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Abstract

Preferential attachment models were shown to be very effective
in predicting such important properties of real-world networks as the
power-law degree distribution, small diameter, etc. However, they do
not allow to model the so-called recency property. Recency property
reflects the fact that in many real networks vertices tend to connect
to other vertices of similar age. This fact motivated us to introduce
and analyze a new class of models — recency-based models. This
class is a generalization of fitness models, which were suggested by
Bianconi and Barabási. Bianconi and Barabási extended preferential
attachment models with pages’ inherent quality or fitness of vertices.
To additionally reflect a recency property, it is reasonable to gener-
alize fitness models by adding a recency factor to the attractiveness
function. This means that pages are gaining incoming links according
to their attractiveness, which is determined by the incoming degree of
the page (current popularity), its inherent quality (some page-specific
constant) and age (new pages are gaining new links more rapidly).

In this paper, we rigorously analyze the degree distribution in the
most realistic recency-based model. Also, we prove that this model
does reflect the recency property.

Keywords: random graph models, recency property, preferential at-
tachment, power-law degree distribution.
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1 Introduction

Numerous models have been suggested to reflect and predict the growth
of the Web [4, 6, 12], the most well-known ones are preferential attachment
models. One of the first attempts to propose a realistic mathematical model
of the Web growth was made in [2]. The main idea is to start with the
assumption that new pages often link to old popular pages. Barabási and
Albert defined a graph construction stochastic process, which is a Markov
chain of graphs, governed by the preferential attachment. At each step in
the process, a new vertex is added to the graph and is joined to m differ-
ent vertices already existing in the graph that are chosen with probabilities
proportional to their incoming degree (the measure of popularity). This
model successfully explained some properties of the Web graph like its small
diameter and power-law distribution of incoming degrees. Later, many mod-
ifications to the Barabási–Albert model have been proposed, e.g., [7, 8, 11],
in order to more accurately depict these but also other properties (see [1, 5]
for details).

It was noted by Bianconi and Barabási in [3] that in real networks some
vertices are gaining new incoming links not only because of their incom-
ing degree (popularity), but also because of their own intrinsic properties.
Motivated by this observation, Bianconi and Barabási extended preferential
attachment models with pages’ inherent quality or fitness of vertices. When
a new vertex is added to the graph, it is joined to some already existing ver-
tices that are chosen with probabilities proportional to the product of their
fitness and incoming degree.

One of the main drawbacks of these models is that they pay too much
attention to old pages and do not realistically explain how links pointing to
newly-created pages appear. For example, most new media pages like news
and blog posts are popular only for a short period of time, i.e., such pages are
mostly cited and visited for several days after they appeared. In [13] a recency
property was introduced, which reflects the fact that new media pages tend
to connect to other media pages of similar age. Namely, for the media related
part of the Web it was shown that e(T ) — the fraction of edges connecting
the pages whose age difference is greater than T — decreases exponentially
fast.

Although preferential attachment models reflect some important proper-
ties of real-world networks, they do not allow to model the recency property.
Here we discuss recency-based models — a generalization of fitness models,
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where a recency factor is added to the attractiveness function. This means
that pages are gaining incoming links according to their attractiveness, which
is determined by the incoming degree of the page (current popularity), its in-
herent quality (some page-specific constant) and age (new pages are gaining
new links more rapidly).

The idea of adding the recency factor to the attractiveness function was
first suggested in [13]. In this paper, we propose a new formal definition of
the model from [13]. Also, this rigorous definition allows us to theoretically
analyze different properties of the recency-based models more thoroughly
using a combinatorial approach. Our analysis shows that for the considered
models the power-law distribution of inherent quality leads to the power-law
degree distribution. We also rigorously analyze the recency property, i.e., the
behavior of e(T ).

2 Motivation

In [13] a model of the Media Web evolution has been proposed. The idea
was to generalize the preferential attachment in the way that the probability
to cite a page p is proportional to the attractiveness of p, which is some
function of d(p) (current degree of p), q(p) (intrinsic quality of p), and a(p)
(current age of p). Different attractiveness functions were considered in [13]:

attr(p) = q(p)α1 · d(p)α2 · e−
a(p)
τ

·α3 ,

where (α1, α2, α3) ∈ {0, 1}3 and τ corresponds to the mean lifetime of the
decaying attractiveness. For example, attr(p) = d(p) leads to preferential
attachment, while attr(p) = q(p) · d(p) leads to fitness model.

To depict the recency property of the Media Web one has to include

the recency factor e−
a(p)
τ in the attractiveness function. Further mean-field

approximation analysis and computer simulations [13] showed that in or-
der to have the power-law with a realistic exponent, attractiveness function

attr(p) = q(p) e−
a(p)
τ should be chosen. Moreover, the distribution of qualities

q should follow the power law. That was also confirmed by the analysis of
the likelihood of a real data given the model.

Note that some other recency factors have been previously proposed.
In [9, 10] attractiveness function attr(p) = d(p) · a(p)−α was studied using
the mean-field approximation and computer simulations. It was shown that
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the degree distribution follows the power law for α < 1 and is exponential
for α > 1. Of course, it is also interesting to analyze attr(p) = d(p) · a(p)−α

in a mathematically rigorous way but this is beyond the scope of this paper.
Thus, in this paper we mostly focus on the attractiveness function q(p) ·

e−
a(p)
τ and the goal is to formalize this model and then analyze it rigorously.

In addition, our analysis allows to understand under which assumptions the
conclusions made in [13] hold.

3 Model

In this section, we formalize the model introduced in [13]. We construct
a sequence of random graphs {Gn}. This sequence has the following parame-
ters: a positive integer constant m (vertex outdegree) and an integer function
N(n). We also need a sequence of mutually independent random variables
ζ1, ζ2, . . . with some given distribution taking positive values. Each graph Gn

is defined according to its own constructing procedure which is based on the
idea of preferential attachment.

Let us now define the random graph Gn. At the beginning of the con-
structing process we have two vertices and one edge between them (graph
G̃n

2 ). The first two vertices have inherent qualities q(1) := ζ1 and q(2) := ζ2.
At the t + 1-th step (2 ≤ t ≤ n − 1) one vertex and m edges are added to
G̃n

t . New vertex t+1 has an inherent quality q(t+1) := ζt+1. New edges are
drawn independently and they go from the new vertex to previous vertices.
For each edge the probability that it goes to a vertex i (1 ≤ i ≤ t) is equal to

attrt(i)
∑t

j=1 attrt(j)
,

where
attrt(i) = q(i) e−

t−i
N(n) .

According to the definition, loops are not allowed, although multiple edges
may appear.

It is important to note that, in contrast to standard definitions of prefer-
ential attachment models, in our case a graph Gn cannot be obtained from a
graph Gn−1. Each graph has its own constructing procedure which is based
on preferential attachment. The reason is that, in contrast to [13], the mean
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lifetime of the decaying attractiveness N(n) varies with n. This unusual defi-
nition allows us to rigorously analyze both the power-law degree distribution
and the behavior of e(T ), which is the fraction of edges connecting vertices
i and j with |i − j| > T . Further we assume that N(n) → ∞ as n grows.
This allows us to analyze the fraction of vertices of degree d = d(n) when
d(n) may grow with n.

The choice of the attractiveness function is motivated by the empirical
results obtained in [13]. However, in this paper we also consider the attrac-
tiveness function

attrt(i) = q(i) I[i > t−N(n)]

which approximates q(i) e−
t−i
N(n) . We do this because both attractiveness func-

tions are similar in terms of the degree distribution, but the theoretical anal-
ysis of the attractiveness function q(i) I[i > t − N(n)] is less complicated,
therefore it can be considered as the natural first step. In addition, the at-
tractiveness function q(i) I[i > t−N(n)] has its own practical intuition, but
unfortunately it cannot model the recency property well (see Section 4.2 for
the discussion). In this paper we analyze both attractiveness functions.

Let us remark that according to the definition of the model the attrac-
tiveness of vertices decays rapidly with time. Thus, two vertices with a big
age difference are unlikely to be connected and the diameter of a network
grows as n/N(n). In this sense, we always observe a chain structure, as it
was noted in [10] for α > 1. However, if one considers a subgraph induced
by ∼ N(n) consecutive vertices, it will be similar to a standard scale-free
network. Further we omit n in the notation N(n).

4 Attractiveness function q(i)I [i > t−N ]

In this section, we assume that the attractiveness function of a vertex i
is attrt(i) = q(i) I[i > t− N ]. The indicator function means that a vertex i
accumulates incoming edges only during the nextN steps after its appearance
and we call this period a lifespan of a vertex. We say that during this lifespan
a vertex is alive, after this period a vertex dies.

As discussed in Section 2, we also assume that the random variables
ζ1, ζ2, . . . have the Pareto distribution with the density function f(x) =
γaγI[x>a]

xγ+1 , where γ > 1, a > 0. Further we denote by ζ a random variable
with the Pareto distribution defined above.
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Finally, our random graph has the following parameters: 1) number of
vertices n, 2) vertex outdegreem, 3) lifespan length N , 4) quality exponent γ,
and 5) minimal quality a.

4.1 Degree distribution

4.1.1 Results

In order to simplify the statements of theorems, we introduce an addi-
tional constant α. If γ > 2, then we fix α = 2. If 1 < γ ≤ 2, then α can be
any constant such that 1 < α < γ.

Let Nn(d) be the number of vertices with degree d in Gn. We prove the
following theorem.

Theorem 1 Assume that d = d(n) increases with n and d = o
(

min
{(

n
N

) 1
γ+1 ,

N
α−1

γ+α+1

})

, then

E[Nn(d)]

n
=

γ

dγ+1

(
(γ − 1)m

γ

)γ

(1 + o(1)) .

Theorem 1 shows that the expected number of vertices of degree d de-
creases as d−γ−1. In order to get the power-law degree distribution we also
need to prove the concentration of the number of vertices with degree d near
its expectation.

Theorem 2 For every d the following inequality holds:

P
(

|Nn(d)− E[Nn(d)]| ≥
√

Nn log n
)

≤ 2

log n
.

Note that for d = o

((
n

N logn

)1/2(γ+1)
)

we have
√
Nn log n = o (n/dγ+1),

so Theorem 2 gives the concentration.
We prove Theorem 1 in Sections 4.1.2 and 4.1.3. Theorem 2 is proven in

Section 4.1.4.
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4.1.2 Concentration of the weight

Let us now fix some n and N = N(n). In this section we consider only
the vertices N ≤ p ≤ n−N + 1.

Let us denote by d̄(p) the degree of a vertex p after its death and by d̄in(p)
the incoming degree of a vertex p after its death, i.e., d̄in(p) = d̄(p)−m. By
Q(t) we denote the sum of qualities of the alive vertices at the t-th step, i.e.,

Q(t) =
t−1∑

k=t−N

q(k) .

We also say that Q(t) is the weight of vertices at t-th step. Note that

E
[
d̄in(p) | q(p−N + 1), . . . , q(p+N − 1)

]
=

N∑

i=1

mq(p)

Q(p+ i)
.

Indeed, for each 1 ≤ i ≤ N the probability of an edge (p + i, p) is equal to
mq(p)
Q(p+i)

according to the definition of the model, since Q(p + i) is the overall

attractiveness of all vertices at (p+ i)-th step.
Consider the lifespan of a vertex p with a quality q(p). We have E[Q(p+

i)|q(p)] = q(p) + (N − 1)E[ζ ] for 1 ≤ i ≤ N . We want to estimate the
probability of this weight E[Q(p+ i)|q(p)] to deviate from the value NE[ζ ].

Let ξ1, . . . ξN−1 be the weights of vertices p−N+1, . . . , p−1 and η1, . . . ηN−1

be the weights of vertices p+1, . . . , p+N−1. Let W q
p (i) be the overall weight

of all living vertices when the age of p equals i given that p has the quality
q, i.e.,

W q
p (i) =

i−1∑

k=1

ηk + q +

N−1∑

k=i

ξk .

We will need the following auxiliary lemma.

Lemma 1 Let ξ1, . . . , ξn be mutually independent random variables, E[ξi] =
0, E [|ξi|α] < ∞, 1 ≤ α ≤ 2, then

E [|ξ1 + . . .+ ξn|α] ≤ 2α (E [|ξ1|α] + . . .+ E [|ξn|α]) .

We placed the proof of this lemma in the appendix.
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Theorem 3 Consider a vertex p with a quality q such that N ≤ p ≤ n −
N + 1. If for some constant c > 0 we have |q − E[ζ ]| ≤ N c/2, then

P

(

max
1≤i≤N

|W q
p (i)−NE[ζ ]| ≥ N c

)

= O

(
E [|ζ − E[ζ ]|α]

Nαc−1

)

.

Proof.
Note that

P

(

max
1≤i≤N

|W q
p (i)− E[W q

p (1)]| ≥ x

)

≤ P
(
|W q

p (1)− E[W q
p (1)]| ≥ x/2

)
+ P

(

max
2≤i≤N

|W q
p (i)−W q

p (1)| ≥ x/2

)

.

Indeed, max1≤i≤N |W q
p (i)−E[W q

p (1)]| ≤ |W q
p (1)−E[W q

p (1)]|+max2≤i≤N |W q
p (i)−

W q
p (1)| and if max1≤i≤N |W q

p (i)−E[W q
p (1)]| ≥ x then either |W q

p (1)−E[W q
p (1)]| ≥

x/2 or max2≤i≤N |W q
p (i)−W q

p (1)| ≥ x/2.
In the case γ > 2 the random variables have finite variances and we can

apply Chebyshev’s and Kolmogorov’s inequalities.
Chebyshev’s inequality gives

P(|W q
p (1)− E[W q

p (1)]| ≥ x/2) ≤ 4NV ar[ζ ]

x2
.

Kolmogorov’s inequality gives

P

(

max
2≤i≤N

|W q
p (i)−W q

p (1)| ≥ x/2

)

= P

(

max
1≤i≤N−1

∣
∣
∣
∣
∣

i∑

k=1

(ηk − ξk)

∣
∣
∣
∣
∣
≥ x/2

)

≤ 8N V ar[ζ ]

x2
.

So, finally we get

P

(

max
1≤i≤N

|W q
p (i)− E[W q

p (1)]| ≥ x

)

≤ 12N V ar[ζ ]

x2
.

Take x = N c/2 and note that |E[W q
p (1)] − NE[ζ ]| = |q − E[ζ ]| ≤ N c/2.

Therefore we get

P

(

max
1≤i≤N

|W q
p (i)−NE[ζ ]| ≥ N c

)

≤ P

(

max
1≤i≤N

|W q
p (i)− E[W q

p (1)]| ≥ N c/2

)

≤ 48 V ar[ζ ]

N2c−1
= O

(
E [|ζ − E[ζ ]|α]

Nαc−1

)

,
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since α = 2 in this case.
Now consider the case 1 < γ ≤ 2. In this case we have 1 < α < γ. We

cannot use Chebyshev’s inequality now, but we can apply Markov’s inequality
and Lemma 1:

P(|W q
p (1)− E[W q

p (1)]| ≥ x/2) = P
(
|W q

p (1)− E[W q
p (1)]|α ≥ (x/2)α

)

≤
E
[
|W q

p (1)− E[W q
p (1)]|α

]

(x/2)α
≤ 4αNE [|ζ − E[ζ ]|α]

xα
.

Instead of Kolmogorov’s inequality, we use Doob’s martingale inequality

and Lemma 1. Note that Si =
∣
∣
∣
∑i

j=1(ηj − ξj)
∣
∣
∣ is a submartingale as a convex

function of a martingale. Thus,

P

(

max
1≤i≤N−1

∣
∣
∣
∣
∣

i∑

j=1

(ηj − ξj)

∣
∣
∣
∣
∣
≥ x/2

)

≤
E
[∣
∣
∣
∑N−1

j=1 (ηj − ξj)
∣
∣
∣

α]

(x/2)α

≤ 4αNE [|η1 − ξ1|α]
xα

≤ 8αNE [|ζ − E[ζ ]|α]
xα

.

So, finally we get

P

(

max
1≤i≤N

|W q
p (i)− E[W q

p (1)]| ≥ x

)

≤ 4α (2α + 1)N E [|ζ − E[ζ ]|α]
xα

.

Now take x = N c/2 and note that |E[W q
p (1)] − NE[ζ ]| ≤ N c/2. As before,

we can estimate

P

(

max
1≤i≤N

|W q
p (i)−NE[ζ ]| ≥ N c

)

≤ 8α (2α + 1)N E [|ζ − E[ζ ]|α]
Nαc

≤ 320 E [|ζ − E[ζ ]|α]
Nαc−1

= O

(
E [|ζ − E[ζ ]|α]

Nαc−1

)

.

This concludes the proof of Theorem 3.
�

4.1.3 Expectation

Let ρ(d, q) be the conditional probability that a vertex p such that N ≤
p ≤ n−N + 1 with a quality q has an in-degree d, i.e., ρ(d, q) = P(d̄in(p) =
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d|q(p) = q). Note that ρ(d, q) does not depend on p. By N in
n (d) we denote the

number of vertices with in-degree d, so N in
n (d) = Nn(d+m). The expectation

of N in
n (d) is

E
[
N in

n (d)
]
= (n− 2N)

∫ ∞

a

f(q)ρ(d, q)dq + r(N) , (1)

where f(q) is the density function of Pareto distribution defined above and
r(N), 0 ≤ r(N) ≤ 2N , is the error term. We have this error term since the
first and the last N vertices behave differently.

Let c be some positive constant. We estimate the integral

I =

∫ ∞

a

f(q)ρ(d, q)dq =

∫ Nc/2

a

f(q)ρ(d, q)dq +

∫ ∞

Nc/2

f(q)ρ(d, q)dq = I1 + I2.

Note that

I2 =

∫ ∞

Nc/2

f(q)ρ(d, q)dq ≤
∫ ∞

Nc/2

f(q)dq =

∫ ∞

Nc/2

γaγ

qγ+1
dq =

(2a)γ

N cγ
. (2)

Consider the event

A =

{

max
1≤i≤N

|Q(p+ i)−NE[ζ ]| ≤ N c

}

and the following conditional probabilities:

ρA(d, q) = P(d̄in(p) = d|q(p) = q, A) ,

ρĀ(d, q) = P(d̄in(p) = d|q(p) = q, Ā) .

Then we have

ρ(d, q) = ρA(d, q)P(A|q(p) = q) + ρĀ(d, q)P(Ā|q(p) = q) . (3)

Let us use this representation to split I1 into two integrals using (3):

I1 =

∫ Nc/2

a

f(q)ρA(d, q)P(Aq)dq +

∫ Nc/2

a

f(q)ρĀ(d, q)P(Āq)dq = I11 + I21 ,

where we use the following notation:
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Aq = [A|q(p) = q] =

{

max
1≤i≤N

|W q
p (i)−NE[ζ ]| ≤ N c

}

,

Āq = [Ā|q(p) = q] =

{

max
1≤i≤N

|W q
p (i)−NE[ζ ]| > N c

}

.

Let us assume that N c/2 > E[ζ ], this holds if N is large enough (the
fact that N grows follows from the statement of Theorem 1, while E[ζ ] is
constant). Note that

I21 ≤ max
q≤Nc/2

P(Āq) (4)

and since q ≤ N c/2 Theorem 3 gives us an upper bound for it, i.e.,

max
q≤Nc/2

P(Āq) = O
(
N1−αc

)
, (5)

where α = 2 for γ > 2 and 1 < α < γ for 1 < γ ≤ 2.
So, let us now focus on I11 . First we estimate ρA(d, q). Recall that

ρA(d, q) = P(d̄in(p) = d|q(p) = q, A). Note that during the lifespan of a
vertex p there are mN mutually independent edges which may lead to p. For
an edge from a vertex p + i the probability to choose p is q

W q
p (i)

. Given the

event Aq we have NE[ζ ] − N c ≤ W q
p (i) ≤ NE[ζ ] + N c. Therefore we have

the following bounds for ρA(q, d):

(
mN

d

)(
q

NE[ζ ] +N c

)d(

1− q

NE[ζ ]−N c

)mN−d

≤ ρA(d, q) ≤

≤
(
mN

d

)(
q

NE[ζ ]−N c

)d(

1− d

NE[ζ ] +N c

)mN−d

.

Thus,
(
1−maxq≤Nc/2 P(Āq)

)
S− ≤ I11 ≤ S+ where

S∓ =

∫ Nc/2

a

f(q)

(
mN

d

)(
q

NE[ζ ]±N c

)d(

1− q

NE[ζ ]∓N c

)mN−d

dq .

We will use the following lemma.
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Lemma 2 Assume that both N and d grow but d = o(N1−c). If 1/2 ≤ c ≤ 1,
then

S∓ =
γ

dγ+1

(
(γ − 1)m

γ

)γ

(1 + o(1)) .

We placed the proof of this technical lemma in the appendix. Now we
will use this lemma to prove the theorem. Using Equations (1), (2), and (4)

we get the following bounds for E[Nn(d+m)]
n

:

(

1− 2N

n

)(

1− max
q≤Nc/2

P(Āq)

)

S−

︸ ︷︷ ︸

≤I11

≤ E[Nn(d+m)]

n

≤ S+
︸︷︷︸

≥I11

+ max
q≤Nc/2

P(Āq)

︸ ︷︷ ︸

≥I21

+
(2a)γ

N cγ
︸ ︷︷ ︸

≥I2

+
2N

n
. (6)

Now we show that for some parameter c all error terms in Equation (6)
are negligible in comparison with the main term d−γ−1 from Lemma 2. We
take c = γ+2

γ+α+1
. Note that we can apply Lemma 2 since d = o(N1−c) due to

the statement of Theorem 1.

1. N
n
= o (d−γ−1), since d = o

((
n
N

) 1
γ+1

)

.

2. (2a)γ

Ncγ = o(d−γ−1) if d = o(N cγ/(γ+1)). This holds for c = γ+2
γ+α+1

and

d = o
(

N
α−1

γ+α+1

)

.

3. For γ ≤ 2, P
(
Āq

)
= O (N1−cα) = o(d−γ−1) if d = o(N (cα−1)/(γ+1)), i.e.,

d = o
(

N
α−1

γ+α+1

)

. Here we used Equation (5).

We demonstrated that all the error terms in Equation (6) equal o(d−γ−1).
Therefore, from Lemma 2 we get

E[Nn(d+m)]

n
=

γ

dγ+1

(
(γ − 1)m

γ

)γ

(1 + o(1)) .

To conclude the proof of Theorem 1 it remains to note that the asymptotic
for Nn(d) is the same as for Nn(d+m).
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4.1.4 Concentration

We use Chebyshev’s inequality to prove concentration. In order to do
this we first estimate V ar[Nn(d)]. Note that if |i− j| ≥ N then the degrees
of i and j are independent. Therefore

V ar[Nn(d)]

=

n∑

i,j=1

(P(dn(i) = d, dn(j) = d)− P(dn(i) = d)P(dn(j) = d)) ≤ 2nN .

Applying Chebyshev’s inequality we get

P
(

|Nn(d)− E[Nn(d)]| >
√

Nn log n
)

≤ V ar[Nn(d)]

Nn log n
≤ 2

log n
.

Remark. Note that instead we could use Azuma–Hoeffding inequality,
since |E[Nn(d)|Gi]− E[Nn(d)|Gi−1]| ≤ (N + 1)m. In this case we get

P
(

|Nn(d)− E[Nn(d)]| ≥
√

n logn(N + 1)
)

≤ 2n−1/2m2

.

So, on the one hand the range of degrees for which we get concentration is

smaller in this case. We get concentration for d = o

(( √
n

N
√
logn

)1/(γ+1)
)

. On

the other hand, the concentration is tighter, so we can say that for all d in
this range the number of vertices of degree d is near its expectation.

4.2 Recency property

Let e(T ) be the fraction of edges in a graph which connect vertices with
age difference greater than T , i.e., vertices i and j with |i − j| > T . In [13]
a recency property was introduced, which reflects the fact that new media
pages tend to connect to other media pages of similar age. Namely, for the
media related part of the Web it was shown that e(T ) decreases exponentially
fast. In this section we show that we have linear decay of e(T ) for the model
under consideration.

Theorem 4 For any integer T

E[e(T )] =

{

1− T
N
+O

(
N
n

)
, if T ≤ N ;

0, if T > N .

13



Proof. Consider any vertex n > N and any edge ni, i < n, drawn from
this vertex. The probability that n− i > T is the probability to choose one
vertex from n−N, . . . , n−T −1. Since qualities of vertices are i.i.d. random
variables, this probability equals N−T

N
. From this the theorem follows. �

Theorem 5

P

(

|e(T )− E[e(T )]| ≥
√

N logn

n

)

≤ 2

log n
.

Proof. Here we again use Chebyshev’s inequality. Let ei and ej be any two
different edges drawn from vertices i and j. For an edge e let l(e) be the age
difference between the endpoints of the edge.

Note that if |i− j| ≥ N , then l(ei) and l(ej) are independent:

P(l(ei) > T, l(ej) > T )− P(l(ei) > T )P(l(ej) > T ) = 0 .

From this we get V ar[mne(T )] ≤ 2m2Nn, since we take into account
only the summands corresponding to edges ei and ej with |i − j| ≤ N and
P(l(ei) > T, l(ej) > T )− P(l(ei) > T )P(l(ej) > T ) ≤ 1.

Therefore,

P
(

mn |e(T )− E[e(T )]| ≥ m
√

N n log n
)

≤ V ar[mne(T )]

m2N n log n
≤ 2

log n
.

�

Finally, let us discuss an intuition behind the recency factor I[i > t−N ].
This factor has the following natural interpretation. Links to a lot of media
pages can usually be found on some pages which are content sources. And
new pages are popular while they can be found on such content sources.
After some period of time other new pages appear on a content source and
they replace old ones. Therefore, it seems natural to assume that after some
period of time old pages become unpopular. However, as it turned out, this
recency factor can model only linear decay of e(T ), while we want to see
exponential one. One possible reason for this lack of agreement is that the
most recent links are usually placed near the top of a page and they may
attract more attention because of this.
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5 Attractiveness function q(i)e−
t−i

N

Now we switch to the attractiveness function q(i)e−
t−i
N . In this case, the

popularity of a vertex decreases exponentially with the age of the vertex.
Again, we assume that the random variables ζ1, ζ2, . . . have the Pareto distri-
bution with the density function f(x) = γaγI[x>a]

xγ+1 , where γ > 1, a > 0. And
ζ again is a random variable with the Pareto distribution defined above.

5.1 Degree distribution

5.1.1 Results

For the model with the exponential recency factor we get the results simi-
lar to ones for the model with the indicator recency factor (see Section 4.1.1).

Recall that a constant α is defined as follows: if γ > 2, then α = 2; if
1 < γ ≤ 2, then α can be any constant such that 1 < α < γ.

Theorem 6 If d = d(n) increases with n and d = o

(

min

{(
n

N logN

) 1
γ+1

,

N
α−1

α+(γ+1)(α+1)

})

, then

E[Nn(d)]

n
=

γ

dγ+1

(
(γ − 1)m

γ

)γ

(1 + o(1)) .

Again, the expectation of the number of vertices with degree d decreases as
d−γ−1. The next theorem shows that the number of vertices of degree d is
concentrated near its expectation.

Theorem 7 For every d the following inequality holds:

P
(

|Nn(d)− E[Nn(d)]| >
√

Nn log n
)

= O

(
1

logn

)

.

As before, for d = o

((
n

N logn

) 1
2(γ+1)

)

we have
√
Nn log n = o (E[Nn(d)]) and

Theorem 7 gives the concentration.
We prove Theorem 6 in Sections 5.1.2 and 5.1.3. Theorem 7 is proven in

Section 5.1.4.
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5.1.2 Concentration of the overall attractiveness

We fix some n and N = N(n).
By Q(t) we denote the total attractiveness of all vertices at t-th step, i.e.,

Q(t) =

t−1∑

k=1

q(k)e−
t−k−1

N .

The average value of Q(t) is

E[Q(t)] = E[ζ ]

t−2∑

k=0

e−
k
N = E[ζ ]

1− e−
t−1
N

1− e−
1
N

= NE[ζ ]
(
1 +O

(
e−t/N

)
+O (1/N)

)
.

If t > N logN , then

E[Q(t)] = NE[ζ ] (1 +O(1/N)) .

Again, by W q
p (i) we denote the total attractiveness of all vertices when

the age of p equals i given the quality q of the vertex p.

Theorem 8 Fix some positive constant c. Let ϕ(N) be any function such
that ϕ(N) > log(CN) for some C > 0. Then for any p > Nϕ(N) with a
quality q satisfying | q − E[ζ ] |≤ N c/3 we have:

P

(

max
1≤i≤Nϕ(N)

|W q
p (i)−NE[ζ ]| ≥ N c

)

= O
(
eαϕ(N)N1−αc

)
.

Proof.
Note that E [Q(p+ i+ 1) | Q(p + i)] = Q(p + i)e−

1
N + E[ζ ]. Therefore

Xi = e
i
N ·
(

Q(p + i)− E[ζ]

1−e−
1
N

)

is a martingale. Indeed,

E [Xi+1 | Xi] =
(

Q(p+ i)e−
1
N + E[ζ ]

)

e
i+1
N − e

i+1
N E[ζ ]

1− e−
1
N

= Xi .

So, we can apply Doob’s inequality for a submartingale |Xi|:

P

(

max
1≤i≤Nϕ(N)

∣
∣
∣
∣
e

i
N

(

Q(p+ i)− E[ζ ]

1− e−1/N

)∣
∣
∣
∣
≥ x

)

≤
E
[∣
∣
∣e

Nϕ(N)
N

(

Q(p +Nϕ(N))− E[ζ]

1−e−1/N

)∣
∣
∣

α]

xα
.
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So, we get

P

(

max
1≤i≤Nϕ(N)

∣
∣
∣
∣
Q(p+ i)− E[ζ ]

1− e−1/N

∣
∣
∣
∣
≥ N c/3

)

≤
3αeαϕ(N)E

[∣
∣
∣Q(p+Nϕ(N))− E[ζ]

1−e−1/N

∣
∣
∣

α]

Nαc
.

First, consider the case γ > 2. In this case we have α = 2 Using

E[ζ ]

1− e−1/N
= E[Q(p +Nϕ(N))] + E[ζ ]

∞∑

k=p+Nϕ(N)−1

e−
k
N

we get

E

[(

Q(p +Nϕ(N))− Eζ

1− e−1/N

)2
]

= E
[
(Q(p+Nϕ(N))− EQ(p+Nϕ(N)))2

]
+ (E[ζ ])2

(

e−
p+Nϕ(N)−1

N

1− e−1/N

)2

= V ar[ζ ]

p+Nϕ(N)−2
∑

k=0

e−
2k
N +O

(

e−
2(N log(CN)+Nϕ(N))

N

(1− e−1/N )2

)

= O

(
1

1− e−2/N
+ e−2ϕ(N)

)

= O (N) .

So,

P

(

max
1≤i≤Nϕ(N)

∣
∣
∣
∣
Q(p+ i)− E[ζ ]

1− e−1/N

∣
∣
∣
∣
≥ N c/3

)

= O
(
e2ϕ(N)N1−2c

)
.

Now we can estimate W q
p (i) which is Q(p+i) given the quality q of the vertex

p. We have | q − E[ζ ] |≤ N c/3 and
∣
∣
∣

E[ζ]

1−e−1/N −NE[ζ ]
∣
∣
∣ ≤ N c/3 for large N ,

therefore

P

(

max
1≤i≤Nϕ(N)

|W q
p (i)−NE[ζ ]| ≥ N c

)

= O
(
e2ϕ(N)N1−2c

)
.

Similarly, for γ ≤ 2 using Lemma 1 we get

P

(

max
1≤i≤Nϕ(N)

|W q
p (i)−NE[ζ ]| ≥ N c

)

= O
(
eαϕ(N)N1−αc

)
.

�
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5.1.3 Expectation

Let ϕ(N) be any function such that ϕ(N) > log(CN) for some C > 0.
Let ρ(d, q) be the conditional probability that a vertex p such that Nϕ(N) ≤
p ≤ n− Nϕ(N) + 1 has an in-degree d given a quality q of this vertex, i.e.,
ρ(d, q) = P(d̄in(p) = d|q(p) = q). We omit n and p in the notation ρ(d, q)
because, as we will see, we get similar bounds for ρ(d, q) for all p such that
Nϕ(N) ≤ p ≤ n − Nϕ(N) + 1. Using this notation, we get the following
equality:

E[N in
n (d)] = (n− 2Nϕ(N))

∫ ∞

a

f(q)ρ(d, q)dq + r(N) , (7)

where f(q) is the density function of Pareto distribution and r(N), 0 ≤
r(N) ≤ 2Nϕ(N) is the error term.

Let r and c be some constants such that 0 < r < 1/2 and 1/2 < c < 1.
As in Section 4.1.3, we split the integral

I =

∫ ∞

a

f(q)ρ(d, q)dq =

∫ Nr

a

f(q)ρ(d, q)dq +

∫ ∞

Nr

f(q)ρ(d, q)dq = I1 + I2

and

I2 ≤
∫ ∞

Nr

f(q)dq =
aγ

N rγ
. (8)

The event A is defined as in Section 4.1.3:

A =

{

max
1≤i≤Nϕ(N)

|Q(p+ i)−NE[ζ ]| ≤ N c

}

.

We again split I1 into two integrals:

I1 =

∫ Nr

a

f(q)ρA(d, q)P(Aq)dq +

∫ Nr

a

f(q)ρĀ(d, q)P(Āq)dq = I11 + I21 ,

where

Aq = [A|q(p) = q] =

{

max
1≤i≤Nϕ(N)

|W q
p (i)−NE[ζ ]| ≤ N c

}

,

Āq = [Ā|q(p) = q] =

{

max
1≤i≤Nϕ(N)

|W q
p (i)−NE[ζ ]| > N c

}

.
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We can estimate
I21 ≤ max

q≤Nr
P(Āq) (9)

and for q ≤ N r Theorem 8 gives the upper bound for P(Āq) (since N
r < N c/3

and |q − E[ζ ]| ≤ N r for large N):

max
q≤Nr

P(Āq) = O
(
eαϕ(N)N1−αc

)
. (10)

Let us now focus on I11 . Consider an event Rq
p(k) that there is an edge

from at least one vertex p + i with i ≥ k to a vertex p with a quality q.
Then for k > N conditional probability of Rq

p(k) given Aq can be estimated
as follows

P
(
Rq

p(k) | Aq

)
≤

∞∑

i=k

P (edge (p+ i, p) belongs to Gn | Aq)

≤
∞∑

i=k

mq e−
i−1
N

∑N
j=0 ae

−j
N

≤
∞∑

i=k

mq e−
i−1
N

aN/2
= O

(

qe−
k
N

)

.

This estimate means that the most contribution to the final degree of a vertex
is made during the first several steps after its appearance and we have the
following bounds for ρA(d, q):

ρA(d, q) = ρ∓(d, q) +O
(
qe−ϕ(N)

)
,

where ρ∓(d, q) are lower and upper bounds for the probability that a vertex
p with a quality q has an in-degree d in G̃n

p+Nϕ(N) given Aq. We can estimate

ρ∓(d, q) in the following way. A vertex p has an in-degree d in G̃n
p+Nϕ(N) if d

edges out of mϕ(N)N are connected to this vertex and others are not. For
every set of indexes 0 ≤ i1 < . . . < id ≤ mϕ(N)N we should multiply the
probabilities that the corresponding edges go to the vertex p. Given Aq, these

probabilities can be estimated by qe
−[ij/m]

N

NE[ζ]∓Nc . And we should also multiply the
obtained product by the probabilities that other edges are not connected to

p, i.e.,

(

1− qe
−[i/m]

N

NE[ζ]±Nc

)

for the corresponding indexes i. Finally, we get:

ρ∓(d, q) =

mϕ(N)N
∏

i=0

(

1− qe
−[i/m]

N

NE[ζ ]±N c

)
∑

0≤i1<...<id≤mϕ(N)N

d∏

j=1

qe
−[ij/m]

N

NE[ζ]∓Nc

1− qe
−[ij/m]

N

NE[ζ]±Nc

.
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Now we put

S∓(d, q) :=

∫ Nr

a

f(q)ρ∓(d, q)dq.

Using this notation, we can estimate I11 in the following way:

I11 ≤
∫ Nr

a

f(q)ρA(d, q)dq ≤ S+ +O

(∫ ∞

a

f(q)qe−ϕ(N)dq

)

, (11)

I11 ≥
(

1− max
q≤Nr

P(Āq)

)

S− +O

(∫ ∞

a

f(q)qe−ϕ(N)dq

)

. (12)

We estimate S∓ in the following way.

Lemma 3 Assume that both d and N grow, d = o(N1−c), d = o(eϕ(N)), and
q ≤ N r, then

S∓(d, q) =
γ

dγ+1

(
(γ − 1)m

γ

)γ

(1 + o(1)) .

We placed the proof of this technical lemma in the appendix.
Finally, using Equations (7), (8), (9), (11), and (12), we get

(

1− 2Nϕ(N)

n

)(

1− max
q≤Nr

P(Āq)

)

S− +O

(∫ ∞

a

f(q)qe−ϕ(N)dq

)

︸ ︷︷ ︸

≤I11

≤ E[Nn(d+m)]

n

≤ S+ +O

(∫ ∞

a

f(q)qe−ϕ(N)dq

)

︸ ︷︷ ︸

≥I11

+max
q≤Nr

P(Āq)
︸ ︷︷ ︸

≥I21

+
aγ

N rγ
︸︷︷︸

≥I2

+
2Nϕ(N)

n
. (13)

We want all the error terms in Equation (13) to be o (d−γ−1). In order to
do this, we need to find the proper values of c and ϕ(n). Note that we have
already assumed that d = o (N1−c) and d = o

(
eϕ(N)

)
. We have to show that

the following conditions hold.

1. Nϕ(N)/n = o(d−γ−1) if d = o

((
n

Nϕ(N)

) 1
γ+1

)

. This holds under the

conditions of the theorem.
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2. aγ

Nrγ = o(d−γ−1) if d = o(N rγ/(γ+1)). Put r = 9
22
, then we have d =

o(N rγ/(γ+1)) under the conditions of the theorem since N9γ/22(γ+1) ≥
N

α−1
α+(γ+1)(α+1) for both γ > 2 and 1 ≤ γ ≤ 2.

3. maxq≤Nr P(Āq) = O
(
eαϕ(N)N1−αc

)
= o(d−γ−1) if

eαϕ(N) = o (Nαc−1d−γ−1). Here we used Equation (10).

4.
∫∞
a

f(q)O
(
qe−ϕ(N)

)
dq = O

(
e−ϕ(N)

)
= o (d−γ−1) if dγ+1 = o (eϕ(N)) .

We take c = 1+(γ+1)(α+1)
α+(γ+1)(α+1)

and ϕ(N) = log N(α−1)(γ+1)
α+(γ+1)(α+1)

. Then for d =

o
(

N
α−1

α+(γ+1)(α+1)

)

all the above conditions hold. This means that all the error

terms in Equation (13) equal o(d−γ−1). Therefore, we obtained the required

asymptotic for E[Nn(d+m)]
n

.
To conclude the proof of Theorem 6 it remains to note that the asymptotic

for Nn(d) is the same as for Nn(d+m).

5.1.4 Concentration

We prove Theorem 7 using Chebyshev’s inequality. In order to apply this
inequality we first estimate V ar[Nn(d)]:

V ar[Nn(d)] =
n∑

i,j=1

(P(dn(i) = d, dn(j) = d)− P(dn(i) = d)P(dn(j) = d)) .

Let us estimate the difference P(dn(i) = d, dn(j) = d) − P(dn(i) =
d)P(dn(j) = d) for i < j.

Note that

P(dj(i) = d, dn(j) = d) = P(dj(i) = d)P(dn(j) = d) . (14)

In order to prove this we first show that (14) holds given all the qualities
q1, . . . , qn and then integrate over all qualities. Given the qualities, P(dj(i) =
d, dn(j) = d) is the sum over all mi < i1 < . . . < id ≤ mj, mj < j1 <
. . . < jd ≤ mn of the probabilities that the corresponding edges ([ik/m], i)
and ([jk/m], j) are drawn and all other edges (i′, i) with i < i′ ≤ j and
(j′, j) with j < j′ ≤ n are absent. Since qualities are fixed, these events are
independent and P(dj(i) = d, dn(j) = d) = P(dj(i) = d)P(dn(j) = d).
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Let Rp(k) be the event that there is an edge from at least one vertex p+ i
with i ≥ k to a vertex p. Then

P(dn(i) = d, dn(j) = d)− P(dn(i) = d)P(dn(j) = d)

≤ P(dj(i) = d, dn(j) = d) + P(Ri(j − i))− P(dn(i) = d)P(dn(j) = d)

= P(dj(i) = d)P(dn(j) = d) + P(Ri(j − i))− P(dn(i) = d)P(dn(j) = d)

≤ P(dj(i) = d)P(dn(j) = d) + P(Ri(j − i))P(dn(j) = d)

+ P(Ri(j − i))− P(dn(i) = d)P(dn(j) = d)

≤ 2P(Ri(j − i)) = 2

∫ ∞

a

Rq
i (j − i)f(q)dq

= O

(∫ ∞

a

q−γ−1e−
j−i
N dq

)

= O
(

e−
j−i
N

)

.

Finally,

V ar[Nn(d)] = O

(
∑

1≤i≤j≤n

e−
j−i
N

)

= O (Nn) .

Applying Chebyshev’s inequality we get

P(|Nn(d)− E[Nn(d)]| >
√

Nn log n) = O

(
V ar[Nn(d)]

Nn log n

)

= O

(
1

logn

)

.

5.2 Recency property

In this section, we show that the behavior of e(T ) for the model with
exponential popularity decay is realistic. It was shown in [13] that e(T )
decreases exponentially with T in real data.

First, we compute the expectation of e(T ). The following theorem holds.

Theorem 9 For any integer T

E[e(T )] = e−
T
N +O

(
N

n

)

.

Indeed, the probability that an edge from a vertex k goes to a vertex i with

k − i > T equals e−
T
N +O

(

e−
k
N

)

. From this Theorem 9 follows.

As in the Section 4.2, we can use Chebyshev’s inequality to prove the
concentration.
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Theorem 10 For any integer T

P

(

|e(T )− E[e(T )]| ≥
√

N logn

n

)

= O

(
1

logn

)

.

Proof.
As before, by ei and ej we denote any two different edges drawn from

vertices i and j, and l(e) is the age difference between the endpoints of an
edge e.

Note that for i ≤ j

P(l(ei) > T, l(ej) > T |l(ej) ≤ j−i) = P(l(ei) > T )P(l(ej) > T |l(ej) ≤ j−i) .

Therefore, we can estimate the following difference:

P(l(ei) > T, l(ej) > T )− P(l(ei) > T )P(l(ej) > T )

= P(l(ej) ≤ j − i)
(

P(l(ei) > T, l(ej) > T |l(ej) ≤ j − i)

− P(l(ei) > T )P(l(ej) > T |l(ej) ≤ j − i)
)

+ P(l(ej) > j − i)
(

P(l(ei) > T, l(ej) > T |l(ej) > j − i)

− P(l(ei) > T )P(l(ej) > T |l(ej) > j − i)
)

≤ P(l(ej) > j − i) ≤ e−
j−i
N .

Thus,

V ar[mne(T )] = O

(
∑

1≤i≤j≤n

e−
j−i
N

)

= O (Nn) .

Finally,

P
(

mn |e(T )− E[e(T )]| ≥ m
√

N n log n
)

≤ V ar[mne(T )]

m2N n log n
= O

(
1

log n

)

.

�

Theorems 9 and 10 mean that e(T ) decays exponentially, as it was ob-
served in real data.
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6 Conclusion

In this paper we analyze recency-based models. The idea of adding the
recency factor to the attractiveness function was first suggested in [13]. In
this paper we consider the most realistic model proposed in [13] and conduct
a rigorous analysis of its properties. In order to do this, we first provide a new
formal definition of the model. Then, we justify the fact that the power-law
distribution of inherent quality leads to the power-law degree distribution.
We also rigorously analyze the recency property, i.e., the behavior of e(T ),
and prove that e(T ) decreases exponentially as it is observed in some real-
world networks.
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Appendix

6.1 Proof of Lemma 1

Lemma 1 Let ξ1, . . . , ξn be mutually independent random variables,
E[ξi] = 0, E [|ξi|α] < ∞, 1 ≤ α ≤ 2, then

E [|ξ1 + . . .+ ξn|α] ≤ 2α (E [|ξ1|α] + . . .+ E [|ξn|α]) .

Proof.
We use the following two facts.
Fact 1. If ξ and η are independent random variables and η is symmetri-

cally distributed, then for any 1 ≤ α ≤ 2

E [|ξ + η|α] ≤ E [|ξ|α] + E [|η|α] .
Proof.

E [|ξ + η|α] = 1

2
(E [|ξ + η|α] + E [|ξ − η|α])

and it remains to show that for any x, y, and 1 ≤ α ≤ 2 we have

1

2
(|x+ y|α + |x− y|α) ≤ |x|α + |y|α .

Without loss of generality we assume that x ≥ y ≥ 0 and consider the
function f(x, y) = 1

2
((x+ y)α + (x− y)α) − xα − yα. In order to show that

f(x, y) ≤ 0 we note that f(x, 0) = 0 and ∂f(x,y)
∂y

≤ 0. In turn, ∂f(x,y)
∂y

≤ 0

since ∂f(x,y)
∂y

∣
∣
x=y

≤ 0 and ∂2f(x,y)
∂x ∂y

≤ 0. �

Fact 2. If α ≥ 1, ξ and η are independent random variables, E [η] = 0,
E [|ξ|α] < ∞, E [|η|α] < ∞, then

E [|ξ + η|α] ≥ E [|ξ|α] .
Proof. Fact 2 follows directly from Jensen’s inequality. �

Now, let us prove Lemma 1. Consider random variables ξ′1, . . . , ξ
′
n, such

that ξ′i has the same distribution as ξi and ξ1, . . . , ξn, ξ
′
1, . . . , ξ

′
n are mutually

independent. Note that ξi − ξ′i is symmetrically distributed for any i. Then
from Facts 1 and 2 it follows that

E [|ξ1 + . . .+ ξn|α] ≤ E [|ξ1 − ξ′1 + . . .+ ξn − ξ′n|α]
≤ E [|ξ1 − ξ′1|α + . . .+ |ξn − ξ′n|α] .
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Finally, it remains to note that E [|ξi − ξ′i|α] ≤ 2αE [|ξi|α].
�

Proof of Lemma 2

First, recall the statement of Lemma 2 from Section 4.1.3.
Lemma 2 Assume that both N and d grow but d = o(N1−c). If 1/2 ≤

c ≤ 1, then

S∓ =
γ

dγ+1

(
(γ − 1)m

γ

)γ

(1 + o(1)) .

Proof.
Recall that

S∓ =

∫ Nc/2

a

f(q)

(
mN

d

)(
q

NE[ζ ]±N c

)d(

1− q

NE[ζ ]∓N c

)mN−d

dq .

Let us rewrite S∓ using the incomplete beta-function B(x; a, b)

S∓ =

∫ Nc/2

a

γaγ

qγ+1

(
mN

d

)(
q

NE[ζ ]±N c

)d(

1− q

NE[ζ ]∓N c

)mN−d

dq

=
γaγ
(
mN
d

)
(NE[ζ ]∓N c)d−γ−1

(NE[ζ ]±N c)d

·
∫ Nc/2

a

(
q

NE[ζ ]∓N c

)d−γ−1(

1− q

NE[ζ ]∓N c

)mN−d

dq

=
γaγ
(
mN
d

)
(NE[ζ ]∓N c)d−γ

(NE[ζ ]±N c)d
·
∫ Nc/2

NE[ζ]∓Nc

a
NE[ζ]∓Nc

xd−γ−1 (1− x)mN−d dx

=
γaγ
(
mN
d

)
(NE[ζ ]∓N c)d−γ

(NE[ζ ]±N c)d

(

B

(
N c/2

NE[ζ ]∓N c
; d− γ,mN − d+ 1

)

−B

(
a

NE[ζ ]∓N c
; d− γ,mN − d+ 1

))

.

Let us denote Nc

NE[ζ]
by ε, then we get
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S∓ =
γaγ
(
mN
d

)

(NE[ζ ])γ
(1∓ ε)d−γ

(1± ε)d

(

B

(
ε

2∓ 2ε
; d− γ,mN − d+ 1

)

−B

(
a

NE[ζ ](1∓ ε)
; d− γ,mN − d+ 1

))

.

We will use the following estimates for the incomplete beta-function:

B(x; a, b) =

∫ x

0

ta−1(1− t)b−1dt = O

(∫ x

0

ta−1dt

)

= O

(
xa

a

)

,

B(x; a, b) = B(a, b)−
∫ 1

x

(1− t)b−1dt = B(a, b) +O

(
(1− x)b

b

)

.

These estimates give us

S∓ =
γaγ
(
mN
d

)

(NE[ζ ])γ
(1∓ ε)d−γ

(1± ε)d
(B (d− γ,mN − d+ 1)

+O

((
1− ε

2∓2ε

)mN−d+1

mN − d+ 1

)

+O






(
a

NE[ζ](1∓ε)

)d−γ

d− γ









 .

We will use the fact that 1
B(d−γ,mN−d+1)

= Γ(mN+1−γ)
Γ(d−γ)Γ(mN−d+1)

= O
(

(mN)d−γ

Γ(d−γ)

)

and factor out the beta-function:

S∓ =
γaγ
(
mN
d

)

(NE[ζ ])γ
B (d− γ,mN − d+ 1)

(1∓ ε)d−γ

(1± ε)d

·




1 +O

((
1− ε

2∓2ε

)mN−d+1
(mN)d−γ

Γ(d− γ)(mN − d+ 1)

)

+O






(
am

E[ζ](1∓ε)

)d−γ

Γ(d− γ + 1)









 .

(15)

Recall that ε = N c−1/Eζ . Let us simplify Equation (15):
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1.
γaγ(mN

d )
(NE[ζ])γ

B (d− γ,mN − d+ 1) = γaγ

(NE[ζ])γ
Γ(mN+1)

Γ(d+1)Γ(mN−d+1)
Γ(d−γ)Γ(mN−d+1)

Γ(mN+1−γ)

= γ
dγ+1

(
am
E[ζ]

)γ

(1 + o(1)) if d and N grow.

2. (1∓ε)d−γ

(1±ε)d
=

(1∓Nc−1/Eζ)
d−γ

(1±Nc−1/Eζ)d
= 1 + o(1) if d = o(N1−c).

3. O

(

(1− ε
2∓2ε)

mN−d+1
(mN)d−γ

Γ(d−γ)(mN−d+1)

)

= O

(

e
(mN−d+1) log

(

1− Nc−1

2E[ζ]∓2Nc−1

)

+(d−γ−1) log(mN)

Γ(d−γ)(1− d−1
mN

)

)

= O



 e

−mNc(1− d−1
mN )

2Eζ∓2Nc−1 +(d−γ−1) log(mN)

Γ(d−γ)(1− d−1
mN

)



 = O

(

e
−mNc(1−o(1))

2Eζ∓o(1)
+d log(mN)

Γ(d−γ)(1−o(1))

)

= o(1)

if d < mNc

2Eζ log(mN)
which is true for sufficiently large N as soon as d =

o(N1−c) and 1/2 < c < 1.

4. O

(
( am
E[ζ](1∓ε))

d−γ

Γ(d−γ+1)

)

= o(1) if d and N grow.

Thus, we first demonstrated that the main term in (15) is equal to
γ

dγ+1

(
am
E[ζ]

)γ

(1 + o(1)). Then, we showed that the error multiplier equals

1 + o(1). Finally, we proved that two error summands are equal to o(1). To
conclude the proof of the lemma it remains to note that E[ζ ] = γa

γ−1
, therefore

γ
dγ+1

(
am
E[ζ]

)γ

= γ
dγ+1

(
(γ−1)m

γ

)γ

.

�

Proof of Lemma 3

First, recall the statement of Lemma 3 from Section 5.1.3.
Lemma 3 Assume that both d and N grow, d = o(N1−c), d = o(eϕ(N)),

and q ≤ N r, then

S∓(d, q) =
γ

dγ+1

(
(γ − 1)m

γ

)γ

(1 + o(1)) .

Proof.
Recall that

S∓(d, q) :=

∫ Nr

a

f(q)ρ∓(d, q)dq ,
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where

ρ∓(d, q) =

mϕ(N)N
∏

i=0

(

1− qe
−[i/m]

N

NE[ζ ]±N c

)
∑

0≤i1<...<id≤mϕ(N)N

d∏

j=1

qe
−[ij/m]

N

NE[ζ]∓Nc

1− qe
−[ij/m]

N

NE[ζ]±Nc

.

(16)
Therefore, we first prove the following lemma on the behavior of ρ∓(d, q).

Lemma 4 Under the condition of Lemma 3 we have

ρ∓(d, q) =

(

1 +O

(
q2

N

)

+ o(1)

)(
qm

E[ζ ]

)d
e

−qm
E[ζ]

d!
.

Proof.
Note that

mϕ(N)N
∏

i=0

(

1− qe
−[i/m]

N

NE[ζ ]±N c

)

=

mϕ(N)N
∏

i=0

(

1− qe
−i/m

N eO(
1
N )

NE[ζ ]±N c

)

= exp





mϕ(N)N
∑

i=0

log

(

1− qe
−i/m

N

(
1 +O

(
1
N

))

NE[ζ ]±N c

)



= exp



−
mϕ(N)N
∑

i=0

(

qe
−i
mN

(
1 +O

(
1
N

))

NE[ζ ]±N c
+O

(

q2e
−2i
mN

N2

))



= exp

(

− q
(
1− e−ϕ(N)

)

(1− e
−1
mN )(NE[ζ ]±N c)

+ +O

(
q(1−e−ϕ(N))

N2(1−e
−1
mN )

)

+O

(
q2(1−e−2ϕ(N))

N2(1−e
−2
mN )

))

=

(

1 +O

(
q2

N

)

+O
(
N c−1

)
+O

(
e−ϕ(N)

)
)

exp

(−qm

E[ζ ]

)

= (1 + o(1)) exp

(−qm

E[ζ ]

)

. (17)

Here we used the fact that q ≤ N r < N1/2 since it allows us to estimate

exp
(

O
(

q2

N

))

as 1 +O
(

q2

N

)

.
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Let us continue

d∏

j=1

q
(

1− qe
−[ij/m]

N

NE[ζ]∓Nc

)

(NE[ζ ]∓N c)

=

(
q

NE[ζ ]

)d(

1 +O

(
d q

N

)

+O
(
dN c−1

)
)

=

(
q

NE[ζ ]

)d

(1 + o(1)) , (18)

∑

0≤i1<...<id≤mϕ(N)N

d∏

j=1

e
−[ij/m]

N =
∑

0≤i1<...<id≤mϕ(N)N

e
−i1−...−id

mN

(

1 +O

(
d

N

))

=
∑

0≤i1<...<id≤mϕ(N)N

e
−i1−...−id

mN (1 + o (1)) . (19)

It remains to estimate
∑

0≤i1<...<id≤mϕ(N)N e
−i1−...−id

mN . We use the following
notation:

F (k, d) =
∑

0≤i1<...<id≤mϕ(N)N

e
−i1−...−id−1−k id

mN .

Lemma 5 If d (k + d) = o(N) and k + d = o
(
eϕ(N)

)
, then

F (k, d) =
(mN)d(k − 1)!

(k + d− 1)!
(1 + o(1)) .

Proof.
Note that

F (k, 1) =
∑

0≤i1≤mϕ(N)N

e
−k i1
mN =

1− e−kϕ(N)− k
mN

1− e−
k

mN

.
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Let us get a recurrent formula for F (k, d):

F (k, d) =
∑

0≤i1<...<id≤mϕ(N)N

e
−i1−...−id−1−k id

mN

=
∑

0≤i1<...<id−1≤mϕ(N)N

e
−i1−...−id−1

mN

mϕ(N)N
∑

id=id−1+1

e
−k id
mN

=
∑

0≤i1<...<id−1≤mϕ(N)N

e
−i1−...−id−1

mN
e−

k(id−1+1)

mN − e−kϕ(N)− k
mN

1− e−
k

mN

=
e−

k
mN

1− e−
k

mN

∑

0≤i1<...<id−1≤Nϕ(N)

(

e
−i1−...−(k+1)id−1

mN − e−kϕ(N)e
−i1−...−id−1

mN

)

=
e−

k
mN

1− e−
k

mN

(
F (k + 1, d− 1)− e−kϕ(N)F (1, d− 1)

)
.

It is easy to get an upper bound for F (k, d)

F (k, d) ≤ e−
k

mN

1− e−
k

mN

F (k + 1, d− 1) ≤ . . .

≤ e−
(2k+d−2)(d−1)

2mN F (k + d− 1, 1)
(

1− e−
k

mN

)

. . .
(

1− e−
k+d−2
mN

) ≤ e−
(2k+d−2)(d−1)

2mN

(

1− e−
k

mN

)

. . .
(

1− e−
k+d−1
mN

)

=
e−

(2k+d−2)(d−1)
2mN

(

1− e−
k

mN

)

. . .
(

1− e−
k+d−1
mN

) =
(mN)d(k − 1)!

(k + d− 1)!

(

1 +O

(
(k + d)d

N

))

.

Using this upper bound and the recurrent formula above we can find a
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lower bound. Assume that

F (k, d) =
e−

k
mN

1− e−
k

mN

(
F (k + 1, d− 1)− e−kϕ(N)F (1, d− 1)

)
= . . .

=
e−

(2k+d−2)(d−1)
2mN F (k + d− 1, 1)

(

1− e−
k

mN

)

. . .
(

1− e−
k+d−2
mN

) −
d−1∑

i=1

e−
(2k+i−1)i

2mN e−(k+i−1)ϕ(N)F (1, d− i)
(

1− e−
k

mN

)

. . .
(

1− e−
k+i−1
mN

)

=
(mN)d(k − 1)!

(k + d− 1)!

(

1 +O

(
(k + d)d

N

))

−
d−1∑

i=1

e−(k+i−1)ϕ(N) (mN)d−i

(d− i)!

(mN)i(k − 1)!

(k + i− 1)!

·
(

1 +O

(
(d− i)2

N

)

+O

(
(k + i)i

N

))

=
(mN)d(k − 1)!

(k + d− 1)!

(

1 + o(1)−
d−1∑

i=1

e−(k+i−1)ϕ(N)(k + d− 1)!

(d− i)!(k + i− 1)!
(1 + o(1))

)

≥ (mN)d(k − 1)!

(k + d− 1)!

(

1 + o(1)− (1 + o(1))
d−1∑

i=1

(
(k + d− 1)e−ϕ(N)

)k+i−1

(k + i− 1)!

)

=
(mN)d(k − 1)!

(k + d− 1)!

(

1 + o(1) +O

((
(k + d− 1)e−ϕ(N)

)k

k!

))

=
(mN)d(k − 1)!

(k + d− 1)!
(1 + o(1)) .

�

Finally, taking into account Equations (16)-(19) and Lemma 5, we get

ρ∓(d, q) = e
−qm
E[ζ]

(
q

NE[ζ ]

)d

F (1, d)(1 + o(1))

= e
−qm
E[ζ]

(mN)d

d!

(
q

NE[ζ ]

)d

(1 + o(1)) = (1 + o(1))

(
qm

E[ζ ]

)d
e

−qm
E[ζ]

d!
.

�

Now we can estimate

S∓(d, q) =

∫ Nr

a

f(q)ρ∓(d, q)dq =

∫ Nr

a

(1 + o(1))
γaγ

qγ+1

(
qm

E[ζ ]

)d
e

−qm
E[ζ]

d!
dq .
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We get an incomplete gamma function:

S∓(d, q) = (1 + o(1))
γaγmγ

d!(E[ζ ])γ

∫ Nrm
E[ζ]

am
E[ζ]

xd−γ−1e−xdx

=
γ(1 + o(1))

Γ(d+ 1)

(
am

E[ζ ]

)γ (

Γ

(

d− γ,
am

E[ζ ]

)

− Γ

(

d− γ,
N rm

E[ζ ]

))

= (1 + o(1))
γΓ(d− γ)

Γ(d+ 1)

(
am

E[ζ ]

)γ

=
γ

dγ+1

(
am

E[ζ ]

)γ

(1 + o(1))

=
γ

dγ+1

(
(γ − 1)m

γ

)γ

(1 + o(1)) .

This concludes the proof.
�
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