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Abstract

Network ecology is a rising field of quantitative biology representing
ecosystems as complex networks. A suitable example is parasite spread-
ing: several parasites may be transmitted among their hosts through
different mechanisms, each one giving rise to a network of interactions.
Modelling these networked, ecological interactions at the same time is
still an open challenge. We present a novel spatially-embedded multiplex
network framework for modelling multi-host infection spreading through
multiple routes of transmission. Our model is inspired by Trypanosoma

∗Corresponding author: massimo.stella@inbox.com
†Corresponding author: candreazzi@fiocruz.br

1

http://arxiv.org/abs/1602.06785v2


cruzi, a parasite transmitted by trophic and vectorial mechanisms. Our
ecological network model is represented by a multiplex in which nodes rep-
resent species populations interacting through a food web and a parasite
contaminative layer at the same time. We modelled Susceptible-Infected
dynamics in two different scenarios: a simple theoretical food web and
an empirical one. Our simulations in both scenarios show that the in-
fection is more widespread when both the trophic and the contaminative
interactions are considered with equal rates. This indicates that trophic
and contaminative transmission may have additive effects in real ecosys-
tems. We also find that the ratio of vectors-to-host in the community (i)
crucially influences the infection spread, (ii) regulates a percolating phase
transition in the rate of parasite transmission and (iii) increases the in-
fection rate in hosts. By immunising the same fractions of predator and
prey populations, we show that the multiplex topology is fundamental in
outlining the role that each host species plays in parasite transmission in
a given ecosystem. We also show that the multiplex models provide a
richer phenomenology in terms of parasite spreading dynamics compared
to more limited mono-layer models. Our work opens new challenges and
provides new quantitative tools for modelling multi-channel spreading in
networked systems.

Keywords: Ecological multiplex networks, multi-host parasites, spatial
networks, SI dynamics, transmission mechanisms.

1 Introduction

Pathogens and parasites (”parasites” hereafter) are one of the most widespread

and diverse life forms [1, 2]. Several parasites infect multiple host species [3] and

many of these parasites may infect their host using different routes of transmis-

sion [4]. Multi-host parasites include many zoonoses with complex dynamics

that challenge infection control and prevention efforts [5]. For instance, sev-

eral multi-host protozoan parasites of public health concern exhibit more than

one mode of transmission: Toxoplasma gondii can infect its hosts by fecal-oral

transmission, the consumption of an infected prey, and through the placenta

[6]; Cryptosporidium directly infects its hosts via sexual contact or via fecal-

oral transmission [7]; Trypanosoma cruzi can be transmitted by insect vectors,

the consumption of an infected prey, and also through the placenta [8, 9]. This

complexity of host types and transmission modes challenges the development

of models that account for the different sources of variation. The network ap-

proach is a promising alternative because it allows accounting for the individual,

species-level and spatial sources of heterogeneity [10, 11].

Contact networks can be explicitly used to understand the epidemiological

consequences of complex host interaction patterns [12–17]. In a contact network,
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each individual is represented as a node and each contact that potentially results

in transmission between two nodes is represented as a link. Interactions can also

be embedded in space [16, 18, 19] where the probability of interaction between

nodes may depend on the distance between them. The number of contacts

of a node is called the degree of the node and is a fundamental quantity in

network theory [17]. All epidemiological models make assumptions about the

underlying network of interactions, often without explicitly stating them. For

example, classical mean-field models used in epidemiology assume that all the

interactions have the same probability of leading to transmission [20]. Contact

network models, however, mathematically formalise this intuitive concept so

that epidemiological calculations can explicitly consider complex patterns of

interactions [21]. A different approach consists in considering meta-population

dynamics [22], instead of individual contacts.

Recently, the recognition that real-world networks may include different

types of interactions among entities prompted the development of methods that

take into account the heterogeneity of interactions as well [23, 24]. Examples

include multi-modal transportation networks in metropolitan areas [25–27], or

proteins that interact with each other according to different regulatory mech-

anism [28, 29]. Ecological systems are also characterised by multiple types of

relationships among biological entities, organised and structured on different

temporal and spatial scales [24, 30]. Different interaction types can be de-

scribed as ”multiplex networks” [30–34]. Multiplex networks are a particular

kind of multi-layer networks where the same nodes appear on all the layers but

they can be connected differently on each layer. Each multiplex layer contains

edges of a given type. In the context of parasites that can be transmitted over

multiple transmission channels, multiplex networks can be used to include dis-

tinct mechanisms of parasite transmission [30]. This approach encapsulates the

heterogeneity in the transmission of real-world diseases and helps us understand

how the interplay between different modes of transmission affects infection dy-

namics in an ecosystem [27, 35, 36].

Descriptions of ecological multiplex networks [30, 37] and studies of infec-

tion spreading over multiplex structures [35, 36, 38] have recently appeared

in the literature. Previous approaches have already described the structural

characteristic of food webs that include parasites [39] and tried to incorporate

parasites in food webs using network framework [40]. The effect of multiple

hosts on parasite spreading dynamics have also been explored in the context of

disease risk [41], disease emergence in a target host [42], parasite sharing and

potential transmission pathways [43] and also in a multilayer network exploring

cross-species transmission (within and between host species) [44]. However, the

consideration of real ecological scenarios in the analysis of parasite spreading

through multiple transmission mechanisms is still an open problem. We propose
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a spatial multiplex-based framework to model multi-host parasite transmission

through multiple transmission mechanisms. In this framework, each transmis-

sion mechanism can be represented in a different layer of the multiplex network

structure. Our model is inspired by the complex ecology of Trypanosoma cruzi

(Kinetoplastida: Trypanosomatidae) in its multiple host community. T. cruzi

is a relevant example of a multi-host parasite and in humans it causes the

Chagas disease, a serious infection affecting 6-9 million people [45]. The main

infection route to humans involves the insect vectors (triatomine kissing bugs),

but oral transmission is also recurrent [46]. Vectors get infected when con-

suming blood meals from an infected host, while host infection occurs through

the contact of vector’s faeces and the biting wound or mucosa (stercorarian

transmission). In sylvatic hosts the stercorarian transmission may occur when

the animal scratches the bite and inadvertently rubs the parasite-contaminated

matter into the lesion [47]. Infection by the oral route occurs when a mammal

host ingests infected triatomine faeces, food contaminated with the parasite or

by preying on infected vectors or mammals [9].

Preliminary studies [47–49] used mean-field methods to model T. cruzi trans-

mission among its hosts and vectors. Their results indicate that in a fully con-

nected network with no explicit spatial structure, vectorial and oral transmission

effects are additive in maintaining and furthering the spread of the infection [47].

We use a Susceptible-Infected (SI) model to describe parasite transmission dy-

namics in spatially embedded multiplex networks. The multiplex framework

can help us understand how infection spread is related to different ecological

interactions and what is the epidemiological importance of vectors and hosts in

different ecological scenarios. We first investigate the parasite spreading across

aggregated parasite-host and trophic interactions. In order to measure the in-

fluence of the spatial embedding, we contrast the behaviour of a non-spatial

model against one where nodes are embedded in space. We then study a ref-

erence spatial multiplex network in order to understand the interplay between

the multiplex structure and epidemiological dynamics. In the vectorial trans-

mission layer, vectors are contaminated after interacting with infected hosts and

transmit the parasite when interacting with non-infected hosts. In the trophic

transmission layer hosts acquire the parasite after feeding on infected vector or

host. Finally, we use empirical data of a local T. cruzi host community, the

Serra da Canastra ecosystem [50], to model the dynamics of T. cruzi multiple

transmission routes on its multiple hosts.

With the multiplex framework we aim to understand the effect of multiplex

topology and the relative importance of vectorial and trophic transmission for

parasite spreading dynamics. We use multiplex cartography [33] to character-

ize species structural importance in the network and compare scenarios with

different relative frequency of vectors. We then explore the speed of parasite
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spreading depending on the importance of vectorial and trophic transmission in

scenarios with different frequency of vectors. Finally, we explore the effect of

species structural importance on parasite spreading by simulating immunisation

experiments.

2 Methods

We model a set of N populations interacting within an ecosystem via a network

framework. Our aim is to model the diffusion of a multi-host parasite within

the ecosystem. Nodes represent populations and they have identities, i.e. their

species types (predator, prey, and vector). We denote with S = {sk}
s
k=1 the set

of all the s species types. Each node in the network is of a given species type

sk with frequency fk, normalised such that
∑s

k=1 fk = 1.

Given that we do not have enough information about the individual-level

patterns of interactions, we will consider the food-webs in terms of interacting

populations. We consider nodes as populations that follow the same formalism of

individual-based dynamics. Our approach is based on the following assumptions:

(i) we consider that the parasite transmission is fast and that all the individuals

within a population instantaneously gets infected once transmission occurs (in

other words, we do not consider meta-population dynamics such as considering

parasite spreading within the population and dispersal among populations [22]);

(ii) we consider the parasite spreading happening at a much faster rate than any

birth-death dynamics (which we do not consider).

We assume that individuals from populations can disperse across the system

and potentially interact with other populations, according to a dispersal layer.

The dispersal layer is an undirected graph with adjacency matrix D, so that

dij = dji = 1 if population i can interact with j and vice-versa. In the following

subsections, we define the topology of the dispersal layer as being either an

Erdös-Rényi random graph or a random geometric graph. The main difference

between the two is that the latter includes the notion that only spatially close

enough populations can interact with each other (since on random geometric

graphs nodes are embedded in space and linked if closer than a certain threshold

distance ρ).

In our model, population interaction can potentially give rise to either (i)

trophic interactions (a given species feeding on another one) or (ii) contami-

native interactions (a given species of host getting in touch with vectors and

transmitting the parasite through blood exchanges). Considering only trophic

(or contaminative) interactions gives rise to the trophic (or vectorial) layer. Al-

ternatively, considering both interactions together gives rise to an aggregated

layer. A visualisation of the dispersal, trophic and contaminative layers is pro-

vided in Figure 1.
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Figure 1: Visual representation of our model over the three layers: a trophic

layer, a vectorial layer, and their underlying dispersal layer. Nodes are relative

to the three-species example and they are drawn according to their species types,

e.g. “predator”, “prey” and “vector”. Trophic and vectorial layers allow only for

specific interactions to be present within the system, according to the species

types involved in them. For instance, the allowed interactions in the three-

species model are reported on the right. The parasite can spread on both such

layers. When a node gets infected in one layer it gets infected on all the others

as well. While the dispersal layer induces the other two, it is only the trophic

and the vectorial layers that constitute our ecological multiplex networks.



Transmission on a given network layer are allowed according to node iden-

tities {sk} and are defined according to the corresponding s × s interaction

matrices, T for the trophic layer, V for the vectorial layer and A = T ⊕ V for

the aggregated layer, where ⊕ indicates the Boolean OR function. There is no

direct interaction between populations of the same species type because there

is no cannibalism in the trophic layer and also no parasite transmission among

vectors in the vectorial layer. This means the main diagonal of all interaction

matrices are all 0s. The sifting of the dispersal layer through either T or V

or A produces s-partite graphs, i.e. there are no edges between nodes of the

same species types. We notice that sifted trophic interactions give rise to a di-

rected network layer while we obtain an undirected vectorial layer from allowed

contaminative interactions.

Providing the collection of species types S, the topology of the dispersal layer

D, choosing if considering trophic and vectorial layers as separate or aggregated,

and defining the corresponding interaction matrices fully determines the model.

We explore the following models, enlisted in order of presentation:

• a random graph as dispersal layer, with 3 species types and aggregated

interactions, called Random Aggregated Network (RAN);

• a random geometric graph as dispersal layer, with 3 species types and

aggregated interactions, called Spatial Aggregated Network (SAN);

• a random geometric graph as dispersal layer, with 3 species types, inter-

actions kept separate across a 2-layer multiplex structure, called Spatial

Multiplex Network (SMN);

• a random geometric graph model, with 20 species, interactions kept sepa-

rate across a 2-layer multiplex structure according to ecological empirical

interactions. This model is called Spatial Ecological Multiplex Network

(SEMN).

We considered both smaller (N = 1, 000 nodes) and larger networks (N =

10, 000 nodes) with the same average degree. While the results obtained in both

cases were robust to the network size change, the networks with N = 10, 000

nodes displayed less finite-size effects. Therefore, in the following we present

simulation and analytic results for networked ecosystems made of N = 10, 000

nodes. The average degree of considered networks has been tuned in order to

obtain connected dispersal layers, in which there is at least one path connecting

each pair of nodes. This minimises statistical biases due to disconnectedness of

a non-negligible fraction of populations.
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2.1 Random aggregated network model

In the random aggregated network model (RAN) nodes have s = 3 possi-

ble identities, S = s1, s2, s3 = predator,prey,vector with species frequencies

f1, f2, f3 respectively. Herbivorous mammals are in general more abundant

than carnivorous [51] and for sake of simplicity we assume prey populations

being double as frequent as predator populations, f2 = 2f1. Therefore, given

that f1 + f2 + f3 = 1, one obtains that f1 = (1 − f3)/3 and f2 = 2(1 − f3)/3,

thus leaving the vector frequency f3 = fv as a free parameter of the model. In

this model the dispersal layer has the topology of an Erdös-Rényi with prob-

ability pER. Therefore, no space is included in the RAN model. In order to

consider fully connected graphs in our simulations and to reduce the effects of

degree heterogeneity we fixed a pER giving rise to networks with average de-

gree 〈kER〉 = pER · (N − 1) ≈ 28.27. The RAN model sifts interactions among

predator, prey and vector populations from the dispersal layer according to the

interaction matrix A defined as:

A = T ⊕ V =





0 0 0

1 0 0

0 1 0



⊕





0 0 1

0 0 1

1 1 0



 =





0 0 1

1 0 1

1 1 0



 . (1)

For instance, t21 = 1 means that s2 = prey populations are eaten by s1 =

predator populations. Notice that allowed interaction in T are directed (from the

eater to the eaten, as usual in food-webs [30, 52, 53]) while they are undirected

in V , since they represent ecological exchanges of infected fluids between the

host and the vector species [50]). The above sifting creates the aggregated single

layer of the model, where trophic and contaminative interactions are combined

and where parasite diffusion occurs.

2.2 Spatial aggregated network model

In the spatial aggregated network model (SAN) the dispersal layer is a random

geometric graph (RGG). Therefore, populations are embedded in a space. Nodes

are scattered uniformly at random within the 2D space Ω = [0, 1]2 with periodic

boundary conditions, i.e. a toroidal space. As known from previous works [54],

the average degree of an RGG is 〈kRGG〉 = πNρ2. For the sake of comparisons

with the RAN model, we chose ρ = 0.03, thus having 〈kRGG〉 = 〈kER〉 = 28.27.

The interaction matrix A sifting the only aggregated network layer is the same

as in the RAN model. Also species types are distributed as in the RAN model.
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2.3 Spatial multiplex network model

In the spatial multiplex network model (SMN) the dispersal layer is a random

geometric graph (RGG) with nodes spatially embedded and species types dis-

tributed as in the SAN model. However, we keep trophic and contaminative

interactions as distinct on two separate layers. These structured interactions

give rise to a multiplex network [23, 24, 30], where populations are replicated

across both layers and no explicit inter-layer edges are considered [34]. The

interaction matrices sifting the trophic and the vectorial layer are respectively

T and V , as defined above in Equation 1. A multiplex network visualisation of

the SMN model is provided in Figure 1.

2.4 Spatial ecological multiplex network model

In our last model, the spatial ecological multiplex network (SEMN), the dis-

persal layer is a random geometric graph (RGG), as in the SAN model. Also,

trophic and contaminative interactions are kept separate analogously to the

SMN model. In SEMN we used empirical ecological data within the model [50].

Specifically, we use data from an epidemiological study of T. cruzi infection in

wild hosts in Southeast Brazil [50] to estimate the trophic and vectorial inter-

action matrices Teco and Veco (see Supplementary Information), considering a

total of 20 species. For the trophic interaction matrix Teco, we build a quali-

tative potential food-web based on the animals diets [52, 53, 55–58]. As there

was no species-level classification of the biological vectors present in the area,

we considered the vectors as one single species type. We use species prevalence

to estimate contaminative interactions in Veco [50]. We assume that positive

parasitological diagnostics for T. cruzi could be used as a proxy for vectorial

transmission, since only individuals with positive parasitaemia (i.e. with high

parasite loads in their blood) are able to transmit the parasite [9]. The vecto-

rial layer was constructed based on the assumption that species with positive

prevalence in hemocultive transmit the parasite to vectors and that species with

positive prevalence in serology can be infected from vectors. The SEMN model

has a total of 20 species types: a = 7 predators, b = 12 prey and 1 vector

species. As in the previous models, we assumed that prey populations have

double the frequency of predator populations (see RAN model). We considered

all the predator and prey species populations having identical frequencies fpred
and fprey respectively, such that:

afpred + bfprey + fv = 1 → fprey = 2
1− fv
a+ 2b

= 2fpred. (2)

Therefore, by tuning fv we change also the frequency of predator and prey pop-

ulations. The SEMN model is the most realistic one of this study since it takes
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into account spatial embedding, multiplex structure and empirical ecological

data.

2.5 Parasite transmission dynamics

To simulate the parasite transmission dynamics a node, i.e. a population of a

given species type can be either susceptible or infected. We start the simulation

by infecting a fraction φ0 = 0.28% of all populations. In the RAN model we

infect one node at random and let the infection spread along a random walk

on the dispersal layer. We start measuring the infection dynamics after Nφ0

nodes are infected. Similarly, in the other three spatial models, we infect all the

nodes in a random circle of radius r0 = 0.03, that is, πNr20 ≈ 28.2 populations

become infected at the beginning, on average (a sensitivity analysis proves that

the results presented in the following sections are robust up to 5% of initially

infected populations). Subsequently, the parasite spreading evolves in SMN and

SEMN models as follows:

1. A random node i is chosen together with one of its neighbours j on the

dispersal layer.

2. The vectorial layer is chosen to be considered for the parasite transmission

with probability pv, which is a measure of the vectorial layer importance.

Step 3 is then performed when the vectorial layer is chosen. Otherwise,

step 4 takes place.

3. If node i is infected and the edge (i, j) exists in the vectorial layer, node

j becomes infected as well (vectorial layer parasite transmission).

4. If node i is infected and the edge (i, j) exists in the trophic layer, node j

becomes infected as well (trophic layer parasite transmission).

5. Steps 1-4 are repeated N = 104 times per each time step, i.e. an average

of 1 update per node per time step, until Tmax time steps are reached.

For RAN and SAN models parasite transmission occurs only on the aggre-

gate layer without considering steps 2, 3 and 4. This is equivalent in treating

contaminative and trophic interactions in an aggregate, unweighted way. Each

population can be randomly chosen at each time step and at the end of the

transmission process every node is chosen once, on average. This parasite trans-

mission model is equivalent to an SI model with contact rate β = 1, where β is

the probability for an individual to become infected when exposed to the disease

[54]. For the sake of simplicity, we assume β = 1 in both the trophic and vecto-

rial layers and across all the species. Our assumption leads to the disease firstly

spreading across the geodesic paths of the multiplex topology [54, 59] so that
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our infection process depends solely on the multiplex network structure. Notice

that a more complicated model with two different β, one for each layer, would

still be expected to reproduce a similar phenomenology to the one reported in

the following (with one β only). This is because our infection dynamics is an

SI model and because even the simpler model with one β only still potentially

weights differently each layer through pv.

2.6 Model parameter values

Let us summarise the main parameters of our models and relative values. In

this study we consider networks of N = 10, 000 populations (nodes) and average

degree 〈k〉 = 28.27 for the dispersal layer (pER = 〈k〉 /(N−1) for random graphs,

ρ = 0.03 for RGGs). We chose these parameter values in order to consider fully

connected multiplex networks. Let us underline that we consider a multiplex

connected component as the set of all nodes that can be reached from each

other by considering all edge types of a node [60]. Given that we have directed

edges in the trophic layer, we have to consider the notion of strongly connected

component on the multiplex topology, i.e. a set of nodes that can be reached

from each other considering oriented paths along directed edges of any colour.

The maximum number of time steps Tmax = 104 has been numerically tuned

in order to let the system reach equilibrium. Each time step considers N = 104

updates for the parasite spreading dynamics, i.e. an average of 1 update per

node per time step. The frequency of vector populations fv is a free parameter of

the model, together with the vectorial layer importance pv, i.e. the probability

for the parasite to spread along the vectorial layer, in the SMN and SEMN

models.

2.7 Immunisation

In order to investigate the role played by predators and prey populations in

spreading the parasite we focus on multiplex models (SMN and SEMN models).

Using immunisation simulations we study the dynamics of parasite spreading

when the same number of either predator or prey populations have been im-

munised. An immune node is not susceptible to the parasite. The number of

immune nodes is determined per species by specifying the probability of immu-

nisation πk for each species k ∈ S. To perform the immunisation, populations

of species sk are randomly chosen with probability πk and are set to be immune.

We consider two immunisation scenarios to investigate the relative role that

predator or prey populations have in spreading the parasite. In the first scenario

only prey populations are immunised while in the second scenario only predator

populations are immunised. For simplicity, the πk values for all prey and preda-

tor populations are set uniformly, however they are chosen in order to immunise
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the same total number of predators and the same total number of prey. From

an ecological point of view, the immunisation simulations answer the following

question: given the fictional possibility of vaccinating a limited number φ ≪ N

of populations against the parasite, is it more efficient to immunise predator

populations or prey ones in order to hinder the parasite spreading?

2.8 Multiplex cartography

A multiplex cartography visually represents the role played by a given node

across different layers according to its topological features [33, 61]. In this way,

multiplex cartography becomes a rather simple yet powerful network metric

providing information on the topological patterns of nodes across the multiplex

structure. We chose it compared to other multiplex measures because of its

simplicity, its powerfulness and its appealing analogy with maps. We build on

previous literature [33, 34] by considering a cartography based on the following

two measures: the multidegree or overlapping degree oi and the participation

coefficient Pi of node i. As in [33, 34], the multidegree oi is defined as the sum

of all the degrees of node i across the M multiplex layers:

oi =
∑

α

k
(α)
i . (3)

where k
(α)
i is the degree of node i in the layer α ∈ {1, ...,M}. The overlapping

degree oi represents a proxy of the overall local centrality that a node has

within the multiplex network. Differently from [33], we consider oi rather than

its standardised counterpart zi =
(oi−〈oi〉)

σ(oi)
because our multiplex networks do

not display Gaussian-like multidegree distributions. We consider hubs in our

multiplex networks as those nodes being in the 95th percentile of the multidegree

distribution.

The distribution of the connections over the different layers can be expressed

via the participation coefficient Pi of node i:

Pi =
M

M − 1



1−

M
∑

α=1

(

k
(α)
i

oi

)2


 . (4)

Pi ranges between 0 (for nodes that concentrate all their connections in one

level only) and 1 (for nodes that distribute connections over all the M layers

uniformly). In the following, we visualise our multiplex network cartography by

clustering together individual points (each one referring to a given node) into 2D

bins, thus obtaining a 2D histogram resembling a heat-map. The binned quan-

tities are the overlapping degree on the y-axis and the participation coefficient

on the x-axis.
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2.9 Infection measures

On a macroscopic scale, we investigate parasite spreading by computing the

global infection time, defined as the time step at which the largest (in node size)

weakly connected component of the multiplex network is infected. Alternatively,

the infection time indicates the time step tinf at which the disease infects most

of the nodes within the network. If R(t) = Ninf (t)/N if the ratio of infected

populations/nodes at time t, then Maxt(R(t)) = R(tinf ).

Infection times represent a global, macroscopic statistics of the parasite

spreading. To analyse the evolution of transmission in more detail we use the

parasite ratio increase ∆R(t) := R(t + 1) − R(t), i.e. the increase of the ratio

of infected populations in one time step. The ∆R(t) is a measure for the rate

at which the parasite is spreading within the multiplex network.

In order to capture the spatial features of our SMN and SEMN models we

measure also 〈λ〉 defined as the average distance of the infected nodes from the

centre of the embedding square Ω := [0, 1]2 (where the infection originates).

Given our assumption of uniform spreading of species populations within Ω, it

is relatively straightforward to compute an upper bound 〈λ〉∗ for 〈λ〉 as:

〈λ〉∗ =

∫∫ 1

0

√

(x−
1

2
)2 + (y −

1

2
)2dxdy ≈ 0.3826. (5)

〈λ〉∗ represents the maximum average distance of infected populations from

the centre of the embedding space (also the origin of the infection).

3 Results

Our results focus on: (i) highlighting the role of spatial correlations on the

parasite spreading dynamics, (ii) assessing the differences between aggregated

and multiplex models, (iii) highlighting the topological features of our models

through cartography [33] while relating them to parasite spreading at different

values for the vector frequency fv and importance of vectorial transmission pv,

and (iv) quantifying how different species promote or not parasite spreading by

means of immunisation simulations. We first report the results concerning the

aggregate models (RAN and SAN), then the three-species reference one (SMN)

and the spatial ecological multiplex network (SEMN) as last. In particular,

we show that: (i) the presence of spatial correlations slows down the para-

site spreading in the SAN model compared to the RAN one, (ii) the multiplex

structure deeply influences the parasite spreading dynamics in both SMN and

SEMN models, (iii) the vector frequency determines a percolation threshold in

the parasite spreading rate over the whole networked ecosystem in both SMN

and SEMN models, (iv) a higher biodiversity in the SEMN model significantly
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modifies the infection times in similarly sized ecosystems from the SMN model

and (v) prey and predator populations play different roles in promoting the

parasite spreading in the empirical SEMN scenario.

3.1 Aggregate network models: the role of space

Comparing the results of the aggregate models RAN and SAN provides quanti-

tative information about the role played by space. In Figure 2 (a) we compare

the ratio of infected nodes over time for the RAN and SAN models by means of

simulations and analytical results. Assuming a mean-field approximation, where

every population can be potentially infected by any other one in the system, it

is possible to write down the following equations for the infection dynamics:

ṅ1 = f1N

(

f1N − n1

N

)

(n2

N
+

n3

N

)

(6)

ṅ2 = f2N

(

f2N − n2

N

)

n3

N
(7)

ṅ3 = f3N

(

f3N − n3

N

)

(n1

N
+

n2

N

)

(8)

where nk = nk(t) is the number of infected nodes of species type k ∈ 1, 2, 3

at time t. Each equation considers how a given susceptible species population

can be potentially infected in the model through its edges with other species

population types. For instance, let us consider the infection dynamics of preda-

tor populations (k = 1). At time t, the probability of finding a susceptible

predator population in the system is (Nf1 − n1)/N . However, in all models

which consider 3 species, a susceptible predator population can receive the par-

asite infection either from feeding on infected prey populations (the probability

of sampling one is equal to n2/N) or from being contaminated by an infected

vector population (the probability of sampling one is equal to n3/N). Anal-

ogous reasoning leads to the Equations 7 and 8. Notice that having directed

edges leads to prey getting infected only through infected vectors in Equation 7.

Even though the mean field approximation does not consider the networked

structure of the underlying dispersal layer, Figure 2 (a) shows that analytical

results from the mean field equations reasonably approximate simulation re-

sults on ER random graph topologies (in RAN) at different vector frequencies

fv. Theory and simulations agree in indicating that the infection spreading

dynamics reaches its maximum value around 20 time steps in the RAN model.

Increasing the vector frequency does not always lead to the infection dynamics

reaching its maximum value in less time steps. In fact, when we have fv = 0.1

the ratio of infected nodes reaches its maximum value later than in the fv = 0.5

14



(a) (b)

Figure 2: (a): Ratio of infected nodes over time for the random aggregate

network (RAN) and the spatial aggregate network (SAN) models, at different

frequencies fv of vector populations in the system. (b): Parasite ratio increase

of infected nodes over time for the random aggregate network (RAN) and the

spatial aggregate network (SAN) models, at different frequencies fv of vector

populations in the system.

case, i.e. the global infection time decreases. However, further increasing vector

frequency from fv = 0.5 to fv = 0.75 leads to an increase rather than to a

reduction in the global infection time.

For completeness, we also show in Figure 2 (b) the relative parasite ratio

increases indicating the rate of parasite diffusion over time. We notice that the

RAN model always displays a peak over time in the parasite ratio increases.

This means that the parasite diffusion initially accelerates and it later slows

down since susceptible populations become rarer in the system. Simulations

and analytical results for the RAN model also agree in the appearing ordering

of these peaks. Here, reaching earlier the maximum ratio of infected nodes

means reaching earlier the peak in the parasite ratio increase. This is because

we assume that populations of the same species type do not interact with each

other (i.e. our networks are k−partite graphs). Since infection must always

pass through a vector-host-vector path in order to infect other vectors, adding

too many vector populations is detrimental for the global infection time.

In the SAN model, when the dispersal layer changes from an ER random

graph to an RGG, the infection reaches its maximum spread at a much later

stage (around 100 time steps). We observe that inserting spatial correlations

makes the mean field approximation unreliable in describing the simulation re-

sults. This is due to the spatial embedding giving rise to non-negligible corre-

lations among nodes.

Parasite ratio increases reveal that the RAN model displays also a faster

infection spreading dynamics when compared to its spatial counterpart, the

SAN model. Interestingly, both the aggregated models display a peak in the

evolution of the parasite ratio increases. Overall, the addition of space increases
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the global infection time and it reduces the parasite spreading rate.

3.2 Spatial multiplex network model: the role of trophic

and contaminative interactions

The 3-species reference model (SMN) consists of the simplest epidemiological

scenario for the multiplex transmission. It is based on the simplest trophic chain

in which vectors are consumed by prey populations and prey are consumed by

predator populations. In the vectorial layer the vectors contaminate both prey

and predator populations, see also Figure 1.

In Figures 3 (a)-(d), the multiplex cartographies highlight the degree central-

ity and participation coefficient of each species type at different vector frequen-

cies fv. Individual nodes are binned according to colour-coded two dimensional

tiles so that the resulting plot resembles a heatmap.

When vector populations are rare in the system (fv = 0.01, Figure 3 (a)),

predators’ participation coefficient is low. This means that predators interac-

tions are concentrated mostly in the trophic layer and predator populations

interact mostly with prey populations. Prey populations show a broader range

of participation and this indicates that prey interact with predators and vectors

on both layers. Vector populations have the highest participation coefficient and

are hubs in the multiplex, since their links are uniformly distributed between

both layers.

When fv goes from 0.1, Figure 3 (b), to 0.25, Figure 3(c), vector popu-

lations show a broader range of participation coefficients indicating that their

connections are distributed on both layers. Similar behaviour is reported when

fv = 0.5 (plot not presented). At vector frequency fv = 0.75, vector populations

are the most frequent in the system and each species type occupies a different

region in the cartography (Figure 3 (d)). Thus, we have: (i) prey populations

linked to vectors on both trophic and vectorial layers becoming almost truly

multiplex hubs (participation coefficient value close to one and high multide-

gree), (ii) predator populations with a broad range of participation coefficients,

(iii) vector populations with a broader range of participations coefficients but

loosely connected to other populations because vectors do not interact with each

other.

The multiplex structure in the SMN model allows for the infection to spread

either on the vectorial layer (with probability pv) or on the trophic layer (with

probability 1 − pv) at each time step (see section 2.5). This interplay leads

to the global infection time potentially being a function of the vectorial layer

importance pv. As reported in Figure 4 (b), when vector frequency is fv =

0.1, the global infection time has its minimum for 0.4 < pv < 0.8. Hence,

when the parasite spreads across both trophic and contaminative edges with

roughly the same probability, its spreading on the whole multiplex networked
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Figure 3: Cartographies as 2D histograms for the SMN model for vector fre-

quency fv = 0.01 (a), fv = 0.1 (b), fv = 0.25 (c), and fv = 0.75 (d). The 10000

multiplex nodes are binned in 2D bins, according to their coordinates in the

cartography. Bins are colour-coded according to the number of points falling

within them: more coloured tiles have the most nodes in them. Coloured dots

identify individual species: predators (blue), prey (orange) and vectors (green).

Nodes falling above the horizontal red line have degrees above the 95th per-

centile in the multidegree distribution and they are therefore considered hubs.

Error bars represent standard error of the mean.

ecosystem requires less time. Since the trophic layer in the SMN model is not

fully connected and thus the infection cannot reach the entire network, we do

not show infection times for pv = 0. On the other hand, we do not consider

the pv = 1 case in order to always consider the food-web while focusing on the

multiplex structure.

Increasing the frequency of vector populations does not accelerate para-

site spreading in the multiplex network and the faster spreading occurs when

fv = 0.5 (4). The infection time decreases monotonically with the increase of
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Figure 4: (a): global infection rate over time for fv = 0.75 expressing the

diffusion speed of the disease over time for SMN model. A qualitatively similar

behaviour was observed also for other vector frequencies. (b): global infection

time versus vectorial layer importance pv for different vector frequencies in the

SMNmodel. Dotted lines represent infection time in the SAN model for different

vector frequencies. Results in both plots are averages of 100 repetitions.

vectorial layer importance pv when fv = 0.25, 0.5 or 0.75, but this pattern was

not observed when fv = 0.1. This is related to the topology of the allowed in-

teractions in the SMN vectorial layer. In SMN the vectorial layer is undirected

and vector populations are connected to both predator and prey populations.

The trophic layer has directed interactions and parasite transmission requires at

least two steps to spread from vector to predator populations. These topological

features of the SMN model enables a faster parasite transmission on the vecto-

rial layer rather than on the trophic layer. However, the frequency of different

species types also influences parasite transmission in the model. Increasing the

vector frequency from fv = 0.1 to 0.25 or even up to 0.5 leads to an overall de-

crease of the infection times, depending on pv. This trend changes when vectors

are the most frequent species type in the system (fv = 0.75). When the ma-

jority of nodes are vector populations the speed of parasite spreading increases

in relation to fv = 0.5 because vectors are not directly connected in neither

of the layers. Therefore, a smaller number of predator and prey populations

constraints parasite transmission to vectors. In Figure 4 (b) we also show the

infection time for the SAN model represented as dotted lines for the different

vector frequencies. We remember that in the SAN model there is only one

aggregated layer where the infection spreads, thus all edges have the same im-

portance. Comparing the infection time of the SAN and SMN models highlights

the effect of multiplex structure for parasite spreading dynamics. Independently

on the vector frequency, tuning the parasite spreading across trophic and con-

taminative interactions changes the infection time with respect to the aggregate

case.

The speed of parasite spreading across the multiplex structure also reveals
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interesting patterns. As reported in Figure 4 (a) for fv = 0.75, when pv > 0

the parasite transmission initially accelerates within the system (t < 100). This

behaviour is somehow similar to the one already observed in the SAN model

(see Figure 2 and the black line in Figure 4 (a)). On the other hand, when

the infection spreads only on the trophic layer (pv = 0) a qualitatively different

behaviour is observed, with no acceleration phase. This is because of the trophic

layer topology (see T in the Methods section): the parasite can spread only from

vectors to prey and from prey to predator populations. As the infection spreads,

it becomes increasingly difficult to infect more populations over time. Vector

populations which are susceptible at the beginning will never be infected. The

aggregatedmodel (SAN) does not capture this trend since it includes trophic and

contaminative interactions mixed together. We observed a consistent behaviour

for other vector frequencies fv 6= 0.75. The only difference was in the order

of the peaks of parasite spreading rate: the higher pv the sooner the peak is

reached when fv > 0.2. We conjecture that this is because, in environments

with many vector populations, the parasite spreads at a faster rate with respect

to the trophic layer, so that increasing pV accelerates the parasite spreading.

We also investigated the infection dynamics for very small values of vector

frequencies (Figure 5). Simulations indicate that the SMN model displays a

critical threshold in the emergence of pandemics around fv ≈ 0.02. Very small

variations in the abundance of vector populations within the simulated ecosys-

tem leads to dramatic changes in the ratio of infected populations after a suit-

ably long relaxation time of 10, 000 time steps (Figure 5). By simulating larger

ecosystems for N = 25, 000, 50, 000, 100, 000 and 150, 000, we extrapolated the

scaling behavior of the critical threshold of vector frequency fv. Simulation re-

sults suggest that the threshold does indeed not vanish in the thermodynamic

limit (i.e. N → ∞) but it is rather close to fv ≈ 0.02 and lower bounded by

the value fv = 0.019. We conjecture that this critical transition is due to vector

populations being fundamental in infecting prey populations. Considering the

sifting matrices T and V , prey populations can be infected only by interacting

with infected vector populations. When vectors are very rare in the system,

prey populations (that are quite frequent in the system) get infected at a much

slower rate. This bottle-neck translates into a phase transition in the infection

rate. Our simulations show that the vectorial layer importance pv slightly shifts

the critical threshold of the phase transition, which occurs across all the differ-

ent values of pv (for pv = 0 or pv = 1 plots not reported for clarity). This phase

transition marks the beginning of a distinct “phase” of the model (fv > 0.02),

for which the parasite percolates throughout the whole system at a faster rate,

even when vector frequencies are low. Notice that when 0.02 < fv < 0.1, vector

populations are multiplex hubs (see (a) and (b) in Figure 3), therefore they

promote the parasite spreading on both the SMN layers.
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As indicated by the grey area in Figure 5, the mean distance of infected nodes

〈λ〉 after 10,000 time steps also undergoes a phase transition around fv = 0.02.

However, 〈λ〉 converges to its upper bound 〈λ〉∗ at a faster rate compared to the

ratio of infected population. Let us consider the case fv = 0.04. The relative

ratio of infected nodes is ≈ 70% (see dotted lines in Figure 5), variations in the

vectorial layer importance provide no evident fluctuations. However, always at

fv = 0.04, the mean distance of infected populations from the centre of infection

is not 70% of the maximum value, but rather 〈λ〉(fv = 0.04) ≈ 〈λ〉∗ ≈ 0.384 (see

the grey shape and the dashed black line in Figure 5). Therefore, in the same

time steps, the infection spreads only across 70% of populations but it covers

almost all the distances from the infection origin, in the embedding space. We

interpret this as the parasite spreading at a faster rate uniformly over the whole

embedding space rather than uniformly across all the considered populations.

These different spatial and number diffusion rates are relative to our selected

SI dynamics. When the infection probability β = 1 (as in our case) and only

one neighbour node becomes infected at a time, the infection spreads firstly

through geodesics in the network [54, 59]. Having the parasite spreading on

geodesics through our spatial multiplex network is compatible with our finding

from Figure 5: the mean distance of infected nodes from the infection centre

saturates faster than the ratio of infected nodes.

3.2.1 Immunisation scenarios in the SMN model

In order to relate the topological features of each species population in the mul-

tiplex to their roles in spreading the parasite across the networked ecosystem,

we analyse immunisation scenarios. In the immunisation scenarios a fraction of

populations of a given species type (e.g. predators) is immunised against the

parasite (see Section 2.7). As reported in the previous section, we found differ-

ent species having different degree and participation patterns within the SMN

model (see the cartographies in Figure 3) at high vector frequencies (fV = 0.75).

In fact, when fv = 0.75 prey, predator and vector populations occupy different

regions in the multiplex cartography. In Figure 6 we report the global infection

times when the same total number φ = 417 of predator or prey populations is

immunised. The chosen φ corresponds to immunising half the predator popu-

lations in the system. Our results show that immunising prey over predators

leads to a greater increase in the system infection times for all values of vectorial

layer importance pv. The better performance of immunising prey over predators

is also reflected in the increase of parasite ratio ∆R(t) (Figure 6): immunising

prey not only delays a pandemic but it also significantly slows down the para-

site spreading in the initial accelerating phase (i.e., it lowers the ∆R(t) when

t < 140). Even though slowing down the parasite transmission and reaching a

pandemic at a later stage might sound equivalent, the parasite ratio increase
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Figure 5: Ratio of infected populations after 104 steps, sampled at different

values of pv, against vector frequency fv in the SMN model. When vectors

are rare in the system, the system displays a phase transition in the rate of

infection. The critical threshold is localised around fv ≈ 0.02, for all the values

of pv. The grey shape represents the mean distance of infected population from

the origin of the parasite spreading and it is averaged over different pv values.

When fv > 0.02 the infection radius saturates faster than the global percentage

of infected populations. All curves are averages of 100 repetitions.



!" #$$%

&'()*#$$%

&'(+,-"'. #$$%

/%0 /%1 /%2 /%3 4%/

0//

1//

2//

3//

4///

5(6-"'7,8*8,)('*7$9"'-,:6(

#:
;(
6
-7
"
:
-7
$
(

!" #$$%

&'()*#$$%

&'(+,-"'. #$$%

/ 0/ 1// 10/ 2// 20/
/%///

/%//2

/%//3

/%//4

/%//5

/%/1/

67$(

&
,
',
.
7-
(
',
-7
"
78
9
'(
,
.
(

(a) (b)

Figure 6: (a): global infection time versus vectorial layer importance pv for

different immunisation experiments with fv = 0.75 in the SMN model. No

immunisation means that no immunised populations are present in the system

while two other dot types represent scenarios in which only prey or predators

are immunised, respectively. For immunisation scenarios the same number of

populations has been immunised. (b): parasite ratio increase of infected nodes

over time for the SMN model for different immunisation scenarios with fv =

0.75. Error bars are computed over 10 independent experiments. Immunising

prey is the best choice in terms of both reducing the global infection time and

slowing the infection spread over time.

reveals that in the predator immunisation scenario there is a higher diffusion

speed in the decelerating infection phase, t > 140 (Figure 6). Because of this

behaviour, we report on both patterns.

This difference could be attributed to the different topology of prey and

predator populations in the trophic layer, i.e., the parasite spreads from vector

to prey and then from prey to predator populations, so that prey have a higher

betweenness in the sifted trophic interactions. Further numerical experiments

indicate that this is not the case. Immunisation experiments performed with

the same φ but with vector frequency fv = 0.25 show that immunising either

predators over prey gives statistically equivalent results in terms of both the

parasite spreading times and the propagation rates. Therefore, at fv = 0.25

immunising one species type over the other does not change parasite spreading.

However, both the fv = 0.25 and the fv = 0.75 instances are relative to the

same interaction matrices T and V and to the same number of immunised prey

φ. Therefore, the relative difference in immunisation performances has to be

attributed to the role played by each species within the global network topology.

Immunising prey is different from immunising predator populations only when

they have different topological patterns within the multiplex network, i.e. they

occupy different areas of the multiplex cartography. This evidence points to the

meaningfulness of the concept of network cartography for the parasite spreading

dynamics: at fv = 0.75 prey populations become truly multiplex hub nodes
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and assume an important role for parasite spreading, as demonstrated by our

immunisation experiments.

3.3 Spatial ecological multiplex network model: the role

of biodiversity

The SEMN model considers empirical interaction matrices Teco and Veco com-

pared to SMN. Notice that the in Veco the vector contaminates only 7 of the

20 species in the ecosystem, while in SMN it is allowed to contaminate all the

other 2 species. In this section we relate the empirical ecological structure to

the results for SEMN. The cartographies reported in Figure 7 (a-d) represent

snapshots of the spatial ecological multiplex network with increasing frequencies

of vectors. In all the cartographies there is one predator species that displays a

wide variation in the participation coefficient, while the participation coefficients

of the other predator species populations is zero. This is because, differently

from SMN, the SEMN model has one predator species that can be contami-

nated by vectorial transmission (see Veco in the Supporting Information), while

the other predator species populations have links only on the trophic layer.

When vector populations are rare (fv = 0.01), predator and prey populations

occupy the same regions of the cartography, as in the SMN model, see Figure

7 (a) and (b). A similar case occurs with prey populations, since only half of

them have connections on the vectorial layer (see Veco in the Supporting Infor-

mation). Analogously to the SMN model, increasing the frequency of vectors

leads to scenarios where some predator and prey populations display a wide

range of participation coefficients. However, at both fv = 0.1 and fv = 0.25

predator populations have a higher multidegree than prey populations. This

occurs because predators receive more connections than prey in the trophic

layer. Therefore, for values as low as fv = 0.1 the species types show varied and

distinct patterns in the cartography. At fv = 0.25, prey populations show an

increased participation in the multiplex network as a sign of increased connec-

tivity in the vectorial layer (Figure 7 (c)). When vector populations are highly

frequent in the system, fv = 0.75, the cartography reveals some extreme pat-

terns: prey species populations that interact with vectors on the vectorial layer

display participation coefficient close to 1 while the other prey species show

focused interactions (Figure 7 (d)). This same pattern was observed between

predator species populations that interact with vectors and the predator pop-

ulations that do not when fv = 0.75 (Figure 7 (d)). This was not observed in

the SMN model.

As reported in Figure 8 (b), the time required to infect almost all the pop-

ulations in SEMN is minimised when there is a high frequency of vectors in

the environment and a high importance of vectorial layer for parasite transmis-

sion. Infection times decrease monotonically when fv = 0.5 and 0.75. However,
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Figure 7: Cartographies as 2D histograms for the SEMN model for vector fre-

quency fv = 0.01 (a), fv = 0.1 (b), fv = 0.25 (c), and fv = 0.75 (d). The 10,000

multiplex nodes are binned in 2D bins, according to their coordinates in the car-

tography. Bins are colour-coded according to the number of points falling within

them: more coloured tiles indicate a higher number of nodes. Coloured dots

identify individual species: predators (blue), prey (orange) and vectors (green).

Nodes falling above the horizontal red line have degrees above the 95th per-

centile in the multidegree distribution and they are therefore considered hubs.

Error bars represent standard error of the mean.



at vector frequencies fv = 0.1 and 0.25 parasite spreading is optimised when

the vectorial layer importance pv is around 0.6 (8 (b)), that is, when vectorial

and trophic transmission mechanism have similar importance. Therefore, vec-

torial and trophic transmission mechanism have an additive effect for parasite

spreading only when fv < 0.5. Comparing the results against a spatial aggre-

gate network model using the Canastra matrices (Canastra SAN model) reveals

how the multiplex structure can change dramatically the infection time. For in-

stance, when fv = 0.1, the infection time of the Canastra SAN model is halved

compared to the SEMN one for pV = 0.1, see also the dashed lines in Figure 8

(b). The multiplex structure not always increases the speed of parasite spread-

ing and the multiple dynamics that resulted from the interplay of vectorial layer

importance and community composition justifies the value of investigating dif-

ferent transmission routes via multiplexity. Despite the higher connectivity of

the trophic layer in the SEMN model, parasite ratio increases behave similarly

to the SMN model (8 (a)). The parasite spreading propagates much slower on

the trophic layer alone than on the full multiplex structure, see the pV = 0

trajectory. Again, considering also contaminative interactions provides quali-

tatively different dynamics of parasite ratio increases than considering trophic

interactions only (8 (a)). However, the dynamics of parasite ratio increases in

time for the SEMN model are qualitatively similar to the SAN model relative

to pV > 0. Increasing the vectorial layer importance accelerates the parasite

spreading even though no monotonous relationship is evident from the plots.

For pv > 0 the slow-down phase following the increase peaks does not behave

independently of pv (8 (a)). Therefore, these peaks cannot be considered good

proxies of the infection times in the SEMN model. When the spreading deceler-

ation occurs in different time windows, it sums up differently to the peak times,

thus establishing global infection times that are not straightforwardly related

to the peak times. For instance, the peak for pv = 0.8 is reached sooner for

the pv = 0.6 but the deceleration phase takes longer for pv = 0.8 than for the

pv = 0.6 and pv = 0.8 has a higher global infection time compared to pv = 0.6.

The SEMN model also displayed a phase transition in the emergence of a

global epidemic, similarly to what happened for the SMN model. However, the

different topology of trophic and vectorial layers brought to a slight increase in

the critical vector frequency value, from fv = 0.02 (SMN) to fv = 0.04 (SEMN).

3.3.1 Immunisation scenarios in the SEMN model

Unlike the SMN model, the SEMN model has predator and prey populations

exhibiting different cartography patterns only at low vector frequencies. There-

fore, we investigated immunisation scenarios at fv = 0.1 and fv = 0.25. The

results for fv = 0.1 are reported in Figure 9 and are analogous to the fv = 0.25

case (plots not shown for brevity).
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Figure 8: (a): global parasite ratio increase over time for fv = 0.75 for SEMN

model and different vectorial layer importance. A qualitatively similar be-

haviour was observed also for other vector frequencies. (b): global infection

time versus vectorial layer importance pv for different vector frequencies in the

SEMN model. Dotted lines represent infection time in the SAN model applied

to Canastra empirical data for different vector frequencies. Results in both plots

are averages of 100 repetitions.
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Figure 9: (a): global infection time versus vectorial layer importance pv for

different immunisation experiments with fv = 0.75 in the SEMN model. The no

immunisation scenario means that no immunised populations are present in the

system while other dot types represent scenarios in which only prey or predators

are immunised, respectively. For immunisation scenarios the same number of

populations has been immunised. (b): parasite ratio increase of infected nodes

over time for the SEMN model for different immunisation scenarios with fv =

0.75. Error bars are computed over 10 independent experiments. Differently

from the behaviour we observe in the SMN model, immunising prey is less

effective than immunising predators in slowing down the disease spread for small

pv values. The opposite scenario happens when pv > 0.2 where immunising prey

is more effective than immunising predators, as shown in panel (b) comparing

pv = 0.1 and pv = 0.8 immunising scenarios.



Both the SMN and the SEMN models are spatially embedded, but SEMN

has a higher number of species with interaction patterns based on empirical

data. In SEMN, immunising prey over predator populations does not always

hamper more the parasite spreading, as it happened in the SMN model. From

the cartography in Figure 7 (a) one would expect predator populations to play a

pivotal role in spreading the parasite, given their higher multidegree compared

to prey populations, on average. However, in the same cartography 6 out of

12 prey species display a higher average participation coefficient compared to 6

out of 7 predator species (with participation coefficient equal to zero). Hence,

from the cartography both predator and prey populations could play a central

role in promoting the parasite spreading: predators are hubs while prey can

spread the infection across both layers. In contrast to the SMN model, it is not

possible to make predictions based on the cartography alone. Our immunisa-

tion simulations reveal the presence of two scenarios: when the parasite spreads

mainly across the trophic layer (pv < 0.3), then immunising the same number

φ = 346 of predator over prey populations significantly increases the infection

times, (9 (a)), and slows down parasite diffusion (Figure 9 (b)). This finding

relates to the SEMN cartography: predator populations have a high multigree

because they are hubs in the trophic layer (here fv = 0.1) and hence promote

the parasite spreading through trophic interactions. However, when the vec-

torial layer importance pv increases above 0.3, then immunising predator or

prey populations does not make noticeable difference. When pv > 0.7 and the

parasite spreads mainly through contaminative interactions the most effective

immunisation strategy becomes immunising prey populations, since vectors con-

taminate mostly prey populations in the SEMN model (Figure 9). Again, this is

compatible with the patterns in the multiplex cartography: when pv is higher,

the multiplex structure becomes predominant and the species populations that

have higher participation coefficients, such as prey, can promote the infection

spread.

4 Discussion

It is only recently that network scientists started addressing the multiplex

structure of real-world systems such as ecological and epidemiological systems

[23, 24, 30, 34]. Multi-layer networks were used in ecological systems to approach

different interaction types [62, 63] and levels of organisation [11, 64, 65]. More

in particular, multiplex networks were used for the first time in [37], in order

to consider trophic and non-trophic interactions together in a Chilean ecosys-

tem. In epidemiological systems multi-layer networks were used to describe

parasite spreading with Susceptible-Infected-Susceptible dynamics [27, 66–69],

susceptible-infected-recovered dynamics [35, 70, 71], and multiple types of in-
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teractions between random layers [29, 36, 72]. The modelling of multi-host

parasites that are transmitted through multiple mechanisms in the ecosystem

can be improved by applying the framework of multiplex networks. We used

the multiplex approach to study both a simple predator-prey-vector system as a

reference case, and an empirical data from host communities of T. cruzi in nat-

ural habitat (Canastra). Compared to their aggregate counterparts, both our

multiplex network models displayed a richer phenomenology in terms of infec-

tion dynamics. Our three-species-system (SMN) as well as our empirical-based

model (SEMN) showed that the epidemiological importance of vectors, hosts

and parasites might be mapped on the multiplex cartography. Considering the

node and link heterogeneity in a spatial context allowed for us to identify per-

colation thresholds for parasite spreading according to vector frequency. This

is particularly interesting because the susceptible-infected dynamics in homoge-

neous hosts always leads to epidemic waves (in other words, when nodes are not

spatially embedded there is no percolation threshold). In addition, we found

that multiplex cartography had important implications in parasite spreading dy-

namics and that parasite transmission depends on: (i) the relative importance

of the distinct transmission mechanisms, (ii) the role species play on the overall

multiplex structure and (iii) the species relative frequencies in the system.

There is a strong debate in ecology on whether biodiversity reduces or not

the risk of infection in host communities [41, 73, 74]. In general, the effect of

host diversity on parasite transmission depends on the ecological characteris-

tics of hosts and on the mechanism of transmission [74]. The spatial multiplex

modelling framework that we propose in this study could be applied to address

questions related to the role of multiple host community biodiversity on para-

site transmission. In fact, we found that the spatial component has a significant

impact on the speed of parasite spreading: spatial correlations slowed the speed

of parasite spreading when compared to mean-field approximations. Therefore,

considering the spatial structure of host communities in order to infer the im-

portance of different host species for parasite transmission is a fundamental

next step in future ecological disease studies [10, 30]. Percolation thresholds are

spatially explicit tipping points that indicate the presence, in some regimes, of

non-local correlations within a given system [18]. For instance, if a network is

not strongly connected, then the parasite will not be transmitted to the whole

system. In our model the connectivity of the multiplex network was crucially

affected by the frequency of different species. For very small frequency of vec-

tors fv, our model showed a percolation threshold in both the SMN and the

Canastra SEMN model. The presence of such phase transition in the infection

rate in an SI dynamics for a non-zero value of fv is mainly related to (i) the spa-

tial structure and to (ii) directed trophic interactions in the multiplex network.

In the SMN model the parasite can percolate through the whole system only
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if fv > 0.02, while in the Canastra SEMN model the critical vector frequency

was found to be around fv = 0.04. No phase transition for fv > 0 was found in

the RAN model, where nodes are not spatially embedded. We conjecture that

the increase in the percolation threshold from the SMN to the SEMN models

might be due to a higher diversity of potential hosts: with more species available

there is an increased chance that vectors will interact with animals that do not

become infected with the parasite. Interestingly, our theoretically computed

frequencies agree with previous findings that even a small frequency of vectors

in the ecosystem is sufficient to maintain Chagas disease in a human population

[75].

Multiplex cartography [33] considers both the relative frequency of each

species and the interactions they have in both the trophic and the vectorial lay-

ers. Comparisons with aggregated networks revealed that considering trophic

and vectorial transmission routes together can change dramatically the para-

site spreading dynamics, depending on the relative frequency of vectors in the

ecosystem. More in detail, the parasite spreading dynamics depends on the

interplay between community species composition and the relative importance

of the transmission mechanisms. In fact, when there is homogeneity in species

composition (i.e. when the relative frequency of vectors fv ∼ 0.5), the low-

est infection time is registered when the parasite spreads on both layers at the

same time (i.e. for intermediate values of pv) in both the SMN and the SEMN

models. Therefore, our theoretical network models indicate that vectorial and

trophic mechanisms of transmission can be additive in sustaining the spread

of multi-host parasites such as T. cruzi, further agreeing with previous studies

[47]. In random multiplex networks [66] the epidemic process also depends on

the strength and nature of the coupling between the layers. In our case the

vectorial layer importance pv can be thought of as an implicit coupling between

the layers, quantifying how much the vectorial layer is more important than the

trophic layer in spreading the parasite. Previous investigation [23, 24, 34, 66]

showed that epidemic dynamics on a multiplex structure can be fundamentally

different from the same dynamics on each multiplex layer considered as sep-

arate. Our results indicate that multiple mechanisms may speed up parasite

spreading. The multi-layered transmission, which is observed in many parasites

with complex life cycles and multiple mechanisms of infection, seems to be a

very efficient strategy for spreading in communities of multiple hosts.

In vector-borne diseases, densities of hosts and vectors as well as the ratio

of their densities, have strong implications for parasite transmission [49, 76–78].

The SMN model shows that higher vector frequencies make the vectorial layer

faster in spreading the parasite from vectors to predator and prey populations.

This relationship explains why infection times decrease monotonically with in-

creased importance of the vectorial layer. On the other hand, if the vector
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frequency is low and the parasite spreads only on the trophic layer, it becomes

increasingly difficult to infect more populations over time. In this situation the

fastest global infection is achieved when both mechanisms of transmission are

likewise selected for parasite spreading (there is a minimum in the infection

time around pv = 0.6). Moreover, in the Canastra SEMN model, we observe

an analogous minimum even with higher vector frequencies. This suggests that

global infection time is minimised when both mechanisms of transmission have

similar importance in more complex ecological scenarios. Notice that consider-

ing both the transmission mechanisms but with one layer much more important

than the other (e.g. pv = 0.1) can lead to drastic increases in the infection

time. The evolution and maintenance of mutually important multiple routes

of transmission may be selected in parasites that infect a high number of host

species.

Furthermore, using the multiplex cartography we predict that the relative

importance of each mechanism for parasite spreading depends on the host com-

munity composition and relative frequency of species. We find that species

structural patterns, encapsulated within the multiplex cartography, are a valu-

able measure to evaluate the importance of each species for parasite spreading.

These findings are confirmed by the immunisation simulations. For instance, in

the SMN model, a higher frequency of vectors (fv > 0.5) increases prey popu-

lations connectivity and therefore their participation in the multiplex topology.

We find different results when considering a more realistic ecological scenario.

In the SEMN model, predator populations dominated the multiplex topology

because of their higher connectivity and higher average multidegree. Immunis-

ing prey populations in the reference SMN model dramatically increases global

infection time and the rate of disease spreading in the populations. However,

in the SMN model immunising prey over predators results in different infection

times only when these species occupy distinct regions in the multiplex cartog-

raphy. This result points to the meaningfulness of the network cartography for

understanding the parasite spreading dynamics. In fact, the multiplex cartog-

raphy shows that prey participate more and have higher degree in the three-

species multiplex network and thus could be a better target for immunisation.

The immunisation simulations confirm this: immunising prey populations ham-

pers the parasite spreading with respect to immunising the same number of

predator populations. In the Canastra SEMN model, predators are the species

type that attain most of their connections in the multiplex network and thus

have a higher importance in the cartography. This pattern suggests that the

predators are acting as a sink for the parasite and can thus reduce the over-

all parasite transmission in the SEMN model. This is mainly due to the fact

that predators are hubs in the trophic layer and hence show a higher multide-

gree in the cartography. When the parasite spreads mainly in the trophic layer
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(pv < 0.3) the immunisation experiments indicate that immunising predators

hampers the disease more compared to immunising prey. This is in agreement

with empirical studies pointing out the potential importance of predators as

parasite bio-accumulators [9, 79]. However, prey also display a slightly higher

average participation in the Canastra cartography and hence could also play a

central role in spreading the parasite. In fact, when the vectorial layer impor-

tance pv is above 0.7, immunising prey populations becomes the most effective

immunisation strategy. This is because vectors contaminate mostly prey in the

Canastra multiplex network. Again, the roles played by each species in the

multiplex cartography depended on the frequency of vectors and is related to

their importance for parasite spreading.

It has to be underlined that the main aim of our multiplex model is not to

provide a realistic mechanism for the spreading dynamics of T. cruzi in wild

hosts. Instead, our approach aims at providing a comprehensive framework for

investigating the spreading of multi-host parasites across different transmission

mechanisms. Additional information should be taken into account if one would

want to study the dynamics of T. cruzi in wild hosts and Chagas disease epi-

demiology. For instance, it is known that the stercorarian transmission results

in a much higher probability of parasite transmission from host to vector than

from vector to host [80]. More realistic models should include these differences

via different contact rates on different layers. In addition, host physiological

and ecological characteristics influence their probability to transmit T. cruzi. A

higher proportion of insects in host diets increase host probability of infection

[79, 81, 82]. Finally, host species that share ecological habitat with vector species

are more likely to be exposed to the infection [9]. Many zoonoses, which are

infections naturally transmitted between vertebrate animals and humans, may

have multiple hosts and mechanisms of transmission. Examples of zoonoses

transmitted to humans by arthropod vectors include Malaria, Leishmaniasis,

Chagas disease, West Nile virus, plague and Lyme disease [83]. The multiplex

framework presented here could improve our understanding of the epidemiology

and evolution of these parasites and help us elaborate more efficient control

strategies for reducing disease incidence in humans. For instance, different or

additional layers could be included within our multiplex framework to make

the model more realistic, such as direct transmission mechanism or the network

of human interactions with its socio-ecological characteristics. Outside of the

ecological perspective, our spatial multiplex network model could be applied to

modelling systems made of spatially embedded interacting agents where instead

of parasite infection there is a given information spreading process.
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[61] Guimerá, R. and Amaral, L.A. (2005), “Functional cartography of complex

metabolic networks,” Nature , vol. 433, pp. 895-900.

[62] Melián, C. J., Bascompte, J., Jordano, P. and Krivan, V. (2009) “Diversity

in a complex ecological network with two interaction types,” Oikos, vol. 118,

no. 1, pp. 122–130.

37
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ical and evolutionary implications of merging different types of networks,”

Ecology Letters, vol. 14, no. 11, pp. 1170–1181.

[64] Scotti, M., Ciocchetta, F. and Jordán, F. (2013) “Social and landscape

effects on food webs: a multi-level network simulation model,” Journal of

Complex Networks, vol. 1, no. 2, pp. 160–182.

[65] Belgrano, A. (2005) Aquatic food webs: an ecosystem approach. Oxford

University Press.

[66] Saumell-Mendiola, A., Serrano, M. Á. and Boguñá, M. (2012) “Epidemic
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