White provinces are ones in which our data does not include any reported cases of dengue fever in the indicated
time window.
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