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Directed closure measures for networks with reciprocity

C. Seshadhri,∗ Ali Pinar,† Nurcan Durak,‡ and Tamara G. Kolda§

Sandia National Laboratories, Livermore, CA, USA

(Dated: October 30, 2018)

The study of triangles in graphs is a standard tool in network analysis, leading to measures such
as the transitivity, i.e., the fraction of paths of length 2 that participate in triangles. Real-world
networks are often directed, and it can be difficult to “measure” this network structure meaningfully.
We propose a collection of directed closure values for measuring triangles in directed graphs in a
way that is analogous to transitivity in an undirected graph. Our study of these values reveals much
information about directed triadic closure. For instance, we immediately see that reciprocal edges
have a high propensity to participate in triangles. We also observe striking similarities between the
triadic closure patterns of different web and social networks. We perform mathematical and empirical
analysis showing that directed configuration models that preserve reciprocity cannot capture the
triadic closure patterns of real networks.

I. INTRODUCTION

The study of triangles is by now a classic tool in the
analysis of large-scale networks. The focus on triangles
has its roots in a variety of disciplines: in social sciences
as a manifestation of theories of edge formation [1, 2],
in physics as a local measure of clustering [3], in biology
as motifs [4]. Capturing triangle structure in genera-
tive models is also of great interest [5, 6]. We consider
the problem of studying triangles in directed networks.
Most social, communication, cyber, and web networks
are directed networks. In directed networks, it has been
observed that there is generally a significant percentage
of reciprocal edges [7–14]. Newman et al. [7] show that
the fraction of such edges in commonly studied graphs is
quite high (refer also to Table III), and subsequent stud-
ies underlined the importance of such edges in network
formation and information diffusion [8, 11, 13]. The set of
wedges (Figure 1) and triangles (Figure 2) involving di-
rected and reciprocal edges holds information about the
underlying dynamics [1, 4, 15–18]. But it is challenging
to use this information to compare different graphs. We
treat a directed graph as having two different types of
edges: directed and reciprocal. A reciprocal edge is tech-
nically a pair of directed edges, {(i, j), (j, i)}, that we
treat as a single reciprocal edge. In our figures, recipro-
cal edges are depicted as double-headed arrows. Treating
reciprocal edges explicitly has been done since the triad

census work of Holland and Leinhardt [1], and more re-
cently for trade network analyses [9, 18]. Observe that
reciprocal edges are essentially undirected. In this pa-
per, the total number of edges refers to the sum of the
number of directed edges plus the number of reciprocal
edges. Following [7], we define reciprocity of a graph, r,
as the ratio of the number of reciprocal edges to the total
number of edges.
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(i) out (ii) path (iii) in

(iv) out+ (v) in+ (vi) reciprocal

FIG. 1: Directed wedges

(a) acyclic (b) cycle (c) out+

(d) cycle+ (e) in+ (f) cycle++

(g) reciprocal

FIG. 2: Directed triangles

A. Main results of this paper

We generalize the classic notion of transitivity (pg. 243
of [19]), also called the global clustering coefficient, to di-
rected graphs. We say a wedge is closed if it participates
in a triangle. As described formally in §II, considering all
possible directed wedge and triangle combinations yields
a set of 15 directed closure values that provide a triadic
summary of a directed graph. We perform experiments
on a set of publicly available datasets and present the
directed closure information in a succinct form that al-
lows for a comparison of different graphs. This leads to
a series of observations.

• Heterogeneity of closure: We find the closure
fractions of wedges vary greatly depending on the wedge
type. “In” wedges are typically the most numerous but
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are rarely closed. On the other hand, all other wedge
types are much less numerous but are closed at a higher
rate.
• Reciprocity inducing closure: For every graph

we analyze, the presence of a reciprocal edge in a wedge
greatly increases the probability of closure. In other
words, wedges with reciprocal edges participate in trian-
gles more frequently than wedges without any reciprocity.
• Transitivity correlates with reciprocity: Cer-

tain triangles are infrequent, specifically acyclic and cy-
cle+ triangles. The fact that cycles without recipro-
cal edges are so rare suggests that transitivity and reci-
procity go hand in hand. This appears to validate the
importance of transitivity, as posited by Holland and
Leinhardt [1] in the social science community.
• Directed closures not explained by degree

structure: It has been observed that many network
patterns can be explained by the degree structure. Con-
figuration models involving reciprocity were introduced
by Garlaschelli and Loffredo [9] and also studied in [20].
These models have been observed to give better predic-
tions of triadic structure [18, 21]. However, we mathe-
matically and empirically verify that these models do not
explain the directed closure patterns of real networks.

B. Previous work

The earliest study of directed triads with reciprocity
is in the social sciences, by Holland and Leinhardt [1].
They compute the triad census that counts the 16 differ-
ent possible triads (including the 3 patterns with at most
one edge). They also try to measure the effects of reci-
procity in network formation. Skvoretz et al. [22, 23] use
the triad census of predict various biases in network for-
mation. In a more recent study, Faust [16] compares the
structure of various graphs using the triad census. Most
of this work has been restricted to small data sets hav-
ing only a few hundred nodes. Counting triads has been
referred to as motif finding in the bioinformatics commu-
nity [4]. Directed triangle counts have been used to define
enhanced modularity measures [24]. Simpler versions of
triad census counts have also been used to analyze gam-
ing data [17]. Szell et al. also perform triadic analysis on
gaming data [25, 26]. A classic local measure of triangle
density is the clustering coefficient, introduced by Watts
and Strogatz [3]. Fagiolo [15] proposes a local clustering
coefficient measure for directed networks, though it ig-
nores reciprocity. Ahnert and Fink [27] construct “clus-
tering coefficients signatures” from these measures and
classify directed networks. Recent work of Winkler and
Reichardt [28] discusses the occurrence of the 16 different
induced subgraphs on 3 vertices. They give an ingeneous
model based on Steiner Triple Systems that can match
more nuances of triad counts than other models. (But
their model does not match the degree distributions.) A
configuration model explicitly modeling reciprocity was
given by Garlaschelli and Loffredo [9] and also studied in

[20]. There is further work showing its ability to match
triadic patterns in trade networks [18, 21]. Contrary to
this work, our results show that for massive networks
(like web and social networks), these models are unable
to match triadic closure patterns. We have more discus-
sion in §IV.

II. DIRECTED CLOSURES VALUES

We begin with some notation and introduction to the
directed structures in Figure 1 and Figure 2. We stress
that these types form a partition of all wedges and trian-
gles. Since reciprocal edges are distinguished, we do not
think of (say) the out+ wedge containing an out wedge.
We use

ψ ∈ { i, ii, . . . , vi } = wedge type, and

τ ∈ { a, b, . . . , g } = triangle type.

Different triangle types naturally contain different types
of wedges. This information is summarized by the func-
tion

χ(ψ, τ) = number of ψ wedges in a τ triangle.

A table showing all values of χ(ψ, τ) is provided in
Table I. There are 15 nonzero entries in this table, and
zeros are omitted for clarity. Given the degree of a node,

Wedge type (ψ)

T
ri
a
n
g
le

ty
p
e
(τ
)

i ii iii iv v vi
a 1 1 1
b 3
c 1 2
d 1 1 1
e 1 2
f 1 1 1
g 3

TABLE I: Wedges per triangle: χ(ψ, τ).

we can calculate the number of each type of wedge it
participates in. For vertex v, let

Wv,ψ = { ψ wedges centered at node v }

We compute |Wv,ψ | given the degrees of v. Let

d←v = indegree of v,

d→v = outdegree of v, and

d↔v = reciprocal degree of v.

From these values, we can calculate |Wv,ψ| for any vertex,
as summarized in Table II. To define the directed
closure values, we first define

Wψ =
⋃

v

Wv,ψ = set of all wedges of type ψ, and

Tτ = set of all triangles of type τ .
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ψ

v v v v v v

|Wv,ψ|

(

d→v

2

)

d
←
v d
→
v

(

d←v

2

)

d
→
v d
↔
v d

←
v d
↔
v

(

d↔v

2

)

TABLE II: Number of ψ wedges per vertex

We define the directed (ψ, τ)-closure, κψ,τ , as the fraction
of ψ-wedges that are τ -closed, i.e.,

κψ,τ =
χ(ψ, τ) |Tτ |

|Wψ |
.

Note that if a type τ triangle contains no type ψ wedge,
then this quantity is zero because of χ(ψ, τ). This def-
inition is consistent with the undirected notion of tran-
sitivity. If we let W and T denote the set of all wedges
and triangles, respectively, in an undirected graph, then
the transitivity is defined as κ = 3|T |/|W |. In this case,
we know that three wedges participate in every triangle,
which is the analogue for χ(ψ, τ).

III. OBSERVATIONS ON DIRECTED CLOSURE

VALUES

We analyze the directed closure properties of various
real graphs, whose properties are presented in Table III.
In this table, r denotes the reciprocity and κ denotes the
undirected transitivity.

A. Representations

Figures 3–8 illustrate the κψ,τ values. We explain using
the example of web-Google [29] in Figure 3. The percent-
age of each triangle is shown at the top of each figure,
along with the color code for the triangle, e.g., 10% of
the triangles in web-Google are reciprocal, and these are
represented by the color pink. The percentage of each
wedge type is shown along the x-axis. For instance, 90%
of the wedges in web-Google are in wedges. The height of
the bar above each wedge denotes the rate at which that
wedge is closed. For instance, 50% of the out wedges close
for web-Google. The color codes on the bars show the
type of triangle that the wedge becomes. For instance,
the vast majority of closed out+ wedges in web-Google
become in+ triangles (per the green color). Finally, the
transitivity (κ) of the undirected graph is marked by a
thick dashed line. For web-Google, κ = 0.055.

B. Similarities of directed closure rates

Figures 3–5 show the closure charts for three differ-
ent web graphs: web-Google, web-Stanford, and web-
BerkStan [29]. These graphs have vertices for web pages
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FIG. 3: Directed closure for web-Google
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FIG. 5: Directed closure for web-BerkStan
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FIG. 6: Directed closure for soc-Epinions1
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FIG. 7: Directed closure for livejournal

0.01

0.02

0.03

0.04

D
ir
ec
te
d
C
lo
su
re

6% 1% 5% 10% 13% 64%

2% < 1% 13% 2% 3% 13% 67%

κ

FIG. 8: Directed closure for soc-Slashdot0902

TABLE III: Properties of the graphs

Graph Name Vertices Edges r κ

amazon0505 410K 3357K 0.55 0.162
soc-Slashdot0902 82K 870K 0.84 0.024

web-Stanford 282K 2312K 0.28 0.009
web-BerkStan 685K 7601K 0.25 0.007

wiki-Talk 2394K 5021K 0.14 0.002
web-Google 876K 5105K 0.31 0.055

soc-Epinions1 76K 509K 0.41 0.066
web-NotreDame 326K 1470K 0.52 0.088

youtube-links 1158K 4945K 0.79 0.006
flickr-links 1861K 22614K 0.62 0.112

soc-livejournal 5284K 76938K 0.73 0.124

and directed edges for web links. Figures 6–8 have the
charts for three social networks [29]. The vertices of soc-
Epinions correspond to the members of Epinions, a con-
sumer review site. A directed edge between users shows
a trust relationship originating from one user (these are
signed by trust/distrust, which we ignore). The vertices
of soc-Slashdot [29] are users and edges represent tagging
as friend or foe. The vertices of soc-livejournal [30, 31] are
Slashdot users with edges denoting friendship (which is
one-way). Observe the similarity of the closure rates and
proportions of the different wedges for the web graphs,
despite them being from different sources (and different
sizes). The color patterns are remarkably similar, show-
ing similar distributions of different closures. The social
networks show more variation, but the overall structure
of the charts is not far from the web graphs. In general,
we note that in wedges rarely close and reciprocal and
out+ wedges generally close the most frequently.

C. Heterogeneity of closure

The heterogeneity of wedge closure is quite clear from
all the closure charts. In the web graphs, the in wedges
rarely close while all other wedges close at a rate of 25%
or higher. On the other hand, the in wedges are the most
frequent (90% or more) so the undirected transitivity is
always below 0.05. The heterogenity is not as dramatic
in the social networks, but there is some variation in
closures over the wedge types. Consistently, in wedges
close at the lowest rate and reciprocal wedges close most
frequently.

D. Effect of reciprocity on closure rates

We can see from Figures 3–8 that wedges with recip-
rocal edges appear to close more frequently than those
without. We do a comprehensive calculation on a variety
of graphs in Figure 9 to show what proportion of wedges
with k ∈ { 0, 1, 2} reciprocal edges closes into any tri-
angle. Observe the strong influence of reciprocation in
the closure rates. The average of chance of closure for
a wedge without reciprocal edges is only 3%, but this
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number goes to 23% if one of the edges is reciprocal and
further increases to 38% when both edges are recipro-
cal. This finding is consistent with the earlier reports
about reciprocal edges, indicating stronger ties between
two vertices [7, 8, 11, 13]. It also underscores how impor-
tant it is to consider direction in networks since the rate
of wedge closure depends on reciprocity of its edges.
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FIG. 9: Closure rates computed according to the
number of reciprocal edges per wedge.

E. The connection between reciprocity and cycles

Throughout Figures 3–8, we notice the infrequency of
cycle and cycle+ triangles (colored light blue and yellow,
respectively), totaling less than 6% in all cases. These are
two of the four triangles that contain a cycle, the other
two being cycle++ and reciprocal triangles (brown and
pink, respectively). It is common to assume that a cycle
indicates a strong tie between three vertices, and so we
might hypothesize that reciprocation is expected. This is
exactly what we see in Figure 10, where we illustrate the
proportion of triangles that are cycles and the breakdown
among the types. Almost all triangles with a cycle are
either cycle++ or reciprocal triangles. We almost never
see any cycle triangles. Again, this is more evidence that
reciprocal edges play an important role in graph struc-
ture. The results demonstrate the power of transitivity
of real world networks: social relationships carried for-
ward two steps (as a transitive relation) almost always
lead to reciprocation.

IV. DIRECTED CLOSURES ARE NOT

EXPLAINED BY DEGREES

Could the different directed closures rates simply be a
consequence of the (directed and reciprocal) degrees? We
assert that this is not the case, by showing that a con-
figuration model accounting for reciprocity cannot gen-
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FIG. 10: Proportion of cycles in triangles, broken down
by the number of reciprocal links.

erate the high (ψ, τ)-closure values seen in the previous
section. We explain the reciprocal configuration model
of Garlaschelli and Loffredo [9] which respects both di-
rected and reciprocal degrees. We assume that d←v , d→v ,
and d↔v are specified for every node. Let m← =

∑
v d
←
v

or m→ =
∑

v d
→
v denote the number of directed edges,

and let m↔ =
∑
v d
↔
v be twice the number of recip-

rocal edges. Conceptually, we assume that the model
has an edge i → j with probability d→i d

←
j /m

→, and
by a reciprocal edge between i and j with probability
d↔i d

↔
j /m

↔. (We stress this is only an approximation,
and there can be significant deviations from this approx-
imation, as pointed out previously [32].) We give an ap-
proximation for expected κψ,τ , values. Previous analy-
ses for transitivities on configuration graphs (see New-
man [33], Park and Newman [32]) focus on undirected
graphs, and it is not hard to generalize these calculations.
Focus on the proportion of path wedges that become
acyclic triangles, i.e., κii,a, since it is consistently large
for all networks we experiment on. Note that χ(ii, a) = 1,
so κii,a = |Ta|/|Wii|. Observe that E[|Wii|] =

∑
v d
←
v d
→
v ;

furthermore, |Wii| is well-concentrated, so it is almost al-
ways close to its mean [34]. By linearity of expectation
E[|Td|] =

∑
i,j,k d

→
i d
→
i d
→
j d
←
j d
←
k d
←
k /(m

→)3 (also explic-

itly given by Squartini and Garlaschelli [18]). From this,
we surmise

E[κii,a] =

∑
i,j,k d

→
i d
→
i d
→
j d
←
j d
←
k d
←
k

(m→)3
∑
v d
←
v d
→
v

=
(
∑

j d
→
j d
←
j )(

∑
i,k d

→
i d
→
i d
←
k d
←
k )

(m→)3(
∑

v d
←
v d
→
v )

=

∑
i d
→
i d
→
i

∑
k d
←
k d
←
k

(m→)3

≈
4|W(i)| · |W(iii)|

(m→)3
.
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We also look at the proportion of out+ wedges that be-
come in triangles, i.e., E[κiv,e], another closure that is
quite large. We have |Wiv|

∑
v d
→
v d
↔
v . We note that

2|Te| ≈
∑
i,j,k d

→
i d
↔
i d
→
j d
↔
j (d←k )2/(m→)2m↔. (We get

the factor of two because type-e triangles have two type-
iv wedges). Hence,

E[κiv,e] =

∑
i,j,k d

→
i d
↔
i d
→
j d
↔
j d
←
k d
←
k

(m→)2m↔
∑

v d
→
v d
↔
v

=

∑
j d
→
j d
↔
j

∑
k d
←
k d
←
k

(m→)2m↔

≈
|Wiv | · 2|W(iii)|

(m→)2m↔
.

Finally, consider reciprocal wedges that become recipro-
cal triangles, i.e., E[κvi,g], another closure that is often
large. This is equivalent to an undirected calculation in-
volving only reciprocal edges. Hence

E[κvi,g] ≈
4|Wvi|

2

(m↔)3
.

In Figure 11, we show the ratio of the predicted closure
values given by the equations above and the true clo-
sure values for the six networks we have been analyzing.
Other than the graph soc-Slashdot0902, all other pre-
dictions are much smaller than the true value. For the
web networks, the prediction is many order of magni-
tudes smaller than the true value. This is strong evi-
dence that the directed closures cannot be explained by
the degrees alone. To show the statistical significance of
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FIG. 11: True vs. predicted ratio for several directed
closures. (For convenience, we truncate at a factor of

1000.)

these results, we compute the Z-scores for the results of
the configuration model as compared to the true data.
We observe the value of a directed closure value for mul-
tiple realizations of the configuration model. Let X de-
notes that random variable with mean µ and variance σ.
The Z-score is (X − µ)/σ, i.e., the number of standard
deviations the observation is from the mean of the mod-
els. We empirically estimate the mean and variance by

generating 100 random instances from the configuration
model. We present the results in Figure 12. Other than
for κii,a in soc-Slashdot0902, all other Z-scores are pos-

itive. This is in excellent agreement with Figure 11 and
our mathematical argument that the configuration model
underestimates the directed closures (except in one case).
Observe that the Z-scores are extremely large, which is
an indication of statistical significance of the directed clo-
sure values for real networks.
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FIG. 12: Z-scores for several directed closures. (For
convenience, we truncate all values at a factor of 1000.)

V. CONCLUSIONS

We perform a detailed study of directed triangles in
massive networks, by defining the set of directed closure
measures. These quantities reveal a surprising amount of
information about directed graphs. We observe hetero-
geneity in closure rates of different wedges, the impact
of reciprocity on closure rates, and the power of transi-
tivity in the structure of triangles. We mathematically
and empirically justify the statistical significance of these
measures on real networks. We argue that is of great in-
terest to design network models that recreate the directed
closure patterns of real-world networks.
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